
John R. Sturgul

Mine Design
Examples Using Simulation

Society for Mining, Metallurgy, and Exploration, Inc. (SME)
8307 Shaffer Parkway
Littleton, CO, USA 80127

www.smenet.org

SME advances the worldwide minerals community through information exchange and
professional development. With more than 16,000 members in 50 countries, SME is the
world's largest professional association of mineral professionals.

Copyright 0 2000 Society for Mining, Metallurgy, and Exploration, Inc.

Student GPSS/H and Proof Animation Demo Viewer are copyrighted material of, and
distributed with permission of, Wolverine Software (www.wo1verinesoftware.com).

AU Rights Reserved. Printed in the United States of America

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher.

(303) 973-9550

ISBN 0-87335-181-9

Library of Congress Cataloging-in-Publication Data

Sturgul, John R.
Mine design : examples using simulation / John R. Sturgul.

Includes index.
p. cm.

ISBN 0-87335-181-9 (pbk.)
1. Mining engineering-computer simulation. 2. GPSS/H (Computer program

language) I. Title.

TN153.S83 1999
622'. 0 1 ' 1342 1

99-048032

Preface
.

Computers, especially the personal computer or PC, are now a standard tool
of the mining engineer. The popularity of the personal computer has made it
possible for the mining engineer to have immediate access to his or her own
computer. Along with this increase in computers, there are now a multitude
of software packages available. A casual reading of any of the popular com-
puter periodicals reveals what may seem like a staggering number of such
packages. In addition, there has been a burgeoning of computer languages
that are not traditionally taught in mining programs. A problem now facing
the mining engineer is how to use these computers, the software, and the lan-
guages to best advantage.

This book is intended to show how a particular computer language, GPSS
(General Purpose Simulation System), can be applied to a wide variety of
problems that arise in everyday situations in mining. This book also is
intended to be used as a supplement to normal instruction in various mining
engineering classes, including those on mine design, mine equipment selec-
tion, or computer applications in mining. There are numerous exercises at
the end of most chapters, and all have the answers given at the end of the
book. It is not assumed in this book that the engineer has a working knowl-
edge of any computer languages as the programs all run by keying in a sim-
ple list of instructions.

This book is divided into three parts. Part I is a review of simulation in mining
and a discussion of why the GPSS/H simulation language (a version of GPSS)
was selected. It is interesting to note that mining engineers were eager to
embrace the computer as soon as it was made generally available for use in
mining applications, including mining simulation. Part I1 is an introduction to
the GPSS/H simulation language and is divided into 28 chapters. In order to
obtain the most benefit from the mining examples that are given in Part III, a

V

knowledge of GPSS/H as presented in Part I1 is essential. The student version
of GPSS/H can be used to learn the language. A bonus from studying GPSS/H:
As one learns more about the language, one automatically learns how to do
simulation studies.

If one were to look first at the computer programs that are used for the exam-
ples for Part 111, they would seem strange. However, as familiarity with the
GPSS/H language grows, so does one’s appreciation of the power of GPSS/H,
the speed at which it can model systems, and the compactness of the programs.
All of the program blocks (i.e., lines of code) used in the 30 examples from Part
III are covered in Chapters 5 to 31 of Part 11. Chapter 32 includes a few addi-
tional GPSS/H blocks that might be useful in other mining applications.

Part I11 is contained on the CD included with this book. It encompasses 30
examples from a wide variety of mining operations, some large, some small,
some from surface mines, some from underground mines, some foreign, and
some domestic. The suggested way to approach each of these examples is to
read the explanation of the example and run the program-via the student
version of GPSS/H included on the CD-for the example by using the sample
data given with it. The program to simulate each of the examples is interac-
tive; the user is prompted to input the data used in the simulation. The ani-
mation can then be run to view the mining operation on the screen in
“cartoon” fashion. There are also exercises to go with the examples that
should further increase one’s knowledge of mine system simulation; the
answer to each of these exercises is given.

It may seem strange to introduce the mining engineer to a new computer lan-
guage, especially one that is not taught in traditional mining programs. Most
(if not all) mining engineers are exposed to a problem-solving language such
as Fortran or BASIC (and, in some cases, Pascal or C) early in their education.
It will be a pleasant surprise to learn that programs for simulation problems
that take thousands of lines of computer code in Fortran can be written, in
many cases, in GPSS/H with 100 (or fewer) lines of code. For example, con-
sider the basic queueing model of a single server (a shovel loading trucks in a
mine), infinite population (there are numerous uucks in the mine), random
arrival (the trucks amve at no set time), and random service (the loading
times are variable). This elementary model is discussed in every book on
queueing theory. If the various arrival and service times are given by the
exponential distribution, this is known as the M/M/1 model. This problem is
modeled in only 7 (!) lines of code in GPSS/H. All of the examples in this
book are solved in less than 125 lines ofcode (that‘s the limit of the student
version of GPSS/H). Some of the examples represent quite complicated min-
ing situations.

The practicing mining engineer might simply thumb through this book to
learn of the wide variety of problems that can quickly and easily be solved by
using GPSS/H. Programs in the GPSS/H language are given for each problem
discussed, and they can kept in a file and run with no programming involved.
The person experienced with the language, however, might choose to modify
one or more of the programs to suit a particular problem. An even more

vl

important point is that, on the CD, animations are given for each example so
that the viewer can “see” the results. This ease of program access and visual-
ization of results sets this book apart from other mining books. Not only does
one solve a problem in an example, but one “views” the answer.

Since GPSS was first introduced by IBM in 1962, several versions have been
in use. The recent versions are quite different from the original GPSS. The one
that will be used in this book is GPSS/H, which is designed for the personal
computer. Included with this book is a limited (student) version that will
allow the user to run all of the programs in the book.

All of the examples have been animated through the use of the software
known as PROOF. These animations are ”postsimulation” in that the simula-
tion is run first and an output file is created to be used with a layout file. The
normal way to do an animation is to first create the GPSS/H program to do
the simulation and then convert its results to create an o u p t file that serves
as input to PROOF, which runs the animation. The programs to create these
animation files generally exceed the limits of the student version of GFSS/H
and therefore are not included on the CD. It is beyond the scope of this book
to explain animation programs; the interested reader is directed to s o h a r e
providers such as Wolverine Software Corporation, 21 11 Eisenhower Avenue,
Suite 404, Alexandria, VA 223144679, Phone: (703) 535-6760, Fax: (703)
535-6763 (mail@wolverinesoftware.com). Full directions on running the ani-
mations are given in Appendix A. In some cases, there will be more than one
animation for a single example. These animations are “demo” versions. This
means that they have the full capabilities of the regular animations, but
changes that the viewer wishes to make cannot be saved.

Appendix A also gives insmctions on the running of GPSS/H programs, and a
README.DOC file has been provided on the CD. The programs in Part I11 can
be run without any knowledge of the GPSS/H language, but, for maximum
benefit, it is hoped that the reader will study the language first. For detailed
instruction in the language itself, such as the way the GPSS/H processor
works in moving the transactions through the system, the books by Tom
Schriber are recommended highly. Both are referenced on the next page. The
1974 book covers the GPSS language more thoroughly than the later one. The
1991 textbook specifically deals with using GPSS/H on PCs and is more con-
cerned with an introduction to discrete system simulation. The GPSS version
discussed in 1974 is designed for punched cards and mainframe computers.

For the person who already is proficient in programming with a version of
GPSS for the mainframe, the differences between GPSS/H and the mainframe
version can be learned from reading Schribeis 1991 textbook. Be fore-
warned, however, that the differences are many! The main features of GPSS/H
used in the examples in this book include a floating-point clock, the ability to
include DO loops, referencing of functions via parentheses, the use of symbols
such as “=,” “AND,” “OR,” etc., in logic statements, and, of course, the custom-
ized reports.

vll

REFERENCES

Schriber, T.J., 1974. Simulation Using GPSS. New York: John Wiley and Sons.
This reference is now out of print but available from Krieger Publishing
Company, P.O. Box 9542, Melbourne, Florida 32902. This is the book
referred to simply as “Big Red” or the “Red Book.”

Schriber, T.J., 1991. An Introduction to Simulation Using GPSS/H. New York:
John Wiley and Sons. This reference includes the student version of
GPSS/H.

John R. Sturgul
Moscow, Idaho

viii

. Con tents

PART I

PART II

PREFACE v

ACKNOWLEDGMENTS Ix

GPSS/H AND SIMULATION IN MINING 1

INTRODUCTION 3

A BIT ABOUT GPSS/H 7

REVIEW OF SIMULATION IN MINING 3.3

REVIEW OF SIMULATION MODELS 19

THE GPSS/H SIMULATION LANGUAGE 33

SAMPLE GPSS/H PROGRAMS 35

THE GENERATE AND TERMfmm BLOCKS AND THE START STATEMENT 51

THE TRANSFER BLOCK 65

THE PUTSTRING AND PUTPIC STATEMENTS AND WRITING TO FILES 77

THE ADVANCE BLOCK 87

QUEUE AND DEPART BLOCKS 93

SEIZE AND REWE BLOCKS 99

$NTER AND mvg BLOCKS 111

THE CLEAR, RESET, AND RMVLT STATEMENTS

FUNCTIONS 133

MORE ON STANDARD NUMERICAL ATTRIBUTES: ARITHMETIC IN GPSS/H 151

THE TEST BLOCK 157

GPSS/H SUPPLIED FUNCTIONS 167

PARAMETERS, THE LOOP BLOCK, AND THE EQU STATEMENT 179

TABLES IN GPSS/H 197

127

PART 111

SAVEVAWES 207

LOGIC SWITCHES AND GATES 217

OTHER FORMS OF THE BLOCK 227

AMPERVARIABLES; DO LOOPS; GETLIST STATEMENTS; IF, 00~0, HERB,
AND LFT STATEMENTS 241

THE SELECT AND COUNT BLOCKS 255

MATRICES 267

VARIABLES, EXPRESSIONS, AND THE PRIm BLOCK

BOOLEAN VARIABLES 289

THE B W m BLOCK 301

THE SPLIT BLOCK 307

ASSEMBLY SETS AND THE ASSEMBLE, GATHER, AND m m BLOCKS 321

MACROS 335

OTHER QPsS/H BLOCKS 341

283

EXAMPLES ON THE CD 349

APPENDIX A RUNNING THE PROGRAMS AND ANIMATIONS 351

APPENDIX B
SNAS USED IN BOOK 357

APPENDIX C: HISTORICAL GPSS/H FORMAT 361

INDEX 363

PART I

GPSS/H and
Simulation in Mining

1

.
CHAPTER 1 Introduction

GPSS (General Purpose Simulation System) is an extremely versatile com-
puter programming language. Originally developed in 1961 to solve very sim-
ple simulation problems, it has evolved until, in its present state, it can solve a
wide range of problems. Many of these problems are of direct concern to the
mining engineer. Benefits of using GPSS include the following:

I. It is easy to follow the logic of the programs.
2. The programs are short. Hence, they are quickly written.
3. Execution times are short.
4. Versions are available for PCs.
5. The programs are easy to change as modifications in the model are

required.
6. It is a dynamic language in that it constantly is being modified and

improved.
7. It has a proven track record for simulating a wide variety of mining

problems.
8. The last benefit is possibly the most important-it allows problems of a

practical nature to be solved quickly and easily.

GPSS/H-the version of GPSS used in this book-is not, however, an easy lan-
guage to master. Like all practical computer tools, it takes time and effort to
learn all of its many facilities. However, just as a person can use a common
spreadsheet without knowing all of its many features, so can one use the
GPSS/H programs in this book without being a GPSS/H expert.

This book will introduce the mining engineer or student to some of the many
possible applications of GPSS/H. The approach is to present different mining
problems for which the solution can be obtained by using GPSS/H. If a person
attempted to use a traditional engineering language such as Fortran to model
these problems, the programming effort would be on the order of 100 times as

3

4 GPSS/H and Slmuiatlon In Mining

great as that required when using GPSS. In most, if not all cases, it is doubtful
if most mining engineers would have the programming skills or patience to
write the Foman code. In fact, it is doubtful if many actual mining operations
could even be simulated through the use of traditional engineering languages.
However, when using GPSS/H, this is not the case. Now the mining engineer
has time to ensure that the computer model does indeed represent the real-life
situation, by making sure that the data used are correct and by making refine-
ments to the model as needed. The actual programming to solve the problem
should be a minor part of the whole problem-solving process.

Part I1 of this book is an introduction to the GPSS/H language. A knowledge
of this is important for any mining engineer who wants to understand how
the models in Part I11 were constructed and who eventually wants to construct
his or her own models. The language is presented with numerous examples
that the reader should run. The solutions to all of the exercises at the end of
each chapter in Part I1 are given at the end of the book. There is only one way
to learn a computer language, and that way is to run numerous examples.
Each time an exercise is successfully run, the student of GPSS/H will gain
something. GPSS/H is fairly easy to debug and the compiler will attempt to
determine the place and type of any error. Part I1 was written by using notes
from numerous short courses on the subject. However, what is presented in
Part I1 is in much more detail than what can be taught in a four-day short
course. Also, there are many more exercises.

Each mining example in Part I11 is followed by the GPSS/H program for its
solution. No fluency with GPSS/H is needed to begin using the book other
than a knowledge of how to run the programs on the computer and how to
interpret the results. Naturally, to obtain the most benefit from this book, one
should be familiar with how GPSS/H works. Thus, a few remarks about the
language follow.

GPSS is a programming language that was introduced originally to assist in
solving problems having to do with manufacturing. All the versions of GPSS
are used to build computer models to represent systems that can be character-
ized as consisting of discrete events. A discrete event is one in which, during a
small increment of time, the state variables change only a countable number
of times. Examples of discrete events include a truck being loaded, a shovel
breaking down, a quantity of ore arriving at the end of an ore pass, a ship
arriving in a port, etc. Since mining operations can be viewed as consisting of
a large number of such separate events, the GPSS language is a natural for
use here. In fact, even for situations in which more than one thing happens at
the same time (truck A is loaded at, say, simulated time 10023, and truck B
finishes dumping its load at the same time), GPSS can still be used.

GPSS in all its versions is a nonprocedural language (Fortran, BASIC, Pascal,
etc., are procedural languages). This distinction means, briefly, that GPSS is
designed for a special purpose and mes to anticipate what the programmer is
doing. For example, one need not use any commands for generating output:

lntroductlon 5

GPSS assumes that the programmer is interested in the results of a simula-
tion, and so automatically it keeps track of data relevant to simulation studies
and presents the results at the end of the program.

The first few examples in this book are short, and the programs are easy to fol-
low by beginning GPSS/H programmers. However, the rest of the examples
are not given in any particular order. In some cases, exercises are given for the
interested reader to work in order to extend the solution. Some of the exam-
ples were selected from actual mining situations with few, if any, changes to
the data. In a few cases, the examples were selected from ones that a;:peared
in professional papers. These were problems that authors had indicated were
solved by some form of computer simulation, although not necessarily GPSS/H.
These problems are now resolved by using GPSS/H with minor changes to the
problem or data as were required. Some of the examples illustrate the great
versatility and power of GPSS/H; others were chosen to illustrate how some
feature of GPSS/H can be used to solve a particular mining problem. A discus-
sion of the particular GPSS/H features used to model each problem is kept sep-
arate from the problem statement and solution. Thus, a person who is not
familiar with the language can omit this section in each chapter.

It is hoped that, after the engineer or student has studied and run the pro-
grams that are presented here, she or he will have obtained both a degree of
fluency in constructing simulation models and an appreciation of their pur-
pose. Since GPSS/H is a language and not a package, each time the problem
changes, a new program has to be written or a previous one modified. How-
ever, by studying and running the examples here, the general form of the pro-
grams will be learned. The best way to use this book is to run each of the
examples and then pose the “What if?” questions that come to mind. The pro-
grams can be suitably changed to answer most of these questions; often only
a few changes to the program are required. By following this approach, one
can also learn a great deal about the power of the GPSS/H language.

For the engineer who has not used a programming language for some time,
there is no reason to be concerned about being able to learn GPSS/H. The lan-
guage is quite different from most other languages (it does resemble a few
other simulation languages but is nothing like Fortran). In fact, knowledge of
other computer languages can be a bit of a hindrance at times. It is assumed
in this book that the engineer has a working knowledge of Fortran, but this
assumption has been made primarily to ease the pointing out of the differ-
ences in the languages. The benefits gained from learning GPSS/H will be
worth the time and effort needed to learn how to use it.

Since this book is designed as an introduction to the types of problems that can
be solved by simulation models, the engineer may wonder how long it will
take to actually build a simulation model of a large, working mine. The answer
is that, by the end of three days of intensive instruction, he or she should be
able to have a degree of confidence in understanding GPSS/H programs for
simple mining problems. One learns that, in going from many simple mining

6 GPSS/H and Simulatlon In Mlnlng

situations to more complicated ones, the GPSS/H program involved is not
hard to write-only more lines of code are needed. Programs become longer
but not more difficult. This cannot be said for Fortran.

Mastering GPSS/H is not simple. For this reason, an introduction to the lan-
guage k provided in Part 11. However, there is no quick and easy way to learn
any computer programming language, and GPSS/H is no different. In order
to really be able to apply GPSS/H to complicated mining problems, one must
be prepared to spend many long and hard sessions at the computer. But once
a person makes enough programming errors and then learns why the pro-
gram did the wrong thing, the next program becomes just that much easier to
write. The skills gained in learning GPSS/H will enable the mining engineer
to solve problems that were beyond his or her reach previously.

A Bit About GPSS/H
CHAPTER 2

This chapter is intended to answer questions about the GPSS/H language and
is presented in a question and answer format.

W H Y U S E THE G P S S / H LANGUAGE?

All of the examples in this book are solved by using the GPSS/H simulation
language. Since this computer language is generally not the first one that
mining engineers have been trained to program in, it is appropriate to learn
why GPSS/H was selected. In fact, there are multiple versions of GPSS avail-
able. Of all the GPSS versions available, however, GPSS/H is by far the most
advanced. It was designed specifically for the personal computer. It contains
features that the other versions of GPSS do not have. Switching from one ver-
sion to another is not at all difficult, but the user should be aware that many
of the features of GPSS/H will not work on other versions.

W H A T I S G P S S / H ?

GPSS/H (the version of the General Purpose Simulation System developed by
James 0. Henriksen, which explains the H) is both a computer language and a
computer program. It was designed for studying systems represented by a
series of discrete events. GPSS/H is a low-level, nonprocedural language.

W H A T I S A D ISCRETE S Y S T E M ?

A discrete system is one in which only a countable number of events can occur
at one time. These discrete events might be trucks being loaded, ships enter-
ing a harbor, people entering a bank, cars traveling on a road, parts moving
on a conveyor belt, etc.

7

8 GPSS/H and Simulation In Mining

WHERE DID GPSS/H COME FROM?

GPSS originally was developed by Geoffrey Gordon for IBM in the early
1 9 6 0 ~ ~ so it has been around for quite some time. However, it is a dynamic
language in that new versions such as GPSS/H are introduced every three or
four years. It is now a multivendor language, and various versions are avail-
able. It is widely used on both mainframes and PCs. By 1972 there were at
least 10 versions of GPSS available, and many of these have survived in one
form or other. Greenberg (1972) presented details about these earlyversions
of GPSS and traced their histories.

WHAT ABOUT M O D E R N V E R S I O N S OF GPSS?

Since GPSS has been around for quite some time, it is natural that people who
were introduced to it in its early stages may not be aware of how it has
changed. An excellent summary of its development is given by Schriber
(1988). Schriber has listed the common, modem versions of GPSS (GPSS/H,
GPSS V, GPSS/PC, GPSSWPC, and GPSS/VX) and where to obtain relevant
information regarding each. The latest versions of GPSS/H for the PC include
animation display so that the simulation can be viewed in “cartoon” fashion.
In fact, it is possible to find certain functions performed by GPSS,/H embed-
ded in other languages such as GPSS-Foman, APL-Foman, and PW1-GPSS.
Schriber‘s paper gives references for these.

Henriksen (1983, and subsequent company updates) has dispelled some of
the myths that have grown up surrounding GPSS/H.

1. GPSS/H is an inherently slow simulation language. This is no longer the
case. In fact, comparisons of GPSS/H with other simulation languages by
Abed et al. (1985a, 1985b) show that GPSS/H is many times faster than
other languages such as SLAM and SIMSCRIPT.

2. To make sophisticated simulations with GPSS/H, one must eventually
revert to other computer languages. This is rarely the case anymore. In
fact, none of the examples presented in this book reverts to any other
computer language.

3. Learning GPSS/H is trivial. Any computer language takes time and prac-
tice to master, and GPSS/H is no exception. Most industrial short courses
last four to five days by which time the participants have a sound intro-
duction to the language. It is normally taught on the university level as a
full semester course.

4. Modeling difficulties more often are due to shortcomings in the computer
language used than the modeler‘s level of expertise. This is certainly not
the case with modem versions of GPSS/H. Gordon (1978) and Henrick-
sen (1983) gave examples of people who blamed GPSS for their lack of
expertise in solving simulation problems when the real fault lay with their
own lack of programming expertise.

A Bit About GPSS/H 9

WHAT I S A NONPROCEDURAL LANGUAGE?

A nonprocedural language is one that anticipates what the programmer is
attempting to do and allows the computer code to be very short. Often the
programming code for a nonprocedural language appears very similar to the
problem it has been designed to solve. For example, an array of data may be
sorted by using a procedural language in one of several ways. One way is to
find the smallest (or largest) element, place this at the front of the array, and
then sort through the remaining elements for the next smaller (or largest),
find it, and place it second in the list, etc., until the array is sorted. This
method involves numerous comparisons of data and, thus, many lines of
code. A nonprocedural language that is used for handling databases that com-
monly must be sorted may have a single command-namely, SORT-to do this
task. In another example, simulation studies often involve queues. To model a
queue in GPSS/H to gather certain statistics, the single line of code (known as
a block) might be

9 m m ODUMP

No code for output is needed: GPSS/H automatically will gather relevant sta-
tistics and output them when the program is finished.

People seeing a GPSWH program for the first time tend to remark “Is that all
there is to it?” In the study of queueing theory, one soon encounters a system
having a single server for people arriving at random times from an infinite
population. One case of this is known as the M/M/l (the first M, which comes
from Markov, indicates that the arrival rates are Poisson, the second M for
exponential server, and the 1 indicates a single server). This system is mod-
eled in GPSS/H by using only 7 (!) programming blocks. The equivalent For-
tran program would take many hundreds of lines of code. In addition, to
make changes in a GPSS/H program to answer the “What if?” questions often
takes only a few lines of code. If a system is being studied with room for only
8 trucks, the relevant line of code may be

9 mRUCKS nSTORAGE 8

To study the same system but with room for 9 trucks may involve changing
only the above line to

// CrRUCKS @TORAGE 9

IS G P S S / H H A R D TO LEARN?

GPSS/H is not any more difficult to learn than any other programming lan-
guage. Most people find it easier to learn than traditional engineering lan-
guages such as Fortran, BASIC, or Pascal. After about 30 or 40 hours of
instruction, most engineers find that they can proceed on their own with writ-
ing practical simulation programs. Since it is a very popular language, numer-
ous short courses are held throughout the world.

10 GPSS/H and Simulation in Mining

W I L L A KNOWLEDGE OF OTHER LANGUAGES H E L P TO LEARN G P S S / H ?

The logic behind GPSS/H is so different that knowledge of other procedural
languages may be a hindrance. Of course, knowledge of any other simulation
language is a different matter.

WHAT ABOUT U S I N G OTHER S IMULATION LANGUAGES?

Other simulation languages exist that are quite good for solving simulation
problems relating to mining. Some of these are SIMAN (ARENA), SIMCRIPT
11.5, and SLAM. The solutions obtained by investigators using these languages
may well be as accurate as those obtained by using GPSS/H.

W H Y C H O O S E GPSS/H?

GPSS/H was selected as the language for this book for the following reasons:

1.

2.

3.

4.

5.

6.

7.

It is multivendor so it is continually being upgraded.
It is widely available.
It is written in machine language and, therefore, is inherently very fast.
It can solve a wide variety of problems rapidly and accurately. These
problems come from many sectors, such as manufacturing, engineering,
business, and science.
It has withstood the test of time, having been introduced by IBM in 1961.
Other simulation languages have fallen by the wayside.
It has proved to be extremely versatile for modeling mining and mining-
related operations. These include both surface and underground opera-
tions as well as material flow through a smelter, mill, and refinery.
It is easily coupled with PROOF for making animations.

W I L L S P S S / H REPLACE LANGUAGES SUCH A S P A S C A L , BASIC, OR C ?

No. There are a large number of problems that should and always will be
solved through the use of traditional computer languages. Furthermore, there
is the possibility of having packages available based on traditional languages
to solve mining problems. Learning GPSS/H enhances a person’s computer
skills rather than replacing any. In this regard it can be looked upon as adding
a computer skill such as word processing or learning how to construct a
spreadsheet. Knowledge of these techniques does not replace programming
skills using traditional procedural languages.

HOW ABOUT A C O M P A R l S O N BETWEEN FORTRAN A N D G P S S / H ?

Here is a rough comparison. The actual values will depend on the particular
problem. Consider the problem of writing the computer code to simulate the
operation of a large openpit copper mine such as the Panguna Mine on the
island of Bougainvile, in the South Pacific.

A Blt About GPSS/H 11

GPSS/H

Time to write program
Execution time 4 minute CPU

Ease of changing program trivial
Lines of computer code 300-400

Graphical output

few days

User friendly? Yes
a few lines of code

Animation? available

Fortran
many months
3-4 hours CPU (386)
up to a week
20,000-50,000

no
many additional lines of
code
not standard

BUT AREN’T FORTRAN PACKAGES O N THE MARKET?

Yes, but these tend to be very expensive (some around $50,000), hard to
change, and not user friendly. Also they take a great deal of CPU time to run.
These tend to solve only a severely restricted class of problems. In addition,
animation is not available.

I S G P S S / H W I D E L Y U S E D I N OTHER SPECIALTIES?

Actually, GPSS/H is arguably the most widely used computer simulation lan-
guage for discrete system simulation. It is used throughout the manufacturing
industry.

W H Y I S G P S S / H NOT U S E D MORE B Y M I N I N G E N G I N E E R S ?

There are several reasons. Mining engineers do not normally obtain an early
exposure to it since their training in computer languages is confined to For-
tran or Pascal. Graduate students often learn GPSS/H for their individual
research projects but not for teaching purposes. Some engineers may have
heard of an early version of it and not be aware of the tremendous advances
that have been made. However, it is now common to have instruction in static
modeling for mine design. These models are the computer-aided mine design
packages that assist the mining engineer to display and study the mine via
computer terminals. The next logical progression is to use the computer to
study dynamic simulation models of the operating mine. Thus, the use of sim-
ulation models should increase as mining engineers continue to develop skills
in computer applications in mining.

REFERENCES

Abed, S.Y., Barta, T.A., and McRoberts, K.L. 1985a. A Qualitative Comparison
of Three Simulation Languages: GPSS/H, SLAM, SIMSCRIPT. Cornpurers
& lndusmal Engineering, no. 9:35-43.

Abed, S.Y., Barta, T.A., and McRoberts, K.L. 1985b. A Quantitative Compan-
son of Three Simulation Languages: GPSS/H, SLAM, SIMSCRIPT.
Computers & Industrial Engineering, no. 9:45-66.

I2 GPSS/H and Simulation in Mlning

Gordon, G. 1978. The Development of the General Purpose Simulation Sys-
tem (GPSS). In Proceeding of the ACM SIGPLAN History of Programming
Languages Conference. New York, Association for Computing Machinery,
SIGPLAN NO tices, 13 (8) : 183-198.

Greenberg, S. 1972. GPSS Primer. New York: Wiley-Interscience.
Henriksen, J.O. 1983. State-of-the-art GPSS. In Proceedings of the 1983

Summer Computer Simulation Conference. San Diego, The Society for
Computer Simulation, 918-913. (Woiverine Software has published
updates of this article. The updates are available from Wolverine
Software Corporation, 7617 Little River Turnpike, Suite 900, Annandale,
Virginia 22003-2603; 703-750-3920 [telephone]; 703-642-9634 [fax];
mail@wolverineso ftware. com.)

Schriber, T. 1988. Perspectives on Simulation Using GPSS. In Proceedings of
the 1988 Winter Simulation Conference. Edited by M. Abrams. San
Diego, The Society for Computer Simulation.

.
CHAPTER 3 Review of Simulation

in Mining

Mining engineers have been interested in using computers to build simulation
models of mining operations ever since the computer was introduced and
accepted into their industry. This chapter, modified from Sturgul(1996), gives
a brief history of the development of such models in the mining industry.

SOURCES

Excellent sources of references for models developed in the 1960s and 1970s
when computers were first being used by the mining engineer are the pro-
ceedings from the APCOM (Application of Computers and Operations
Research in Mining) conferences. The first of these was held in 1961 at the
University of Arizona in Tucson, Arizona, USA. Since then, there have been
over 20 such conferences held in many different countries, and similar confer-
ences are now held in Canada and Australia. Conferences such as the Interna-
tional Symposium on Mine Planning and Equipment Selection, which are
held throughout the world, also provide a valuable source of references.

EARLY S IMULATIONS OF QUEUEING PROBLEMS

Many of the models encountered in mining are examples of queueing theory,
such as trucks arriving at a loader or a dump. A knowledge of the concepts of
queueing theory is essential for anyone interested in building and under-
standing simulation models. There are textbooks devoted to just this subject,
and it is covered in any modern treatment of operations research.

Koenigsberg (1958) published one of the first, if not the first, papers on
queueing theory applied to mining. This was, in fact, the first published result
of a mathematical solution to a general cyclic queueing theory problem.
Koenigsberg solved the problem of determining the production for a set num-
ber of crews working at the faces for several underground coal mines. In one
case, there were 5 crews (cutting, drilling, blasting, loading, and bolting) and
5 faces. The order of working was set, and only one crew could work at one

13

14 GPSS/H and Simulation in Mining

face at a time. When a crew finished at one face, it went to the next face and,
if no crew was working on it, started its job. If another crew was at the face,
the arriving crew had to wait in a queue. The crews did not leave the system
and cycled from face to face (hence, the name “cyclic queues”). The distribu-
tion of the range of times to do each operation was found to be exponential.
Koenigsberg was able to obtain an exact mathematical solution and compare
his results with actual mines in the state of Illinois, USA. Koenigsberg’s prob-
lem is presented as Example 16 in Part I11 with several variations added. An
excelIent summary and review of cyclic queues is given by Koenigsberg
(1982). Cyclic queueing theory has been used in many industries such as
shipping, manufacturing, and electronics.

EARLY SIMULATIONS OF MINING OPERATIONS

Rist (1961) published the first work of a computer simulation of a mining
operation. This paper was presented at the first AFCOM as well as published
in a trade journal. %st‘s problem was taken from an actual underground
molybdenum mine where his model was used to determine the optimum
number of trains to have on a haulage level. Loaded trains had to queue at a
portal and wait until the single track was clear as well as wait until the
crusher area was free (only two trains could be at or waiting at the crusher).
Other resmctions were imposed on the system to make it as lifelike as possi-
ble. Rist used a now obsolete version of one of the first attempts at a simula-
tion language. A modification of his model is given as Example 18 in Part 111.
Several years after Rist‘s work, Harvey (1964), also at an APCOM meeting,
elaborated on Rist‘s model and specifically mentioned that the GPSS lan-
guage was used in the simulation. This was the first reported application of a
modem simulation language to a mining problem.

During the 1960s other investigators were building computer simulation
models of mining operations. However, the computer language used was pri-
marily Foman. Although this choice was logical since mining engineers were
taught this language and it was (and is) universally used, it was not the most
efficient language to use. Programming was much slower when using
punched cards, and considerable time and effort were spent in writing and
debugging the programs. Few mining engineers were interested in learning a
second or third language.

One particular problem in mining that concerned engineers was to construct
models of conveyor belts, especially for underground coal mines. Sanford
(1965) appears to have been the first to undertake this problem; by using For-
tran, he simulated a conveyor belt system for his masters’ thesis at Pennsylva-
nia State University. In 1968, a large Foman program, BELTSIM, was
developed at the Virginia Polytechnic Institute and State University
(described by Bucklen et al. 1969). Talbot (1977) gave an account of an
application of BELTSIM to an Australian mine. For a coal mine, Juckett
(1969) designed a belt system that could handle up to 25 belts and 12 loading
points; the programming language was PW1. BETHBELT-1 was written for
the Bethlehem Steel Corporation by Newhart (1977), who used GASP V,
which is similar to GPSS in that it is a language designed for discrete-event

Revlew of Slmulatlon In Mlnlng 15

Simulation. Hancock and Lyons (1987) described a package known as
SIMBELT4 and reviewed the work done by the National Coal Board in
England. SIMBELT4 was designed to predict the rate of flow at various points
in a belt system and to estimate the ore in each storage bunker.

Suboleski and Lucas (1969) discussed a Foman program (SIMULATORl)
that would simulate room-and-pillar mining operations. O'Neil and Manula
(1967) used a simulation model for materials handling in an openpit mine,
and Manula and Venkataraman (1967) were able to simulate truck haulage in
an openpit. Waring and Calder (1965) discussed a simulation package devel-
oped for a particular mine in Canada. Madge (1964) was able to simulate
truck movement in an openpit mining operation, also in Canada. The outline
of a large package capable of simulating a wide variety of operations was
described by Manula and Rive11 (1974).

One of the best early examples of a computer simulation model for a working
mine was by Cross and Williamson (1969). This model had to do with a work-
ing openpit copper mine in the Southwest of the United States. The mine was a
truck-and-shovel operation with 5 shovels loading trucks that dumped at the
ore crusher, the waste pile, or a leach area. Initially, the trucks were dedicated
to a particular shovel. A simulation model was then constructed to determine
if a dispatcher could be used to route the trucks to different shovels so as to
minimize queueing time. The model assumed that all of the times were deter-
ministic and was able to indicate that a dispatcher would indeed improve
operations. The program, in Foman, consisted of several thousand lines of
code and took considerable time to write. Part I11 of this book contains several
examples, such as 1,2, 3,6, and 12, that are variations of this problem.

A more complicated model based on the paper by Cross and Williamson
(1968) and using stochastic times for the various operations was published by
Sturgul and Yi (1987) to demonstrate the power of the GPSS language. Their
program consisted of fewer than 100 lines of code and, what is more impor-
tant, took less than one hour to write.

In a benchmark paper, Bauer and Calder (1973) pointed out the advantages
of using GPSS for openpit operations, especially to simulate load-haul-dump
circuits. Steiker (1982) reviewed various simulation models and used GPSS
for the simulation of an underground train-haulage system. Wilson (1985)
gave an interesting background to the decision to use GPSS for the simulation
of ore transport by surface rail for platinum mines in Africa. Basically, a local
university reviewed the ore transport problem and suggested that the mining
engineers involved learn and use GPSS. Students hired during the summer
were given the responsibility of gathering the relevant statistics while the
model was written and refined.

PERSONAL COMPUTERS AND M I N I N G S IMULATIONS

With the advent of personal computers and on-screen editing capabilities for
rapid writing and debugging of programs, the mining engineer has been
given new tools to assist him or her in the use of computers. Other languages

16 GPSS/H and Simulation in Mining

such as Pascal and C are being taught and used by engineers. The time
required to learn new languages has been reduced substantially. Many engi-
neers now are exposed to special-purpose languages, such as PROLOG for
artificial intelligence or perhaps SQL for use to query a database. A nonproce-
dural language similar to GPSS is SIMAN. Muanansky and Mwasinga (1988)
presented an overview of this language. SIMAN was used by Tan and Ramani
(1988) to study belt networks. One of the strong features of SIMAN is that it
can be coupled with CINEMA to provide on-screen animation. In fact, anima-
tion is now a feature of nearly all simulation software. Each of the examples
presented in Part 111 has a corresponding animation to view.

The examples in Part I11 have been simulated with the GPSS/H simulation
language. The version used is Student GPSS/H, which is included on the CD-
ROM with the book. This software has proven itself ideal for mining examples
many times over. The GPSS/H language has been used for a wide variety of
mining applications, some of which have been described by Sturgul and Har-
rison (1987a, 198%). How the personal computer and GPSS/H can be used
for mining applications has been discussed by Sturgul and Singhal(l988)
and Sturgul(1987a). Other examples are given by Harrison and Sturgul
(1988). Some of the examples in these papers deal with studying how a dis-
patching system would work in a surface coal mine, determining the height of
the wall for a tailings dam for a mine located in the tropics, determining the
optimum size of a storage bunker for an underground mine, and analyzing
the equipment requirements for a medium-sized open pit iron mine. An
example of how to use simulation to determine the optimum location of in-pit
crushers is given by Sturgul(1987b).

Some of the examples given in this book represent many of the problems pre-
viously published by other researchers, often with changes to the data or vari-
ations to the problem. Since the GPSS/H language is so powerful, these
variations generally were made to make the problems more complicated.
Many examples come from or have been inspired by actual working mines,
predominantly in Australia, the United States, and South America.

REFERENCES

Bauer, A., and Calder, P. 1973. Planning Open Pit Mining Operations Using
Simulation. In APCOM 1973. Johannesburg: South African Institute of
Mining and Metallurgy, 273-298.

Bucklen, E.P., Suboleski, S.C., Prelaz, L.J., and Lucas, J.R. 1969. Computer
Applications in Underground Mining Systems. Pittsburgh: U.S.
Department of the Interior Research and Development Report 37.

Haulage System. In APCOM. New York: Society of Mining Engineers of
the American Institute of Mining, Metallurgical, and Petroleum
Engineers.

Planning of Underground Transport. In APCUh4 18. London: Institute of
Mining and Metallurgy.

Cross, B., and Williamson, G. 1969. Digital Simulation of an Open-Pit Truck

Hancock, W.S., and Lyons, D.K.G. 1987. Operational Research in the

Review of Sirnulation in Mining 17

Harrison, J., and Sturgul, J. 1988. GPSS Computer Simulation of Equipment
Requirements for the Iron Duke Mine. Melbourne: Australasian Institute
of Mining and Metallurgy, Second Large Open Pit Mining Conference,
April.

Colorado School of Mines Quarterly.

Proceedings, 3rd Conference on the Application of Simulation. Los Angeles.

9(1 [Marchl):22-35.

Networks, A Review. Journal of the Operational Research Society,

Madge, D.N. 1964. Simulation of Truck Movement in an Open Pit Mining

Manula, C., and Rivell, R. 1974. A Master Design Simulator. In 12th APCOM.

Manula, C., and Venkataraman, N. 1967. Open Pit Haulage Simulation.

Harvey, P.R. 1964. Analysis of Production Capabilities. In APCOM 1964.

Juckett, J.E. 1969. A Coal Mine Belt System Design Simulation. In

Koenigsberg, E. 1958. Cyclic Queues. Operational Research Quarterly,

Koenigberg, E. 1982. Twenty Five Years of Cyclic Queues and Closed Queue

33:605-619.

Operation. Canadian Operational Research Society, 32-41.

Colorado School of Mines Quarterly.

College Station, Pennsylvania State University, Internal Departmental
Report.

General Purpose Simulator for Mining Systems. International Journal of
Surface Mining, 1-6.

Newhart, D.D. 1977. BETHBELT-1, A Belt Haulage Simulator for Coal Mine
Planning. Bethlehem, Pennsylvania: Bethlehem Steel Corporation,
Research Department, Research Report File 1720-2.

O’Neil, T.J., and Manula, C.B. 1967. Computer Simulation of Materials
Handling in Open Pit Mining. Transactions, American Institute of Mining
Engineers, 238: 137-146.

Rist, K. 1961. The Solution of a Transportation Problem by Use of a Monte
Carlo Technique. In APCOM I . Tucson: University of Arizona, March.

Sanford, R.L. 1965. Stochastic Simulation of a Belt Conveyor System. In
APCOM 1965. Tucson: University of Arizona, March, D1-D18.

Steiker, A.B. 1982. Simulation of an Underground Haulage System. In
APCOM 17. Golden: Colorado School of Mines, 599-613.

Sturgul, J.R. 1987a. Simulating Mining Engineering Problems Using the GPSS
Computer Language. Australasian lnstitute of Mining and Metallurgy
Bulletin, 292(4[June]) :75-78.

Sturgul, J.R. 1987b. How to Determine the Optimum Location of In-Pit
Moveable Crushers. International Journal of Mining and Geological
Engineering, S(2).

Proceedings, First Internet Symposium on Mine Simulation via the Internet,
Athens, Greece, December. Edited by J.R. Sturgul and G.N. Panagiotou.
Rotterdam, Balkema.

Mutmansky, J.M., and Mwasinga, P.R. 1988. An Analysis of SIMAN as a

Sturgul, J.R. 1996. History of Simulation in Mining: 1961-1995. In

18 GPSS/H and Simulation in Mining

Sturgul, J.R., and Hanison, J. 1987a. Using a Special Computer Language for

Sturgul, J.R., and Harrison, J. 1987b. Simulation Models for Surface Mines:

Sturgul, J.R., and Singhal, R. 1988. Using the Personal Computer to Simulate

Simulation of Cod Mines: The Coal Journal, no. 18:21-28.

Internationa~ Journal of Surface Mining, no. 1:187-189.

Mining Operations. In Symposium on Computer Applications in the
Mineral Industry. Edited by J.-L. Collins and R. Singhal. Holland:
Rotterdam: Balkema, 439-442.

Mines Using the GPSS Computer Language. The Coal Journal,
no. 15:ll-17.

Suboleski, S.C., and Lucas, J.R. 1969. Simulation of Room and Pillar Face
Mining System. In 1969 APCOM, Salt Lake City. New York Society of
Mining Engineers of the American Institute of Mining, Metallurgical, and
Petroleum Engineers, 373-384.

Talbot, K. 1977. Simulation of Conveyor Belt Networks in Coal Mines. In
APCOM 15, Brisbane, Australia. Melbourne: Australasian Institute of
Mining and Metallurgy.

Tan, S., and Ramani, R.V. 1988. Continuous Materials Handling Simulation:
An Application to Belt Networks in Mining Operations. Paper presented
at Society of Mining Engineers of the American Institute of Mining,
Metallurgical, and Petroleum Engineers meeting, Phoenix, Arizona,
January.

Waring, R.H., and Calder, P.N. 1965. The Carol Mining Simulator, InAPCOM
1965. Tucson, Arizona: University of Arizona, Tucson, March, KK1-KK2.

Wilson, J.W. 1985. Simulation of Ore Transport on Surface Rail at Impala
Platinum, ltd. In APCOM 19. London, Institute of Mining and Metallurgy,
41 1-418.

Sturgul, J.R., and Ren Yi. 1987. Building Simulation Models of Surface Coal

.
CHAPTER 4 Review of

Simulation Models

S I MU L A T l ON MODELS

The GPSS/H computer programming language is a special language that is
used primarily to simulate discrete systems. A discrete system is one in which,
at any given instant in time, a countable number of things can take place.
Nearly all of the problems one encounters in the study of queueing theory can
be represented by discrete systems. Some examples include the following:

1. People entering a barbershop with a single barber. If the barber is busy,

2. People entering a bank with multiple tellers. The customers may either
people wait in chairs in the waiting area until it is their turn.

form individual queues at each teller or wait in a single queue (known as
a “quickline”).

3. Trucks working at a construction site where a single shovel loads each
truck. The trucks travel to a dump area where they dump and then return
to the shovel. This is an example of a cyclic queue. The elements of the
system-in this case, the trucks40 not leave the system.

4. Ships entering a harbor with multiple berths. The ships need to be towed
into a berth with 1 or more tugboats.

5. Telephone calls arriving at a central switchboard where they need to be
routed to the correct extension.

6. Television sets on a conveyor belt arriving at an inspection station. If a set
fails inspection, it may be sent back for adjustment, or, in the worst case,
it is discarded.

A complete treatment of simulation theory is beyond the scope of this book.
However, an understanding of how simulation models are constructed and
what they tell us is not too difficult.

Most modeling involves some queueing such as happens when all the tellers
are busy in the bank, all the pumps in a filling station are being used, or all
the checkout counters at the grocery store are in use.

19

20 GP!SS/H and Sfmulation In Mlnlng

Consider a bank with customers arriving and tellers giving service. All the
possible events that take place in the bank are discrete events or can be con-
sidered as being such. Events include customers arriving, customers joining a
queue if all the tellers are busy, customers going to a teller who is free, and
customers leaving the bank when finished. Perhaps some of the customers
will leave the queue if the wait is too long, go to 1 or more other destinations,
and return later. GPSS/H is excellent for simulating systems that have this
type of queueing. As we shall see, it is very easy to model a great variety of
very complicated systems by using GPSS/H.

WHAT W I L L BE MODELED

The models we shall be studying might represent the bank working over a
period of many months, an assembly plant that manufactures television sets,
a barbershop where customers can obtains haircuts, shampoos, and mani-
cures, or even a person doing his or her Saturday morning shopping. In some
cases, the model may be only a small part of a large system, such as the tool
crib in a large factory.

Simulation models will not “solve” any problem directly but provide information
about how the system is working and then how it will work with certain selected
parameters changed. Suppose a company has its own fleet of cars for its sales-
persons to use. If the cars need any service, whether of a routine nature or major
repairs, this is done by 1 of 2 mechanics. The company is concerned that the
mechanics are not able to keep up with the repairs and wonders whether it
would be worthwhile to hire another mechanic. Before the simulation model can
be constructed, the company must define the problem to be solved in greater
detail than has been given here. The following information is also needed:

1. The company needs complete records of all service for each type of car.
This includes the frequency of service and the distribution of times for the
particular service.

2. The company needs to know what it would cost to hire a third mechanic
as well as the cost in lost sales when a car is not available.

3. Cars that require routine maintenance or very minor repairs are given
preference for service over those that are in for major repairs. This prac-
tice means that the cars needing less time-consuming repairs are put in
the front of the queue of cars that are waiting for service.

4. When the sales manager brings his or her car in for service, it is given spe-
cial status; this car is immediately worked on. Thus, even if both mechan-
ics are busy, one will abandon the car being worked on and start the
repairs on the manager’s car.

The information obtained from the simulation model would include the following:

1. The model will show how the system currently works. Obviously, the com-
puter model has to accurately reflect the system as it is working before any
reliability can be associated with the results from the changed model.

2. The model will show how the system works with selected changes, such
as the car repair facility with 3 mechanics.

Review of Simulation Models 21

Customers
Arriving

d

Modeling Ways to increase Proflt

Consider a system consisting of a 2-person barbershop with customers amv-
ing to have their hair cut. The shop operates 8 hours per day. There are 2
chairs for haircuts and 4 chairs for the customers to wait in if both barbers are
busy. Thus, the system only can hold 6 customers. If a 7th customer arrives
and finds the shop full, he always will leave. Both barbers are identical so it
can be assumed that they work at the same speed and the customers have no
preference for either barber. They are served on a first-come, first-served
basis. However, customers do not like to be kept waiting too long, and if a
customer finds he has been waiting too long, he will leave the barbershop.
The barbers know this behavior; therefore, the time required to give haircuts
is a function of how many people are waiting, i.e., as more people are wait-
ing, the 2 barbers will give haircuts faster. The customers do not arrive at reg-
ular intervals, and the haircuts are not given at the same time from one day to
the next. Both arrival rates and haircut rates have known statistical distribu-
tions. Figure 4.1 illustrates the situation of the barbershop.

Seat

Customers
Leaving -

FIGURE 4.1 Two barbers and four chairs for waiting customers. Both barbers are busy, and three of the chairs are
occupied.

The owner of the barbershop would like to study the shop to see if it would be
profitable to add another barber or simply add another chair for customers to
wait. Perhaps it would be possible to purchase new equipment so that the bar-
bers can work even faster. Would the extra haircuts justify the expense of t h l s
equipment? GPSS/H will assist in building a model to determine the most
profitable step to take. The model can make 2 kinds of predictions:

I. The model will be only as good as the input data and the assumptions
given above. The model is verified by checking to see whether it predicts
that the current system works as outlined above.

2. Once the model accurately represents the barbershop as it currently
works, the model can be modified to predict how the barbershop will
work under different conditions.

Item 2 is where GPSS/H is so handy. As will be shown, changes in GPSS/H
programs often are made by changing only a few lines of code. The fact that

22 GPSS/H and Slmulatlon In Mlnlng

GPSS/H programs can be so easily changed to answer “What if?” type questions
makes it an ideal language to use for simulation studies.

Once the modeler is satisfied that the original model is correct, the simulation
can be changed, but this time with the system having 3 barbers. Alternatively,
the model can be run for 5 seats for waiting customers. Finally, the model can
be run for different combinations of speeds for the barbers to cut hair.

By using the cost data for the various combinations of barbers, lost customers,
profit per haircut, etc., the modeler then can determine the economics of the
system and make the correct choice.

A SIMPLE SIMULATION MODEL

The following example will illustrate the situation of a simulation model with
constant arrival rates and constant service rates. Suppose a tool crib has 1
attendant to serve a large group of machinists. These machinists come for 1
tool at a uniform rate of 1 machinist every 5 minutes. It takes exactly 6 min-
utes to obtain the tool. Machinists earn $8 per hour, and the tool-crib atten-
dant earns $6 per hour. The factory works an 8-hour shift but stops for a
1-hour lunch break. The crib is closed for lunch and at the end of the 8-hour
shift. In order to simplify the calculations, if a machinist is waiting for a tool
either at the lunch break or the end of the day, he or she will wait and be
served. The tool-crib operator does not receive extra pay for working over-
time. Should the company hire another tool-crib attendant?

Solution

This is a very simple situation and one that would rarely be encountered in
practice. Even so, it will prove instructive to learn what simulation models
can tell us. The problem will be solved first for 1 tool-crib attendant, then 2,
and then 3.

The machinists arrive every 5 minutes, so there will be 12 per hour amving.
In a 4-hour time period, 48 will anive. The first amves 5 minutes after the
tool crib opens and does not experience any wait. The second person amves 5
minutes later and experiences a 1-minute wait until the attendant is free.
Similarly, the third person has a 2-minute wait, etc., up to the 48th person,
who has a 47-minute wait. In a 4-hour period there will, thus, be a total wait-
ing time for the machinists of 1 + 2 + 3 + ... + 47 or 1128 minutes at $8 per
hour. This represents a loss of (1128/60) x $8 or $150.40. For the two 4-hour
periods in a day, this represents a loss of $300.80. If 2 (or more) tool-crib
attendants are working, there never will be a wait for a free attendant (only
the 6-minute wait for the tool). The following table summarizes these results
as well as the case of 3 attendants.

Review of Simulation Models 23

Number of Attendants

1 2 3
Number of machinists who arrive 48 48 48

attendant
Total time (minutes) waiting for free 1128 0 0

Cost of iost time per 4 hours $150.40 0 0
Pay to toolcrib attendant per 4 hours $24.00 $48.00 $72.00
Total cost per 8 hours $324.80 $96.00 $144.00

Clearly, the result of this simple model indicates that it would be advanta-
geous to hire 1 additional attendant. Nevertheless, the result may or may not
be useful to a company, depending on the accuracy of the originally stated
conditions. These may need to be reevaluated:

I.

2.

3.

4.

5.

An amval rate of 1 machinist every 5 minutes was specified. In practice,
the arrival rate will be random. There may be an average rate of so many
machinists per hour, but, in general, the arrival time for a particular
machinist will be random.
A constant service rate of the tool-crib attendants was specified. Here,
too, in practice, the service rate normally will be random.
The tool crib closed every 4 hours, and anyone waiting for service when
the 4 hours was up immediately left. In practice, the machinists about to
be served still will obtain service.
When there is one attendant, the length of the queue tended to grow to
an eventual size of 8 every 4 hours. This is not realistic. If the queue is too
long, an arriving machinist will tend to leave and come back later when
the line is shorter.
Each arriving machinist wanted only 1 tool. In practice, the number of
tools needed may be 2 , 3 , or more.

It will be shown that, through the use of the GPSS/H language, a model easily
can be constructed to include all of the above possible changes to the original
assumptions. Problems, such as the one involving the optimal number of tool-
crib attendants, are solved quickly and easily with GPSS/H.

REVIEW OF QUEUEING THEORY

The example of the queueing problem for the tool crib has an exact solution.
There are very few such solutions available, especially for problems involving
cyclic queues for a finite population. Cyclic queues are those in which the sys-
tem under study has elements that do not leave, such as mcks working in a
quarry. Here the trucks are loaded, haul, dump, and return to the loader.

Whenever there is a finite population, as soon as one element is doing a par-
ticular thing, the statistical distribution governing rates will change. Thus, if a

24 GPSS/H and Simulation in Mining

company has a fleet of 10 trucks to be studied, if 2 are being serviced, the
probability of another coming for service is no longer the same as when all 10
were up and running. In general, in order to study complex systems in which
queueing takes place, it is necessary to build computer simulation models.
First, however, it might be instructive to review a few basic concepts from
queueing theory. These have to do with the possible arrival distribution, ser-
vice distributions, number of servers (and whether they operate in “series” or
:ri .parajlel”), the popula&m size, an$ thz queue discipline. T k w x r 5 possi-
bdifies t3 consider:

I. Population-finite or infinite
2. Arrival time distribution-any statistical distribution including one that

3. Service time distribution-any statistical distribution including one that

4. Service facilities-single; multiple; equal or unequal service rates, for

5. Queue disciplinefirst in, first out; last in, first out; priority placement in

It may come as a surprise to the person who has not formally studied queueing
theory, but it is not possible to obtain exact solutions to all of the situations
described in this chapter (although a lot of very fine mathematicians have
tried). However, several problems do have solutions, and these can be found
in textbooks on operations research or queueing theory. As one learns how to
construct simulation models, it is insmctive to compare the results from the
simulation model with what one expects to obtain from an exact solution.

changes during the simulation

changes during the simulation

example

the queue; random placement, etc.

SIMULATION VS. MATHEMATICAL SOLUTiON

To illustrate a comparison of a simulation model with one that has an exact
solution, consider the case of a convenience store where customers arrive on
the average of 24 per hour. The arrivals follow the Poisson statistical distribu-
tion. The single clerk in the store can handle 1 customer on the average of
every 2 minutes. The distribution for this service is exponential. Service is
first-come, first-served. The customers do not mind waiting if there is a
queue. It is desired to simulate the store for 50 days or 10 weeks of operation,
where a day is 8 hours in duration and the store operates continuously. Com-
pare the results of a simulation with those obtained by an exact solution.

Solution

The problem will be recognized as a standard one that is discussed in any text
on queueing theory (e.g., Phillips et al. 1976). The exact mathematical solu-
tion is available, and equations can be found for determining the probability
of the clerk being idle; the probability of any number of customers being in
the store; the expected number of customers in the store; the average time for
a customer to wait in the queue, to be in the store, etc.

Review of Slmulatlon Models 25

Even though an exact solution exists to this problem, a computer program
was written in GPSS/H to illustrate the way the language is used to solve such
problems. The simulation model used the Monte Car10 technique, which
employs a random-number generator to simulate both arrival times and ser-
vice times.

First, a basic time unit needs to be selected. This normally is taken as the
smallest time given by the statement of the problem. For the example here, a
basic time unit of 1 minute is selected. Thus, the customers will arrive on the
average of every 2.5 time units. The clerk can handle a customer every 2 time
units. The simulation then is done for times of 8, 50,100,200,400, etc.,
hours. These times have to be converted to minutes since the basic time unit
is a minute.

The simulation starts at simulated time t = 0 and runs until the program
reaches a point in simulated time that the programmer thinks will represent
enough real time to yield correct results. Since the exact solution assumes
steady-state conditions from beginning to end of the simulation, it is run for 4
simulated hours (240 time units) and then stopped. All relevant statistics,
except for the number of customers in the convenience store, are discarded.
Then, the simulation is restarted and run for the desired simulated time. The
following lists a selected portion of the output from this simulation program-
that for the simulated time of 400 hours:

Customers served 9605

Percent time clerk is busy

Average number of customers in store

Average customer time in store

80.1%
4.122

10.2 minutes

It should be noted that GPSS/H generally outputs proportions as .801 by
default. However, as done here, it is possible to customize the output to show
the values as percentages. For purposes of clarity in this book, all proportional
input and output values are shown as percentages or, less commonly, in
per mil. The following theoretical values can be found by use of simple formu-
las given in any book on operations research or queueing theory:

Customers served 9600 (customers arrive on an average of

Percent time clerk is busy

24 per hour for 400 hours)
80.0%

(this is 24/30)

Average number of customers 4.00

Average customer time in store 10 minutes

As can be seen, the results calculated from theory compare quite favorably
with those obtained by the simulation. It is important, in both interpreting
and using the results of a simulation, that the simulation has been allowed to

in store

26 GPSS/H and Simulation In Mining

run long enough in terms of simulated time for the results to be accurate. In
performing a simulation, one would like to obtain results that can be repro-
duced nearly identically if additional runs of the simulation are done with the
same input data (e.g., number of clerks) but with different random numbers
to govern the timing of events. There is no set answer to the question of how
long a simulated time period is enough, as the proper number of time units to
simulate for is a function of several variables. Another question without a set
answer is how many runs of the simulation are needed. One variable is the
nature of the simulation, i.e., is the population infinite or finite? In the case
just considered of an infinite population of customers, a Poisson distribution
of their arrivals, and an exponential distribution of the time to serve them, a
large number of runs have to be performed. In the case of a system in which
the parameters being simulated cycle through the system (such as workers in
a factory), not quite so many runs may be needed. The nature of the queue
and the service facilities are also important. In addition, if the statistical distri-
butions are relatively uniform, such as a normal distribution with a small
standard deviation, the simulation runs tend to achieve a level of stability rap-
idly. This last result is important (and comforting) for the person doing simu-
lations who has a lot of data that is normally distributed. This is often the case
for working times in a factory, truck haulage rates along a road, manufactur-
ing times, etc. If the statistical distributions are nonsymmetrical to a large
extent, the number of runs required can be great, as demonstrated by means
of an example later in this chapter.

Returning to the convenience store example allows a comparison of the effect
of varying the simulated time. Suppose that the simulation was done for peri-
ods of less than 400 hours. What would the results have been? The answer
depends, in part, on the sequence of random numbers, but it is instructive to
redo the simulation for less than 400 hours and examine the results. The fol-
lowing table summarizes the results from these different simulated times:

~ ~~

Customers Served Amount of Time
Simulated Time (hours) per Hour Clerk Is Busy (%)

Average Number of
Customers in Store

Average Customer Time
in Store (minutes)

8 26.9 92.2
50 23.6 81.7
100 24.0 82.6
200 23.9 79.7
400 24.2 80.3

Theoretical Values 24.0 80.0

4.34
4.105
4.061
4.810
4.122
4.00

9.58
7.87
10.63
11.52
10.2
10

As can be seen, the results of simulating for 8 hours are quite different from
the theoretical ones already presented and repeated here. Simulating for 200
hours yields results that are becoming close to the theoretical ones, except for
the average number of customers in the store. At 400 hours, the simulated
results are quite close to the theoretically expected ones. It should be noted
that, if this problem was for a real store, the simulation well may have been
run for an even longer simulated time.

Revlew of Simulation Models 27

S I M U L A T I O N W I T H N O N S Y M M E T R I C A L VS. S Y M M E T R I C A L D I S T R I B U T I O N S

In mining, it is common to find that most statistical distributions are symmem-
cal. Nevenheless, whenever the modeler is presented with raw data, he or she
always should plot the data set and determine whether it is represented by one
of the more common distributions such as the normal, uniform, triangular, Pois-
son, etc. Nonsymmetrically distributed data in mining simulations often can be
represented by the Poisson (or exponential) dismbution. In any case, GPSS/H
easily allows the modeler to sample from the exact statistical dismbution.

Whenever the statistical distributions that represent the discrete events are
nonsymmemcal, the number of simulated-time units for which a simulation is
run to achieve an acceptable result may have to be very large. This require-
ment is easy to understand, since it is desired that the system be modeled
over every possible situation (i.e., combination of discrete events). The goal
is, in theory, to run the simulation over enough simulated time units, and
repeat it with different random numbers, until there is no variation in the
results of the simulation runs.

To illustrate the concept of the large number of simulated-time units required
to satisfactorily model a situation in which an event has a nonsymmemcal
distribution, consider the following simple example involving the chances of
winning at roulette.

Suppose a man is modeling his behavior on a day-to-day basis, weekends not
included. Each day, this man stops at the local casino and bets $2 on number 7
on a roulette wheel. He makes only this single bet; then, whether he wins or
loses, he leaves. The probability of winning is 1/38 (the wheel has numbers
running from 1 to 36 as well as a zero 0 and a double zero 00). (Incidentally, a
roulette wheel is physically designed so that a player's chances of winning are
less than the chances of losing. The wins and losses form a classic case of a non-
symmetrical distribution. If the player's chances of winning and not winning
were symmetrically distributed, i.e., equally distributed on both sides of the
mean, then the casino would not make money and would go out of business.)

How many simulated days are needed for a simulation of roulette wins and
losses to produce satisfactory results (i.e., reasonably in concert with either real
or theoretical results)? Certainly not 38, as the expected number of wins is only
1. How about 380 or 3,800? To answer this question, a short GPSS/H program
was written. Twelve simulations were performed; they involved four different
quantities of simulated-time units (380,3,800,38,000 and, finally, 380,000
days; the simulated-time unit is 1 day) and three different sequences of random
numbers. The following table summarizes the results of these 12 simulations.

Note that the error decreases when the simulated (i.e., the observed) result
approaches the expected result. As can be seen, the observed number of wins
and the theoretically expected number of wins start to approach each other

28 GPSS/H and Slmuiatlon in Mining

Runs 1-4
Using First Set of
Random Numbers

Observed
Number
of Days wins error

Runs 5-8 Runs 9-12
Using Third Set of

Random Numbers Random Numbers

Observed Observed

Using Second Set of

Expected
wins error wins error Wins

380 8 -20.0%
3,800 95 -5.0%
38,000 1,019 +1.9%

13 +30.0% 5 -50.0% 10
95 -5.0% 95 -5.0% 100

1,019 +1.9% 1,017 +1.7% 1,000
380,000 10,024 +0.2% 10,029 +0.2% 10,021 +0.21% 10,000

only after a long simulation time, i.e., a large number of simulated-time units.
In fact, the results for 380 simulated days vary from the theoretically
expected number of wins by as much as 50%. Thus, for situations involving a
nonsymmetrical distribution of events, one always must be aware that a simu-
lation may require a very large number of simulated-time units to yield a
model that approaches what is expected or real. There’s no guarantee that
even 380,000 is enough, depending on the problem!

In the roulette example given here, when the number of simulated days is
increased to 380,000, the expected and observed wins differ by only 0.2% for
all three runs with different random numbers-certainly, a satisfactory result.
This near-coincidence in the results of the two methods (theory and simula-
tion) indicates that the simulation represents both precision (the simulation
results are nearly identical when the simulation program is repeatedly run
with different random numbers) and accuracy (the simulation results closely
model the system).

It may be interesting to note here that the outcome of all three runs for
380,000 simulated days shows a net loss of $57,336 because the casino pays
out at a rate of 36 times the bet whenever the number 7 comes up. It is only
for one of the runs of 380 days that a gain can be found (second set of random
numbers in the table). Although the outcome will be slightly different for
each new simulation, one is soon convinced that, over time, the casino will
always come out ahead. There is an old saying in economics, “We can all be
rich if only we could live long enough.” This adage was not intended for a per-
son who frequents casinos.

In models of mining operations, once precision is attained by running the pro-
gram with different random numbers, the question of accuracy remains. In
general, if the simulated results and the actual mining results are within 2%,
the simulation model is considered as “acceptable.” Often the data set used in
developing the simulation model is the main source of error. The mining engi-
neer must be constantly aware that accurate data from the mine are always
required. The statistical distributions of the various mining data need to be
continually refined and updated. In modeling mining operations, even if
there is no change in the equipment used, the distances in the mine change
over time. Thus, the values of some of the parameters used in the simulation
will need to be changed. The most obvious of these are the travel or haulage
distances. Most of the distributions that are used to represent these parame-
ters-such as the travel from the loader to the dump or crusher or travel from

Review of Simulation Models 29

the mine to the repair shopare represented by statistical dismbutions that
are symmetrical. Thus, although these dismbutions need to be changed in the
simulation with time, the number of simulated-time units need not be
increased. As equipment ages, the failure distributions change. Since the
number of failures and, thus, the probability of failure tend to increase over
time, the distributions representing this fact often become more symmetrical,
and so a shorter simulated time may be needed. Fortunately, for most mining
situations, the simulation can be successfully performed with a reasonable
number of simulated-time units. Also, fortunately, the GPSS/H language
allows for easy and rapid modification of the various statistical distributions
used in the models.

WHY DO A S I M U L A T I O N ?

As has been stated, it is rarely possible to obtain exact solutions to any but the
most elementary problems that lead to queueing situations. We all understand
queueing situations as we experience them daily whenever we enter a bank
that has many customers and we have to wait for a teller, whenever we shop in
a large grocery store and wait in the checkout line, etc. One would think that
problems involving such Situations could be solved quite easily, but rhis is not
the case. Although the field of queueing theory has been studied by the mathe-
maticians for many years, very few problems have been solved through the use
of theoretically based calculations. A computer simulation, on the other hand,
can rapidly and accurately predict the outcome of most elementary and com-
plex problems in which one encounters queueing situations.

WHAT I S MEANT BY A 'SOLUTION TO A QUEUEING PROBLEM"?

When we use simulation to obtain a solution to a queueing problem, it is
important to understand just what is meant by our solution. A simulation
model does not solve a problem but tells us how a system will operate under a
given set ofparameters. For example, the model might tell you that, if you
have 9 trucks in your mine, the daily profit will be $457. Adding a 10th truck
and doing another simulation might then tell you that the new profit will be
$505. Doing a further simulation for 11 trucks might tell you that the new
profit will be $480. Thus, we conclude that the optimum number of trucks to
have in the mine is 10.

ANOTHER E X A M P L E OF A S IMULATION MODEL

Consider a simple example of 1 shovel loading trucks at a construction site.
This shovel can load only 1 truck at a time. After each truck is loaded, it trav-
els to a dump area where it dumps its load and then returns to the shovel. If
the shovel is free (no other truck is being loaded), the truck immediately
begins to be loaded again. If not, it waits in a queue until the shovel is free.

Assume that you are going to study this system. The trucks and shovel and the
travel paths make up the system. You are told by the engineer in charge, who
has studied the shovel and the haulage routes, that the shovel can load a truck

30 GPSS/H and Simulation in Mining

in exactly 5 minutes (this is a slow shovel, but don’t worry about this fact for
the present). It takes exactly 8 minutes to drive to the dump, exactly 2 minutes
to dump, and exactly 6 minutes for a truck to return to the shovel.

If you had a single truck in the system, it would be loaded in 5 minutes and
then take 16 minutes to return to the shovel. The shovel would be busy for
every 5 minutes out of 21 or 23.8% of the time. There would be a load of ore
dumped every 21 minutes for a load dump rate of approximately 3 per hour.
In an 8-hour shift, you would expect that there would be slightly less than 24
loads dumped (this construction site does not allow the workers any breaks).

If you added another truck to the system, you would expect the production to
double and the shovel to be twice as busy. Adding a 3rd truck would likewise
increase production, and the shovel would be busy about 72% of the time.
What will happen when you add a 4th truck? The answer is that the system
still will experience no queueing problems as, at any one time, there can be a
truck being loaded (this takes 5 minutes) and the other 3 can be traveling to
or from the dump. It is only when you have 5 trucks working that you start to
have queueing problems. However, production will increase by having 5
trucks as compared to having 4. The question is how much and will this
increase be worth it? To answer this last question, additional data are needed.
In particular, each load carried by the trucks somehow represents a contribu-
tion to profit of $45, and each truck costs $225 per day to run.

For the above problem, a computer simulation was run for 10 simulated days
with each day being an 8-hour shift. At the start of the simulation, all of the
trucks were at the shovel, and the trucks worked for 10 days straight. Average
event times were used. The results of the simulation are as follows:

~

Number of Number of Shovel Average Number Profit Per
Trucks Loads Utilization (%) of Trucks in Queue Day ($1
1 229 23.9 0.000 805
2 458 47.7 0.000 1,611
3 686 71.5 0.003 2,412
4 914 95.2 0.006 3,213
5 959 100 0.807 3,190
6 959 100 1.807 2,965

It is easy to see that the optimum number of trucks to have for maximum
profit is 4. Adding a 5th truck will increase production but will not result in a
greater profit.

Review of Simulatlon Models 31

A CHANGE TO THE PROBLEM

The problem just completed assumed that all of the times used in the model
were constant. This is certainly not the case in real life. Things do not happen
in exact times. The time to load a truck will vary depending on several param-
eters, the time to drive to the dump will not be constant, etc. If you did some
time studies at the construction site, you might find that the time to load a
truck averaged 5 minutes but that the statistical distribution that best
describes loading time is the exponential distribution. You also might find
that the travel times and the dumping times are best described as following
normal distributions:

~

Mean Standard Deviation
(minutes) (minutes)

Travel to dump

Dump
8

2

1.5

0.3
Return to shovel 6 1.15

Total 16

As can be seen, the mean times (16 + 5 = 21 minutes per load) have remained
the same.

The computer program was modified to allow for statistically based rather
than average event times and run for 100 simulated days because the expo-
nential dismbution was used. (Whenever this dismbution is used, the num-
ber of simulations or the simulated time required for an acceptable result is
substantially increased-more on this in succeeding chapters.) The following
table gives the results of the Simulations.

Number of Number of Shovel Average Number of Profit Per
Trucks Loads Utilization (%) Trucks in Queue Day 6)
1 2,281 24.1
2 4,355 44.5

3 6,056 62.7

4 7,515 76.8

5 8,285 87.6

6 8,948 93.6

7 9,243 97.4

8 9,434 98.9
9 9,423 99.7

10 9,547 99.9

0.00 801
0.10 1,509

0.35 2,050

0.73 2,481
1.36 2,603

2.08 2,676

2.94 2,584
3.87 2,405
4.84 2,215

5.82 2,046

11 9,550 100 6.82 1,820

12 9,523 100 7.82 1,585

32 GPSS/H and Slrnulatlon In Mlnlng

Notice that the number of loads keeps increasing as the number of trucks is
increased until 11 trucks are working. Also note that the daily profit is a max-
imum for 6 trucks. This profit is $2,676, which is considerably less than the
previous profit of $3,213. Thus, in the more realistic simulation, the number
of trucks needed is 50% more than before, and the optimum profit is 21%
less. Also note that it really would not make much difference if 5 trucks were
used rather than 6. This simulation shows what happens when too many
trucks are in the system. The average queue length for 9 trucks is 4.84 trucks,
and for each additional truck, the average number of trucks waiting in the
queue will increase by 1. This means that each additional truck will, in effect,
add to the average queue length. No increase in production will result.

Although this example seems simple, it and variations of it were studied by
numerous investigators in the 1960s and 1970s to determine the optimum
number of trucks to have for consuuction projects. For example, Griffis (1968)
studied the determination of the optimum fleet size using queueing theory.
Numerous lengthy reports and papers were written on this problem alone.

REFERENCES

Griffis, F.H. 1968. Optimizing Haul Fleet Size Using Queueing Theory.
JournaZ of the Construction Division, Proceedings of the American Society
of Civil Engineers, January: 75-87.

New York John Wiley and Sons, chapter 7.
Phillips, D.T., Ravindran, A., and Solberg, J.J. 1976. Operations Research.

PART II

The GPSS/H
Simulation Language

33

Sample GPSS/H Programs
CHAPTER 5

RUNNING A G P S S / H PROGRAM

The best way to learn GPSS/H is to run numerous programs each time you
are introduced to a new topic. A GPSS/H program will have many different
commands, so it will not be until a few more topics are introduced that you
will be able to write programs by yourself. However, it is possible to type up
the programs and run them right away. For the present, do not worry about
what all the different commands are-each will be explained later.

WHAT YOU WILL NEED

You will need a modem PC that has GPSS/H loaded. You must know how to
create and edit ASCII files. Files can be created with the DOS editor (probably
easiest), or with word processing software such as WordPerfect or Microsoft
Word. The creation and editing of files is not covered here.

A FIRST TASTE OF G P S S / H

The first problem we are going to simulate with the GPSS/H language
involves a barbershop. People enter the shop every 10 minutes. It takes the
barber exactly 13 minutes to give a haircut. Obviously, this situation is unreal-
istic and will soon lead to the barbershop’s being overloaded with customers,
but the problem will introduce us to what the GPSS/H language and the pro-
gram output look like. The problem is to simulate the shop for 1 hour, starting
at t = 0 when there are no customem in the shop. Figure 5.1 illustrates the
time scale with customers arriving and leaving for 60 minutes.

Figure 5.1 shows that the barber will have nothing to do until t = 10 when the
first customer arrives. The double lines at t = 10,20, ..., 60 represent the cus-
tomers amving at the shop. The single lines without the circles, starting at t =

23, represent customers leaving. It should be easy for us to understand this
system and be able to explain what is happening.

35

36 The GPSS/H Simulation Language

/I (I I I/ I I/ I ll
0 10 20 30 40 50 60

FIGURE 5.1- Repres&tatlon of what b happening in the barbershop. See text for explanation.

Summary of GPSS/H Input Format

Before we can write the program to simulate the activity in the barbershop,
however, we need to understand a bit about GPSS/H code. The GPSS/H com-
mands are either blocks or statements (we will learn which as each is intro-
duced). Each line has only one such command.

In the explanations of GPSS/H code in this book, lowercase letters are used to
indicate a generic form of the code. Optional components are enclosed in
parentheses. Italic type is used to show variables that may take on values,
such as n. The positions of the G P W H code components (shown by the num-
bered line; the numbers in squares indicate positions that are usually blank in
most lines of code) and the general form of a GPSS/H program block are

[1123456789k%234567890m2345678901234567
Olabel @peration Ooperand ncomment

For clarity, in this book, position 1 of input code is shown by an open dia-
mond (0) to remind the reader that, in the fixed format used here, this posi-
tion is almost always blank. Other positions that are almost always blank are
position numbers 10 and 21. Also the operation is always separated from any
auxiliary operator by one space, and any comment is preceded by at least one
space (this book precedes comments with the required space plus an optional
one). The required spaces are shown by open squares 0. The diamond and
squares are not to be typed in actual GPSS/H code. The history of GPSS/H for-
matting is described in Appendix C.

As shown in Table 5.1, actual labels in lines of code for blocks consist of only
capital letters or of capital letter(s) followed by number(s). Actual operations
consist of only capital letters. Actual labels for a statement can be a number or
letter(s) plus number(s), but must at least start with a number. Actual oper-
ands can be numbers or capital letters or numbers and capital letters. Com-
ments can include any characters, and the letters can be lowercase. More
details are given in the section in this chapter entitled Fixed Format, and code
to allow printing out symbols to improve the readability of output is discussed
in Chapter 8.

The simplest line of code consists of a single operation and takes the form of

0 floperation

Sample GPSS/H Programs 37

TABLE 5.1 Summary of GPSS/H Input format

Possible Forms of GPSS/H Code Components

Component Positions In Blocks
~

In Statements

lABEL*t 2-9 only capital letters only capital letters
capital letters followed by numbers

In Blocks and Statements

capital letters followed by numbers

only number@)

OPERATION 11-20 only capital letters

OPERANDS? 22 until finished numbers

capital letters

numbers followed by capital letters

capital letters followed by numbers

certain nonalphanumeric ASCII characters are also used in some
operands to indicate variable type and mathematical operations

Comments begin 2 spaces any characters including lowercase letters
after operands

Note: Positions 1, 10, and 21 are generally blank. See text for more information.
* Because GPSS/H has many reserved words that are normally from 1 to 3 characters in length with a few as long as 4 charac-

ters in length, it is good programming practice to have labels 4 or more characters in length. Furthermore, labels are only used
for “cross-referencing” lines of code. Thus labels are not normally used for blocks and are needed in only certain statements.
The maximum number of characters is 8.

Examples of this simplest form of a line of GPSS/H code are

3 OSIMULATE

or

0 m
Most operations require at least 1 operand:

0 noperation noperand

An example of this type of operation is

0 CGENERATE 010

where the operand is 10. The operand can start in position 22 to position 25
(though the operand can also start farther right if the OPERCOL statement is
used, as discussed in the second half of this chapter). Certain operations
require multiple operands. Comments can follow the operand(s) for showing
the flow of elements through the program. Code lines may need to be cross-
referenced, which is made possible by using a label:

Olabel

The term “operandn” indicates the nth operand. An example of a code line
with two operands and a comment is

OPARTS W C T I O N m1,D3 C]Parts come along assembly line.

noperation noperandl , operand2, operandn IJcomment

38 The GPSS/H Simulation Language

The label is not included in all code lines. If a label is included but is not
referred to by another line of code, a warning message will appear on the
screen; however, the program will not be terminated. In the following form of
GPSS/H code, no label is needed, but the operation (opn) requires an auxil-
iary or relational operator (opr), and these must be separated by one space,
for example,

0 C o p a p r Ooperandl,operand2 komment
m E S m (NDONE) , N (INSHOP) 01s shop empty?

luxdiary or relational operators are described beginning in Chapter 16.

It is important to remember that blanks (i.e., spaces) are nor permitted in
labels, operations, or operands. Thus, if the block is to be

9 BENERATE 0 , , , 4 D H I S A GENERATE BLOCK

(note that there are no spaces after the commas), it would be incorrect to
have

0 BENERATE [I, , , 4 D H I S I S A GENERATE BLOCK

Although it is not necessary to follow the format given below for this exercise
(because of the changes in GPSS/H discussed in Appendix C and under the
heading Free Format in this chapter), try to type the program exactly as given
here for ease of debugging. Imagine that you are typing the program on a num-
bered grid and each column has a position number as shown on page 36.

First GPSS/H Program

In the following program to simulate the barbershop, there are no labels;
therefore, the blocks or statements will begin in position 11. In some cases,
there will be associated operands, and these will begin in position 22. Also, no
lowercase letters are allowed in GPSS/Hprogram lines. This restriction does not
apply to comments. No comments appear in the following program, however.

OSIMUUTE
GENERATE 010
BUEUE mAITAREA
@SEIZE I-JBARBER
D E P A R T g A I T A R E A
W V A N C E 013
LWLEASE @ m E R
DERMINATE
BENERATE 060
BERMINATE 01
USTART 01
m

If you have never seen a GPSS/H program, this code must look strange, but,
like any programming language, it will become familiar to you with practice.
Notice that there are no commands that correspond to input or output such as
READ or WRITE. There is no READ because you normally do not read data

Sample GPSS/H Programs 39

into a simulation program. There is no WRITE, so what about output? Here is
where GPSS/H is so helpful. Whenever certain blocks appear in the program,
there will automatically be output associated with those blocks. (Full output is
in FILENAME.LIS; custom output is usually more useful [see Chapter 81.) If
you are studying a queueing situation (as happens in our barbershop simula-
tion), output will automatically be produced.

The filename of the program you wrote must have the extension .GPS for the
program to run under GPSS/H. Suppose the name of it is BARBER.GPS. To
run it, you need to be at a DOS prompt in the GPSS/H directory. Then type

GPSSH BARBER NOXREF NODICT <cr>

Although the extension .GPS must be part of the filename BARBER.GPS, the
extension need not be typed in the command line; <cr> means “entef‘ (actu-
ally, “carriage return’’ from the days of the trusty typewriter). The commands
NOXREF and NODICT are optional. They represent “no cross reference” and
“no dictionary.” If they are omitted, there will be considerable output if the
program has an error. Generally, you do not need all the output.

First GPSS/H Output

If your program was written with no errors, you will see a screen such as the
following (in this book, “output” is shown in italics):

GPSS/H RELEASE 3 . 0 j - C l 0 12 July 1999 14:15:57
F i l e : barber.gps
C o m p i l a t i o n begins.

P a s s 1 (w i t h source l i s t i n g)

P a s s 2. . .
Simulation begins.

GPSS/H IS A PROPRIETARY PRODUCT O F ,
AM) IS USED UNDEX A LICENSE GRANTED B Y ,
WOLVERINE SOFTWARE CORPORATION
761 7 L I T T L E RIVER TURNPIKE
ANNANDALE, V I R G I N I A 2 2 0 0 3 - 2 6 0 3 , USA

C : \ GPSSH>

The return of the DOS prompt means that the program successfully ran. At the
completion of the program, GPSS/H creates a list file that has the same name as
the original file but now with the extension .US. To view the list file, you can
either use the same text editor you used to create the .GPS file or simply type

TYPE BARBER.LIS I MORE

The output will look, in part, as follows, depending on the version of GPSS/H
that you are using:

40 The GPSS/H Slmulation language

STUDENT GPSS/H RELEASE 3.Oj-ClO (VL206) 12 July 1999 16:43:42 FILE: barber.gps
LINE# STMT# I F DO BLOCK# * L K OPERATION A, B, C, D, E, F, G COMMENTS

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

10 1 0
11 11
12 12

SIMULATE
GENERATE
QUEUE
SEIZE
DEPART
ADVANCE
RELEASE
TERMINATE
GENERATE
TERMINATE
START
END

l o
WAITAREA
BARBER
WAITAREA
13
BARBER

60
1

1

STORAGE REQUIREMENTS fBYTES)

COMPILED CODE: 220
COMPILED DATA : 8 0
MISCELLANEOUS : 0
ENTITIES: 344
COMMON: loooil

TOTAL : 10644
.......................

Simulation begins.

RELATIVE CLOCK: 60.0000 ABSOLUTE CLOCK: 60.0000

BLOCK CURRENT
1
2 1
3
4
5 1
6
7
8
9

mA.L
5
5
4
4
4
3
3
1
1

--AVG-UTIL-DURING--
FACILITY TOTAL AVAIL UNAVL ENTRIES AVERAGE CURRE" PERCENT SEIZING PREEMPTING

TIME TIME TIME TIME/XACT STATUS AVAIL XACT XACT
BARBER 0 .833 4 1 2 . 5 0 0 AVAIL 5

QUEUE M?IXIMUM AVERAGE TOTAL ZERO PERCENT AVERAGE

WAITAREA 1 0.467 5 1 20.0 5.600
CONTENTS CONTENTS ENTRIES ENTRIES ZEROS TIME/WIT

$AVERAGE QTABLE CURRENT
TIME/ITNIT W E R C 0 " T S

7.000 1

Sample GPSS/H Programs 41

STATUS OF COMMON STORAGE

9424 BYTES AVAILABLE
576 IN USE
680 USED (MAXI

S imulat ion terminated. Absolute Clock: 60 .0000

To ta l Block Executions: 30
Blocks / second: 30000
Microseconds / Block: 33.33

Elapsed Time Used (SEC)

P A S S 1 : 0.05
P A S S 2 : 0 .06
LOAD/CTRL : 0.16
EXECUTION: 0.00
OUTPUT: 0.06
_-__-_____-__________
TOTAL: 0.33

Let us now examine your output. It is going to look strange at first, but you
soon will become accustomed to interpreting the results. At present, we will
simply ignore most of it. (Note, however, for future reference that all the lines
that are blocks are numbered.) The first line of interest to us will be

RELATIVE CLOCK: 60 .0000 ABSOLUTE CLOCK: 60 .0000

This line indicates that the simulation went for 60 simulated time units.
Notice that there are two imaginary clocks in GPSS/H. Both start at lime t = 0.
We shall learn how to run a simulation for a certain period, stop execution,
and restart it with most, but not all, of the statistics set back to zero. When
this procedure is done, the absolute clock keeps going, but the relative clock is
reset to zero each time the program is restarted.

Skipping down to under MAXIMUM CONTENTS, we see that there was a
maximum of 1 person waiting. The TOTAL ENTRIES indicates that 5 people
entered the queue. Even the first person who entered the barbershop and
went immediately to the barber's chair is counted. This person is listed under
the next heading ZERO ENTRIES as being 1. Of the 5 people who entered the
shop, 1 did not remain in the waiting area, so the PERCENT ZEROS is 20.0.
The average time for each person to wait in the queue was 5.600 minutes.
This is determined by noting that 5 people entered the queue. The first was
there for 0 minutes, the second for 3 minutes, the third for 6 minutes, the
fourth for 9 minutes, and the fifth for 10 minutes. Thus, 28 divided by 5 is
5.6. The next entry, $AVERAGE TIME/UNIT, is the total time in the queue but
now divided by only those people who actually remained in the queue,
namely 4. The CURRENT CONTENTS is 1, which indicates that 1 person is in
the queue at the end of the simulation. Compare these results with the dia-
gram in Figure 5.1. Note that a few other results appear in the .US file, but
those discussed here are the main ones.

42 The GPSS/H Simulatlon Language

Example 5.1

Suppose that the arrival times and haircut times were reversed so that the
customers arrive every 13 minutes and the barber can give a haircut in 10
minutes. The modifications necessary to do this simulation are as follows:

change the line

0 NENERATE 010

to

0 OGEN'ERATE 013

change the line

0 WVANCE 013

to

0 @4DVANCE 010

Make these changes and see if you can interpret the results.

A CLOSER LOOK AT THE QPSS/H CODE

We have just run our first program and then some of the results were inter-
preted. You were told to be very careful about where and how the various
commands were typed. This is because GPSS was first introduced when com-
puters exclusively used punched cards for reading the program. This method
is no longer used; so the restrictions (see Appendix C) inherent with punched
cards no longer need apply. There are two ways to write your program, fixed
and free format, and both will be presented here. We shall learn that, in
GPSS/H, there are basically two types of program commands: one is called a
statement and the other a block. The various properties of each will be dis-
cussed in subsequent chapters. The forms of both are similar, and the discus-
sion here will apply to both blocks and statements.

Flxed Format-The Detalls

In GPSS/H, each separate line of the program will either be a statement or a
block. (In a few situations, the GPSS/H statement will be continued for 2 or
more lines). The general format of a GPSS/H block consists of 4 separate
items (see Table 5.1):

i. label
2. operation (may be followed by an auxiliary or relational operator; see

3. operands
4. comments

Chapter 16)

The fixed-format form used in this book will always be

812345678901234567890a2345678901234567
Qlabel Doperation @perand k o m e n t

Sample GPSS/H Proezrams 43

1. The label starts in position 2 and goes through position 9. Spaces and
punctuation are NOTpermitted within a label.
There is (normally) nothing in position 1 (marked in this book by an open
diamond: V) or 10 (marked in this book by an open square:0). An excep-
tion is a line that in its entirety form a comment (in some other lan-
guages, called a remark). A comment line begins with an asterisk in
position 1. Any line beginning with an asterisk is ignored; i.e., such a line
becomes a “megacomment.”
Furthermore, most blocks and many statements do not use labels; they
are only used where “cross-referencing” benveen lines of code is needed.
In fact, if a block has a label that is not referenced anywhere in the pro-
gram, there will be a warning message sent to the screen to this effect.

Spaces are NOTpermitted within operations; in fact, the allowable opera-
tions are predefined in GPSS/H. The main ones are covered in the r a t of
Part I1 of this book.
Position 21 (0) is almost always blank

3. Operands begin in position 22 to position 25 (or farther right; see OPERCOL
statement, discussed next) and can continue as far as position 71. Spaces
are NOTpermitted, even after commas that separate the multiple operands
or indicate tl2e positions of unused operands. (Keep this prohibition in
mind later when you are learning how to use arithmetic in operands, as it
is tempting to leave spaces around the plus signs or minus signs.)
The exception is that spaces are permitted in textual material that is
merely intended to be written to the screen or a file; more on this topic is
covered in Chapter 8. Such textual material must be enclosed in single
quotes and parentheses.
It is possible to continue an operand list to another line by putting the
underscore (-) character in or to the left of position 72 in the operand
field (not the operation field). The next line is read by the compiler start-
ing with the first nonblank (i.e., nonspace) character anywhere in posi-
tions 1-19. In the following example, if the underscore is placed after the
comma (but with no spaces!), the code is continued to the next line:

and

2. The operation begins in position 11 and can go through position 20.

0 @ADVANCE 0 1 0 , 4

0 WVANCE 0 1 0 , -
4

are identical. Once you use an underscore to continue a line, you can
begin the continuation in any space up to position 25.

4. A comment can be placed after a blank space (0) after the operand. In this
book, comments will be preceded by the required blank and usually at
least one additional blank. Most programs that have comments will gener-
ally have them all starting in the same column for ease of reading them.
But be careful-not all statements have operands. For statements that don’t
have operands, it is still necessary to place comments starting in position 26

44 The GPSS/H Simulation language

or anywhere to the right ofthat position. (If OPERCOL [described next] is
used, comments may start in position OPERCOL + 1 or to the right of
that position.)

Even though rule 3 specifies that operands are to begin in position 25 (or
before) , the programmer can specify where the operands are to begin by
means of the OPERCOL statement. This has the form

0 mPERCOL

where n is the position at which the operands can begin. By default, n is 25,
but it can have a larger value. Thus,

0 DPERCOL 0 3 0

will tell the compiler to scan for the operands up to position 30. This modifi-
cation can be very useful in certain situations, such as those that have output
that includes items that are nearly the same and you want them to line up
underneath each other. It can also come in handy when you use nested DO
loops (see Chapter 23).

The above may sound like a lot of “thou shall nots,” but, in practice, the form
of the GPSS/H lines of code are easy. The last item, about the OPERCOL, is
rarely used if one sticks to fixed format.

The label may not be more than 8 characters in length. It is possible to mix
numbers and capital letters, providing the first character is a letter (see
Table 5.1). Examples of labels for bZocks include

0JOEA”E
OBILLYBUD
OUPTOP
ODOwNl
GBACK1
CUPTOPI
0 A 1 2 3

but not

01 JOE
0 B 2 3 $K
0- 1
CJ&B
0 1 2 3
Guptop
OBACK UP

For statements, t,e following labels would be acceptable:

OBACK
GUP123
V I

01 5

but not

Sample GPSS/H Programs 45

91.4
Ouptop
CX-Y

To illustrate how the above works, take the program you just wrote and
change it as follows.

Except for the way the RELEASE block was written to illustrate how a contin-
uation to the next line can be made, the above is the form most GPSS/H pro-
grammers follow. The initial comments, preceded by asterisks in position 1,
describe the program; later comments are placed in the program by inserting
them after two blanks in the line after the operand. The comments in most of
this book are in capital letters, but they could be in lowercase letters as they
are ignored by the compiler.

Run the program as before. At the DOS prompt, type

GPSSH BARBER NOXREF NODICT < c r >

Notice that when you run the program this time, you will receive a "warning
..." because the block

46 The GPSS/H Simulation language

N O M E EENERATE 010

was never referred to. Do not be alarmed; this is just the way GPSS/H works.
Once you give a block a label, GPSS/H expects you to refer to it in the main
program. It looks a bit messy, but such warning messages can be a real help in
debugging long programs.

There are other commands besides NOXREF and NODICT that can be used
when you initiate the running of a GPSS/H program. Probably the other most
common one is "TV" (for TV mode). If you run a program in this manner, the
screen is split; by keying in S <cr> or S n where n is an integer, you can
step through the program. This procedure can be useful in debugging pro-
grams. However, the use of on-screen output has greatly reduced the need for
using the TV mode for debugging.

Free Format

Since GPSS/H programs now are written with only the screen of a PC show-
ing, the restrictions that apply to fixed format have been relaxed (see Appen-
dix C). The way GPSS/H statements may now be typed is as follows:

I. Labels begin in either column 1 or 2. They can be up to 8 characters in

2. If no label is used, the operation portion can start in column 3 (or farther

3. Operands start following the operation. There need be only 1 blank

length, as can operands.

right).

between the operation and the operand. There may be more blanks, in
which case the operand must begin in or before the position given by the
OPERCOL.

4. Comments are placed in the program just as for fixed format, e.g., follow-
ing an asterisk, which may be in position 1.

5. Statements may be continued to another line as in fixed format.

Thus, it is possible to return to our first program and type it as follows:

COME GENERATE 10
QUEVE WAITAREA

SEIZE BARBER
DEPART WAITAREA

ADVANCE 1 3
RELEASE BARBER

TERMINATE
GENERATE 6-

0

Sample GPSS/H Programs 47

TERMINATE
GENERATE 60
TERMINATE 1

START 1
END

There really is no advantage in writing programs this way. The programs pre-
sented in this book are all written in fixed format for the sake of uniformity. If you
choose to write your programs in free format, however, it is perfectly acceptable.

Arithmetic In Operands

It is possible and indeed common to have arithmetic in the operands. The
arithmetic operations in GPSS/H are

+
-
/

@

*

addition
subtraction
division
multiplication
modular division

Modular division results in only the remainder being returned. Thus, 5637 is
2 ,9 @30 is 3, and 7@8 is 1.

GENERATE 480*10 is the same as GENERATE 4800, ADVANCE 60*100 is the
same as ADVANCE 6000. GPSS/H does integer arithmetic if it is dealing with
integers, so ADVANCE 60/18 would be the same as ADVANCE 3. However,
ADVANCE 60.0/18 would be ADVANCE 3.33333.

Example 5.2

Even though we still have a way to go in writing programs, we can still use
the one program we have written to learn a bit more about GPSS/H. From
now on we will speak of the “processor” when we refer to how the program is
being executed. To simulate the same shop for when the barber is working a
bit faster, simply replace the line

’/ W V A N C E 213

with

5 W V A N C E c12

Now the barber is cutting hair in 12 minutes (the shop still will overflow with
people). To simulate for 2 hours, change the line

3 CSTART 51

to

48 The GPSS/H Simulation language

By now, you should be able to understand the results of the second simulation.

Example 5.3

To simulate the situation when the barber gives haircuts in 9 minutes, change
the line

0 W V A N C E 013

to

0 WVANCE 09

Now there will not be a buildup of customers. Run your program with this
change for 2 hours of simulated time and interpret the results.

THE SIMULATE STATEMENT

Every GPSS/H program must contain a SIMULATE statement. Although it
need not be the first statement in the program, it usually is. Most program-
mers always start their programs with the SIMULATE statement. The general
form of it is

0 OSIMULATE @A

The operand A is optional. If used, it limits the amount of time in minutes dur-
ing which the program will run. This can be handy to use in the debugging
stage to avoid being stuck in infinite loops. For example,

0 USIMULATE 0 2 . 5

would limit the program to 2.5 (actual, not simulated) minutes running time.
It is possible to have the time limited to so many seconds if the letter S is
placed after the SIMULATE operand:

0 flSIMULATE UlOOS

would limit the execution time to 100 seconds.

There is a caution with this statement. Be careful that you do not put a com-
ment after SIMULATE if you have not specified an operand. If you do add a
comment, it must start in or after position 26 or in or after OPERCOL + 1.

THE END STATEMENT

GPSS/H programs must have an END statement. This is simply the last state-
ment in the program and acts as a directive to the compiler. Of all the many

Sample GPSS/H Programs 49

blocks and statements with GPSS/H, the SIMULATE and END should never
cause you any problems.

Example 5.4

Let us do the same example of the barbershop again. (Soon we shall be doing
other, more interesting problems.) You were told to run the last example for 2
hours of simulated time by changing the START 1 to START 2. The following
program will simulate the barbershop for 2 customers. Write the program and
run it.

@SIMULATE
BENERATE B l O
OaUEuE W A I TAREA
@SEIZE mARBER
D E P A R T WAITAREA
@iDVANCE C13
m E L E A S E DARBER
mERMINATE 01
OSTART 02
@END

After you run the program, you should examine the output to see w h x the
program results are. After a few more exercises, you will understand the dif-
ferences between the programs.

EXERCISES, CHAPTER 5

1. Parts come along an assembly line with an interamval rate of 4, 5, or 6
minutes. A single worker takes either 4 or 5 minutes to work on each part
at station A. This worker can work on only one part at a time. Next, parts
go to station B where two identical workers take 8,9, or 10 minutes to do
further work on the parts. Finally, an inspector takes exactly 5 minutes to
check the parts.
Do a “hand simulation” that lists the events for the first hour of operation
starting at time 0. The wait time is 1 minute. For the sake of simplicity,
assume that the various times by the worker are in exact order. Thus, the
first worker will complete work on the first part in 4 minutes, the second
part in 5 minutes, etc. Your result should show the event, the time it takes
place, and a description of what is being done. The first part of your solu-
tion will look as follows:

Event Time Description

1
2
3

4

4

8

First part comes to station A; next part will come at time 9.
First part will be worked on until time 8.
First Dart done at station A: first Dart goes to station B.

50 The GPSS/H Simulation Language

Event Time Description

4
5

8
9

Rrst part is worked on at station B until time 16.

Second part comes to station A; next part will come at time 13.

The “hand simulation” is useful to assist the interpretation of the GPSS/H
simulation. The GPSS/H program to do the simulation is as follows:
0 @SIMULATE
0 “,STORAGE 0s (WORKERS) , 2
CPARTS W C T I O N m l , D 3
. 3 3 3 , 4 / . 6 6 1 , 5 / 1 , 6
$WORK1 @’UNCTION m l , D 2
. 5 , 4 / 1 , 5
CWORK2 W C T I O N W l , D 3
. 3 3 3 , 8 / . 6 6 6 , 9 / 1 , 1 0
0 EENERATE @N (PARTS)
0 @UEUE m A I T 1
c 3 OSEIZE D I R S T
0 DEPART CWAIT1
Q :ADVANCE (WORK1)
3 ERELEASE Z I R S T
J ;QUEUE B A I T 2
.) W E R BORKERS
3 DEPART m A I T 2

5 DEAVE BORKERS
0 BUEUE &WAIT3
0 @SEIZE $ A S T
0 DEPART a A I T 3
0 @iDVANCE 35
c mELEASE D S T
0 DERMINATE
3 &ENERP.TE z60

9 OSTART 31

3 P3DVANCE 1D.N (WOFs.2)

3 DERMINATE C1

3 LEND

9Parts come along

p i r s t worker

OSecond workers

3Parts come
lxo in f i r s t queue
mirst worker is used
meave t h e queue
w o r k on f i r s t p a r t
F r e e t h e worker
OJoin second queue
m s e one of t h e workers
m e a v e t h e queue

mree t h e worker
D o i n l as t queue
mse t h e worker
I]Leave t h e queue
OInspect p a r t
3 r e e t h e inspec tor
3Part done
Timer t r a n s a c t i o n arrives
qsimulat ion over

Run the above program and interpret the results (as much as possible).

2. In order to run the above program for a simulated time of 8 hours (480
minutes), it is necessary to change the line of code
/ XENERATE 60

to
9 :GENEPATE 4 8 0

Make this change and rerun the program.

The GENERATE and
TERMSNATE Blocks and
the S T ! T Statement

.
CHAPTER 6

BLOCKS VS. STATEMENTS

Control statements are used for specifications of data and for running the pro-
gram. Blocks are the actual program lines. Transactions, which are explained
next, move only from block to block once the program execution begins.

THE GENERATE BLOCK

The key to any simulation program is the GENERATE block. This block cre-
ates “trma~tions” that move through the program from block to block. These
transactions can represent anything that you wish to model, such as the enter-
ing of ships into a harbor, the arrival of people at their place of work, cars
moving on a highway, and a person entering a bank.

To give an idea of how a transaction is used, think of a person about to enter a
barbershop with a single barber. The entrance of the person is the transac-
tion. Upon entering the shop, he will make one of the following choices:

1. If the barber is free, the person immediately sits in the chair and the hair-

2. If the barber is busy, the person waits until the barber is free.
3. If the shop has too many people waiting, the person will leave.

cut begins.

The Internal GPSS/H Clock

A system such as the barbershop normally involves the passage of time; there-
fore, an imaginary, internal clock is used by the GPSS/H processor. The inter-
nal clock starts at zero when the GPSS/H program begins execution. The
processor moves the clock forward in time as the program is executed.

A knowledge of how the internal GPSS/H clock works is important for an
understanding of how a GPSS/H program executes. The program does not go

51

52 The GFSS/H Simulation Language

from line to line as in other computer programming languages but follows an
imaginary time axis.

The time units used by the internal clock can represent whatever amount of
time that the programmer chooses, e.g, 1 second, 5 minutes, 12 hours, or 0.1
minute. The time unit-called the basic time unit-should be selected that best
suits the problem being studied. In some cases, a basic time unit of 1 second
may be selected; in other cases, the basic time unit may be 1 hour. If a store is
being simulated and studies indicate that customers take 18 minutes to shop
and 2 minutes to check out, an appropriate basic time unit is 1 minute. If the
simulation is to run for a simulated time of 8 hours, then the 8 hours need to be
converted into basic time units-in this case, 480 time units. The basic time unit
to select is generally obvious from the statement of the problem being modeled.

The internal GPSS/H clock is advanced by the processor as the simulation steps
forward from event to event. For example, if some event is to take place at time
t = 345.765 and the next one at t = 420.5, the internd clock will be advanced
from its previous time to time 345.765. It will then be advanced to time 420.5.

C RE AT1 N G TRANSACTIONS

Transactions are created by the GENERATE block. It can have up to 9 oper-
ands and can be quite involved. The simplest form-either with or without an
optional label, indicated by the parentheses and lowercase letters-is given by
the following:

OLABEL @ENERATE

where A, the operand, is either a positive integer or a variable. A controls the
times at which a transaction can be created.

The label is optional. We will learn when to use one. For the present, it is not
needed, but in this book, simple lowercase letter labels in parentheses (which are
forbidden in actual GPSS/H code; labels must be alphanumeric; see Table 5.1)
will be used just to identlfy lines of code for the reader's benefit. For example,

,?(a) NENERATE C5
31b) EGENERATE 2100

In (a), a transaction is created every 5 time units, whereas in (b), a transac-
tion is created every 100 time units. In both (a) and (b), as long as the simula-
tion is taking place, transactions will continue to be created every 5 or 100 time
units, respectively.

In general, a transaction will be moved from block to block in a sequential
manner, unless the transaction encounters a block that transfers it elsewhere
in the program. Such a nonsequential transfer takes place only when the pro-
grammer specifies.

In most systems to be studied, there is a degree of randomness involved. Peo-
ple do not enter a bank every 35 seconds, a barber does not take exactly 8.5
minutes for a haircut, etc. Thus, it is necessary to have randomness as a part
of the simulation. One of the features of GPSS/H is that it is so easy to incor-
porate randomness into a simulation.

The GENERATE and TERMINATE Blocks and the START Statement 53

One way to have randomness in the generation of transactions is to use the
second form of the GENERATE block, which incorporates the B operand:

5 LCENERATE m , B

B can be a variable, but in this book, it will always be a positive integer. This
block generates a transaction over the time interval A 5 B, with each time
interval having an equal probability of happening. For example,

’/ RENERATE > a , 2

means that a transaction is created every 8 f 2 time units. This means that a
transaction will be created at an interarrival time of 6 to 10 time units with
equal probability. Although A and B are integers, the times are sampled from
throughout the interval (6.0000,10.0000).

One indicates an interval by using parentheses and/or brackets. For example,
the interval from 0 to 10 might be (0 , lO) . However, does this mean that 0 and
10 are included? Mathematicians use parentheses- () -to mean that the end-
points ure not included. Square brackets- [] -are used to indicate that the
endpoints are included. Thus, [0,10) would include the 0 but not the 10. This
difference may seem a minor point, but there is a place in GPSS/H where it is
very important.

Therefore, the parentheses around the 6.0000,10.0000 range indicate that
the times of 6.0000 and 10.0000 are not included, but 6.0001 and 9.9999
are. This means that if the internal clock is at t = 1013.0000 and the GPSS/H
processor sets t = 6.0001 as the time before the next transaction is created, the
next transaction will enter the system at simulated time t = 1019.0001. Chap-
ter 14 on functions shows how to generate transactions that enter the system
according to any statistical distribution.

How GPSS/H Creates Random Numbers

Although it is not of concern how the processor works, you might be curious
how the processor generates the various times by using random numbers. The
processor has a built-in random-number generator that is referred to in the
code from time to time. Suppose you want to generate times from 10 to 24
with equal probability. Call these times X. The random number will be called
RN, where RN is a number from 0 to 1. Now consider the formula

X = 10 + RN * (24 - 10)

Every time a random number is called up, a new value ofXis obtained. As can
be seen, a stream of timesX between 10 to 24 will be obtained. This approach
is similar to the way that the GPSS/H processor works.

Prohibition of Negative Times

In using the GENERATE block, you must be careful to avoid a block with the B
operand greater than theA operand, e.g.,

/ -GENERATE 110,12

54 The GPSS/H Simulation Language

as the specification of B > A would eventually lead to the choice of a negative
time at which to generate a transaction. Negative times are not allowed. How-
ever, it is possible to have

0 BENERATE ol0,lO

Example 6.1

People arrive at a barbershop every 15 f 6 minutes. The single barber takes 12
f 4 minutes to cut hair. Simulate for 200 people having their hair cut. Assume
that the barber works continuously, i.e., he does not leave the shop until 200
people have had their hair cut. Determine how busy the barber has been. The
program to do this simulation is as follows:

3
0
0
0
9
3
0
0
0
0

USIMULATE
BENERATE U15,6
mUEUE BAITAFXA
OSXIZE BARBER
@DEPART DAITAREA
D V A N C E u 1 2 , 4
BELEASE DARBER
BERMINATE 01
USTART 0200
OEND

CPeople enter the shop
make a sea t i n waiting area
Dngage barber i f he is f r ee
Deave the sea t i n waiting area
Deceive haircut
D a i r c u t over, barber is f r ee
Deave the shop
Osimulate for 200 customers

Solution

Do not be too concerned at this time that you do not understand all the code
given above. In fact, even interpreting the results will appear strange at this
time. However, if you successfully run the program and look at the list file
(your .GPS filename, but with the .US extension) created by GPSS/H, you
will see the following as a part of the output:

RELATIVE CLOCK: 3005.4761 ABSOLUTE CLOCK: 3005.4761

--AVG-UTIL-DE?ING--
FACILITY TOTAL ENTRIES

BARBER 0.604 200

The output is interpreted as follows: The barber worked for approximately
3005 minutes or 50 hours straight to take care of the 200 customers. He was
busy 80.4% of the time. This value of about 80% is to be expected. Customers
arrive at random but with an average interarrival time of 15 minutes. The bar-
ber takes an average of 12 minutes to give a haircut. Hence, in the long run, one
would expect the barber to be busy for 12/15 or 80% of the time. Furthermore,
in this example, when the haircut for the 200th customer was finished, the bar-
ber closed shop and left, even though there may have been other customers
waiting in the shop. Later, when we learn more about the GPSS/H language, it
will be possible to write the code to model more realistic examples.

The GK~~ERATE and TERMINATE Blocks and the START Statement 55

Example 6.2

Suppose the barber decides to buy special, fancy new equipment that can
really speed up his hair cutting. He can now cut hair in 10 f 3 minutes. To
rerun Example 6.1 and examine the results, change the operands of the
ADVANCE block:

0 WVANCE 010,3

M O R E GENERAL CASES OF THE G E N E R ATE BLOCK

Other operands can be used in longer forms of the GENERATE block. There
are five operands that we will use at present (note that all are typically posi-
tive integers but can be variables; in practice, onlyA is used as a variable):

9 GENERATE D, B , C, D, E

where, as before, operand A controls the times at which a transaction can be
created and operand B allows a range over which the transaction creation
times can vary. Operand C is called the offset time for the first transaction,
i.e., no transaction will enter the system until this time. Operand D is the max-
imum number of transactions to be generated. Operand E is called the prior-
ity. When the E operand is used, the transactions are given a priority level
specified by it. Often, this operand is omitted and the priority level is, by
default, 0. The priority levels can be integers between -2,147,483,632 and
+2,147,483,632. In practice, only a few priorities are needed, and one nor-
mally uses priorities such as 1,2,5,10, etc.

In most queueing systems, the service criterion is known as “first-in first-out’’
(FIFO). This means that, if the first person to arrive for service has to wait, he
or she will be served before later arrivals. If, however, one transaction has a
higher priority than another, the higher-priority transaction is placed ahead of
the lower-priority transaction in queues as well as given preferential service
in the case of a time tie between transactions. A typical example to illustrate
the case of a time tie is the situation of the amval of a car at a filling station.
Suppose that there is only room for 6 cars total and, if there are 6 cars at the
station, an arriving car will leave. A time tie occurs when a car amves at
exactly the same time as one is through being serviced; the arriving one will
not leave if it has a higher priority than the one that is about to leave. Thls, of
course, is what will happen in a real-life situation. We will examine this con-
cept of priority in Chapter 28.

(a) BENERATE 3 1 5 , 3 , 1 0 0 , 3 ,1
3 (b) ‘7Y;ENERATE ~ 1 0 0 , 3 , 2 0 0 , 4 0 0 , 3
,’, (c) XENEXATE ‘,20,4,50 0 , 7 , 8
$ (d) EGENERATE ; 3 0 , 0 , 0

Blocks (a) to (d) represent several examples of the GENERATE block. In (a), a
transaction is created every 15 * 3 time units. The first transaction does not
enter the system until t = 100. Exactly 3 such transactions will be created, and
each will have a priority level of 1. In (b), a transaction is created every 100 *
3 time units. The first transaction enters the system at t = 200, and exactly

56 The GPSS/H Stmutation Language

400 such transactions will be created, each having a priority level of 3. In (c),
transactions are created every 20 f 4 time units. The first transaction enters
the system at t = 500. Exactly 7 such transactions are created, each with a pri-
ority level of 8. In (d), transactions are created every 30 time units. The first
transaction will enter the system at t = 0. Contrast block (d) with the block

<") (e) :GENERATE 030

In block (e), the first transaction will enter the system at t = 30, not at t = 0.

If you do not wish to use all the operands, you use commas instead-not
blanks, i.e.,

c>(f) 5ENERATE GlOO,, ,1

will generate a single transaction at t = 100, and

C (g) BENERATE ? l o o , , , ,1

will generate a transaction every 100 time units, each transaction having a
priority level of 1.

Q(h) TEENERATE E,, , 5

will generate 5 transactions immediately. This block form may seem strange
but is an important option in many simulations. Block (h) is the same as block
(i):

(i) rGEXERATE JO,O, 0,s

If you want to make a simulation involving 6 ships sailing from one port to
another, you might start by using the block

f j) :GENERATE I_, , ,6

Block (j) puts 6 ships into the system at time t = 0.

Example 6.3

Go back to Example 6.1. Now suppose that when the barber arrives at work,
he finds 3 people waiting for haircuts. Change the program to reflect this
change in the simulated situation. The program for this is as follows:

WWN

,SIMULATE
I -GENERATE r, , , 3
CTRANSFER 1, WTW
SENERATE z15.6
:QUEUE P A I T I R W
:SEIZE :BARBER
- -DEPART 3 J > . I TAP=.
_ADVANCE 7 1 2 , 4
IRELEASE _BARBER
ITTERMINATE 11

-
-

ISTART -200 -

-Em -

:People waiting
:Send them to the door
:People enter the shop
:Take a seat in waiting area
:Engage barber if he is free
:Leave the seat in waiting area
CF.ecei;.e haircut
:Haircut 0-JPT, barber is free
:Lea-re the shop
:Simulate for 200 customers

The GEN~RATE and TERMINATB Blocks and the START Statement 57

Example 6.4

Suppose that the customers in Example 6.3 arrive as before, but now it is
desired to have them start arriving at 1 minute after the barbershop opens.
Compare the output from the previous program after incorporating the fol-
lowing change in the first GENERATE block:

0 BENERATE d15,6,1 UPeople enter the shop

THETERMINATE BLOCK

As shown in Example 6.3, it is possible to have more than one GENERATE
block in a program; in fact, this is nearly always the case. The only caution is
that a transaction can never enter a GENERATE block. To avoid this pitfall,
one employs the TERMINATE operation:

Transactions enter the system by means of the GENERATE block. Eventually,
in most simulations, the transactions will have to leave the system. Their
removal is accomplished by means of the TERMINATE block. Whenever a
transaction enters a TERMINATE block, it is immediately removed from the
system. TERMINATE blocks are quite simple in form:

9 BERMINATE

where the operand A is a positive integer, including 0.

If A is omitted, as it often is, it is taken to be 0. The operand A in TERMINATE
A has nothing to do with-i.e., does not specify or limit-the transaction being
removed from the system. Only one transaction at a time enters the TERMI-
NATE block. The TERMINATE block always removes this one transaction. As
we shall see, the operand A is used to control the execution of the program in
connection with the START statement, described next.

THE START STATEMENT

Every GPSS/H program must have a START statement. The simplest form of it is

5 3START

where operand A must be a nonzero positive integer.

The operand A is a counter for controlling the running of the program. While
the program is being executed, the counter is being decremented. When it

58 The GPSS/H Simulation Language

becomes zero or negative, the program stops execution. The GPSS/H proces-
sor then creates an ASCII file, NAMEUS, where NAME is the name of the
original .GPS input file. This file contains the results of the simulation and can
be viewed by using the same text editor used to create the original input file
for GPSS/H processing.

The way the processor knows that the program is finished is as follows:

I. The counter operand, A, is "set aside."
2. Whenever a transaction goes through a TERMINATE block that has an

operand, this operand value is subtracted from the counter operand.
3. After the transaction in which the remainder becomes 0 or negative, the

simulation is finished, and the report (i.e., the NAME.LIS file) is
produced.

For example, if the GPSS/H program executes the following TERMINATE and
START lines of code,

0 CfrERMINATE 02

0 USTART FlO
0 @-----

the program will continue until 5 transactions have passed through the TER-
MINATE 2 block (i.e., pass 1-START = 10,lO - 2 = 8; pass 2-START = 8,8 - 2
= 6; pass 3-START = 6, etc., until START = 0). For the following lines of code,

0 BERMINATE

0 DERMINATE c3

0 USTART 213

0 U-----

9 fl-----

the program will run until 5 transactions have passed through the TERMI-
NATE 3 block. Any transaction that passes through the first TERMINATE
block will have no effect on the execution time of the program (because there
is no operand A). And for the following lines of code,

0 DERMINATE 54

c :START 51
-

/ _ _ _ _ _ > d

the program will run until 1 transaction has passed through the TERMINATE
4 block.

Most of the programs so far have had blocks such as the following:

3 EGGENERATE G480
3 TERMINATE 31
c' [START El

The GEN~RATE and TERMINATE Blocks and the START Statement 59

The effect of this sequence of blocks is to put a single transaction into the
system at time 480. This transaction is immediately removed via the
TERMINATE 1 block. The 1 in its operand causes the counter of 1 that was
given by the START 1 statement to be decremented to 0. Thus, the program
stops execution at time 480.0000. Transactions whose primary effect on the
program is to stop its execution are called timer nansactions.

A GPSS/H program starts execution when thefirst START statement is
encountered. If there are more START statements after this first START state-
ment, they are initially ignored. When the program is through with execution
as specified by the first START statement, whatever commands are given after
it are then completed.

During the compiling stage, transactions are primed to move through the sys-
tem at times given by the GENERATE block. In the priming process, the trans-
actions are placed on a time axis called the current events chain (CEC). When
the program begins execution, the processor takes over and moves the trans-
actions one at a time as far as each transaction can move. After the processor
moves a transaction, the processor goes back to the CEC and moves the next
transaction. This continues as long as the program is running. The first trans-
action to be moved is the one positioned on the CEC at the earliest time, the
next is the one at the next earliest time, etc. The transaction is moved from
block to block in a sequential manner, unless the program specifies otherwise.
A transaction is moved until one of the following things happens:

1. The transaction is removed from the system via a TERMINATE block.
2. The transaction is put on another current events chain to be covered

3. The transaction is desmcted and cannot enter the next sequential block.

It is important to keep in mind that the second and subsequent transactions to
leave a GENERATE block are not scheduled to do so until the first transaction
has left the block. Even though the effect of a block such as GENERATE 10 is
to create a transaction every 10 time units, the series of transactions is created
as follows: the first is scheduled at time 10 during compiling, and the second
at time 10 after the first transaction has left the block.

later.

EXERCISES, CHAPTER 6

1. What will happen when the following GENERATE blocks are used in a
program?
O(a) KENERATE fl100,30, , 5
O (b) OGENERATE 0, , 1 0 0 0 , 4
0 (c) [?GENERATE ~l000,2 0 0 ,2 0 , 1 0 0
O(d) OGENERATE G 5 0 0 , 4 0 0 , 1
O (e) OGENEWTE b r r , 4

60 The GPSS/H Slmulatlon Language

2. You are observing trucks at point A. Every 4 minutes, 1 truck passes this
point. The trucks travel along the road that passes point A for 5 minutes
and then leave the system. In 20 minutes, how many trucks have you
observed? Assume that the first truck does not pass you until 4 minutes
have passed. The GPSS/H program to simulate this is as follows
0 OSIMULATE
0 5 E N E R A T E [?4
0 m V A N C E 05
0 DERMINATE 00
0 5 E N E R A T E 320

0 USTART 01
0 ~ E R M I N A T E 131

0 W D
3. In exercise 2, suppose that the trucks pass point A every 4 minutes but

starting at t = 0. Change the appropriate line in your program.
4. In exercise 2, assume that a truck will pass point A every 4 2 2.5 minutes.

Change the appropriate line in your program.
5. In exercise 2, you may have noticed that, after 20 minutes, the computer

program said that you observed only 4 trucks. What happened to the
truck at time 20? Suppose you change the program to give the trucks you
are observing a priority level of 1. What line needs to be changed? How
does this affect the program results?

6. In exercise 2, simulate for 40 minutes.
7. Write the GPSS GENERATE blocks to

a. Have transactions enter the system every 5 time units.
b. Have transactions enter the system every 100.6 time units.
c. Have transactions enter the system every 10 k 6.5 time units.
d. Have transactions enter the system every 7 time units starting at t =loo.
e. Have transactions enter the system every 120 f 35.6 time units begin-

f. Have 5 transactions enter the system at t = 0.
g. Have transactions enter the system every 100 time units beginning at

t = 80 and only 10 enter the system from this block.
h. Have only 3 transactions enter the system at t = 500. These transactions

have priority 5.
i. Have transactions with priority 5 enter the system every 6 f 3.4 time

units, staring at t = 400. Only 6 of these transactions are to enter the
system.

ning at t = 200.

8. What would happen if you had the following block?

9. What would happen if you had the following block?
0 GENERATE 0120,130

3 BENERATE :4,1,,,-1

10. What do the following lines of code do?
G EENERATE n, ,480,l
0 DERMINATE 01
3 USTART

The GENERATE and TERMINATE Blocks and the START Statement 61

11. The following code is used to time the running of a GPSS/H program.
What time will the simulated clock show at the completion of the
program?
/)(a) mENERATE 0480
T, DEWINATE c2
// USTART 02
5 (b) NENERATE 0 4 8 0 0
0 C~TERMINATE C5

O (C) GENERATE ~ l o o o
0 BERMINATE 03

c‘ USTART 010

‘3 USTART 57
G (d) BENERATE U200
0 DERMINATE rj l0
‘> QSTART 01

done executing?
1.2. What time will the simulated clock read when the following program is

SOLUTIONS, CHAPTER 6

1. a)

ESIMULATE
I]GENERATE 0100

EENERATE q150
BERMINATE z 2
USTART 310

@ERNINATE c1

“END

Transactions are created every 100 * 30 time units. Only 5 of these
will enter the system.
4 transactions are created. They will enter the system at time 1000.
Transactions are created every 1000 f 200 time units. They will start
to enter the system at time t = 20.100 of these nansactions will enter
the system.
Transactions are created every 500 f 400 time units. The first enters
the system at time t = 1.
4 transactions are created at time t = 0.000.

2. You wilI observe 4 trucks pass you. At time t = 20, the 5th truck is in front

3. Change Line 2 to

4. Change the line

of you.

GENERATE 4 , , O

ADVANCE 5
to
ADVANCE 4 , 2 . 5

You still will observe the same number of trucks entering the system, but
now they will remain for varying times.

62 The GPSS/H Slmulation language

5. Change Line 2 to
GENERATE 4 , , , , 1

The 5th truck entered the system before the program ended. This will be
shown in the .US file.

6. This can be done in several ways. Some of them are:
a) GENERATE

b) GENERATE
START

C) GENERATE
START

7. a) GENERATE

b) GENERATE

d) GENERATE

C) GENERATE

e) GENERATE

f) GENERATE

or GENERATE

h) GENERATE

g) GENERATE

i) GENERATE

40 L i n e 5

20 L i n e 5
L i n e I 2

10 Line 5
4 L i n e 7

5

100.6

1 0 , 6 . 5

I , , 1 0 0

120 ,35 .6 ,200

, , , 5

0, o r 0 , 5 (the first is the commonly used method)
100,,80,10

, , 5 0 0 , 3 , 5

6 , 3 . 4 , 4 0 0 , 6 , 5

8. You cannot go backward in time. Thus, the spread of 120 f 130 would be
from -10 to 240. An attempt to generate a transaction at a negative time
eventually would occur (depending on the random numbers used). This
would lead to an error. The compiler will show the error as follows:
*** IN STATEMENT 2 - ERROR 163 - B - operand (modifier) exceeds A
operand (mean).

GPSS/H allows negative priorities. In previous version of GPSS/H, only
positive non-negative integers were allowed for priorities).

10. The first transaction enters the system at time 480 according to the C
operand. The D operand indicates that only 1 such transaction would
enter the system.
You may note that this is equivalent to:

9. A transaction is created every 4 f 1 time unit with priority -1. (Only

GENERATE 480
TERMINATE 1
START 1

If the aim of the analyst is to run the simulation for 480 time units, the
effect of the different lines of code is exactly the same.

li. a) The internal GPSS/H counter initially is set at 2 because of the
START 2 statement. At time 480, a transaction enters the system and
immediately is terminated. The TERMINATE operand is 2, so the
counter is decremented by this amount. Since this sets it to zero, the
program stops at this time, namely, t = 480.0000.

The GEblERATg and TERMINATE Blocks and the START Statement 63

b) t = 9600.0000. At time 4800.0000, the counter is decremented from
10 to 5. At time 9600.0000, the counter goes to 0.0000.

c) At time 1000.0000, the counter is decremented by 3 to 4. At time
2000.0000 the counter is decremented to 1. At time 3000.0000, the
counter is decremented to -2. Since it is now less than zero, execu-
tion will stop.

d) At time 200.0000, the counter is decremented by 10 to -9. This stops
execution of the program.

12. The clock will read 450.000. The START operand was set at 10. It was
decremented at the times:

Time Value

100 9
150 7

200 6
300 3
400 2

450 0

This is shown as follows:

Decrement
Time Counter Amount

0 10 0
100 9 1

150 7 2

200 6 1
300 3 3
400 2 1

450 0 2

Thus, the clock will read 450.0000.

The TRANSFER Block
CHAPTER 7

A transaction normally will move from block to block in a sequential manner.
When the processor moves it along the current events chain, the transaction
moves as far as it can move. As we learned in Chapter 6, one of three things
eventually happens to the transaction to cause the processor to rescan the
CEC for the next transaction to be moved:

1. The transaction is terminated.
2. It is put on some other chain.
3. It is obstructed and denied access to the next block.

It is possible to have the transaction move in a nonsequential manner. This is the
purpose of the TRANSFER block. The TRANSFER block acts much like the GO TO
statement found in other programming languages such as Fortran. However, in
GPSS/H, there are several forms that can be used. In this chapter, the three most
common ones wiU be discussed. Other forms are covered in Chapter 22.

UNCONDITIONAL T R A N S F E R BLOCK

The form of the unconditional TRANSFER block is

0 BRANSFER G,B
where the operand A is blank (as indicated by the presence of the comma,
which is essential) and operand B is the label of the destination block. When a
transaction enters the TRANSFER block, it is immediately sent to the block
with the label given by the TRANSFER block’s operand B. Examples are

0 mRANSFER @,DOWN
0 DRANSFER 0, WAIT
0 BRANSFER 0, UPTOP

If the block to which the transaction is being transferred will not admit the
transaction, it is held in the TRANSFER block until a later scan of the CEC by
the processor. The TRANSFER block always admits transactions.

65

66 The GPSS/H Simulation Language

Because the GPSS/H processor automatically numbers all blocks (see the out-
put near the end of this chapter for an example), it is possible to use sequen-
tial block numbers instead of block labels to indicate the destination block.
The general form is the same:

0 D R A N S F E R G , B

where operand B is a nonzero positive integer. In this case, the transaction is
transferred to the block whose sequential block number, counting from the
top, is equal to the value in the TRANSFER block’s operand B. Thus,

0 D R A N S F E R 0 ,6

will send the transaction to the sixth block in the program. This approach
using sequential block numbers can be a bit confusing in the case of large
programs and is not as easy to follow as when block labels are used. Also, if a
program is changed by adding additional blocks, all such TRANSFER blocks
have to be changed. For these reasons, this form of the TRANSFER block will
not be used in this chapter.

CONDITIONAL TRANSFER BLOCK

The form of the conditional TRANSFER block is

0 ~ p n n r c c m Fn R r

where operand A is a decimal fraction (0 < A < 1) of no more than 3 digits (it
can have fewer) and operands B and C are block labels. Operand B is optional
but operand C is required. Examples are

\\ L?RANSFER U. l23 ,DOWN,UPTOP
0 D R A N S F E R u.S,,AWAY
c D R A N S F E R @. 007, NEXT1 , NEXT2
0 D R A N S F E R UO.9,UPTOP,DOWNX

The conditional TRANSFER block proportions the transfer of transactions
between the two blocks identified by the labels in the operands. Of the total
number of transactions that enter this version of the TRANSFER block, a frac-
tion equal to the value of operand A are sent to the block with the label in
operand C of the TRANSFER block. The rest of the transactions are routed to
the block with the label given in operand B. If operand B is missing (as it
most commonly is), the transaction is routed to the next sequential block.
Two examples of the conditional TRANSFER block cover the possible
configurations:

3 (a) D R A N S F E R 0 .333 ,DOWN,OUT
O (b) D R A N S F E R 0.8, ,AWAY

In example (a), 33.3% of the transactions are sent to the block with the label
OUT. The remainder or 66.7% of the transactions are sent to the block with
the Iabel DOWN. In example (b), 80% of the transactions are sent to the block
with the label AWAY. The remainder of the transactions continue to the next
sequential block.

The TRANSFER Block 67

TRA N S F E R BOTH

The following form of the TRANSFER block is not as common as the first two
cases but can be extremely helpful. It is called the TRANSFER BOTH mode.
The general form of it is

0 D R A N S F E R j?A,B,C

where the word BOTH must be in operand A and operands B and C are block
labels of blocks to which the transaction can be transferred. Operand B is
optional.

The TRANSFER BOTH block works as follows: A transaction enters the
TRANSFER BOTH block, and the processor attempts to send the transaction
to the block whose label is indicated in operand B. If the transaction can enter
that block, the transaction proceeds there. If not, it attempts to enter the
block whose label is indicated in operand C. If it can, it does so. If it cannot
enter either block, it remains in the TRANSFER BOTH block until a new scan
of the CEC takes place.

If operand B is missing, each transaction entering the TRANSFER BOTH block
moves to the next sequential block if permitted or to the block indicated by
operand C. In fact, an example of the most common form of the TRANSFER
BOTH block is

0 D R A N S F E R B O T H , ,AWAY

where AWAY refers to a block that will always accept the transaction. Thus,
the processor “looks ahead” to the next sequential block and attempts to
move the transaction into it. If the transaction cannot enter, it is transferred
to the block labeled AWAY. The next example illustrates an application of the
TRANSFER BOTH block.

Example 7.1

People amve at a shop every 8 r 3.5 minutes. The shop has 5 servers who work
at the rate of 40 * 15 minutes. There is a single chair to wait in when all of the
servers are busy. If the shop is full, i.e., all 5 servers are busy and a person is
waiting in the chair, arriving customers leave and do not return. Simulate for
20 days operation (480 minutes per day) and determine how many customers
are turned away. Even though you do not know enough about GPSS/H to fol-
low all the lines of code, it will be instructive to run the program.

Solution

The program to solve Example 7.1 is as follows:

9 @SIMULATE
3 STORAGE 3S(WAITAREA),l/S(WORKER),S
v’ &GENERATE 138,3.5
A D R A N S F E R D O T H , , A W A Y
5 W E R OWAITAREA
’i UENTER 3 O R K E R
3 @LEAVE QAITAREA

68 The GPSS/H Simulation language

0
0
0
OAWAY
0
0
0
0

W V A N C E 040,15
D E A V E I]WORKER
DERMINATE
DERMINATE
BENERATE 09600
DERMINATE 01
OSTART 11
W D

To run for 2 seats for waiting customers, you change the line of code

0 USTORAGE OS(WAITAREA),l/S(WORKER),S

to

0 USTORAGE OS(WAITAREA),2/S(WORKER),5

EXERCISES, CHAPTER 7

Note: Exercises 6-15 are modifications from Gordon (1975).

1. An art museum has 2 galleries: A and B. Every 45 f 20 seconds, people
arrive, and 40% of them plan to visit only gallery A and then leave. The
rest go to gallery B first. It takes 220 f 80 seconds to visit gallery A and
300 * 60 seconds to visit gallery B. Of the people who visit gallery B, 35%
leave but the rest go on to gallery A. (Strangely enough, no one ever goes
to gallery A first and then to gallery B). Simulate for 4 hours.

2. Change exercise 1 to simulate for 200 people who visit gallery B and then
leave the museum without visiting gallery A.

3. People come to a moving sidewalk (a fancy, segmented metal conveyor
belt) at an airport. They amve every 35 ?15 seconds, and 30% choose to
walk alongside it. Of the people who use the moving sidewalk, 25% walk
or run on it, and they traverse it in 40 k 12 seconds. The moving sidewalk
transfers people who do not walk or run in exactly 55 seconds. Those
who walk alongside of it take 60 f 32 seconds to cover the distance. Sim-
ulate for 1 hour.

walk. How long does it take to transfer them?

Cars enter at A every 10 f 3.2 seconds. They take 20 f 8 seconds to travel
to B. At B, 30% go straight, and the rest travel to C. I t takes 15 * 6 seconds
to travel to C from B. At C, 26% go straight, and the rest turn to D. It takes
14 * 3.1 seconds to travel from C to D. At D, 31% turn to E (where you
live), and the rest go straight. It takes 12 f 3 seconds for cars to travel
from D to E. You are going to protest that too many cars go by your house
in an 8-hour period. Determine the number of cars passing your house in
8 hours. (Note: ignore the fact that traffic patterns vary during the day.)

4. Change exercise 3 to simulate for 100 people who use the moving side-

5. Figure 7.1 gives a diagram of traffic flow. All streets are one-way traffic.

The TRANSPER Block 69

A B

I C D

(here is where you live)

FIGURE 7.1 Sketch of traffic flow.

6. People amve at a newsstand every 10 f 5 seconds. Most people buy only
1 paper, but 20% buy 2 papers. It takes 5 f 3 seconds to buy 1 paper and
7 f 3 seconds to buy 2 papers. Simulate the sale of 100 papers, stxting
from the time the newsstand opens. How long does it take the dealer to
sell 100 papers?

7. In exercise 6, suppose that every morning the newsstand always has 2
people waiting to purchase a newspaper. Add the code to include this
fact. How does your answer change?

8. A series of moving stairways (escalators) carry customers in an upward
direction between 4 floors of a department store. People arrive at the foot
of the stairs, on the first floor, at the rate of 1 customer every second.
Some people walk on the stairs. As a result, the time to transfer between
any two floors is 20 f 10 seconds. The destinations of the customers are
as follows: second floor, 50%; third floor, 25%; and fourth floor, 25%.
Simulate the amval of 100 people on the top floor, starting from the time
the store opens.

9. As a group, 20 people take a test that requires 5 f 2 minutes. Their chance
of success is such that 20% pass on each attempt. Those that fail wait 10
minutes before taking the test again (it still takes them 5 * 2 minutes
when they retake the test). They keep trying until they finally pass. How
long does it take for everyone to pass?

10. Cars bring spectators to a sports event at the rate of 1 car every 20 2 10
seconds. The percentages of cars with a given number of passengers are
as follows: 1 passenger, 10%; 2 passengers, 30%; 3 passengers, 45%; and
4 passengers, 15%. Find how long it takes for 1,000 people to amve.

ii. People arrive at a cafeteria at the rate of one person every 15 * 5 seconds.
There are two counters, A and B, and people want items from them in the
following proportions: only counter A, 30%; both counters, 60%; and
only counter B, 10%. Simulate the arrival at the cafeteria of 100 people.

1.2. The delivery of some product is being limited by the availability of suitable
reusable containers. A new container is made every 20 k 5 minutes. The
containers are filled and dispatched as soon as they are ready. Delivery

70 The GPSS/H Simulation Language

takes 40 5 10 minutes. About 1 in every 50 containers is damaged beyond
repair during delivery. The rest are returned, taking 40 f 10 minutes, and
immediately are reused for another delivery. Beginning from t = 0, find
how many containers will be in the process of delivery after 8 hours.

w. A subway station has two entrances. Passengers arrive at entrance 1 at
the rate of 1 person every 10 * 5 seconds, and they move along a comdor
that takes 15 f 5 seconds to walk. At entrance 2, passengers amve at the
rate of 1 passenger every 5 f 2 seconds, and they walk along a corridor
that takes 20 f 8 seconds. The two streams of passengers merge to pass
along a third comdor for 5 f 3 seconds. At the end of that corridor, 60%
of the passengers turn for the northbound platform, and the rest turn for
the southbound platform. Simulate the arrival of the first 100 passengers
on the southbound platform, starting with an empty system. How long
does it take for 100 passengers to gather for the first southbound train of
the day?

14. Parts that are manufactured at the rate of 1 part every 50 f 10 seconds go
through an inspection that takes 30 f 10 seconds. The inspection passes
85% of the parts. Of the remainder, 5% are scrapped, and the rest are
sent for reworking. Reworking takes 100 f 30 seconds, after which the
parts are again sent for inspection with the same probability of rejection.
Simulate the acceptance of 100 parts. How many parts have been
reworked by that time?

1.5. The following program contains some GPSS/H lines of code that will be
covered in later chapters-specifically, the two lines with the comments.
What the program does is to generate 1000 transactions and transfer
them to one of ten TERMINATE blocks (labeled by number in the output)
at random.
0 US IMULATE
0 @M.JI,T 2 1 2 3 4 5 B a n d o m number seed
0 GENERATE 7, , , 1 0 0 0
3 BRANSFER O,FRN1*10+3 sandom transfer
3 BERMINATE 01
.i D E W I N A T E 71
9 BERMINATE 01

0 Cfl'ERMINATE gl
3 BERMINATE a1
0 BERMINATE 01
0 BERMINATE c]1
0 BERMINATE 01
0 BERMINATE 31
0 0STU.T fll000

\ DERMINATE 71

c CEND

The TR~WSFER Block 71

A portion of the output obtained by running the program is listed next.
Note the block numbers from 1 to 12 that were automatically applied by
the processor.

RELATIVE CLOCK: 0. ABSOLUTE CLOCK: 0.
BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL,
1 1 0 0 0 11 105
2 1 0 0 0 12 95
3 110
4 1 0 1
5 1 1 4
6 1 0 4
7 84
8 93
9 98
1 0 96

The expected number of times each of the TERMINATE blocks was
entered by a transaction is 100. The actual number of entrances in each
TERMINATE block varied from 84 to 110 times. The maximum deviation
from the expected value was 16 for the TERMINATE block that was
entered only 84 times. The line of code

is used to position the random-number generator. Rerun the program
with a different random-number seed by changing the value of the oper-
and of the RMULT statement to some other number. Then, rerun the pro-
gram for 10,000 transactions and see how close the actual number of
entries to each TERMINATE block is to the expected number of entries.

3 [IIRMULT 012345

SOLUTIONS, CHAPTER 7

1. The program to do the simulation is:
SIMULATE
GENERATE 45,20 PEOPLE ARRIVE
TRANSFER . 4 0, , ROOMA 40% TO ROOMA
ADVANCE 300,60 SPEND TIME IN ROOM B
TRANSFER .35, ,LEAVE 35% THEN LEAVE

ROOMA ADVANCE 2 2 0 , 4 0 SPEND TIME IN ROOM A
LEAVE TERMINATE LEAVE THE GALLERY

GENERATE 3600*4 SIMULATE FOR 4 HOURS
TERMINATE 1 ALL DONE
START 1 START
END

2. Change the block
LEAVE TEFNINATE

to
LEAVE TERMINATE 1

Delete the blocks
GENERATE 3600*4
TERMINATE 1

The START block is now
START 200

LEAVE THE GALLERY

LEAVE THE GALLERY

SIIKJLATE FOR 4 HOURS
ALL DONE

72 The GPSS/H Simulation language

3. The program to do the simulation is:
SIMULATE
GENERATE
TRANSFER
TRANSFER
ADVANCE
TRANSFER

FASTON ADVANCE
DONE TERMINATE
ALONG AD7ANCE

TERMINATE
GENERATE
TERMINATE
START
END

4. Change the block
DONE TERMINATE

to
DONE TERMINATE

35,15
.3, , ALONG
.2 5, , FASTON
55
, DONE
40,12

60,32

3600
1
1

1

PEOPLE ARRIVE
30% GO ALONG SIDE
25% WILL WALK/RUN
SIDEWALK MOVES
ALL DONE FOR SOME
WALK/RUN ON SIDEWALK
END OF SIDEWALK
WALK/RUN ALONG SIDE
END OF SIDEWALK
SIMULATE FOR AN HOUR
TIMER TRANSACTION LEAVES
START PROGRAM

END OF SIDEWALK

END OF SIDEWALK

Remove the two timer transaction blocks and change the START 1 block
to:
START 100.

5. The program to do the simulation is:
SIMULATE
GENERATE 1 0 , 3 . 2 CARS ENTER AT A
ADVANCE 20,8 TRAVEL TO B
TRANSFER .3, ,om 70% TURN TO C
ADVANCE 15,6 TRAVEL TO C
TRANSFER .26, , O U T 74% TURN TO D
ADVANCE 14,3.1 TRAVEL TO D
TRANSFER .69, ,OUT 31% TURN TO E
ADVANCE 12,3 TRAVEL TO E
TERMINATE CAR LEAVES

OUT TERMINATE CAR LEAVES
GENERATE 3600*8 TIMER TRANSACTION
TERMINATE 1 END OF SIMULATION
START 1 BEGIN SIMULATION
END

6. The program to do the simulation is:
SIMULATE
GENERATE 1 0 , 5 CUSTOMERS ARRIVE
TRANSFER .2, , DOWN 20% WANT TWO PAPERS
ADVANCE 5,3 REST BUY ONE PAPER
TERMINATE 1 PEOPLE LEAVE NEWSSTAND

DOWN ADVANCE 7,3 BUY TWO PAPERS
TERMINATE 2 PEOPLE BUY TWO PAPERS
START 100 RUN FOR 100 PAPERS
END

The time to run the above was 832.3134 time units.

The TRANSFER Block 73

7. The program to do the simulation is:
SIMLnATE
GENERATE
TRANSFER
GENERATE

NEXT TRANSFER
ADVANCE
TERMINATE

DOWN TERMINATE
START
END

I , , 2
, NEXT
10,5
.2, , DOWN
5,3
1
L

100

CUSTOMERS WAITING
SHOP OPENS - BUY PAPERS
CUSTOMERS ARRIVE
20% WANT TWO PAPERS
REST BUY ONE PAPER
PEOPLE LEAVE NEWSSTAND
PEOPLE BUY TWO PAPERS
RUN FOR 100 PAPERS

Now the time to sell 100 papers is reduced to 814.1544 seconds.
8. The program to do the simulation is:

SIMULATE
GENERATE 1
TRANSFER .5,,THIRD 50% GO TO SECOND FLOOR
ADVANCE 20,lO WALK FROM FIRST TO SECOND FLOOR
TERMINATE ARRIVE SECOND FLOOR

THIRD TRANSFER .5,,FOURTH 25% WANT TO GO TO THIRD FLC’R
ADVANCE 20,lO WALK FROM FIRST TO SECOND FLOOR
ADVANCE 20,lO WALK FROM SECOND TO THIRD FLOOR
TEPXINATE ARRIVE THIRD FLOOR

FOURTH ADVANCE 2 0 , l O WALK FROM FIRST TO SECOND FLOOR
ADVANCE 20.10 WALK FROM SECOND TO THIRD FLOOR
ADVANCE 20,lO WALK FROM THIRD TO FOURTH FLOOR
TERMINATE 1 ARRIVE FOURTH FLOOR
START 100
END

Note that the above problem assumes that people who go to the second
floor go only there and the same for floors three and four. The solution
gives: 506 people entered the stairs; 257 went to the second floor; 137 to
the third and 112 to the fourth. The program did not end until 100 people
arrived at the fourth floor.

9. The program to do the simulation is:
SIMULATE
GENEFSTE , , ,20 PEOPLE TO TAKE TEST

BACK ADVANCE 5,2 TAKE TEST
TRANSFER .2,,WNE 20% PASS
ADVANCE 10 WAIT 10 MINUTES
TRANSFER ,BACK TAKE TEST AGAIN

START 20
END

DONE TERMINATE 1 LEAVE SYSTEM

The time for the people to pass the test was 280.6469. This is quite large.
The number of people taking the test, including repeats was 115. Do you
think that the time of 280.6469 means much? Interestingly enough, most
people would not be able to guess the “solution” to this problem. The
answer depends on doing the problem many times and forming confi-
dence limits. Actually, it would be very easy to run it many times using DO
loops which are a part of GPSS/H. These are covered in a later chapter.

74 The GPSS/H Simulation Language

10. The program to do the simulation is:
SIMULATE
GENERATE 20,lO CARS ARRIVE
TRANSFER .9O,,NEXTl 10% HAVE ONE PERSON
TERMINATE 1 ONE PERSON GETS OUT

NEXT1 TRANSFER .666,,NEXT2 30% HAVE TWO PEOPLE
.
* NOTICE THAT THE PERCENTAGE USED ABOVE IS 6 6 . 6 % . THIS
+ IS BECAUSE AFTER 10% OF THE CARS DROP OFF THEIR ONE
* PASSENGER, THE REMAINING NUMBERS THAT HAVE TWO PEOPLE

WOULD BE 30190 ANE 60/90 WITH MORE (3 OR 4)
.

TERMINATE 2 TWO PEOPLE ARRIVE
NEXT2 TRANSFER .25,,NEXT3 45% HAVE FOUR PEOPLE

TERMINATE 3 THREE PEOPLE ARRIVE

START 1000
END

NEXT3 TERMINATE 4 FOUR PEOPLE ARRIVE

The time for the simulation to run was 7439.7176 time units. 380 cars
came; 35 had 1 person; 119 had 2; 175 had 3, and 51 had 4.

u The program to do the simulation is:
SIMULATE
GENERATE 15,5 PEOPLE ARRIVE AT COUNTER
TRANSFER .3,,AONLY 30% WANT A ONLY
TRANSFER .857,,AANDB 60% WANT A & B
TERMINATE 1 AANDB

AANDB TERMINATE 1 B ONLY
AONLY TERMINATE 1 A ONLY

START 100
END

The simulation ran for 1484.4985 time units. The number of customers
who went to A only was 27; B only 13, and A and B was 60.

12. The program to do the simulation is:
SIMULATE
GENERATE 20,5 NEW CONTAINERS ARRIVE

BACK ADVANCE 40,lO MAKE DELIVERIES
TRANSFER .02,,DAMAGE 1 OF 50 DAMAGED
ADVANCE 40,lO RETURN FOR RE-USE
TRANSFER ,BACK READY FOR ANOTHER DELIVERY

DENAGE TERMINATE DAMAGED CONTAINER
GENERATE 480 SIMULATE FOR 480 TIME UNITS
TERMINATE 1
START 1
END

After 480 minutes, there were 24 containers that had been made. At an
average of 3 per hour, this is the expected number. Two of these were
damaged and discarded. Thus, there are 22 in the system.

The TRANSFER Block 75

13. The program to do the simulation is:
SIMULATE
GENERATE 1 0 , 5 ARRIVE AT ENTRANCE 1
ADVANCE 15,5 MOVE ALONG CORRIDOR
TRANSFER ,DOWN MERGE WITH OTHER PEOPLE
GENERATE 5 ,2 ARRIVE AT ENTRANCE 2
ADVANCE 20,8 MOVE ALONG CORRIDOR

DOWN ADVANCE 5,3 MOVE ALONG THIRD CORRIDOR
TRANSFER .60,,NORTH 60% GO TO NORTH PLATFORM
TERMINATE 1 REST GO TO SOUTH PLATFORM

START 100
END

NORTH TERMINATE

At the end of the simulation, 81 people had arrived from entrance 1 and
160 from entrance 2. The simulation ran for 821.4095 time units.

14. The program to do the simulation is:
SIMULATE
GENERATE 50,lO MANUFACTURE A PART

UPTOP ADVANCE 30,lO INSPECT A PART
TWSFER .85,,PASS 85% PASS INSPECTION
TRANSFER .05,,SCRAP 5% OF THE REST ARE SCRAP
ADVANCE 100,30 REWORK PARTS
TRANSFER ,UPTOP BACK FOR RE-INSPECTION

PASS TERMINATE 1 GOOD PART LEAVES
SCRAP TERMINATE SCRAP PILE

START 100

The simulation ran for 5091 time units. 13 parts needed rework and 0
were scrapped.

REFERENCE

Gordon, G. 1975. The Application of GPSS V to Discrete System Simulation.
Englewood Cliffs, New Jersey: Prentice-Hall.

The PUTSTRING and
PUTPIC Statements and

.
CHAPTER 8

Writing to Files

THE PUTSTRING S T A T E M E N T

The PUTSTRING statement is used to create text either on the screen or in a
file. The value of this statement is that it simplifies the running of programs in
an interactive mode. The general form of the PUTSTRING statement is

/LABEL @PUTSTRING [33, B

The label is optional. The B operand gives the text to be printed either to a file
or to the screen. If the programmer desires the output of the PUTSTRING
statement to be directed to a file (discussed later in this chapter), operandA is
an assignment statement such as FILE=FILELBL, where FILELBL is the label of
the block that defines the file to which the output is to be directed. However,
often the programmer desires the output to be sent only to the screen. In this
case, the A operand and its following comma are omitted. Some examples of
this latter approach follow:

, (a) CPUTSTRING r (' HELLO THERE)

',(b) 'PUTSTRING (' THIS IS A GPSS/H PROGRAM')
(,(C) LPUTSTRING I,(' SIMULATION IN PROGPESS . . . ')
5 (d) ';PUTSTRING ? (' n o t i c e t h a t small letters a r e a l lowed ')
/,(el JPUTSTRING A f B')
' j (f) rPUTSTRING r ('g')

In (a), the message HELLO THERE is printed on the screen. In (b), the mes-
sage THIS IS A GPSS/H PROGRAM is printed on the screen. In (c), the mes-
sage SIMULATION IN PROGRESS ... is printed on the screen. In (d), the
message notice that small letters are allowed is printed on the screen. In (el
the message A k B is printed on the screen. In (0, a blank line is printed on the
screen. At least two spaces must be present in the PUTSTRING in order for the
blank line to be printed.

It is clear that standard alphanumeric characters are easily output by using
the PUTSTRING statement. Originally, the ASCII character set consisted of
only 128 characters (letters, numbers, and punctuation). With the advent of

77

78 The GPSS/H Slmulation Language

PCs, IBM decided to add 128 characters so that the full 256 character set
(which includes certain mathematics symbols such as +) would be available.
These 256 characters are correctly called the extended ASCZZ character set.
However, the common terminology now is to call the whole character set sim-
ply the ASCII character set.

Sometimes, such as in statement (e), it is useful also to include symbols such
as the 9' sign in GPSS/H output. Though these symbols do not appear on a PC
keyboard, they can be achieved by holding the <ah> key down on the key-
board and inputting the numerical specification for the symbol by using the
numbers on the numerical keypad-not the ones on the top of the keyboard. It
is possible to use any of the 256 ASCII characters in a PUTSTRING statement.
For the extended symbols, such as +, simply type the <alt> key plus the
desired character's 3-digit number (these numbers are listed in standard pro-
gramming texts).

0 OPUTSTRING g (' This is the sign.')

Type <alt>241 to achieve the plus or minus sign. The output of the PUT-
STRING is

This is the i sign.

However, to use a symbol in a PUTPIC statement, which is covered next, the
following, more extensive code procedure is required. Be sure to type
cab241 in the LET statement:

0 wHAR*1 o&J

0 flPUTPIC D&J
0 B E T O&J='?'

The plus or minus sign is ** .

The output of the PUTPIC is

The plus or minus sign is f.

Other symbols can be used to make PUTSTRING output more readable. For
example, the code for the I is 219 and form is 220. The statement

3

would result in the text

@PUTSTRING O(I I I I IMPORT^ INFORMATION FOLLOWS I I I*)

I I fl IMPORTANT INFORMATION FOLLOWS I I I

By using the ASCII code for the I together with the I, it is possible to place the
tide to a program in a box. For example, you might have something like the
following:

G UPUTSTRING a ('
0 CPUTSTRING O(I m I ')
3 CPUTSTRING O(I I SIMULATION OF I 1)

9 CPUTSTRING r;c I I A SHOP SYSTEM I 8)

3 CPUTSTRING C(I I)

The PUTSTRIW and PUTPIC Statements and Wrftlng to flles 79

THE PUTPIC STATEMENT

Up to this point, all of the output of the example programs that we’ve run has
been produced by the GPSS/H processor and placed by the processor in the
.LIS file. Most of the output has been disregarded, as only a limited portion is
needed. This is usually the case, as only a few of the values found in this file
are ever used. It is possible (and desirable) to have the needed results printed
out either to the screen or to a separate file. This procedure is done via the
PUTPIC statement. One form of it is

3 EPUTPIC S , B , C , 3 , E , . . .

where operand A indicates the number of lines to be output, operand B indi-
cates which file is to receive the output (if any; this option is discussed in the
next section, Writing to a File), and all the remaining operands indicate
which values are to be output. Operands A and B (if present) are assignment
statements. For example,

/- flPUTPIC mINES=3,FILE=RESULTS, C , D , E , . . .

In this example, GPSS/H will output 3 lines. If only 1 line is to be outpiit, the
LINES=l assignment statement (i.e., theA operand) can be omitted. LINE=l
(singular LINE) cannot be used even though it is grammatically correct; it will
result in an error. The assignment statement FILE=RESULTS is in the B oper-
and. If such an assignment statement is omitted, the output is written to the
screen instead of to a file. The term “PUTPIC” is derived from “put a picture
on the screen.”

Some Common Standard Numerical Attributes (SNAs)

A standard numerical attribute (SNA) is any numerical property of a block or
attribute of a simulation such as the simulation clock; the block counts; the
random numbers; etc. Nearly all of the values listed in the .LIS file are SNAs.
As each block is introduced in later chapters, the SNAs associated with it are
also given. Other SNAs are also discussed. The SNAs associated with the vari-
ous blocks are always printed out in the .LIS file, and selected ones can be
printed out with the PUTPIC statement. Some SNAs already encountered are

AC 1
N(LABEL)

the absolute clock value
how many times that the block
labeled (LABEL) has been referenced
the current transaction count for the block
labeled (LABEL)

The argument of an SNA is placed in parentheses or preceded by a single dol-
lar sign ($). Thus, one could write Q$FIRST, which is the same as Q(F1RST).
But the dollar sign approach will not work when the entity forming the argu-
ment of the SNA is given a number and not a name. For example, if the queue
block is QUEUE 5, then reference to the queue length is given by either Q(S)
or Q, but not Q$5. This is an old method of referencing in GPSS/H and will
not be used in this book.

80 The GPSS/H Slmulatlon Language

Using SNAs In P U T P I C Statements

In the lines of output for PUTPIC, groups of asterisks are used to specify the
field and its format. These groups of asterisks may contain decimals. The
SNAs are printed out in the asterisk fields in the order in which they appear in
the PUTPIC statement, i.e., the first SNA is placed in the first asterisk field, the
second in the next asterisk field, etc.

LINES=n in operand A is used to control the arrangement of the output at the
discretion of the programmer. The following are three examples of input and
output (note that for convenience where length may be a problem, ROOMl is
shortened to RMl and ROOM2 is shortened to RM2 in the text of the output):

Optlon 1
3 UPUTPIC ~INES=1,ACl,N(ROOMl),N(ROOM2)
CLOCK * * * . * * TIMES BLOCK RM1 ENTERED * * * TIMES BLOCK RM2 ENTERED * * *

Note that even though there will only be one line of output, you must specify
that fact by using LINES=l, not LINE=l , or omit the LINES operand. This
example might result in output as follows:

CLOCK 1 2 3 . 4 4 TIMES BLOCK RMl ENTERED 56 TIMES BLOCK RM2 ENTERED 126

Optlon 2

0 CPUTPIC @INES=2,ACl,N(ROOM1),N(ROOM2)
CLOCK = *** .**
TIMES BLOCKS ENTERED: RM1 = * * * RM2 = * * *

This example might result in output as follows:

CLOCK = i 2 3 . 4 4
TIMES BLOCKS ENTERED: RM1 = 56 RM2 = 126

Option 3

0 ;PUTPIC ~INES=3,AC1,N(ROOM1),N(ROOM2)
CLOCK = *** . **
TIMES BLOCK ROOMl ENTERED * * *
TIMES BLOCK ROOM2 ENTERED * * *

This example might result in output as follows:

CLOCK = 123.44
TIMES BLOCK ROOM1 ENTERED 56
TIMES BLOCK ROOM2 ENTERED 126

If the field as specified by the asterisks is not large enough for the value of the
SNA, the SNA is still printed out. For example, if one used the vertical-line key
to mark the ends of the output,

5 UPUTPIC @(THIRD)
ITHE TIMES BLOCK THIRD ENTERED WAS * * I

and the value of N(TH1RD) was 1234, this number would be printed starting
where the 2 asterisks were and the I would be moved right 2 spaces.

The PUTSTRING and PUTPIC Statements and Writing to flles 81

One can add blank lines to the output by placing a 0 (zero) in position 1 of an
output line. The 0 is not printed. For example, the PUTPIC code

0 UPUTPIC mINES=3 ,ACl,W(BLOCKA) ,N(BLOCKB)
0 RESULTS OF SIMULATION; CLOCK AT **** . **
0 CURRENT COUNT FOR BLOCK A * * *
0 FINAL COUNT FOR BLOCK B * * *

might result in output as follows:

RESULTS OF SIHULATION; CLOCK AT 3 4 5 6 . 4 4

CURRENT COUNT FOR BLOCK A 6

FINAL COUNT FOR BLOCK B 1 4 3

Most of the time, however, it is sufficient simply to leave a blank line in the
PUTPIC statement to achieve the double-spaced effect.

Note that it is not possible to include any symbol from the extended ASCII
character set in the PUTPIC statement unless one uses it as a character. The
code to define a symbol as a character was given in the first section of this
chapter and will be covered further in Chapter 23.

Example 8.1

Cars arrive at a junction every 10 k 6 minutes; 25% leave the system along
road A, and the rest travel along road B to another junction, which takes 20 f
8 minutes. Here, 30% of the cars that traveled from A to B leave the system
along road C, and the rest take 10 * 4 minutes to travel to D where they leave
the system. Simulate for 100 hours. Have the output show how many cars
entered the system, how many of these left the system along each road, and
how many remained in the system when the simulation was over.

Solution

The program to simulate this system is as follows:

0 ESIMULATE
()CARSIN BENERATE c10,6
0 rJl’TRANSFER @.25,,AWAYA
OROADB @ADVANCE 020,8
cj I W S F E R 0.4,,AWAYB
cJROADC [?ADVANCE n10,4
OROADD D E W I N A T E
OAWAYA DERMINATE
OAWAYB DERMINATE
0 SENERATE 960*100
9 D E W I N A T E c]1
0 GSTART c1
’1 [?PUTPIC ~INES=6,N(CARSIN),NIROADD),-

N(AWAYA),N(AWAYB),W(ROADB),W(ROADC)
* * * * NUMBER OF CARS ENTERING

NUMBER REMAINING AT END * * * *

82 The GPSS/H Simulation Language

NUMBER TO LEAVE AT A * * * *
NUMBER TO LEAVE AT B * * * *
NUMBER ON ROAD B AT END
NUMBER ON ROAD C AT END * * * *

* * * *

0 rn
The output is as follows:

NUMBER OF CARS ENTERING 595
W E R REMAINING AT END 265
NUMBER TO LEAVE AT A 153
NUMBER TO LEAVE AT B 174
NUMBER ON ROAD B AT END 2
NUMBER ON ROAD C AT END 1

The number of cars to enter the system was 595; the expected number is 599.
(The program went for 6,000 time units, and a car came in on the average of
every 10 time units. Six thousand divided by 10 is 600, but the time t = 6,000
was used to stop the program. The cars actually came into the system for
5,990 time units; 5,990 divided by 10 is 599. Because of the random numbers
used, the program came up with 595.) The number remaining at the end was
265; those that left the system along road A totaled 153, and those that left
the system along road B totaled 174. There were 3 cars still in the system at
the end of the simulation. Notice that 265 + 153 + 174 + 2 + 1 = 595.

WRIT ING TO A FILE

Output commonly is sent to a file when the amount of output is large or when
one wants to use the GPSS/H program to create a file to be used in an anima-
tion. In order to write to a file, the fde has to be defined with the FILEDEF
statement. The form of this is

Of i l e lb l DILEDEF 0'FILENAME.EXT'

Some examples of this statement follow:

ONYOUT DILEDEF O'RESULT.OUT'
OATFIL OFILEDEF u'TEST.OUT'
OAAAA DILEDEF ij'result.xyz'
OBBBB DILEDEF E'OUT123'

Notice that, whereas the label must be in capital letters (as usual) and must
not have an extension, the filename need not be in capital letters and may
have any valid extension desired or none at all.

In the PUTPIC, one might have

0 UPUTPIC DILE=MYOUT,LINES=2,ACl,N(BLOCKA)
THE CLOCK IS AT * * * * . * *
BLOCK A COUNT ****

The file named RESULT.0UT will have two lines in it. Notice that it makes no
difference if FILE=MYOUT comes before LINES=2 or vice versa.

The PUTSTRIW and PUTPIC Statements and Wrltlng to Files 83

THE BPUTPIC BLOCK

It is possible to create continuous output during the running of a GPSS/H pro-
gram by means of the BPUTPIC block. Every time a transaction passes
through this block, output is created, so one must be careful when using
BPUTPIC. It can be extremely useful in debugging a program. It operates in
exactly the same way as the PUTPIC statement. If one wanted output every
100 time units in a program, one could include the segment

0 GENERATE uloo
0 @PUTPIC @ILE=AAAA,LINES=2,ACl,N(BLG€KA),N(BLOCKB)

TIME IS ****.** BLOCK A COUNT **
BLOCK B COUNT **
0 DEWINATE

Every 100 time units, the output at that point in the simulation would be
placed in the file specified by the label AAAA. One needs to be careful in using
this block, since every time a transaction passes through it, it is executed. File
AAAA could become monstrously large.

Example 8.2

The following example may seem trivial, but the principle involved is useful
when one is making files for animations. Write a program that creates a file
that has the line TIME n where n goes from 0.00 to 10.00, to 20.00, etc., up to
100.00.

Solution

OMYOUT @ILEDEF 0'~yowr.o~~~
0 EENERATE 010, , o
0 @PUTPIC C!FILE=MYOUT,AC~

0 OSIMULATE

TIME **.**
0 DEWINATE
0 EENERATE 0101
0 DERMINATE 01
0 USTART 01
0 m
Notice that the timer transaction enters the system at time unit t = 101. This is
because, if it were to enter at t = 100, the last BPUTPIC would not be exe-
cuted. Alternatively, the transactions that enter the system from the first GEN-
ERATE block could have been given a high priority.

Finally, another very useful feature is that it is all right to have arithmetic in a
PUTPIC statement or BPUTPIC block. Thus, it is permissible to have
N(FIRST)+N(SECOND). In the following exercises, this feature will be
applied to problem 3.

84 The GPSS/H Shulatkn Language

EXERCISES, CHAPTER 8

I. Customers arrive at a newsstand every 8 f 4 seconds. 70% of the custom-
ers purchase 1 paper, which takes 5 * 3 seconds. The rest purchase 2
papers, which takes 7 * 3.5 seconds. Write the GPSS/H program to deter-
mine how long it takes in seconds to sell 1,000 papers. The output should
show the time required and the number of people who purchased either 1
or 2 papers.

2. Self-loading vehicles arrive at a quarry. There is plenty of room to load
each one so there is never any waiting. Loading each vehicle takes 10 f 4
minutes. Each vehicles then takes 12 * 3 minutes to haul, dump, and
return. There are 4 self-loading vehicles working. Determine the number
of loads dumped in a shift that consists of 360 minutes of actual work

3. Modify the program in exercise 1 so that the screen will show the number
of papers sold after each 10 minutes (600 seconds).

SOLUTIONS, CHAPTER 8

I. The program to do the simulation is:
SIMUUTE
GENERATE 8 , 4
TRANSFER. 3 , , AWAY
ADVANCE 5,3

ONEP TERMINATE 1
AWAY ADVANCE 1,3.5
TWOP TERMINATE 2

START 1000
PUTSTRING (' ' 1
PUTSTRING (' ')
PUTSTRING (' OUTPUT FOLLOWS. . . . ')
PUTSTRING (' ')
PUTPIC LINES=3,ACl,N(ONEP),N(TWOP)

THE TIME TO SELL 1000 PAPERS WAS ****.** SECONDS
NUMBER OF PEOPLE WHO PURCHASED ONE PAPER ****
NUMBER OF PEOPLE WHO PURCHASED TWO PAPERS ****

END

Notice the use of the PUTSTRING'S to add blank lines for more readable
output.

2. The program to do the simulation is:
SIMULATE
GENERATE ,,,4 PROVIDE 4 VEHICLES

BACK ADVANCE 10,4 LOAD A VEHICLE
ADVANCE 1 2 , 3 HAUL, DUMP AND RETURN

DUMPED ADVANCE 0 DUMMY TRANSACTION
TRANSFER ,BACK
GENERATE 360
TERMINATE 1
START 1
PUTSTRING (' ')
PUTSTRING (' ' 1

The PUTSTRIIUG and PUTPIC Statements and Wrltlng to Flles 85

PUTPIC LINES=2,ACl,N(DUMPED)
SIMULATION FOR *** . ** MINUTES
LOADS DUMPED ****
END

It was not necessary to have the ADVANCE 0 block. However, when a
truck is done hauling and is ready to return, it enters this block. If this
block was not here, the count of the loads actually dumped would be
harder to determine.

3. The modifications to the program are:
SIMULATE
GENERATE 8 , 4
TRANSFER .3, , AWAY
ADVANCE 5,3

ONEP TERMINATE 1
AWAY ADVANCE I , 3.5
TWOP TERMINATE 2

GENERATE 600
BPUTPIC ACl,N(ONEP) tN(TW0P)

TIME IS * * * * . * * NUMBER OF PEOPLE TO BUY PAPERS * * * *
TERMINATE
START 1000
PUTSTRING (I ')

PUTSTRING (' ')

PUTSTRING (' OUTPUT FOLLOWS....')
PUTSTRING (' ')
PUTPIC LINES=3, AC1, N(0NEP) ,N(TWOP)

THE TIME TO SELL 1000 PAPERS WAS * * * * . * * SECONDS
NUMBER OF PEOPLE WHO PURCHASED ONE PAPER * * * *
NUMBER OF PEOPLE WHO PURCHASED TWO PAPERS * * * *

END

The modifications consisted of adding a dummy transaction that arrived
every 600 time units. This transaction caused the BPUTPIC to add a line
of output to the screen.

The ADVANCE Block
CHAPTER 9

THE ADVANCE BLOCK

The ADVANCE block is used to “hold up” a transaction while service is being
performed. There are two forms of it:

G(a) @ADVANCE @A
G (b) @ADVANCE @A,B

where A and B can be positive numbers (not necessarily integers) or variables.
A represents the number of time units during which time advances while the
transaction is held up. B represents the random variability of the holding
time. In (a), the transaction will be held up for a time equal to operand A. So,

0 @ADVANCE 05

will hold up the transaction until 5 time units have passed. In (b), the transac-
tion will be delayed by a time value between the interval (A - B) and (A + B) .
The endpoints are not included The time returned by GPSS/H when it pro-
cesses this block has 4 decimal places, and each possible time unit has an
equal probability of being returned. Thus,

c W V A N C E a 1 2 , 3

will hold a transaction until a time between the interval 9.0001 and 14.9999
time units has elapsed. Each of the possible times will be returned by the
GPSS/H processor with equal probability. Chapter 17 shows how to use any
statistical distribution in the ADVANCE block.

When a transaction enters an ADVANCE block, it is taken off the current
events chain (CEC) and put on a chain known as thefuture events chain or
FEC. It will remain there until the time is reached that is given by the operand
in the ADVANCE block. It is then put back onto the current events chain for
further movement through the system.

ADVANCE blocks have been used in many of the previous examples. They are
one of the easiest GPSS/H blocks to understand and apply.

87

88 The GPSS/H Sknulatlon Language

Example 9.1

There are 15 people in the class learning GPSS/H. They all start writing a pro-
gram at the same time. It takes each person 12 * 3 minutes to write the pro-
gram. Only 25% of the programs run successfully the first time. When a
program has an error, 8 * 3.5 minutes are required to do the debugging. After
the first (and any subsequent) debugging, the revised programs run success-
fully 35% of the time. How long does it take for the whole class to finish writ-
ing their programs?

For the first time in this book, enough GPSS/H has been covered for the
reader to understand the complete program. The program listing is

0 ISIMULATE
3 E E N E m T E 0,,,15 115 PEOPLE WRITE PROGRAM
0 @lDVANCE 012,3 D I M E TO DO WRITING
0 W S F E R 0.25,,DONE 025% WORK FIRST TIME
OAGAIN D V A N C E u8,3.5 DEBUG PROGRAM

ODONE DERMINATE ?]1 @PERSON LEAVES ROOM
0 BTART 015

0 WHEN ALL 15 ARE FINISHED, THE TIME IS * * . * *

0 W S F E R 0.65,,AGAIN 035% WORK ON RE-DO

0 OPUTPIC D C l

0 OEND

The output from the program is as follows:

WEN ALL 15 ARE FINISHED, THE TIME I S 63.70

What happened is as follows. At time t = 0,15 student transactions were cre-
ated. Each, in turn, entered the ADVANCE block where each was assigned a
time to be on the future events chain. For example, suppose that the students
are referred to as S1, S2, ..., S15, and suppose that the following times are
those assigned by GPSS/H during the first pass of the simulation:

Student Time

sl*
s2
s3
s4
s5*
S6
57
S8*
s9
s10
s11*
s12*
S13
S14
S15

12.5667
13.4338
9.5581
9.0809
10.1210
12.7301
11.3542
9.3433
14.8162
14.1931
13.2222
9.4538
9.9444
12.1288
11.6687

The ADVANCE Block 89

The asterisks next to students S1, S5, S8, S11, and S12 refer to the fact that
each was successful in running the program the first time through. At time t =

9.5581, student S3 is taken off the future events chain and enters the TRANS-
FER .25,,DONE block. Notice that this block was entered 15 times (as deter-
mined by START1 and TERMINATE 15). Since students S l y S5, S8, S11, and
S12 were successful the first time, they were transferred to the DONE TERMI-
NATE 1 block. The rest went to the AGAIN ADVANCE 8,3.5 block where they
were again put on the future events chain. As each transaction came off that
chain, it entered the TRANSFER .65,,AGAIN block. If a student was successful
in running the program, that student's transaction was transferred to the
block DONE TERMINATE 1. Eventually, all 15 students were finished. The
time for all of the students to finish was found to be 63.70 time units.

The results from this example have to be treated with care. The simulation
was run only one time with a particular set of random numbers. What would
happen if different random numbers had been used? To answer this, the sim-
ulation was run 19 additional times, and 19 different sets of random numbers
were used. A summary of the results of all 20 simulations follows:

Simulation Number Time to Finish (minutes)

1 63.70
2 71.72
3 57.27
4 103.59
5 59.12
6 52.84
7 74.61
8 62.46
9 73.75
10 80.05
11 100.33
12 78.83
13 62.40
14 45.10
15 73.94
16 64.04
17 39.09
18 66.33
19 98.61
20 45.06

The times varied from a low of 39.09 to a high of 103.59. The average time
was 68.64.

90 The GPSS/H Simulation Language

A CAUTION I N W R I T I N G P R O G R A M S

There is a caution to keep in mind with this and other GPSS/H programs. In
this simulation, the transactions were all created at time t = 0. They all left at
time t = 0 and were put on the future events chain via the ADVANCE block.
The ADVANCE block always admits transactions. Suppose we had a different
problem and were going to generate transactions at various, sequential times
as given by

0 DGENERATE 012,3

Suppose the times for the first 4 of these transactions to enter the system are
11,23,35, and 44 time units. If the block after the GENERATE block will not
allow a transaction to enter it (some blocks will only allow 1 transaction at a
time to enter; others may not allow any transactions to enter, depending on a
particular condition), what happens is that the transaction remains in the
GENERATE block until the next block will allow it to enter. This delay may
seem to be all right, but, because the transaction cannot leave the GENERATE
block when it was originally scheduled to, the subsequent transactions also
are delayed from leaving. Suppose that the third transaction cannot enter the
next block but must remain in the GENERATE block for 5 time units. This con-
dition means that, even though the transaction was originally scheduled to
leave at t = 35, it cannot leave until t = 40. The effect of this delay on the
fourth (and subsequent transactions) is to shift them all 5 time uni,ts forward
(i.e., into the future) before they can leave. This programming approach is
normally incorrect. When a transaction is scheduled to leave the GENERATE
block, a block that will always accept the transaction should be provided by
the programmer. One way around this is the following strategy:

0 BENEFATE 012,3
0 [?ADVANCE UO

The ADVANCE block used here is a dummy block. It holds the transactions
from the GENERATE block for zero time units. The only effect is to allow
transactions to leave the GENERATE block at the times they were scheduled
to leave. This strategy should be kept in mind for future programs.

Example 9.2

People arrive at an art exhibit every 4 * 2 minutes. There are 3 rooms to view.
Everyone goes to the entrance where it takes 5 f 3 minutes to pick up a pro-
gram and pay an entry fee. On entering, 80% of the people go to room A, and
the rest to room B. Once a person misses a room, she or he does not go back to
view it. When people leave room A, 75% go to room B, and the rest go to
room C. Everyone who leaves room B will also go to room C. It takes 15 f 3
minutes to view room A, 22 f 6 minutes to view room By and 12 f 3 minutes
to view room C. When a person leaves room C, he or she leaves the exhibit.
Simulate for 100 people viewing the exhibit.

The A D V ~ C E Block 91

Solution

0 BENERATE 04,2
0 OSIMULATE

0 WVANCE 05,3
0 mRANSFER 0.2, , ROOMB
0 WVANCE 015,3
0 DRANSFER 0.25,,ROOMC
OROOMB WVANCE 022,6
OROOMC WVANCE 012,3
0 DERMINATE 01
0 OSTART 0100
0 OEND

E X E R C I S E S , CHAPTER 9

UPEOPLE ARRIVE AT THE EXHIBIT
nSPEND TIME IN THE ENTRANCE
080% TO ROOM A
WIEW ROOM A
075% TO ROOM B
WIEW ROOM B
WIEW ROOM C
DEAVE THE EXHIBIT

1. Consider Example 9.2 again. Add the code necessary to put the output on
the screen, including the time it took for the 100 people to view the
exhibit, the number of people who attended the exhibit (this value should
be slightly more than loo), the number who viewed room A, and the
number who viewed room B.

2. A mine has 6 self-loading trucks. Each loads in 10 f 4 minutes. There is
room for each to load so there is no waiting. Haulage takes 15 f 2 min-
utes, dumping 1 f 0.3 minutes, and the return nip takes 10 f 3 minutes.
Determine the production (i-e., the number of loads) for a shift of 320
minutes.

inspected, which takes 4 f 2 minutes. All trucks then are given minor ser-
vice, which takes 30 f 6 minutes. During this step, 20% are found to
require major service, which takes 120 f 40 minutes; the rest return to
work. Simulate for 100 shifts of 480 minutes each. How many trucks are
serviced during this time?

3. Trucks arrive at a repair shop every 25 f. 4 minutes. Each truck is

SOLUTIONS, CHAPTER 9

1. The modified program is as follows:
SIMULATE

COMEIN GENERATE 4,2 PEOPLE ARRIVE AT THE EXHIBIT
ADVANCE 5 , 3 SPEND TIME IN THE ENTRANCE
TRANSFER .2,,ROOMB 80% TO ROOM A

ROOMA ADVANCE 15,3 VIEW ROOM A
TRANSFER .25,,ROOMC 15% TO ROOM B

ROOMB ADVANCE 22,6 VIEW ROOM B
ADVANCE 12,3 VIEW ROOM C
TERMINATE 1
START 100
PUTSTRING (' ')

PUTSTRING (I ' 1
PUTPIC LINES=4,AC1,N(COMEIN),N(ROOMA),N(ROOMB)

THE TIME FOR 100 PEOPLE TO VIEW THE EXHIBIT WAS * * * * . * *
THE NUMBER WHO CAME IN WAS * * * * *
THE NUMBER WHO VIEWED ROOM A WAS * * * *
THE NUMBER WHO VIEWED ROOM B WAS * * * *
END

92 The GPSS/H Simulation Language

2. The program to do the simulation is:
SIMULATE
GENERATE , , , 6

BACK ADVANCE 10,4 LOAD
ADVANCE 15,2 HAUL
ADVANCE 1, .3 DUMP
ADVANCE 10,3 RETURN

UPTOP TRANSFER ,BACK
GENERATE 320
TERMINATE 1
START 1
PUTSTRING (' ' 1
PUTSTRING (' ')
PUTPIC N(UPT0P)

END
PRODUCTION IS *** LOADS

3. The program to do the simulation is:
SIMULATE
GENERATE 2 5 , 4
ADVANCE 4,2 INSPECTION
ADVANCE 30,6 MINOR SERVICE
TRANSFER .8, , BACK
ADVANCE 120,40 MAJOR SERVICE

BACK TERMINATE BACK TO WORK
GENERATE 100*480
TERMINATE 1
START 1
PUTSTRING (' ')

PUTSTRING (I ')
PUTPIC N (BACK)

END
TRUCKS SERVICED * * * *

QUEUE and DEPART Blocks
CHAPTER 10

THE QUEUE BLOCK

Since GPSS/H is used so often for simulation of systems in which queues are
formed at many places, it is natural to learn how the language handles
queues. A discussion of queues and the mathematical theory associated with
them can be found in any textbook on operations research. In fact, there are
complete books devoted to this important topic. One thing becomes quite
clear in the study of queueing theory: the number of queueing problems that
have exact mathematical solutions is surprisingly small. This statement is
especially true when dealing with a finite number of transactions, such as the
case of transactions cycling though a system.

There are many cases when a transaction will be denied access to a block dur-
ing a simulation. When a transaction is poised to use a facility that is already
in use, the transaction is denied entry and has to remain in the block where it
currently resides. In the system being simulated, this process gives rise to a
queue. Such queues are commonly found in real-life situations, such as in a
barbershop with only one barber, a checkout counter in a grocery store, a
bank with many tellers, an airport with only a few runways. Often the pur-
pose of the simulation study is to see where these queues form and how they
might be eliminated or, perhaps, kept to a reasonable level. These queueing
situations are handled in GPSS/H by the QUEUE block.

The QUEUE block never denies entry to a transaction, and this block can, in
theory, contain any number of transactions. The normal form of the QUEUE
block is quite simple. It is

3 CQUEUE 3

where the operand A is either a name that is not more than 8 characters or a
positive integer. It also could be a variable. If a name is used, it is good pro-
gramming practice always to use at least 3 characters to avoid unintentionally
selecting a name that is reserved (e.g., Cl).

93

94 The GPSS/H Sirnulath language

Thus,

0 Ixm 01

0 OQuEuE 07
0 OQm OoNE
0 WUEUE rJluMP1

are examples of valid QUEUE blocks but

0 OQUEUE 0-1

are not valid.

0 muEuE DIRST

0 IxUEXJE USTOPHERE

3 WuEuE W T O N E I N

Sometimes you will decide to use a number rather than a name for the
QUEUE block's operand. If you choose this approach, the number cannot be
arbitrary but will depend on the actual number of QUEUE blocks allowed in
your system. Normally, at least 50 QUEUE blocks are allowed in most GPSS/H
processors. Thus, if this is the maximum number allowed in your system, it
would be all right to have

c) OQm 027

but not

0 O Q ~ 050

0 BUEUE 0123

If you decide to use numbers in the QUEUE operands, simply remember to
start numbering the QUEUE blocks with small numbers and you should not
have any problem.

Whenever a QUEUE block is used, there automatically will be certain statistics
as part of the .US file. These may have been observed when previous pro-
grams were run. Suppose the QUEUE block was specified by the operand
WAIT. The output from the program might look as follows:

QUEUE MAXIMJM AVERAGE TOTAL ZERO PERCENT
CONTENTS CONTENTS ENTRIES EhTRIES ZEROES

WAIT 3 0 . 3 1 2 2 64 90 3 4 . 1

AVERAGE $AVERAGE QTABLE CURRENT
TIME/UNIT TIME/UNIT CONTENTS

5.665 a . 596 0

The above actually is given in the output running across the screen. It is nec-
essary to scroll to see it all. You may not want all the output, but GPSS/H
gives it to you in the .US file regardless.

What each entry in the .US output file means is as follows:

QuguE and DEPART Blocks 95

QUEUE WAIT this is the name of the queue as specified by the A operand.
MAXIMUM
CONTENTS

AVERAGE
CONTENTS

TOTAL ENTRIES

ZERO ENTRIES

PERCENT ZEROS

AVERAGE
TIME/ U NIT
$AVERAGE
TIME/UNIT
QTABLE

CURRENT
CURRENTS

The maximum contents of the queue WAIT at any time during the
simulation was 3.
A t any time during the simulation, the contents in the queue WAIT
averaged 0.312.
The number of transactions that entered the queue WAIT was 264.

Of the 264 transactions that entered the queue WAIT, 90 of them
immediately left and entered the next block.
The percentage of ZERO ENTRIES90 ZERO ENTRIES divided by
264 TOTAL ENTRIES-was 34.1%.

For all the transactions that entered the queue WAIT, the average
time in the block per unit transaction was 5.665 time units.

The average time in the queue WAIT for only the transactions that
were actually delayed and held in it was 8.596 time units.
Chapter 19 shows how to construct histograms of various pararn
eters associated with the simulation. One of these parameters is
called a QTABLE. If one had been used in the simulation. its
name would be here.

The contents of the queue WAIT at the end of the simulation is 0.

The preceding output items are all attributes associated with having a QUEUE
block. In fact, they are standard numerical attributes (SNAs). There are
reserved names for SNAs that deal with queues. In the following, (name) is a
queue name (may include numbers if a letter is the first character), and n
refers to a number:

SNA Meaning

Q(name) or Qn
QA(name) or Qan
QC(name) or Qcn
QM(name) or Qmn

QT(name) or Qtn
QX(name) or Qxn

QZ(name) or Qzn zero entries

current queue content
average queue contents
queue entry count
maximum queue content
average time spent in the queue of all entries

average time spent in the queue excluding the zero entries

These SNAs can be used in the program as operands. For example, one
could have

0 D V A N C E mM (WAIT)

The transaction entering the ADVANCE block would be put on the FEC for a
time given by the maximum queue length (QM) at the QUEUE WAIT. The
most common reason for using a QUEUE block is to gather the statistics of
how long transactions are delayed before a facility is available for their use.
Therefore, it is not always necessary to have a QUEUE block just because a
queueing situation is to take place.

96 The GPSS/H Simulation Language

It is possible to have a second (B) operand with the QUEUE block such as

0 CQUEuE mIRST,2
0 OQUEUE C]WAIT,3

The B operand must be a positive integer. If it is a negative number, a compiling
error results. If it is a positive real number with a decimal point, it will be trun-
cated to an integer, and a warning message will be printed on the screen. If a B
operand is used, it will affect the statistics of the QUEUE block as the B operand
will cause the TOTAL, ENTRIES count to be increased by the value of B (not by
1) and the CURRENT CONTENTS also to be increased by the value of B.

Should you ever decide to use a two-operand QUEUE block, you must be very
careful to interpret your results accordingly. Actually, examples of a two-
operand QUEUE block are very rare; they might be found in code that
describes extremely complex manufacturing systems. No such examples will
be encountered in this book.

Another characteristic of QUEUE blocks is the fact that a transaction can be in
more than one QUEUE block at the same time. This may seem strange, but
such situations occur in real life. Consider a large grocery store where a per-
son has to take a number to purchase meat. The same person can elect to also
take a number to purchase vegetables while waiting for the first number to be
called. Thus, the person is in two queues at the same time. There will be occa-
sions when, for the purpose of gathering statistics, we will use the fact that a
transaction can be in more than one QUEUE block at the same time. In fact, a
transaction can be in even more than two QUEUE blocks at the same time.
The maximum number of QUEUE blocks that a transaction can be in at the
same time is dependent on the particular processor, but is generally around 5.

THE D E P A R T BLOCK

If a transaction is in a QUEUE block, it must eventually leave this block. The
DEPART block allows this action and, as the twin to the QUEUE block, has the
same operand. Thus, referring to the previous examples of the QUEUE block,
the following would be the corresponding DEPART blocks:

0 DEPART 01
0 DEPART DIRST
,3 DEPART c7
0 DEPART DONE
9 DEPART DUMP1

and, in free format,

0 DEPART USTOPHERE

The DEPART block will not be immediately after the QUEUE block but m u t
appear in the program. (If it were immediately after the QUEUE block, the
QUEUE block would give meaningless statistics as the transactions would
immediately enter and leave both blocks.) It usually appears after one or two
other blocks. These other blocks are the ones that, for one reason or other,

QuguE and DEPART Blocks 97

cause a queue to form. Just as with the QUEUE block, it is possible to have a
second operand,

0 DEPART mAME,2

In this case, the current content of the QUEUE NAME is decreased by 2. If the
transaction was a zero entry to the QUEUE, the zero-entry counter is incre-
mented by 2. As with the second operand for the QUEUE block, use of this
operand is very rare.

Example 10.1

Customers arrive in Joe's barbershop at a uniform rate of 1 customer every 18
f 5 minutes. Joe can cut hair at the rate of 16 * 4 minutes. Simulate for 8
hours.

Solution

The solution to this situation involves two blocks that we haven't had yet,
SEIZE and RELEASE. Both of these are discussed in the next chapter.

0 OSIMULATE
0 BENERATE 018,5 KUSTOMERS ARRIVE
0 @UEUE BAITAREA WOIN THE QUEUE
0 OSEIZE BARBER DARBER BECOMES FREE
0 DEPART DAITAREA mEAVE THE QUEUE
0 @ADVANCE 016,4 B E T HAIRCUT
0 DELEASE BARBER @FREE THE BARBER
0 I-JFERMINATE @EAVE THE SHOP
0 @GENERATE a480 DIMER TRANSACTION ARRIVES
0 mERMINATE 01 @TOP SIMULATION
0 USTART 01 OSIMLJLATION BEGINS
0 UPUTPIC mINES=6,QM(WAIT),QA(WAIT),-

QC(WAIT),QZ(WAIT),QT(WAIT),QX(WAIT)
Q MAX * * *
Q AVERAGE * * * . * *
Q COUNT * * * *
Q ZERO ENTRIES * * *
Q TIME FOR ALL ENTRIES * * * . * *
Q TIME FOR NONZERO ENTRIES * * * . * *
0 D i D

For 1 run of the simulation program with 1 set of random numbers, the out-
put will be

Qm 1
Q AVERAGE 0 . 0 4
Q COUNT 26
Q ZERO ENTRIES 17
Q TIME FOR ALL ENTRIES
Q TIME FOR NONZERO EN2'RIE.S

0.74
2.16

During the 8 simulated hours, 26 customers entered the store; 17 of them did
not have to wait for the barber to be free. The average contents of the queue
was only 0.04 and the maximum contents of the queue was only 1. From the
.US file, it can be seen that the barber was busy 85.8% of the time.

98 The GPSS/H Simulation Language

EXERCISES, CHAPTER 10

1. Refer to Example 10.1. Suppose that the first customer arrives exactly
when the shop opens. Also, let the time to cut hair be 16 * 7.5 minutes
and the arrival rate be 18 * 9 minutes. Do the statistics change much?

2. Refer to Example 10.1. Suppose that the time to give a haircut is 17 f 4.
How do the statistics change?

SOLUTIONS CHAPTER 10

I.. The modified program is as follows:
SIMULATE
GENERATE 18,9
QUEUE WAIT
SEIZE BARBER
DEPART WAIT
ADVANCE 16,7.5
RELEASE BARBER
TERMINATE
GENERATE 480
TERMINATE 1
START 1
PUTPIC LINES=C,QM(WAIT) ,QA(WAIT) ,_

QC(WA1T) ,QZ(WAIT) ,QT(WAIT) ,QX(WAIT)
* * * QMAX

QAVERAGE * * * . * *
QCom
Q ZERO ENTRIES * * *
Q TIME FOR ALL ENTRIES

* * * *

* * * . * *
*** . ** Q TIME FOR NON ZERO ENTRIES

END

Now the output is changed as follows:
QM 1
QAVERAGE 0.18
QCOUNT 26
Q ZERO ENTRIES 12
Q TIME FOR ALL ENTRIES
Q TIME FOR NONZERO ENTRIES

3.45
6.31

As can be seen, there is a considerable change in the average times a cus-
tomer remains in the shop.

2. The new output is as follows.
P M 1
Q AVERAGE 0.11

Q ZERO ENTRIES 12
Q COUNT 26

Q TIME FOR ALL ENTRIES
Q TIME FOR NONZERO ENTRIES

1.97
3.65

As can be seen by examining this output and the previous one, the spread
of a distribution can have more effect on the results of the simulation
than the mean value. When the time to give service was changed from a
mean of 16 to a mean of 17, this did not affect the results as much as
when the spread was changed as in Exercise 10.1.

.
CHAPTER 11 SEIZE and

RELEASE B h h

THE S E I Z E BLOCK

In GPSS/H, a single server is called a “facility.” This server might be a barber
giving a haircut, a bank clerk who waits on customers, or a checkout clerk in a
grocery store. In a mine, a server might be a shovel loading a truck or a
crusher where only 1 truck can dump at a time. In order for a aansaction to
use a facility, a SEIZE block is used. One form of the SEIZE block is

3 OSEIZE @A

where the operand A is generally either a number or name, but can be a vari-
able. Thus,

3 OSEIZE 21
3 OSEIZE WNE

3 OSEIZE DARBER
‘i OSEIZE 033

9 OSEIZE DUMP

are examples of the SEIZE block. If a number is used for the operand of the
SEIZE block, the number must be less than the number of SEIZE blocks
allowed by your processor. If you always remember to number the blocks
starting with small numbers, you should not have a problem.

When a transaction enters a SEIZE block, no other uansaction can enter until
the transaction leaves the SEIZE block. Transactions attempting to enter a
SEIZE block that is already being used must (normally) remain in the block
they are in. For example, consider the blocks

3 BENERATE El0
5 mIJE7JE WAITAREA

5 EDEPART S A I T A R E A
9 W V A N C E 3 5

6 ‘?SEIZE :PAYPHONE

99

100 The GPSS/H Simulation Language

Here a transaction is generated at a time oft = 10. It is moved to the QUEUE
block and immediately attempts to use the facility PAYPHONE. Since PAY-
PHONE is not being used, the transaction seizes the facility and then enters
the ADVANCE block where the transaction is put in the future events chain
until a time oft = 35 (i.e., 10 + 25). A second transaction is generated at time
t = 20. It enters the QUEUE WAIT block and attempts to enter the SEIZE PAY-
PHONE block. Since the facility PAYPHONE is in use, the second transaction
is held in the QUEUE block until PAYPHONE is free. Now, suppose that you
did not have the QUEUE WAIT block. Instead, suppose you had

0 BENERATE 010
0 USEIZE DPAYPHONE
0 @,ADVANCE 025

The second transaction would have been held up in the GENERATE block
until time t = 35. The effect of the lack of a QUEUE WAIT block would be for
the GPSS/H processor to offset the time at which the third transaction leaves
the GFNERATE block from t = 30 to t = 50. (Draw a time diagram to convince
yourself of this.) Since this effect is not what we want, either a QUEUE block
or a dummy ADVANCE block should be used. Code with a dummy ADVANCE
block would look as follows:

0 EENERATE 010
0 W V A N C E

NOTE: YOU COULD ALSO HAVE

.
*
*

.
ADVANCE 0

0 OSEIZE UPAYPHONE
0 W V A N C E D5

The ADVANCE block with no operand is taken to be ADVANCE 0.

Whenever a SEIZE block is used, certain statistics automatically are printed
out at the end of the simulation. To illustrate the statistics, recall Example
10.1 that simulated the barbershop. Suppose that the barber cuts hair in 16 f
4 minures, and customers arrive at the rate of 18 f 5 minutes. The program to
simulate this situation for 8 hours is

0
0
0
0
0
0
0
0
0
\

3

0

OSIMULATE
CIGEXERATE 018,s OPEOPLE ENTER SHOP
OQUEXJE B A I T A R E A D A K E SEAT I N WAITING AREA
DSEIZE B A R B E R O I F BARBER FREE, BEGIN HAIRCUT
D E P A R T mAITAREA DEAVE SEAT I N WAITING AREA
W V A N C E a16,4 D E C E I V E HAIRCUT
ORELEASE BARBER W I R C U T OVER, BARBER I S FREE
~ E R M I N A T E DEAVE THE SHOP
~ E N E R A T E Y480
DEWINATE iil
@TART El
m

SEIZE and RELEASE Blocks 101

The output associated with the SEIZE block as found in the .US file is as follows:

- -AVG- UTIL-DURING- -
FACILITY TOTAL AVAIL Uh7AVL ENTRIES AVERAGE CURRENT PERCENT SEIZING PREEMPTING

TIME TIME TIME TIME/XACT STATUS AVAIL XACT XACT
BARBER 0.858 26 15.847 AVAIL 27

The output is interpreted as follows:

FACILITY The name of the facility was BARBER.
TOTAL TI ME

AVAIL TIME

UNAVL TIME
ENTRIES XACT

AVERAGE

CURRENT
STATUS AVAIL

PERCENT
AVAIL

SEIZING XACT

The facility was busy 85.8% of the time the simulation ran.

It is possible to "shut down" a facility and make it unavailable. This
statistic would show the amount of time the facility was available.

The time the facility was not available.
There were 26 entries.
The average time the SEIZE block was used by a TIME/XACT trans-
action was 15.847. The time to give a haircut was 16 f4 minutes;
the mean of this distribution is 16. (The AVERAGE is 15.847 [as
shown in the output]. The actual average of 16 +4 is 16. The reason
for the difference between 15.847 and the actual average of 16 is
that GPSS/H uses random numbers to determine the times. As
more random numbers are sampled, the closer the AVERAGE will be
to the actual average of 16. There is also another reason for the dif-
ference: the simulation was stopped when a transaction was still
being seized, and so the average time for all transactions using the
SEIZE block will not include this time but will include the fact that
this transaction did SEIZE the block.)
The facility is currently available.

Since the facility was never made unavailable, there is no entry
here.

If the facility was in use at the end of the program, XACT-the trans-
action number seizing it-would be given here.

Just as with the QUEUE block, the preceding are SNAs associated with the
SEIZE block. Each is referred to by a special reserved name. In the following,
(name) is a facility name (may include numbers if a letter is the first charac-
ter), and n refers to a number:

SNA

F(name) or Fn

FC(name) or FCn
FR(name) or FRn
FT(name) or FTn

FNU(name) or FNUn

FU(name) or Fun
FS(name) or FSn

FNS(name) or FNSn

Meaning

value of fa&ty is 1 if the facility is currently being used;
otherwise, its value is 0

number of times the facility has been siezed

utilization of the facility in parts per thousand

average holding time

true (value = 1) if facility is not in use

true (value = 1) if facility is in use
true (value = 1) if facility can be seized

true (value = 1) if facility cannot be seized

102 The GPSS/H Simulation Language

There are other SNAs associated with facilities, but these will not be used in this
book. Note that the output from the program gives the utilization as a decimal,
but the SNA FR is in parts per thousand. Thus, if one had used the block

0 I-JDVANCE m R (MACH1)

and the utilization of the facility MACH1 was 0.432 when the transaction
entered the ADVANCE block, the transaction would be placed on the FEC for
432 time units.

THE RELEASE BLOCK

When a facility is used by a transaction via the SEIZE block, the facility must
be freed eventually for other transactions to use it. Freeing the facility is
accomplished by means of the twin'' of the SEIZE block, the RELEASE block.
Some forms are

0 B E L E A S E D O E
0 W L E A S E 01
0 @ELEASE DARBER
0 B E L E A S E BAR1

At this point you may wish to go back to some of the previous exercises and
examine the output whenever a facility is used in the program.

It is very common in GPSS/H programs to have a sequence of blocks such as

0 mUEUE W R E
0 OSEIZE BHERE
0 @DEPART W R E
0 @ADVANCE @20,3
0 W L F A S E DHERE

This sequence should be examined carefully and understood as it is repeated
a great many times in GPSS/H programs.

We are now in a position to fully understand nearly all of the programs we
have written in the previous chapters. The next few examples will enable us
to use what we have learned so far. Each should be carefully studied and
understood.

Example 11.1

Cars come to a garage for repairs. There are two types of repairs: minor and
major. There is only one mechanic who does both types of repairs. Of the cars
that enter, 70% need onIy minor repairs, and the rest are in for major repairs.
Cars amve every 28 * 7 minutes. Major repairs take 45 f 15 minutes whereas
minor repairs take only 18 f 6 minutes. The single mechanic is claiming that
he is overworked. His union defines being overworked as working more than
85% of the time. Is he justified in his claim? Simulate for 5 days of 480 min-
utes each. Ignore the fact that the worker leaves at the end of each shift and
the effect of weekends.

SEIZE and RELEASE Blocks 103

Solution
0 OSIMULATE
0 BENERATE 0 2 8 , 7
0 DRANSFER 0 . 7 0 , , M I N O R
0 WUEXJE m A I T
0 OSEIZE N C H
0 D E P A R T m A I T
0 @ADVANCE 0 4 5 , 1 5
0 N L E A S E N C H
0 DERMINATE
OMINOR mUEUE B A I T
0
0
0
0
0
0
0
0
0

THE
THE
0

OSEIZE N C H
D E P A R T B A I T
IljUlVANCE 0 1 8 , 6
m E L E A S E W C H
DERMINATE
BENERATE @480*5
DERMINATE 01
@TART 01

E A R S ARRIVE FOR REPAIRS
070% NEED MINOR REPAIRS
D O I N QUEUE
01s MECHANIC FREE?
DYES, LEAVE QUEUE
W O R REPAIR TAKES PLACE
@REE THE MECHANIC
@LEAVE GARAGE
N O I N QUEUE
01s MECHANIC FREE?
D E S , LEAVE QUEUE
m I N O R REPAIR TAKES PLACE
@FREE MECHANIC
D E A V E GARAGE
D I M E R TRANSACTION

OPUTPIC @INES=2, FR (MECH) / l o , FC (MECH)
MECHANIC WAS BUSY *** . **% OF THE TIME
NUMBER OF CARS TO COME I N WAS * * *

DEND

The output will be

THE M E C W I C W A S BUSY 94.0% OF THE TIME
THE " B E R OF CARS TO COME IN WAS 84

The results are interpreted as follows. During the 5 days of simulated time, 84
cars came in for repairs. The mechanic was busy 94% of the time. This per-
centage is beyond the 85% called for, so he has a legitimate complaint of
being overworked.

Example 11.2

The owner of a small gold mine is wondering if he has the right number of
trucks to haul the ore. Figure 11.1 gives a sketch of the operation. Trucks are
loaded by a single shovel and then travel to the processing plant where they
dump and then cycle back to the shovel. Only 1 truck at a time can be loaded,
but at the processing plant there is no such limitation since the trucks dump
the ore into a pile. It takes 3.5 f 1.25 minutes to load a truck, 6 ? 2.75 minutes
to haul to the dump, 2.1 * 0.4 minutes to dump the ore, and 4.8 * 1.8 minutes
to return. Financial data associated with this operation are as follows:

Item cost

Truck driver's salary $15.75/hour

Cost of running the shovel, dump, etc.

Profit per load (after all other expenses)

$275 per &hour day

$25.50

104 The GPSS/H Simulation language

Truck / Dump \

/-----

Shovel Truck

FIGURE 11.1 Sketch of mlne and trucks.

Determine the correct number of trucks to have in the mine. The GPSS/H pro-
gram that was used to obtain a solution for this problem is as follows:

3 OSIMULATE
0 BENERATE 0, I I 2 OPUT TRUCKS I N THE M I N E
OUPTOP BLJEXJE m A I T mLJEXJE AT THE SHOVEL
0 D E I Z E USHOVEL W S E THE SHOVEL
0 D E P A R T W A I T DFAVE THE QUEUE
0 [?ADVANCE 0 3 . 5 , 1 . 2 5 DOAD A TRUCK
0 D E L E A S E ISHOVEL D R E E THE SHOVEL
0 W V A N C E 0 6 . 5 , 2 . 7 5 mRAVEL TO DUMP
0 @VANCE 02.1, .4 I-JJUMP A LOAD OF ORE
0 W V A N C E [j4.8,1.8 D E T U R N TO SHOVEL
OBACK BRANSFER 0 ,UPTOP D O I N Q m AGAIN
0 KENERATE 0480 BIMULATE FOR A SINGLE S H I F T
3 [mERMINATE 01
O aSTART 21
3 GPUTPIC -JN(BACK),FR(SHOVEL)/lO,QA(WAIT)

LOADS PER S H I F T * * * U T I L OF SHOVEL ***.**% AVG QLJEXJE * * * . * *
9 m
The program was run repeatedly for 2 trucks, then 3 trucks, etc., up to 7
trucks. The results of the 6 simulations gave the following:

Percent Utilization
Number of Trucks Loads per Shift of the Shovel Average Queue

2 56 40.9 0.031
3 82 60.2 0.104
4
5
6

107
127
136

77.8 0.241
92.6 0.535
99.5 1.200

7 136 100.0 2.194

SEIZE and RELEASE Blocks 105

All that is needed from the simulation results is the loads per shift, but it is
instructive to examine the other data. With only 2 trucks, the shovel is busy
only 40.9% of the time. The average queue length is only 0.031. As the num-
ber of trucks in the mine is increased, the utilization of the shovel increases
until it is working 100% of the time. The addition of a 7th truck has no effect
on operation of the mine other than to add another truck to the queue. How
does the 7th truck affect profit? In order to answer this question, the cost data
need to be used. The following table gives the results of the cost and profit
calculations:

_____ ~ ~

Number of
Trucks Loads per Shift Cost of Drives Fixed Costs Profit

~

2 56 $252 $275 $339

3 82 $378 $275 $620

4 107 $504 $275 $875
5 127 $630 $275 $1058
6 136 $756 $275 $1083

7 136 $882 $275 $954

The optimum number of mcks to have is 6 for maximum daily profit. Notice,
however, that there would not be much of a difference in profit if 5 trucks
were used. Of course, this situation is oversimplified in that it ignores trucks
needing maintenance and repairs as well as possible driver absences.

EXERCISES, CHAPTER 11

1. A factory that formerly produced only widgets is branching out into the
production of squidgets. To make each squidget, a person needs 30 f 8
minutes to assemble various parts. Then the squidgets need to be fired.
There is only one kiln, and only one squidget can be fired at a time. Firing
takes 8 f 3 minutes per squidget. Each squidget produced earns a tidy
profit of $6.00. The kiln costs $40 per day whether it is fully utilized or
not (fixed costs). The workers are paid $5 per hour. How many workers
should be hired for maximum profit from the new line CA squidgets?

2. In exercise 1, the workers initially began assembling a squidget. Suppose
the following were the initial conditions (4 workers total): 3 assemblers
are just beginning to assemble, and 1 kiln operator is just beginning to use
the kiln. Change the program written for exercise 1 to include the above.

3. Change exercise 1 to reflect the following initial conditions for 4 workers:
1 assembler is beginning to assemble, 1 assembler has 10 minutes to go
before completing an assembly, 1 kiln operator has 3 minutes to go
before finishing with the kiln, and 1 assembler is waiting to hand over an
assembled squidget to the kiln operator.

4. Two types of customers arrive at Joe’s barbershop. The first type want
only a haircut. They come every 35 f 10 minutes. The second type want
both a haircut and a shave. They amve every 60 f 20 minutes. It takes
Joe 18 f 6 minutes to give a haircut and 10 f 2 minutes for a shave. Con-
struct a model of the shop. Run it for 20 days of 8 hours straight (from
Schriber, 1974).

106 The GPSS/H Simulation Language

a. Determine whether Joe is working too hard. (Working too hard is
defined by the union as working more than 85% of the time.)

b. Suppose Joe decides to give preference to customers who want only a
haircut. How does this change the situation?

c. Add other QUEUE blocks to the problem to gather statistics about the
various queues that form in the barbershop.

5. Three types of mechanics arrive at a tool crib to check out tools. Only one
clerk works at the crib. The arrival times and service times (both in min-
utes) are as follows:

Distribution of Distribution of
Type Arrival Time Service Time

1
2
3

30 f 10
20f8
15 f 5

12 f 5
6 f 3
3 f 1

a. Model the tool-crib activity for 20 straight shifts. Each shift lasts for
480 minutes. Determine the average number of mechanics waiting to
check out tools.

b. Suppose that preference is given to mechanics who take the least time
for service, in this case, type 3 mechanics. Change the program to
determine if the solution changes.

6. In an efficient shop, it can be shown that it is more efficient for the work-
ers to perform tasks that can be finished in the shortest time, assuming
that the cosvbenefit ratio is the same. This exercise will illustrate this
general concept.
A tool crib receives two types of requests for service. These are called type
1 requests and type 2 requests. There is a single worker to handle the
requests. The interarrival and mean service times (both in seconds) for
each are as follows:

Service Arrival Times Servlce Times

type 1 520 k 360 340 f 90
type 2 250 k 100 70 5 40

Write the GPSS/H program with no priority for service and then with pri-
ority given to type 2 service. Suppose that the people requesting service
earn $12 per hour. Determine the savings each day by having a priority
system. Also, run the program with type 1 service having priority. Each
day is 480 minutes.

SOLUTIONS, CHAPTER 11
i. The GPSS/H program that can be used to solve the problem follows. This

is for 3 workers. You will have to run the program for 4,5,6, etc. work-
ers. Doing the computations after each run yields the following:

SEIZE and RELEASE Blocks 107

workers p r o f i t
3 60
4 7 9
5 93
6 80
I 44

SIMULATE
GENERATE , , , 3

UPTOP ADVANCE 30 ,8
SEIZE FIRE
ADVANCE 8,3
RELEASE FIRE

BACK TRANSFER ,UPTOP
GENERATE 4800
TERMINATE 1
START 1

PUTPIC N (BACK)
NUMBER MADE ****

END

PROVIDE 3 WORKERS
IT TAKES 30 * 8 MIN TO WORK
USE THE FURNACE
FIRE A SQUIDGET
FREE THE FURNACE
GO BACK TO DO ANOTHER JOB
SIMULATE FOR 10 SHIFTS
STOP SIMULATION
START THE SIMULATION

OF COMPILING

2. The changes to the program are as follows:
, I GENERATE

TRANSFER I OVEN
GENERATE I I , 3

BACK ADVANCE 30,5
OVEN SEIZE OVEN
ADVANCE 8,2
RELEASE OVEN
TRANSFER , BACK

3. The complete program is:
SIMULATE
GENERATE 9 , ,1
TRANSFER , UPTOP
GENERATE ,,,I
ADVWCE 10
TRANSFER
GENERATE I I ,1
SEIZE FIRE
ADVANCE 3
RELEASE FIRE
TRANSFER , UPTOP
GENERATE I ,

TRANSFER
UPTOP ADVANCE 3 0 , 8
DOWNl SEIZE FIRE

, DOWNl

, DOWNl

ADVANCE 8,3
RELEASE FIRE

BACK TRANSFER , UPTOP
GENERATE 4800
TERMINATE 1
START 1

PUTPIC N (BACK)
NUMBER MADE * * *

PROVIDE ONE ASSEMBLER
SEND HIM TO THE OVEN
PROVIDE 3 ASSEMBLERS
ASSEMBLE A SQUIDGET
USE THE OVEN
FIRE A SQUIDGET
FREE THE OVEN

ONE TO BEGIN ASSEMBLING
SEND TO ASSEMBLE AREA
ONE IS ASSEMBLING
THIS WILL TAKE 10 MINUTES
SEND TO OVEN
ONE IS USING OVEN
USE THE OVEN
WAIT FOR THREE MINUTES
FREE THE OVEN
BACK TO DO ANOTHER
ONE TO WAIT FOR OVEN
GO TO THE OVEN
IT TAKES 30 + / - 8 MINUTES TO WORK
USE THE FURNACE
FIRE A SQUIDGET
FREE THE FURNP.CE
GO BACK TO DO ANOTHER JOB
SIMULATE FOR 10 SHIFTS
STOP SIMULATION
START SIMULATION

END OF COMPILING

108 The GPSS/H Slrnulatlon language

4. SIMLTLATE
GENERATE
QW
SEIZE
DEPART
ADVANCE
RELEASE
TERMINATE
GENERATE
QUEUE
SEIZE
DEPART
ADVANCE
ADVANCE
RELEASE
TERMINATE
GENERATE
TERMINATE
PUTPIC

35,lO HAIRCUT CUSTOMERS ARRIVE
JOEQ SIT IN THE CHAIRS
JOE SEIZE POOR JOE
JOEQ LEAVE THE CHAIR
18,6 GET THE HAIRCUT
JOE FREE JOE

LEAVE
60,20 OTHER CUSTOMERS ARRIVE
JOEQ SIT IN THE CHAIRS
JOE SEIZE GOOD OLD JOE
JOEQ LEAVE THE CHAIR
1 0 , 2 GET SHAVE
18,6 GET HAIRCUT
JOE FREE JOE

LEAVE SHOP
9600 TIMER TRANSACTION
1
FR(JOE)/10

JOE WORKED *** . **% OF THE TIME
START 1

5. a.
SIMULATE
GENERATE 30,lO
QUEUE WAIT
SEIZE CLERK
DEPART WAIT
ADVANCE 12,s
RELEASE CLERK
TERMINATE
GENERATE 2 0 , 8
QUEUE WAIT
SEIZE CLERK
DEPART WAIT
ADVANCE 6,3
RELEASE CLERK
TERMINATE
GENERATE 15,s
QUEUE WAIT
SEIZE CLERK
DEPART WAIT
ADVANCE 3,1
RELEASE CLERK
TERMINATE
GENERATE 480
TERMINATE 1
START 20

TYPE 1 ARRIVES
IN QUEUE
USE THE CLERK
LEAVE THE Q W
CLERK GETS TOOL
FREE THE CLERK
LEAVE THE CRIB AREA
TYPE 2 ARRIVES
IN QUEUE
USE THE CLERK
LEAVE THE QUEUE
CLERK GETS TOOL
FREE THE CLERK
LEAVE THE CRIB AREA
TYPE 3 ARRIVES
IN QUEUE
USE THE CLERK
LEAVE THE QUEUE
CLERK GETS TOOL
FREE THE CLERK
LEAVE THE CRIB AREA
ONE SHIFT PASSES

DAYS
mPpPIC QA (WAIT)

EM)

AVERAGE NUMBER IN THE QUEUE WERE * * * . * *

SEIZE and Blocks 109

b.
The block GFSJERATE 15,5 is changed t o

GENERATE 15,5, , ,1
No other changes are needed.

6. The first program is:
SIMULATE
GENERATE
QUEUE
SEIZE
DEPART
ADVWCE
RELEASE
TERMINATE
GENERATE
QUEUE
SEIZE
DEPART
ADVANCE
RELEASE
TERMINATE
GENERATE
TERMINATE
START
PUTPIC

AVERAGE WAIT *** . **
END

520,360
WAIT
MECH
WAIT
340 ,90
MECH

250,100
WAIT
MECH
WAIT
70,40
MECH

480*60
1
1
QA (WAIT)

Give an average queue length of 1.67 when running this. Since the work-
ers are making $12/hr. this represents a loss of $160.32 per 8-hour shift.
When the program is run with a priority given to type 2 request, the aver-
age number in the queue drops to 31. This represents a cost per shift of
$77.76 for a savings of $82.56. When the simulation is run with the type
1 requests having the higher priority, the average queue is 1.84.

.
CHAPTER 12

Arriving
Transactions
- 0

ENTER and LEAVE Blocks

000
Single Queue

MULTIPLE SERVERS-THE ENTER BLOCK

It often happens that the system being studied has multiple servers that are
identical. Transactions that attempt to use these will be denied access if all
the servers are busy. They do not wait at each server but are held on the CEC
in the previous block until one of the servers is free. Figure 12.1 illusa-ates
this situation.

0

0

0

0

Departing

yo-
~ ~~~~

FIGURE 12.1 Sketch of multiple servers.

Examples might be the multiple berths for loading or unloading ships in a
port, two barbers in a shop, six tellers in a bank, etc. GPSS/H handles these by
means of a combination of a block and a statement. The block is used in the
program for the transaction to actually use one of the parallel servers. The
statement tells the processor how many of these servers are available. The
block for the transaction in the programs is the ENTER block. One form of the
ENTER block is

112 The GPSS/H Simulation Language

where the operand A can be a name or a number. If it is a number, it cannot
exceed the maximum number of such ENTER blocks allowed in your GPSS/H
system. It is also possible to have this operand be a variable.

Examples of the ENTER block are

0 WER DUMP
0 CENTER El2
0 W E R W O

The operands DUMP, 2, and TWO refer to the names of the multiple servers,
or “storages,” as we shall now refer to them. There is no confusion in using
the storages named DUMP and TWO, but care should be exercised with the
one named “2.” This name does not refer to the number of storages associated
with the block

0 CENTER 0 2

The number of storages for each ENTER block is specified by a separate state-
ment. It is quite possible that the number of storages associated with each of
the 3 examples of the ENTER block might be 4 for DUMP, 3 for “2,” and 4 for
TWO. In the next section, we will learn how to specify these numbers. It is
possible to have a second or B operand with the ENTER block such as

0 N E R W O R , 2

In this case, B = 2 indicates that 2 storages are used. This example might rep-
resent a large ship entering a harbor, and 2 tugboats (in this case, the tug-
boats are the storages) are needed to guide it into port. Most of the time, only
1 of the storages is taken each time a transaction uses the ENTER block. How-
ever, there will be times when the second operand will come in very handy.

DEFINING THE NUMBER OF MULTIPLE SERVERS-THE STORAGE STATEMENT

Normally, when there are to be multiple servers, the number of these must be
specified. This procedure is done by the STORAGE statement. There are two
forms of it. The form may look a bit strange, but, if the programmer remem-
bers that it is used in connection with the ENTER block, it is easy to write.
Suppose there are to be 3 barbers in a shop. The customer will select one of
them via the ENTER block.

0 @”ER BARBER

How the computer knows that there are 3 barbers is specified by the STOR-
AGE statement, which must be placed before the ENTER block. Normally, for
convenience, it is placed near the top of the program before any GENERATE
block. It can have 2 forms, as follows, but their results are identical:

0 OSTORAGE nS{BARBER),3 (a)
CBARBER USTORAGE 03 (b)

rn and LEAVK Blocks 113

The first STORAGE form is preferred in this book since more than one storage
can be defined in a single line. If either one of these STORAGE statements is
used, however, then when the block

0 I-JNTER DARBER

is encountered, the transaction will be able to enter it if there are fewer than 3
transactions in it already. If the transaction cannot move forward, it is held on
the CEC until a later scan by the GPSS/H processor shows that the transaction
can be moved.

The reason that STORAGE form (a) is used more often than (b) is because it is
possible to have more than one STORAGE defined via the (a) form, as
follows:

0 ISTORAGE @(BARBER) , 3 / S (J O E) , 1 2 / S (B I L L Y) , 7

This statement shows that the storage of BARBER is 3, that of JOE is 12, and
BILLY is 7. If numbers, however, are used for storages, the form of the STOR-
AGE statement may be somewhat simplified:

0 @STORAGE @.1,2/S4 I 7

Nevertheless, one can write the above as

0 USTORAGE O S (I) , ~ / S (~) , 7

Since an operand can also be a number, the second STORAGE statement
defines the storage of 1 to be 2 and that of 4 to be 7.

Whenever you use the ENTER block for parallel entities, you will obtain cer-
tain output when the program is over. Consider the following example.

Example 12.1

A barbershop has two identical workers. They can cut hair at a rate of 1 haircut
every 13 f 5.5 minutes. Customers amve every 7 * 2.6 minutes. Simulate for
an 8-hour day. Determine how busy each barber is. The program to do this is

ZSIMULATE
[ISTORAGE n S (B A R B E R) , 2
EENERATE C 7 , 2 . 6
OQum PAIT
GENTER DARBER
D E P A R T W A I T
W V A N C E C13,5.5
@EAVE BARBER
DERMINATE
CGENERATE C480
DERMINATE 21
ISTART c1
,3ND

ZPROVIDE TV'O BARBERS

LFOR BARBER
B S E A BARBER
DEAVE WAITING AREA
CGET HAIRCUT
[;FREE A BARBER

D I M E R TRANSACTION ARRIVES

%CUSTOMERS ARRIVE

CjLEAVE SHOP

114 The GPSS/H Simulation Language

Solution

The simulation results, as always, in a .US file. A pomon of the .LIS file is

RELATIVE CLOCK: 480.0000 ABSOLUTE CLOCK: 480.0000
BLOCK CURRENT TOTAL
1 68
2 68
3 68
4 68
5 2 68
6 56
7 66
8 1
9 1

--AVG-UTIL-DURING--
STORAGE TOTAL AVAIL LTNAVL ENTRIES AVERAGE CURRENT PERCEhT CAPACITY AVERAGE

TIME TIME TIEE TIME/UNIT STATUS AVAIL CONTENTS
BARBER 0.966 68 13.635 AVAIL 100.0 2 1.932

CURRENT MAXIMUM
CONTENTS CONTENTS

2 2

The interpretation of the .US output is as follows:

TOTAL TIME The storage BARBER was busy 96.6% of the time. This time
represents the workload of both barbers. It is not possible to
tell the percentage of time each was busy.
It is possible to "shut down" the storages by using a block to
be introduced later. If a storage was shut down, the percent-
age of time available is given here.

UNAVL TIME If the storage was shut down, the time shut down is given
here as a decimal.

ENTRIES The number of transactions who entered the ENTER block
was 68.

AVERAGE TIME/UNIT The average time a transaction (TIME/UNIT) was in this block
was 13.635 time units.

CURRENT STATUS The storage is currently available, as shown by AVAIL.
PERCENT AVAIL The storage was available 100.0 percent of the time.
CAPACITY The storage capacity was 2. This value was specified by the

STORAGE statement.
AVERAGE CONTENTS The average contents of the storage BARBER was 1.932.

CURRENT CONTENTS When the program ended, the contents of the storage was 2.
MAXIMUM CONTENTS The maximum number in the storage at any one time was 2.

AVAIL TIME

~ ~ ~~ ~

SNAs Associated with Storages

The SNAs associated with any STORAGE statement are reserved. In the foL
Iowing, (name) is a storage name (may include numbers if a letter is the first
character), and R refers to a number:

ENTER and LEAVE Blocks 115

SNA Meaning

S(name) or Sn
R(name) or Rn

SA(name) or SAn

SC(name) or SCn

SF(name) or SFn

SM(name) or SMn
SR(name) or SRn

ST(name) or STn

SNE(name) or SNEn
SNF(name) or SNFn

Notice that the utilization of the storage is given by SR(name) and is expressed
in parts per thousand. The original storage specification is not an SNA. If it is
desired to use this in the program, it is necessary to use S(name)+R(name),
which always adds up to the original storage specification.

There are even more SNAs associated with storages. These other SNAs will
not be used in this book.

current storage content
remaining storage content

average storage content
storage entry count

true (value = 1) means storage is full
maximum storage count
utilization of storage in parts per thousand
average holding time

true (value = 1) if storage is not empty
true (value = 1) if storage is not full

Example 12.2

Actually, it is not necessary to specify a storage when you have an ENTER
block. In this case, the processor sets aside 2,147,483,647 as the storage
capacity. (The number is z3' - 1). It may appear that you would never omit
giving the storage capacity, but there are examples when one actually does
omit this. For example, suppose you are modeling a hardware store. Custom-
ers arrive and immediately take a shopping cart. Suppose customers arrive
every 30 * 8 seconds. If you have 20 carts available, you would model this sit-
uation with the following partial list of code:

c, USTORAGE @ (C A R T) , 2 0 EPROVIDE 20 CARTS
/> KENERATE 0 3 0 , 4 XUSTOMERS ARRIVE
3 @ADVANCE DO @WMMY BLOCK
/J W E R %ART ?SELECT A CART

Notice that an ADVANCE block is used with zero time units. This block is
present so that, if all the carts are taken, the transaction will not be held up in
the GENERATE block. The ADVANCE block ensures that transactions will
leave the GENERATE block according to the uniform distribution of 30 +_ 4
seconds. The way that the program is written, if a customer arrived and found
all the carts taken, he or she would wait until a cart became free. This aspect
of the program is a bit unrealistic. Suppose, instead, you wanted the customer
to leave if no cart is available. The following approach is used:

/I @STORAGE &(CART) , 2 0
f/ Z'ENERATE c 3 0 , 4
'1 DFANSFER 'BOTH, , OUT
9 CE2?TER 1 CART

r _ _ _ _ _ 5 Y

5 ;OUT TERMINATE
/

-
L-----

116 The GPSS/H Slmulation Language

But, now, suppose that you wanted to determine the maximum number of
carts ever used for the simulation period. To find out, you must rewrite the
program so that arriving customers aZways are able to take a cart. One way
would be to assign a very large storage for CART, such as

0 USTORAGE OS(CART) ,10000

However, in this simple example, we could just as easily omit the STORAGE
statement. At the end of the program, the maximum number of entries into
CART are listed. (How to print out a table of the statistical distribution of the
number of carts used is covered in Chapter 19.)

THE LEAVE BLOCK

Once a transaction can use one of several parallel servers via the ENTER
block, it eventually must indicate that it has done so and release the server it
used. The block to do this is the LEAVE block. Just as the QUEUE and DEPART
blocks are “twins,” so are the ENTER and LEAVE blocks. The form is similar to
the ENTER block, as it relates directly to it:

0 aLEAvE OA

where A is the name (or number) of the parallel servers. It can also be a variable.

Thus, you might have the following in a program:

It may appear that there is no difference between a single facility and a storage
with a capacity of 1. This is almost the case. However, only a facility can be
”preempted.” This concept means that another transaction can replace the one
that is using the facility. However, this concept will not be used in this book.

Example 12.3

A garage for inspecting a fleet of cars has 3 identical service areas. Cars arrive
for inspection every 3 f 0.3 minutes. These inspections take 8 f 2 minutes.
After leaving the inspection area, 70% are ready to return to service, but the
rest need further service that takes 4 f 1.5 minutes. If further service is
needed, a single mechanic is assigned to do it. Simulate this system for 1 day.

The program to do this simulation is as follows:

0 USIMULATE
0 USTORAGE flS(SPACE),3 OPROVIDE SERVICE AREAS

0 @ADVANCE DUMMY BLOCK (ZERO CAN BE OMITTED)
0 W E R USPACE 01s A SPACE AVAILABLE
0 @ADVANCE 08,2 UINSPECTION TAKES PLACE
0 DEAVE USPACE @REE INSPECTOR
0 DRANSFER 0.7O,,OUT 070% RETURN TO SERVICE
G OSEIZE W C H OSINGLE MECHANIC
0 W V A N C E 0 4 , 1 . 5 WCHANIC WORKS ON CAR
0 W L E A S E W C H @FREE MECHANIC

0 EENERATE 0480 OSIMULATE FOR A DAY
G mERMINATE 01
0 USTART 01
0 UPUTPIC DINES=2,N(COME),FR(MECH)/lO.
CARS TO COME IN * * * *
UTIL. OF MECH. ***.**%

@COME EENERATE E3, .3 &ARS ARRIVE

WUT DERMINATE E A R S LEAVE

0 DEND

Example 12.4

A hardware store consists of 4 aisles and a single checkout counter. Shoppers
amve with an interarrival time of 82.5 f 26.4 seconds. After amving, each
customer who plans to shop in any 1 or more of the aisles takes a shopping
cart. However, 12% of the customers simply go to the checkout counter
where various items are for sale. These people do not take a shopping cart.
The rest shop down each aisle as follows:

Relative Probability of Customer Time Required
Aisle Going Down Aisle to Travel Aisle

1 0.80 125 f 70

2 0.75 140 f 40

3 0.85 150 f 65

4 0.90 175 f 70

When a shopper is finished, she or he will join the queue in front of the
counter until each is checked out. The time to check out is 45 f 12 seconds for
those who shop in the aisles and 35 f. 12 seconds for those who go directly to
the checkout counter.

The store owner is concerned that he does not have enough shopping carts.
Customers who arrive and find none available tend to leave and shop else-
where. In addition, the single person who works at the checkout counter is
complaining of being overworked and is threatening to contact the union.
Union regulations forbid a person to work more than 85% of the time. Deter-
mine the utilization of the checkeis time and how many shopping carts the
store should have. Simulate for one 8-hour shift (28,800 seconds).

118 The GPSS/H Simulation language

Solution
0 OSIMLTLATE
0 USTORAGE O S (C A R T S) , 1 0 0 0
WOME OGENERATE 0 8 5 . 2 , 2 6 . 4
0 mRANSFER 0 .12 , ,COUNTER
0 -R N A R T S
6 BRANSFER 0 . 2 , , A I S L E 2
0 @ADVANCE 0 1 2 5 , 7 0
O A I S L E 2 DRANSFER 0 . 2 5 , , A I S L E 3
0 @ADVANCE u 1 4 0 , 4 0
O A I S L E 3 m S F E R 0 . 1 5 , , A I S L E 4
0 @ADVANCE [l l 5 0 , 6 5
O A I S L E 4 DRANSFER U. lO, ,CHECK
0 W V A N C E 0175,70
WHECK @UEIJE D I N E
s DSEIZE BORKER
0 D E P A R T D I N E
0 @ADVANCE 0 4 5 , 2 0
0 B E L E A S E mORKER
0 DEAVE E A R T S
0 BERMINATE
CCOUNTER mUEUE D I N E
0 B E I Z E BORKER
0 D E P A R T D I N E
0 @ADVANCE u 3 5 , 1 2
0 W L E A S E WORKER
0 DERMINATE
0 BENERATE 0 2 8 8 0 0
0 BERMINATE 01
0 OSTART 020

OPROVIDE 1000 CARTS
W S T O M E R S ARRIVE
0 1 2 % GO TO COUNTER
W S T TAKE A CART
080% GO TO A I S L E 1
I S H O P I N AISLE 1
075% GO TO AISLE 2
USHOP I N A I S L E 2
085% GO TO A I S L E 3
ISHOP I N AISLE 3
090% GO TO A I S L E 3
OSHOP I N AISLE 3
OSTAND I N L I N E
D E A D Y TO CHECK OUT
&EAVE THE QUEUE
B H E C K OUT
@REE THE WORKER
B E T R I D OF CART
DEAVE THE STORE
USTAND I N LINE
m Y TO CHECK OUT
DEAVE THE QUEUE
[?CHECK OUT
D R E E THE WORKER
D E A V E THE STORE
OTIMER TRANSACTION ARRIVES
USIMULATION OVER
OSIMULATE FOR 2 0 DAYS

0 UPUTPIC [ILINES=I,N(COME),SC(CARTS),-
FR(WORKER)/lO,SM(CARTS)

NUMBER TO COME TO SHOP * * * * *
NUMBER TO TAKE A CART *****
U T I L . OF WORKER *** , *$

MAX. NO. OF CARTS I N USE * * *
0 W D

The output is as follows:

NUMBER TO COME TO SHOP 6539
NUMBER TO TAKE A CART 5747
UTIL. OF WORKER 51.0%
HAX. NO. CARTS IN USE 10

The number of customers arriving at the store in the 20 days was 6539. Of
these, 5747 took a cart and shopped in the aisles, and 792 went directly to the
checkout counter. The checker was busy only 51.0% of the time so anv com-
plaints of being overworked are not supported. The maximum number of
carts ever in use was 10. It would be instructive to know how many times 10
carts were in use. In Chapter 19, it is shown how to make statistical distribu-
tions to reveal this information, but, for the present, we do not have these
data. However, it would seem that providing about 12 carts should be suffi-
cient. This quantity would take into account the maximum number obtained
in the simulation as well as provide a safety factor of 2 extra carts.

~ T E R and LRAVE Blocks 119

Spare Truck Problem

The following is one of the most remarkable examples of the power of the
GPSS/H language. The example is adapted from Schriber (1974).

A mine is in full operation. Trucks haul the ore and periodically break down.
When they break down, they are taken to the repair area to be fixed. Once
trucks are fixed, they are returned to the mine. They are then classified as
spares, as the mine has more trucks available than are needed at any one time
in the mine.

The mine needs 30 trucks for optimum production (this number was deter-
mined from a previous simulation study). The number of repair facilities can
vary, but you estimate that either 3,4, or 5 should be correct. The cost of each
is $77 per 8-hour shift. Each spare truck you have costs $35 per shift no mat-
ter what it does. Thus, if you happen to have 33 trucks and 5 repair facilities,
the cost per 8 hours is (5 x 77) + (3 x 35) = $490. For 3 repair facilities and 34
trucks, the costs are (3 x 77) + (4 x 35) = $371. It is possible to make a table of
costs for various combinations of repair facilities and number of spare trucks.

Each time you do not have 30 trucks in the mine, it costs you $12 per hour or
$96 per shift. The mean time between breakdowns for a truck is 230 * 40
hours. The mean time for repairs of a truck is 15 * 9 hours. Determine the
optimum number of both trucks and repair facilities.

Solution

The program to do the simulation is quite compact:

0 @SIMULATE
0 USTORAGE U S (M I N E) , 3 0 / S (R E P A I R) , 2
OTRUCKS 5 E N E R A T E 0, , , 3 2
OBACK W E R m I N E
0 @ADVANCE 0 2 3 0 , 4 0

0 @ENTER D E P A I R
0 @ADVANCE 015,9
0 5 E A V E D E P A I R
0 BRANSFER @,BACK
0 5 E N E R A T E 02 4 * 3 65 * 100
0 D E W I N A T E 01
0 USTART 01
0 OPUTPIC nSR(MINE)/lO.

0 lJ.aAvE m1m

UTILIZATION OF MINE * * * . * *%
0 OEND

The above is for 32 trucks and 2 repair shops. The output from running this
program gives the result that the utilization of the storage MINE is 94.59%.
The cost of having the two spare trucks is $70. The cost for the two repair
shops is $154. The penalty for not having 30 trucks working is found by con-
sidering that there were only 28.377 trucks working in the mine at any one
time (30 x 0.9459). This result means that, at any one time, there were 1.632
trucks less that the 30 desired. The cost of this truck shortage is $155.81 per
shift. Adding up the 3 costs gives $380 for the cost per shift. The program was

120 The GPSS/H Slmulation Language

run for different combinations of trucks and repair shops; the dollar cost per
shift for each combination is as follows:

Repair Shops

Spare Trucks 1 2 3 4

1 1523 407 385 446
2 1553 379 362 446
3 1558 368 364 454
4 1622 366 382 454
5 1662 378 410 485

As can be seen, the optimum number of trucks to have as spares is 2, and the
optimum number of repair facilities is 3.

EXERCISES, CHAPTER 12

l.
~~ ~~ ~

Item
Leaves

Item
Enters Wait Server

U

Three
Servers

Consider the above diagram. Items enter the system every 115 f 30 sec-
onds. They wait in a queue until 1 of 3 identical servers is ready. Service
takes 335 * 60 seconds. After this service, they move along and join
another queue while they wait for a single server to perform another ser-
vice. This server works in 110 f 25 seconds. Design the model to measure
the waiting-line behavior ahead of the two places where service is per-
formed. Assume first that there is unlimited space between the 3 servers
and the single server.

2. In exercise 1, suppose that there can be only 1 item in the waiting area
before the second server. Modify the program to take this into account.

3. There are two tugboats that service a harbor. Ships of two types arrive at
the harbor, where they unload their cargo. Type 1 ships are small, and
they need only one tug to both dock and undock. Type 2 ships are large,
and they need 2 tugs to both dock and undock. Because of their size dif-
ferences, the ships dock at different berths and have different loading and
unloading time requirements. There is always a berth available for a ship.
Other data are as follows (all times are minutes):

ENTKR and LEAVE Blocks 321

Ship Type

1 2
I nte rarriva I Ti me
Docking Time

Number of Berths

90 k 30
40 k 7
6

190 f 60
50 k 12
3

Unloading Time 7500 k 120 780 k 240
Undocking Time 30 k 5 42 k 10

A type 2 ship has priority over a type 1 ship. Model the harbor for 1000
days, each day being 24 hours of operation. Suppose it cost $350 per
hour for a ship of type 1 to wait for a tug either before docking or after
loading or unloading and $500 per hour for a ship of type 2 to wait, and
the cost of a tug is $125 per hour no matter if it is used or not. Would you
recommend the addition of a third tug? (Its initial cost is immaterial.)
What is the optimum number of tugboats to have?

4. A manufacturing system has parts coming along every 100 * 20 seconds.
Each needs to be assembled, formed, painted, and inspected in that
order. There are 4 assembly machines, 2 forming machines, 3 pa:nting
machines, and 1 inspector. The time required to do each of these tasks is
as follows:

Job Time (seconds)

Assemble 350 k 55
Form 170 k 60
Paint 240 k 30
Inspect 80 k 25

After inspection, 5% of all parts are rejected oumght. Of the remaining
parts, 10Yo go back to the beginning for reassembly and 8% need to be
repainted. Determine which of the jobs is the busiest. How many parts
are made in a shift, consisting of 450 minutes of actual work?

5. In exercise 4, change the mean times for the machines and the inspector
so that the utilizations of each is approximately 90%.

SOLUTIONS, CHAPTER 12

i. The program to simulate the system is:
SIMULATE
STORAGE S(SERVl),3

COMEIN GENERATE 115,30
QUEUE LINEl
ENTER SERVl
DEPART LINEl
ADVANCE 335,60
LEAVE SERVl
QUEUE LINE2
SEIZE SERVZ

122 The GPSS/H Simulation language

DEPART LINE2
ADVANCE 110,25
RELEASE SERV2
TERMINATE
GENERATE 280000 10 DAYS SIMULATION
TERMINATE 1
START 1
PUTPIC LINES=3,N(COMEIN),SR(SERVl)IlO,FR(SERV2)/10

NUMBER PARTS TO COME INTO SYSTEM ******
UTIL. OF THREE SERVERS ***.**%
UTIL. OF SINGLE SERVER ***.**%

END

2. The changes to the program are given below:
SIMULATE
STORAGE

QUEUE
ENTER
DEPART
ADVANCE
LEAVE
TRANSFER
SEIZE
QUEUE

COMEIN GENERATE

SEIZE
RELEASE
DEPART
ADVANCE
RELEASE
TERMINATE

AWAY TERMINATE
GENERATE
TERMINATE
START

S(SERVl),3
115,30
LINEl
SERVl
LINEl
335,60
SERVl
BOTH, , AWAY
DUMMY
LINE2
SERV;!
DUMMY
LINE2
110,25
SERV2

280000
1
1

TRANSFER BOTH BLOCK
DUMMY FACILIW

SET DUMMY FREE

10 DAYS SIMULATION

PUTPIC LINES=4,N(COMEIN),SR(SERV1)/10,FR(SERV2)/10,-
N (AWAY)

NUMBER PARTS TO COME INTO SYSTEM * * * * * *
UTIL. OF THREE SERVERS *** . **%
UTIL. OF SINGLE SERVER * * * . * *$

NUMBER TO BE SENT AWAY ****

In this example, a dummy facility was used just prior to the QUEUE
SERV2 block. Only one transaction can be in the block SEIZE DUMMY.
The TRANSFER BOTH,,AWAY block tests to see if a transaction is in this
block. If so, the transaction is routed to the block with the label AWAY.

END

3. The program to simulate the system is:
SIMULATE
STORAGE S (TUG) ,2
GENERATE 90,30 SMALL SHIP ARRIVES
QUEUE WAITl JOIN QUEUE
ENTER TUG IS TUG AVAILABLE?
DEPART WAITl LEAVE QUEUE
ADVANCE 40,l DOCK

ENTER and LEAVE Blocks 123

LEAVE TUG FREE TUG
ADVANCE 500,120 LOAD/UNLOAD
QUEUE WAIT2 WAIT FOR TUG
ENTER TUG USE TUG
DEPART WAIT2 LEAVE QUEUE
ADVANCE 30'5 UNDOCK
LEAVE TUG FREE THE TUG
TERMINATE LEAVE THE HARBOR
GENERATE 190,60,,,1 BIG SHIP ARRIVES
Qm WAIT3 JOIN QUEUE
ENTER TUG, 2 ARE 2 TUGS AVAILABLE?
DEPART WAIT3 LEAVE QUEUE
ADVANCE 50,12 DOCK
LEAVE TUG, 2 FREE TUGS
ADVANCE 780,240 LOAD/UNLOAD
QUEUE WAIT4 WAIT FOR TUGS
ENTER TUG, 2 NEED 2 TUGS
DEPART WAIT4 LEAVE THE QUEUE
ADVANCE 42,lO UNDOCK
LEAVE TUG, 2 FREE THE TUGS
TERMINATE LEAVE THE HARBOR
GENERATE 480*3*1000 SIMULATE FOR 1000 DAYS
TERMINATE 1
START 1
PUTPIC LINES=4,QA(WAITl),QA(WAIT2),QA(WAIT3),QA(WAIT4)

AVERAGE NO. SMALL SHIPS WAITING TO DOCK **** . **
AVERAGE NO. SMALL SHIPS WAITING TO UNDOCK * * * * . * *
AVERAGE NO. LARGE SHIPS WAITING TO DOCK * * * * . * *
AVERAGE NO. LARGE SHIPS WAITING TO UNDOCK **** . **

END

Running the program with 2 tugs available give the results:
AVERAGE NO. SMALL SHIPS WAITING TO DOCK .52
AVERAGE NO. SMALL SHIPS WAITING TO UNDOCK .48
AVERAGE NO. LARGE SHIPS WAITING TO DOCK .24
AVERAGE NO. LARGE SHIPS WAITING TO UNDOCK .27

This results in an expected hourly cost of: 350*(.52 + .48) + 500*(.24 +

.27) + 125 *2 or $855.
Running the program with three tug boats gives:
AVERAGE NO. SMALL SHIPS WAITING TO DOCK .03
AVERAGE NO. SMALL SHIPS WAITING TO UNDOCK .03
AVEFAGE NO. LARGE SHIPS WAITING TO DOCK . 0 4
AVERAGE NO. LARGE SHIPS WAITING TO UNDOCK .08

This results in an expected hourly cost of: $338.
Thus, the optimum number of tugs to have is 3. There is no need to run
the program with 4 tugs as their cost alone is $SOO/hour.

4. The program to do the simulation is:
SIMULATE
STORAGE S(ASSEM),Q/S(FORM),2/S(PAINT),3
GENE@-TE 100,20 PARTS COME ALONG
ADVANCE 0 DUMMY BLOCK

124 The GPSS/H Slmulatlon language

BACKl ENTER
ADVANCE
LEAVE
ENTER
ADVANCE
LEAVE

BACK2 ENTER
ADVANCE
LEAVE
SEIZE
ADVANCE
RELEASE
TRANSFER
TRANSFER
TRANSFER

MADE TERMINATE
REJECT TERMINATE

GENERATE
TERMINATE
START
PUTPIC

ASSEM
350,15
ASSEM
FORM
170,60
FORM
PAINT
240,30
PAINT
INSP
80,25
INSP
.05, , REJECT
.1, , BACKl
.08, , BACK2

280000
1
I

LINES=5,SR(ASSEM)/10,SR(FORM)/10,SR(PAINT)/10,~
FR(INSP)/lO,N(MADE)/lO

UTIL. OF ASSEMBLING MACHINES * * * . **%
UTIL. OF FORMING MACHINES ***.**%
UTIL. OF PAINTING MACHINES ***. * *%
UTIL. OF INSPECTOR ***. **%
NUMBER OF PARTS FINISHED/SHIFT * * * *

END

The results of the simulation are:
UTIL. OF ASSEMBLING MACHINES 9 7.41 8
UTIL. OF FORMING MACHINES 94.51%
UTIL. OF PAINTING MACHINES 94.97%
UTIL. OF INSPECTOR 94.61%
NUMBER OF PARTS FINISHEL)/SHIFT 262

Notice that no QUEUE blocks were used in the program as the statistics
which they gather are not needed. However, a dummy ADVANCE 0 block
was needed after the first GENERATE block to ensure that the transac-
tions created by it wiU always leave at the scheduled time.

5. Making the following changes:
Assembly: 325 f 15
Forming: 162 f 60
Painting: 221 f 30
Inspecting: 76 f 25

Gives the results:
UTIL. OF ASSEMBLING MACHINES 90.37%
UTIL. OF FORMING MACHINES 90.22%
UTIL. OF PAINTING MACHINES 89.96%
UTIL. OF INSPECTOR 90.08%
NUMBER OF PARTS FINISHEL)/SHIFT 262

mwm and LEAVE Blocks 125

6. The program to do the simulation is:
SIMULATE
STORAGE
GENERATE
TRANSFER
ENTER
TRANSFER
ADVANCE

NEXT1 TRANSFER
ADVANCE

NEXT2 TRANSFER
ADVANCE

NEXT3 TRANSFER
ADVANCE

NEXT4 QUEUE
SEIZE
DEPART
ADVANCE
RELEASE
LEAVE

CHECK QUEUE
SEIZE
DEPART
ADVANCE
RELEASE
TERMINATE
GENERATE
TERMINATE
START
PUTPIC

S(CART),1000 PROVIDE FOR 1000 CARTS
82.5,50
.12, ,CHECK
CART
.2, , NEXT1
125,70 AISLE 1
.25, ,NEXT2
140,40 AISLE 2
.15, ,NEXT3
150,65 AISLE 3
. 1, , NEXT4
175,70
WAIT
CHECKER
WAIT
45,12
CHECKER
CART
WAIT
CHECKER
WAIT
20,8
CHECKER

3600*100
1
1
LINES=2,FR(CHECKER) /lO,SM(CART)

CHECKER WORKED * * * . * *% OF THE TIME
MAXIMUM CARTS IN USE * * * *

END

The results of the simulation yield:
CHECfER WORKGD 71.948 OF THE TIME
MXIMUM C U T S IN USE 11

This means that the checker is not overworked. The simulation ran for 100
hours of 3,600 seconds each. It probably should be run for more time to see
if this maximum number changes before making a recommendation.

.
CHAPTER 13 The CLE- RESET, and

RMULT Statements

MULTIPLE START STATEMENTS

A GPSS/H program is compiled. During this phase, transactions are poised on
the CEC to be moved by the processor when the actual program begins. There
will be one transaction from each GENERATE block poised to be moved. As
soon as this transaction is moved, another one is scheduled to be moved.

When a program encounters thefirst START statement, it begins execution. If
there are other statements after the START statement, the processor will exe-
cute them after the initial program is executed. As far as understanding how
the running of a given program takes place, you can initially ignore any state-
ments after the first START statement.

For example, suppose you had other START statements one after the other
such as

0
0
0
0
0
0
0
0
0
0

The effect of the above is to run the program three times (just as if you had
START 3), but now there will be additional output from the three times (at
480,960, and 1440 time units).

It is possible to have the START statement with operands as follows:

0 DSTART @A,NP,B,l

127

I28 The GPSS/H Simulation Language

NP must be the letters “NP” (this stands for “no printout,” and no output file is
created). B is called the “Snap” interval. Every time theA counter is decre-
mented by this amount, there wil l be output. If the last operand is used, it
must be the number 1. When used, the processor outputs the various chains
(current events chain, future events chain, etc.). As an example, if you had

0 @START 0100, ,lo

you would get output for when the counter was 90,80,70, etc. At one time,
this statement was used mainly for debugging purposes, but now the BPUT-
PIC has made this use nearly obsolete.

When you have multiple START statements, the program keeps running from
the point where the last transaction was made. The transactions remain
where they were, and the program keeps going. All statistics are updated
from where they were.

Often you will want to run the program multiple times with different values
in the blocks. One of several ways to do this is as follows:

0 @SIMULATE
0 [7GENERATE 012,6
0 @ADVANCE u10,4

0 @START 01
0 BERMINATE 01

0 OEND

Add labels to the blocks you want to change, e.g., if you want to change a
GENERATE block, give the original GENERATE block a label such as W 1 ,
for example,

OKEYl BENERATE 012,6

The program begins execution at the first START statement and ignores all
the ones that follow it.

Suppose that you want to run the program a second time with the block
GENERATE 12,6 changed to GENERATE 11,6. You change the program to
the following:

~JSIMLTLATE
&ENERATE 012,6
[?ADVANCE 010,4

USTART 01
[]GENERATE 011,6
USTART 01

BERMINATE 91

OEND

Again, the program runs when it encounters the first START 1 statement and
produces output. Then, it replaces the block

The CL~AR, RESET, and FUUULT Statements I 2 9

OKEYl BENERATE u 1 2 , 6

with the block

OKEYl BENERATE 011,6

Because the next block is another START 1, the program executes a second
time with the new GENERATE block. Note that the operands are different for
the two GENERATE blocks.

The program will run initially with the block GENERATE 12,6 and produce an
output report. It will then run again with the GENERATE 12,6 block replaced
by the GENERATE 11,6 block and will produce a second output report.

The only problem with this procedure is that the second running of the pro-
gram will have the statistics and transactions from the previous run already in
the system. This situation is probably not what you want. The next section
will show how to run the program a second time with the previous statistics
zeroed out.

THE CLEAR STATEMENT

The CLEAR statement allows a program to be run multiple times with the
transactions and statistics of the system set to zero each time. Thus, the fol-
lowing code

0

0
0
0
0
0
0
O
OKEY 1
0
0

OKEYl
USIMULATE
BENERATE u12,6
D V A N C E 010,4
DERMINATE 01
USTART 01
BENERATE 0480
BERMINATE 01
USTART 01

NENERATE 011.6
USTART 01

O C L W

OENI)

will run the program twice, the first time with GENERATE 12,6 and the sec-
ond time with GENERATE 11,6; fresh statistics will be generated during the
second running. It would make no difference if the CLEAR statement fol-
lowed the GENERATE 11,6 block instead of preceding it.

When you run a program with this type of replacement, there will be a warn-
ing message that you have named the block multiple times-you ignore the
message as you intentionally did this. Remember that, whenever you label a
block in GPSS/H and do not reference it in the program, there will be a warn-
ing message.

You can stack up as many START statements together with the replacements
as desired. The effect of this approach is to make the coding of the program

130 The GPSS/H Slmulatlon Language

long. Chapter 23 shows how to run a program by using DO loops, which
makes this type of cumbersome replacement obsolete.

Since the CLEAR statement clears all statistics, there will be a time when you
will want only selected items to be cleared. You can preserve items by putting
the items you do not want cleared after the CLEAR statement. The effect of
the following CLEAR statement is to clear all items except iteml, item2, ...,
and any others listed up to item n.

0 KLEAR O i t e r n l , i t @ , ..., i t e m n

THE R E S E T STATEMENT

There will be times when you do not want to clear out the transactions (or the
various chains). For example, suppose you want to run a program for 1 hour
(beginning when the model is empty) and then discard the statistics but not
the positions of the uansactions. You write the following:

0 OSTART O1,NP USimulate for 1 hour
0 W S E T meset t h e s ta t is t ics
0 [ISTART 0100 USimulate f o r 100 hours

The RESET statement is often used when the first hour's (or so) statistics are
to be discarded owing to instability in the system.

Note: Whenever you use CLEAR or RESET, you do not change the position of
the random-number generator. This method that GPSS/H uses to acquire ran-
dom numbers is a pseudo-random-number generation (see Chapter 61, which
means that the numbers can be repeated. This fact is important in designing a
comparison of models. How, then, can you restart the random-number
stream at the same place? This is done by the RMULT statement.

THE RMULT STATEMENT

The RMULT statement followed by any number in the range *2,147,483,646
to be used in the operand starts the random-number stream at a particular
point. Thus, if you had

0
0
0
0
0
0
0
0
omy
0
0

i

U-----
USTART 01
O C L W
m T 054321
OGENERATE o l 0 , 6
CSTART 01
3END

The CLEAR, RESET, and RHULT Statements 131

The second time the program is run, the same random numbers would be used.

GPSS/H programs can use any number of random-number streams in a given
run. How to speclfy which one to use will be covered in Chapter 14. Until
now, we have been using only the first, by default. When you are using multi-
ple streams and want to reset each, the RMULT statement is

0 @l’ULT 0 1 2 3 4 , 6 5 4 3 , , 9 9 , , 2 3 1 , 9 9 9

Here random-number streams 1,2,4,6, and 7 are reset.

Encountering a group of CLEAR, RESET, and RMULT statement at the end of
a program may seem confusing at first, but remember that these are control
StaternentS and not program blocks. Always remember that the program starts
execution after each START statement and ignores the remaining statements
until execution ends for the START statement it has encountered. When the
RESET statement is used, the absolute clock is unchanged, but the relative
clock is set to zero. The SNA for the relative clock is C1.

EXERCISES, CHAPTER 13

1.

2.

3.

What will the GPSS/H absolute clock read at the end of execution of the
full program that has the following three START statements?
0 n-----
0 n-----
0 EENERATE 0480
0 DTERMINATE 01
0 DSTART 01
0 OSTART 02

0 OEND
What will the GPSS/H absolute and relative clocks read when the follow-
ing program finishes execution?
0 C-----
0 I-----

0 USTART 0 3

0 EENERATE 0100
0 DERMINATE “1
0 CSTART 04
0 DRESET
0 OSTART 08
0 3END
What will the GPSS/H absolute clock read for the following whenever
there is output sent to the .US file?
0 I-----
0 o-----
0 mERMINATE 05
0 USTART 0100, , 5

l 32 The GPSS/H Slmuiatlon Language

4. What is the effect of using the following control statements in a program?
0 n-----
0 o-----
0 n-----
0 +----

OTRUCK EENERATE 0, , , 5

0 5ENERATE 0480*100
0 DERMINATE 01
0 W T 012345
c USTART rl

0 W T E l 2 3 4 5
OTRUCK BENERATE 0, , ,6
O OSTART 01

0 O C L W

0 DEND

SOLUTIONS, CHAPTER 13

I.. The absolute clock will read 1920.0000. The first START stopped the
clock at 480.000, the second at 960.0000 and the third at 1920.000.

2. The absolute clock will read 500.0000 and the relative clock will read
300.0000.

3. The absolute clock times will be: 25.0000,50.0000, 75.0000, and
100.0000.

4. The program will run the first time with the random the number genera-
tor starting in position 12345. The simulation NIB until 48000 time units
have gone by and the first output report created. Then the statistics are
cleared out. The random number generator is reset to position 12345.
The block OTRUCK

and the simulation rerun for 480000 time units.

BENERATE 0, , , 4 is replaced with the block
OTRUCK OGENERATE I,, , 5

.
CHAPTER 14 Functions

FUNCTIONS 1N GPSS/H

The only statistical distribution we have used so far is the uniform distribu-
tion. In GPSS/H, it is possible to sample from any statistical distribution. This
is very important, since to model most things that are moving through a sys-
tem, it is necessary to sample from different distributions. Among the possi-
bilities are the exponential or Poisson distribution, the normal or Gaussian
distribution, and even distributions that are unique to the model. There are,
in fact, many times when we will refer to a function to return a value to be
used in the simulation. There are several types of functions in GPSS/H that
will be considered here.

DISCRETE FUNCTIONS

A function first must be defined and then referenced when a value is to be
obtained from it. The first form of a function to be discussed here is known as
a discrerefunction, because, when referenced, it will take on only one of sev-
eral set (or discrete) values. These possible values are specified when the
function is defined. For example, an order for goods may take 4,5,6, or 7
weeks to arrive. The number of people away from a class owing to illness
might be from 0 to 12.

Definition of a Discrete Function

The way to reference discrete functions in GPSS/H is first to define the func-
tion by means of the FUNCTION statement. This definition must be made
before the function is referenced. (How to reference a function is explained in
the next main section.) The form of the first line of the function definition is
as follows:

/>LABEL W C T I O N 2 , B

where the label is the name or number of the function. This label will be used
to reference the function.

I33

l34 7he GPSS/H Simulatlon Language

Operand A is any standard numerical attribute. The most commonly used is
RNj, which supplies random numbers from random-number stream j. Initially
in this section, the SNA considered will be RNj, but any SNA can be used.

Operand B is the term Dn, in which the letter D is for “discrete” and n is a pos-
itive integer. The value of n in Dn gives the exact (i.e., discrete) number of
values that the function may take on, which is numerically identical to the
number of pairs of values to be used during the statistical sampling procedure
that selects which value is actually taken. The first number in each pair forms
one endpoint of the range within which the random number returned must
fall to allow the second number of the pair to be used.

Whenever RNj [or RNO?] is referenced, a random number is returned. If the
reference is in connection with a function, the number returned is between
0.000000 and 0.999999 (from 0 to 1 but never 1.000000). When RNj is used
in other situations, the number returned is between 000 and 999.

For example,

O F I R S T W C T I O N m1,D2

would be a function named (i.e., labeled) FIRST. It can take on 2 values.
These values will be found on the next line or lines below the FUNCTION
statement, as explained at the end of this section.

OTOP W C T I O N m3,D5

is the function TOP that will take 1 of 5 values.

(>FIVE W C T I O N m6,D15

refers to the function FIVE that can have 1 of 15 values. It is also possible to
have labels for functions that are numbers such as

0 6 W C T I O N m1,D5

On the line or lines below the FUNCTION statement are the Dn possible val-
ues that the function might assume. These are in pairs separated by a comma
and usually in ascending order, although they may be in descending order for
a discrete function. The pairs are themselves separated by a slash V). These
values can start in position 1 (this is one of the few times in GPSS/H that any-
thing can be in position I) and go up to and include position 72. The pairs can
occupy more than one line, if necessary. If so, the slash can be omitted from
the end of the previous line. The first number of the pair refers to the GPSS/H-
generated random number.

How a Discrete Functlon Works

When a function having RNj as an operand is referenced, a random number is
obtained from the random-number stream referenced (i.e.,j). In the case of
RNl, the first random-number stream is used because of the 1 in RN1. RN5
would reference random-number stream 5. There is no Iimit to the number of
random-number streams in GPSS/H, although most references will be to RNl

Functions 135

for convenience. The random number returned is then used to obtain a value
to be returned. Thus,

3SALLY W C T I O N gRNl,D3
. 1 , 5 / . 6 , 8 / 1 , 1 0

will return 5,8, or 10 and no other values. If the random number obtained
from the random number stream is between 0.000000 and 0.100000, the
number returned is 5; if the number is from 0.1000001 to 0.600000, the
number returned is 8; if the number is from 0.600001 to 0.999999 the num-
ber returned is 10. This approach to selecting the value of the function is bet-
ter seen as follows:

Random Number Value Returned

0.000000 I RN I 0.100000

0.100001 I RN 10.600000

0.600001 5 RN I0.999999

5

8
10

This procedure is known as Monte Carlo sampling. Simulations done by using
this form of sampling are known as Monte Carlo simulations.

REFERENCING FUNCTIONS I N GPSS/H

Note: The former method of referencing functions was to use a single dollar
sign ($). Thus, to reference the function FAST, one would have something
like ADVANCE FN$FAST. GPSS/H still supports this method, but it will not be
used here.

Functions are referenced in GPSS/H by the letters FN followed by the name of
the function in parentheses. (In the case of using a number for a function, ref-
erence is FN(j) or simply by FNj wherej is the number of the function.) Some
examples are as follows:

Q(a) [3LDVANCE W (T I M E)
(> (b) SENERATE (SPEED)
9 (c) WENERATE E,, ,4,FN(AMOUNT)
3 (d) EENERATE ~ l 0 0 , 2 5 , FN (TIMEIN)

In (a), the transaction will be placed on the FEC for a duration given by refer-
ence to the function TIME. In (b), a transaction will be generated according to
the time given by the function SPEED. This means that, during compiling, a
transaction is scheduled to leave the GENERATE block. As soon as this trans-
action leaves, another is scheduled to leave. The times to leave are given by
reference to the function SPEED. The statement in (c) will generate 4 transac-
tions at time t = 0. The priority of each will be given by the function AMOUNT.
The statement in (d) will generate transactions every 100 * 25 time units. The
first transaction will enter the system at a time given by reference to the func-
tion TIMEIN.

The number returned when a function is referenced need not be an integer.
Thus, it would be possible to have

136 The GPSS/H Slmulath Language

OTEST6 W C T I O N m 3 . 0 4
.25,3.5/ .44,5.1/ .7 ,1.8/1,9.89

Here the returned values would be 3.5, 5.1, 7.8, or 9.89. If you had

OTEST7 W C T I O N m1,D3
. 1 , 4 / .5,6/ .8,9

and a random number greater than 0.8 was returned when RN1 was sampled,
the value of the function would be 9.

Example 14.1

Suppose that a shopper takes 3,4, or 5 minutes to load a shopping cart and
that 30% of the time it takes 3 minutes, 30% of the time it takes 4 minutes,
and the remaining 40% of the time it takes 5 minutes. To use a GPSS/H func-
tion, it is necessary to make a cumulative probability distribution. The follow-
ing illustrates this distribution:

Time (minutes) Relative Probability Cumulative Probability

3 .30 .30
4 .30 .60
5 .40 1.00

Since 30% of the time it takes the shopper 3 minutes to load the cart, we
would like to have the GPSS/H function return a time of 3 minutes also 30%
of the time. This matching is done by assigning the value of the random num-
ber generated by the GPSS/H processor to the corresponding probability:

Time (minutes) Cumulative Probability Random Number

3
4
5

0.30 .OOOOOO to .300000

0.60 .300001 to .600000
1.00 .600000 to .999999

If the random number is between 0.000000 and 0.300000, the time is taken
as 3; if the random number is from 0.300001 to 0.600000, the time is 4, and,
if the random number is from 0.600000 to 0.999999, the value is 5. Notice
that, by using cumulative probability distributions, the correspondence
between the random number and a time is unique, i.e., for each random num-
ber there is 1 and only 1 value that corresponds. Notice, also, that there is a
very slight error since the random number is never equal to 1.000000. This
error is so small that it is not significant.

Returning to the original problem, we would write the function as

OSHOPR OFUNCTION ORNl,D3

Notice that there is no decimal after the 1 in the pair 1,5. The decimal is
optional here. There is no slash at the beginning or end of the pairs of numbers.

. 3 , 3 / . 6 , 4 / 1 , 5

Functions 137

It also would have been all right for the function describing the shoppers to be
written as follows:

---_-
0 W V A N C E @" (SHOPR)

or even to have each pair of values on a separate line.

Consider the following:

OTIME @FUNCTION m 1 , D 4
. 2 5 , 8 / . 5 0 , 9 / . 9 , 1 0 / 1 , 1 1

Later in the program, if you had

0 @ADVANCE @"(TIME)

the transaction would be put on the future events chain for a time of 8,9,10,
or 11 time units. The number of time units will be 8 for 25% of the transac-
tions; 9 for 25% of the transactions; 10 for 40% of the transactions; and 11
for the remaining 10% of the transactions. If we had

0 @ADVANCE W (T 1 M E) 5

the transaction would be on the future events chain for one of the following
times: 8 f 5,9 f 5,lO f 5, or 11 * 5 time units.

CAUTION I N USING FUNCTIONS W I T H ADVANCE AND GENERATE BLOCKS

When either an ADVANCE block or a GENERATE block has afunchon in the B
operand, the effect is to muhiply the value in the A operand by the value of
the function. Thus, if you had the following functions

OONE @UNCTION w 1 , D 3
. 3 , 1 0 / . 6 , 1 5 / 1 , 2 0
OTWO W C T I O N m1,D2
. 4 , 2 / 1 , 3

and you used

0 W V A N C E flF'N(0NE) ,FN(TWO)

and if FN(0NE) had the value of 15 and FN(TW0) had the value of 3, the
transaction would be placed on the future events chain for 45 time units, not
15 f 3 time units. In Chapter 18, we shall see how to achieve the f result in
the ADVANCE block.

I38 The GPSS/H Sirnulath Language

Example 14.2

Customers arrive at a parking lot every 100 f 23 seconds. It takes them 13 k 5
seconds to park and 12 f 2 seconds to walk to the store. Shopping time varies
as follows:

Time (seconds) Relative Frequency Cumulative Frequency

50
55
65
75
90

0.12
0.25
0.27
0.22
0.14

0.12
0.37
0.64
0.86
1.00

The store is small and has only one checkout counter. The time required to
check out is as follows:

Time (seconds) Relative Frequency Cumulative Frequency

80 0.25 0.25
90 0.20 0.45
100 0.30 0.75
120 0.25 1.00

Of the total customers arriving, 10% make no purchase and leave the store.
The time to return to their cars is 20 f 8 seconds, and the time to leave the
parking lot is 8 * 4 seconds. Simulate for 1000 people arriving at the store,
shopping, and driving away.

Solution

0 0s IMULATE
@HOP W C T I O N gRNl,D5
.12,50/.37,55/.64,65/.86,75/1,90
WHKOT W C T I O N m 1 , D 4
.25,80/.45,90/.75,100/1,120
0 B E N E R A T E 0100,23
0 W V A N C E C13,5
9 W V A N C E 012,2
0 W V A N C E m (SHOP)
0 W S F E R u.l,,OUT
0 m m D I N E

0 D E P A R T D I N E
0 W V A N C E rJN (CHKOT)
0 B E L E A S E KHECKER
CXXlT W V A N C E c20,8
0 W V A N C E 08,4
0 mERMINATE 01
0 USTART El000
W O M E I N BERMINATE El
0 USTART 01000

0 5 ~ 1 2 ~ BHECKER

BUSTOMERS ARRIVE

WALK TO STORE
USHOP
010% MAKE NO PURCHASE
D E S T QUEUE AT CHECKOUT
B S E CHECKER

E H E C K OUT
P R E E CHECKER
m E l " TO CAR
@EAVE PARKING LOT

PPARK CAR

@EAVE Qm

.j @UTPIC ~INES=3,ACl/60,FR(CHECKER)/lO,QA(LINE)
TIME FOR 1000 PEOPLE TO SHOP: ******* . ** MINUTES

Functions 139

UTIL. OF CHECKER * * * * * * g

AVERAGE PEOPLE IN CHECKOUT LINE * * * . * *
0 CDJD

The output from this program is

TIME FOR 1 0 0 0 PEOPLE TO SHOP: 1672.54 MINUTES
UTIL. OF CXECXER 89.01%
AVERAGE PEOPLE I N CHECKOUT L I N E 0.27

Although this example illustrates the use of the FUNCTION statement, it is
not realistic. The most glaring deficiency is the fact that the various shopping
and checkout times are given by discrete values. Certain times such as 51 sec-
onds for shopping and 97 seconds for checking out are not considered. They
could have been included by making the FUNCTION statement much longer.
This approach would be tedious and is not necessary, as we shall learn in the
next section. However, the following points also should be considered in
building an actual model of a grocery store:

1. Shoppers do not amve during the day according to the same statistical
distribution. At certain times (between 4:30 p.m. and closing, for exam-
ple) there are more shoppers than during other times. A more nearly
accurate function should reflect this.

2. The parking lot holds only a finite number of cars. If another customer
drives into the lot when it is full, the customer may leave. This possibility
can be programmed by means of the STORAGE statement and the ENTER
block.

3. It might be better to have the checkout time vary, depending on the num-
ber of items purchased.

4. Some shoppers may not join the queue if it is too long, but will prefer to
continue shopping.

5. If the queue reached a certain length, the one checker may be able to call
for another helper.

6. The time to walk from the parking lot to the store (and subsequently
return) should vary with the number of cars in the lot. The more cars in
the lot, the farther away the next car that amves will have to park.

As more GPSS/H code is introduced, it will be possible to incorporate the
above changes into the model.

CONTINUOUS FUNCTIONS

A continuous function is defined and referenced in much the same manner as
a discrete one. In the case of discrete functions, only a finite number of values
can be returned. The number is specified by the operand Dn, and the possible
values are the second numbers in the pairs that follow Dn. For continuous
functions, a value is returned that can be considered as being a decimal num-
ber within a specified range, i.e., if the range is from 4 to 7 , any possible value
from 4.000000 to 6.999999 can be returned. Notice that the range is an
“open” one in that the right endpoint is not included.

140 The GPSS/H Slmulation language

The two values forming the pairs that give the ranges must be in ascending
order, and the number of these pairs is given by the n in Cn (the C indicates
continuous). One form of a continuous function might have the first line as

WEST1 W C T I O N m 1 , C 5

This line means that the function labeled TEST1 will use random-number
stream 1 to return a random number. The value of the function will be deter-
mined by sampling from 5 pairs of numbers. The ordered pairs of numbers
that come on the line(s) after the function line specify the intervals within
which the value of the function is to be obtained. The value is determined by a
linear interpolation between the pairs. For example, the function

WEST2 W C T I O N m 1 , C 3
0 , 1 / . 7 , 4 / 1 , 5

will return the following values:

Value Returned from Interval If Random Number Generated Is

1-4.000000 0-0.7000000
4.000001-4.999999 0.7000014.999999

Suppose that, when the function is referenced, the random number generated
is 0.300000. The value of the function, 2.285714, is obtained by linear inter-
polation (done automatically by the GPSS/H processor). The calculation is as
follows:

Cy - 1)/(0.3 - 0) = (4 -y)/(0.7 - 0.3)

Consider the function

OTEST3 W C T I O N W l , C 2
0 , 1 1 1 . 5

This function will return a value between 1.000000 and 4.999999 but not
5.000000 because the random number is always from 0.000000 to 0.999999.

USE OF FUNCTIONS W I T H ANY SNA

In a function definition, it is possible to use any SNA instead of a random
number. Thus, one could have the following:

OTIMES W C T I O N m(WAIT),D5
0 , 1 0 / 1 , 8 / 2 , 6 / 3 , 5 / 4 , 4
OFIRST W C T I O N DR(MACHl),D3
1 0 0 , 5 . 5 / 5 0 0 , 6 . 6 / 9 2 3 , 7 . 6
OSECOND @UNCTION OSR(BOOTH),D2
500,20/999,30

The function with the label TIMES will return a value of 10,8,6,5, or 4
depending on the current length of the queue WAIT; note that descending
order for the possible values is acceptable for discrete functions, but not for
continuous functions. The function FIRST will return a value of 5.5,6.6, or 7.6
depending on the fractional utilization of the facility MACHI. The function

Functlons 141

SECOND will return a value of either 20 or 30 depending on the utilization of
the storage BOOTH. An example of the use of such a function reference might
be a barber who cuts hair at a rate that depends on the number of customers
waiting in the shop. As the queue increases, the barber will increase the cut-
ting rate. For example, suppose the normal time is 10 minutes if the queue is 0.
If 1 customer is waiting, the time is 9 minutes; if 2 are waiting, the time is 8.5
minutes; and if 3 or more are waiting, the time is 8 minutes. The program
might have the following lines of code:

o , i o / i , 9 1 2 , 8 . 5 / 3 , a
0 g-----
0 n-----

C C l J " I N G @!?UNCTION (WAIT) , D4

0 @ADVANCE ~ (c u ? T I N G)

OTHER FORMS OF FUNCTIONS

There are three other forms of functions that are used in GPSWH.

List Functions

Many times the first number in each of a function's referencing pairs is the
sequence of integers 1,2,3, , N . In this case, the function is cded a "list"
function, and this fact is specified by Ln (where n = the number of pairs in list
L of possible values), as follows:

OEXAMPLE W C T I O N (WAIT) , L3
1 , 1 / 2 , 4 / 3 , 5

It would be wrong to begin the list with 0:

OEXAMPLE W C T I O N (WAIT) , L4
0 , 1 / 1 , 1 / 2 , 4 1 3 , 5

A list function is preferable to use if a list type of situation is involved in a sim-
ulation. Not only does a list function take less time to execute, but, if the
value of the SNA is outside the range 1 to N , an execution error occurs. There-
fore, using a list function can be useful in debugging a program. Thus, in the
example cited here, if the queue at WAIT was 0, the program would return an
error. As we learn more programming code, there will be more examples of
list functions. Since thex-values of every list function must start with 1 and be
incremented by 1, these values can be omitted. Thus, a correct way to write
the preceding function would be

OEXAMPLE W C T I O N &(WAIT) , L4
, 1 / , 1 1 , 4 / , 5

Attribute-Valued Functlons

It is possible to have functions that reference other functions. These are
known as attribute-valued functions and are specified by En. For example,

GSPEED W C T I O N m 1 , E 3
.25,FN(ONE)/.6,FN(TW0)/1,6

142 The GPSS/H Slmulatlon Language

If the value of the random number is less than or equal to 0.25, the value
returned is obtained by reference to the function ONE; if the value of RN1 is
from 0.25 to 0.6, the value is obtained by reference to function TWO; other-
wise the value is 6.

If an attribute-valued function is also a list function, the letter E is replaced by
the letter M. It is possible for an attribute-valued function to reference func-
tions that are themselves attribute-valued functions.

There is still another type of function, the entity type. This function is noted
by the letter S, but will not be used in this book.

E X E R C I S E S , CHAPTER 1 4

z Build a function to return the following times:

Time (minutes) Probability
5 0.10
6
7
8

0.20

0.40
0.30

2. Refer to example 1. Suppose the parking lot held only 2 cars and any
other cars that came would be turned away. Assume the store is in opera-
tion for 5 days per week for 10 hours per day. Run the simulation for
room first for 3 and then 4 cars to park.

3. In a study of the time it takes Joe to give a haircut, 155 customers were
timed and the following data were obtained:

Time (minutes) Number of People

4 0
10 to 11
11 to 12
12 to 13
13 to 14
>14

0
87
35
20
13

0

What FUNCTION statement could be used in the ADVANCE block to sim-
ulate getting a haircut from Joe? This should be a continuous function.

4. The following data give the interarrival rates of parts coming into a repair
shop.

Time Between Arrivals (minutes) Relative Frequency

< 10
10 to 11

0
0.10

11 to 12 0.25
(continues)

Functions 143

Time Between Arrivals (minutes) Relative Frequency

12 to 13 0.35
13 to 14 0.20
14 to 15 0.08
15 to 16 0.02

> 16 0

There is only one machine for doing repairs, and it can only repair one
part at a time. There are only two spaces for parts to be held in; if they are
both full, no more parts can be repaired by the machine, and any others
arriving at the shop will be routed to another shop. This means that the
maximum number of parts in the repair shop is 3. Service time varies
according to the following data:
~ ~ ~~ ~ ~ ~~~ ~ ~~~

Time for Service (minutes) Relative Frequency
<30 0

30 to 31 0.25
31 to 32
32 to 33
33 to 34
34 to 35
>35

0.22
0.28
0.18
0.07
0

Simulate the repair shop to determine how many customers are turned
away in a typical day.

5. The results of exercise 4 show that the system is highly inefficient in that
too many parts are being sent to another repair shop. Run the program
with the following changes and determine the effect of each. (Note: for
problems 5c and 5d, assume that all you need to do is to change the
ADVANCE block.)
a. There are places for 5 parts to be held in, rather than 2.
b. A new machine can repair the parts twice as fast as the old one.
c. Another new machine can repair the parts 2.5 times as fast as the old one.
d. Still another machine can be purchased that is 3 times as fast as the

old machine.
6. A widget manufacturing process is as follows:

can be considered as infinitely large.)
a. A worker takes a partially finished widget from a large pile. (This pile

b. The worker then finishes assembling the widget.
c. The worker takes it to a painting machine for final painting. There is

only one of these painting machines, and the person who assembled
the widget is responsible for painting it.

d. The worker finishes the painting, puts the widget on a conveyor belt,
and returns to the original work station to begin the final assembly of
another widget.

I44 The GPSS/H Simuiatlon Language

The various associated times are
a. Finish assembly:

Time (minutes) Relative Probability Cumulative Probability

20 0.05 0.05
21 0.12 0.17
22
23
24
25
26

0.18
0.21
0.25
0.15
0.04

0.35
0.56
0.81
0.96
1.00

b. Take widget to paint area: 1 f 0.4 minute
c. Paintwidget:

Time (minutes) Relative Probability Cumulative Probability

6 0.10 0.10
7 0.25 0.35
8
9
10

0.35
0.23
0.07

0.70
0.93
1.00

d. Return to work station: 1 f 0.4 minute
Eachwidget earns the company a profit of $12.75. A worker is paid $9.50
per hour. The fixed cost of the operation is $75 per day. Determine the
optimum number of workers to have making widgets. Simulate for 100
shifts of 480 minutes each.

7. Refer to Exercise 6. Suppose the widget manufacturing plant determined
that the demand for widgets was such that a second painting facility was
justified. Determine the correct number of new workers to hire to make
the additional widgets.

8. Customers come to use a single server. They will always wait in a queue if
the server is busy. Suppose that the arrival and service rates for the differ-
ent possible distributions in minutes are as follows:

Distribution Arrival Service

Uniform 5 f 3 4 f l
Normal Mean = 5, Mean = 4,

Exponential Mean = 5 4
Std. Dev. = 1 Std. Dev. = 0.7

Write the GPSS/H program to compare the utilization of the server for
the 3 different distributions. Simulate for 500 shifts of 480 minutes each.

Functlons 145

SOLUTIONS, CHAPTER 1 4

I. One such function would be:

.1,5/.3,61.7,7/1, a

places:

TIMES FUNCTION RN3,C3

2. The changes to the program are shown below for the case of 2 parking

SIMULATE
SHOP FUNCTION RNl,D5
.12,50/.37,55/.64,65/.86,75/1,90

.25,80/.45,90/.75,100/1,120
STORAGE S (LOT) , 2
GENERATE 100,23
TRANSFER BOTH, , AWAY
ENTER LOT
ADVANCE 13,5
ADVANCE 12,2
ADVANCE FN (SHOP)
TRANSFER .l, ,OUT
Q= LINE
SEIZE GIRL
DEPART LINE
ADVANCE FN (CHKOT)
RELEASE GIRL

CHKOT FUNCTION RNl,D4

OUT ADVANCE 4,2
ADVANCE 8,4
LEAVE LOT

COMEIN TERMINATE
AWAY TERMINATE

GENERATE 36oo*a*s*2
TERMINATE 1
START 1
PUTPIC LINES=I,N(COMEIN)/2,FR(GIRL) /lO,QA(LINE),N(AWAY)

NUMBER OF PEOPLE SERVED PER WEEK: * * * * * * *
UTIL. OF CHECKOUT GIRL
AVERAGE PEOPLE IN CHECKOUT LINE
PEOPLE WHO ARE TURNED AWAY

* * * . * *
* * * . **
* * *

END
The results of the program for 2 spaces are:
MIMBER OF PEOPLE PER WEEK: 11 02
UTIL . OF CHECKOUT GIRL 66 .64
AVERAGE PEOPLE I N CHECKOUT LINE .04
PEOPLE WHO ARE TURNED AWAY 670

If a third parking place can be found, the results are:
NUMBER OF PEOPLE PER WEEK: 1 4 1 6
UTIL. OF CHECKOUT GIRL 8 6 . 1 0
AVERAGE PEOPLE I N CHECKOUT LINE .19
PEOPLE WHO ARE TURNED AWAY 33

146 The GPSS/H Simulation Language

For 4 parking spaces, the results are:
NUMBER OF PEOPLE PER WEEK: 1437
UTIL. OF CHECKOUT GIRL 89.35
AIIERAGE PEOPLE I N CHECKOUT LINE .28
PEOPLE WHO ARE TURNED AWAY 2

3. The following function will work
GIVECUT FUNCTION RN1,C5

0,10/.561,11/.787,12/..916,13/1,14

4. The program is as follows:
SIMULATE

COMEIN FUNCTION RNl,C7
0,10/.1,11/.35,12/.7,13/.9,14
SERVICE FUNCTION RN1,C6
0,31/.25,32/.47,33/.75,34/.93

STORAGE S (ROOM) ,2
INSHOP GENERATE FN(COME1N

QUEUE WAIT

.98,15/1,10

35/1,36

TRANSFER BOTH,,AWAY
ENTER ROOM
SEIZE WORKER
DEPART WAIT
LEAVE ROOM
ADVANCE F"(SERV1CE)
RELEASE WORKER
TERMINATE

AWAY DEPART WAIT
GGGG TERMINATE

GENERATE 480*100
TERMINATE
START 1
PUTPIC LINES=I,N(INSHOP) ,N(GGGG) , SR(RO0M) 110,-

FR(W0RKER) 110
NUMBER TO ARRIVE AT SHOP *****
NUMBER TO LEAVE WITH NO SERVICE * * * * *
UTIL. OF THE ROOM ***. **%
JTIL. OF MACHINE *** . **%

END

The results of the simulation yield the following:
MIMBER TO ARRIVE AT SHOP 3842
MIMBER TO LEAVE WITH NO SERVICE 2396
UTIL. OF THE ROOM 96.08%
UTIL. OF MACHINE 99.98%

5. a. The first change is simply to the STORAGE statement. It now is:
STORAGE S(CHAIR),5

The results of the simulation are:
NUMBER TO ARRIVE AT SHOP 3847
NUMBER TO LEAVE WITH NO SERVICE 2396
UTIL. OF THE ROOM 90.44%
UTIL. OF MACHINE 99.98%

This says that having more waiting space is not the answer. Once the
repair facility is full, the parts have to leave as before.

Functlons 147

b. The change now is to the ADVANCE FN(SERVICE). It becomes:
ADVANCE FN(SERV1CE) 12

The new results of the simulation are:
NUMBER TO ARRIVE AT SHOP 3853
"IMBER TO LEAVE WITH NO SERVICE 951
UTIL. OF THE ROOM 92.20%
UTIL. OF MACHINE 99.98%

c. This time the ADVANCE is changed to ADVANCE FN(SERVICEV2.5
The results are:
NUMBER TO ARRIVE AT SHOP 3851
NUMBER TO LEAVE WITH NO SERVICE 223
UTIL. OF THE ROOM 98.54%
UTIL. OF MACHINE 99.90%

There are still too may parts being sent away.

The new results are:
d. The ADVANCE block is changed to ADVANCE FN(SERVICE)/3.0

MTMBER TO ARRIVE AT SHOP 3850
NUMBER TO LEAVE WITH NO SERVICE 0
UTIL. OF THE ROOM 0.13%
UTIL. OF MACHINE 88.50%

6. The program for the simulation is:
SIMULATE

WORKER FUNCTION RNl,D7
.05.20/.17,21/.35,22/.56,23/.81,24/

PAINT FUNCTION RNl,D5
.1,6/.25,7/.7,8/.93,9/1,10

NUMBER GENERATE ,, , 2
UPTOP ADVANCE FN (WORKER)

ADVANCE 1, . 4
QUEUE WAIT
SEIZE PAINT
DEPART WAIT
ADVANCE FN (PAINT)
RELEASE PAINT
ADVANCE 1, . 4
TRANSFER , UPTOP
GENERATE 480*20
TERMINATE 1
START 1
CLEAR

96,25/1,26

PROVIDE WORKERS
ASSEMBLE A WIDGET
TAKE WIDGET TO PAINT AREA
QUEUE FOR PAINT SHOP
USE THE PAINT SHOP
LEAVE THE QUEUE
PAINT A WIDGET
FREE THE PAINTER
RETURN TO WORK STATION
READY TO MAKE ANOTHER WIDGET
SIMULATE FOR 20 SHIFTS

NUMBER GENERATE , , , 2 RUN FOR TWO WORKERS
START 1
PUTPIC LINES=2,N(NUMBER),(N(WIDGET)*12.75) /loo_

-9.5*8*N(NUMBER) -75
NUMBER OF WORKERS * * *
PROFIT PER SHIFT * * * * . * *

148 The GPSS/H Slmulatlon Language

CLEAR
NUMBER
START
PUTPIC

NUMBER OF WORKERS * * *
PROFIT PER SHIFT ****.**

CLEAR
NUMBER
START
PUTPIC

NUMBER OF WORKERS * * *
PROFIT PER SHIFT **** . **

CLEAR
NUMBER
START
PUTPIC

NUMBER OF WORKERS * * *
PROFIT PER SHIFT * * * * . * *

CLEAR
NUMBER
START
PUTPIC

GENERATE , , , 3
1
LINES=2,N(NUMBER),(N(WIDGET)*12.75)/100-

-9.5*8*N(NUMBER)-75

GENERATE , , ,4
1
LINES=2,N(NUMBER),(N(WIDGET)*12.75)/100-

-9.5*8*N(NUMBER)-75

GENERATE , ,,5
1
LINES=2,N(NUMBER),(N(WIDGET)*12.75)/100-

-9.5*8*N(NUMBER) -75

GENERATE , , ,6
1

LINES=2,N(NUMBER),(N(WIDGET)*12.75)/100-
-9.5*8*N(NUMBER)-75

END

The table below summarizes the results of the simulation and the cost cal-
culation results.

Widgets Gross Fixed Workers’ Net
Workers Made/Day Profit Costs Salaries Profit

2 28.75 $367 $75 $152 $140

3 42.75 $545 $75 $228 $242

4 54.35 $706 $75 $304 $327

5 59.60 $760 $75 $380 $305

6 59.60 $760 $75 $456 $229

As can be seen, the optimum number of workers to have is 4. This results
in a profit/day of $327.

A storage of size 2 needs to be added:

The blocks SEIZE PAINT and RELEASE PAINT now become ENTER PAINT
and LEAVE PAINT. The number of workers also needs to be increased in
the simulation. The results of the simulation follow.

7. The following changes need to be made to the program:

STORAGE S(PAINT),2

Functlons 149

Number of Workers Profa/Shift

5 $461
6 $564

7 $659
8 $738

9 $749
10 $688
11 $615

8. The program to simulate the uniform distribution is:
SIMULATE
GENERATE 5,3
QUEUE WAIT
SEIZE SERVER
DEPART WAIT
ADVANCE 4,l
RELEASE SERVER
TERMINATE
GENERATE 480*500
TERMINATE 1
START 1
PUTPIC LINES=3,FC(SERVER)/500.,FR(SERVER) /lO,QA(WAIT)

PEOPLE WHO COME IN PER SHIFT * * * * * * * . * *
UTIL. OF SERVER * * * . **%
AVERAGE QUEUE LENGTH * * * * * *

The changes to the program for using the normal distribution are to
replace the GENERATE and ADVANCE blocks with:

and

For the exponential distribution, the following are used:

and

The results of the simulation are:

END

GENERATE RVNORM(1,5,1)

ADVANCE RVNORM(1,4,.1)

GENERATE RVEXPO (1,5)

GENERATE RVEXPO (1,4)

Number Uniform Dist. Normal Dist. Exp. Dist.

Arrive/Shift 95.70 95.93 95.03
Util. of Worker 79.80 79.97 79.67
Average Oueue 0.17 0.05 2.97

.
CHAPTER 15 More on Standard

Numerical Attributes:
Arithmetic in GPSS/H

We have learned that every time a transaction encounters a certain block such
as a QUEUE, ENTER, or SEIZE block, certain statistics are gathered and kept
for printing out at the end of the program. These are known as standard
numerical attributes (SNAs) and can be used by the programmer in other
blocks when the program is being run. When the QUEUE, SEIZE, and ENTER
blocks were introduced (Chapters 10-12), the various SNAs associated with
them were listed, but those SNAs have not been used much to this point.
There are, however, many uses for them that will become apparent as more
GPSS/H blocks are presented. For example, the length of a queue may be
used to determine whether a transaction will enter the queue. A facility is
either in use or idle, as denoted by a 1 or a 0. If a facility is being used, a trans-
action may be sent to a different block. Another facility might work faster or
slower as its utilization increases. We shall learn how to use these SNAs to
greatly increase our programming skills.

A FEW OTHER SNAs

There are many other SNAs. Appendix B gives a list of the SNAs used in this
book. Some have been encountered already without specifically referring to
them as such. These are known as “system SNAs.”

151

152 The GPSS/H Slmulatlon Language

M1

FRNl

Kj

This SNA returns a fractional random number between 0.0 and 1.0.
The endpoints 0.0 and 1.0 are excluded.

In older versions of GPSS, every constant needed to be listed as Kj,
where j was the value of the constant. Thus, one would have GENER-
ATE K480, ADVANCE K30,K5. This approach is no longer required, but
GPSS/H still supports it.
The SNA M1 is used to track how long a transaction has been in the
system. When a transaction enters the system, the transaction is
tagged with the time of entry. Whenever M1 is then referenced, the
transaction's time of entry is subtracted from the current clock value.
M1 is the difference between these two times. Suppose the time of
entry was 5040.1234, and when M1 is referenced, the clock is at
5880.1235. M1 will be 840.0001. M1 is a floating-point number.

The SNA Ni is the total number of transactions that have entered the
block with the label i.

The SNA TGI is the current value of the termination counter.

RNj indicates a random number from 0 to 1. This can also be written
as RN(,). This SNA was used in defining functions. If it is used in con-
nection with a function, the value returned is from the interval [0, 1)
i.e., from 0.000000 to 0.999999. If used in any other context, the
value returned is from 000 to 999.

Wi is the number of transactions currently at the block with the label i.
If there are 4 cars in the QUEUE LINE block, Wi = 4. This result is
exactly the same as that of the SNA Q(LINE). However, most blocks do
not have such an SNA, so the Wi must be used.

Every transaction has a unique ID number. This is given at birth! This
SNA is very important when studying animation.

Ni

TG1

R Nj

Wi

XlDl

MATHEMATICAL FUNCTIONS

GPSS/H supports the following mathematical functions. The term "xpf' refers
to the expression used with each. In all cases for trigonometric functions, the
xpr must be in radians.

ABS(xpr)

ACOS(xpr) Arc cosine.

ASIN(xprf Arc sine.
ATAN(xpr) Arc tangent.
COS(xpr) Cosine of angle.

D(P(xpr)

WxPr)

WxPr)
LOG(xpr)
SIN(xpr) Sine of angle.
TANfxpr) Tangent of angle.

Absolute value. The mode for xpr is retained.

e to the power xpr; xpr is real.

Convert xpr to fixed point.
Convert xpr to floating point.

Natural log of xpr; xpr is real.

More on Standard Numerical Attrtbutes: Arithmetic In GPSS/H 153

ARITHMETIC EXPRESSIONS I N GPSS/H

It was mentioned in Chapter 5 that SNAs can be used in operands in arith-
metic expressions. The following operations are used in GPSS/H:

+ unary and binary addition
- unary and binary subtraction

/ division

* multiplication
@ modular division

The above operations are all familiar to us with the possible exception of
modular division. This is defined as division after which only the remainder is
kept. For example, 7 @ 4 is 3 since the remainder is 3 , 9 @ 10 is 9 (0 with a
remainder 9), etc. Thus, one could have

0 W V A N C E m(BLOCKA)*Q(FIRST)+Q(LAST)*3.5

Since the arithmetic operations in GPSS/H are so similar to those encountered
in other programming languages, not much more will be said of them at this
time. However, care must be taken to guard against round-off (actually, trun-
cation) error when integer division is used. For example, ADVANCE 5/2 will
result in a transaction being placed on the FEC for 2 time units (in integer divi-
sion, 5/2 = 2), but ADVANCE 5./2 will place the transaction on the FEC for 2.5
time units. Notice that GPSWH requires only one ofthe numbers to bejloating
point to produce ajloaring-point result. In the case where two integers are used
in division and a floating-point result is desired, the function FLT is used.

The use of SNAs will greatly expand one’s ability to build meaningful simula-
tion models. As additional blocks are introduced, it will become even more
apparent how useful they are in writing simulation models. Most of the pro-
grams from now on will make use of SNAs. Several examples are given next.
Some might appear to be quite fanciful, but they illustrate the extreme power
and flexibility of the language.

()TRUCK SENERATE o , , ,4
3 W V A N C E n60*N(TRUCK) -60

Four transactions will leave the GENERATE block at time t = 0. The first is put
on the future events chain for a time of 60*N(TRUCK)-60. The block count
when the first transaction has left is 1. Therefore, the time on the FEC is 0.
The second transaction will be put on the FEC for 60 time units, the third for
120 time units, and the fourth for 180 time units. The effect of this ADVANCE
block is to delay the entry of each of the transactions after the first by a period
of 60 time units multiplied by N.

/) W P A :SEIZE T O M M Y
’3----_
___-- - 3

CJ‘ -
0 W V A N C E ;Sr(flAE?PA) *2

154 The GPSS/H Slmulation Language

Transactions entering the ADVANCE block will be put on the FEC for a time
equal to 2 times the number of transactions that have entered the block with
the label RAMPA. The preceding ADVANCE block also could have been written

0 @ADVANCE D C (TOMMY) *2

because FC(T0MMY) gives the number of times the facility TOMMY has been
captured.

0 mERMINATE (BLOCKC)

The counter given by the STARTA statement is decremented by the amount
equal to the current block count at the block with the label BLOCKC.

0 @ADVANCE 0 2 . 5 * A C l

The transaction will be put on the FEC for a time equal to 2.5 times the abso-
lute clock value.

0 @ADVANCE N A (L I N E)

The transaction will be placed on the FEC for a time equal to the integer por-
tion of the average queue content of the queue named LINE.

0 @ADVANCE (STORE)

A transaction entering the ADVANCE block will be placed on the FEC for a
time equal to the length of the queue STORE.

Example 35.1

Customers arrive at Joe’s barbershop every 15 * 6.5 minutes. This distribu-
tion is constant throughout the day. If no customers are waiting, Joe will
tend to take his time cutting hair. As customers arrive and fill up the shop,
Joe will speed up his hair cutting. The time it takes Joe to cut hair is given
by the following:

People in Queue Time to Give Haircut (minutes)

0 18
1 16

2 or 3 14
4 or 5 13

more than 5 12

Simulate the operation of Joe’s barbershop for 5 straight shifts of 480 minutes
each. Determine how busy Joe is for an 8-hour shift. The program to do the
simulation is as follows:

0 OSIMULATE
OTIME W C T I O N W (W A I T) , D7

? [IGENERATE p15,6.5 CPEOPLE ARRIVE
0 mUEUE B A I T G I N WAITING AREA
0 OSEIZE Z O E B D G A G E JOE FOR HAIRCUT

0 , 1 8 / 1 , 1 6 / 2 , 1 4 / 3 , 1 4 i 4 , 1 3 / 5 , 1 3 / 6 , 1 2

More on Standard Numerical Attributes: Arithmetic In GPSS/H 155

0 DEPART BAIT m??.AVE WAITING AREA
0 DVANCE m(TIME) @UT HAIR
0 BELEASE WOEB DFSE THE BARBER
0 DEWINATE @LEAVE THE SHOP
0 BENEFATE 0480*5 OSIMULATE FOR 5 SHIFTS
0 DEWINATE 01 OF SIMULATION
0 USTART 01
0 OPUTPIC @LINES=S,FLT(FR(JOEB)) /lO,FC(JOEB) /20,-

QM(WAIT),QA(WAIT),FT(JOEB)
JOE WAS BUSY *** . **% OF THE TIME
THE NUMBER OF HAIRCUTSiDAY WAS ****.**
THE MAXIMUM NO. OF PEOPLE WAITING WAS * * *
THE AVERAGE NUMBER IN THE QUEUE WAS
AVERAGE TIME FOR A HAIRCUT WAS * * * * . * *

*** . **

OEND

The results of the simulation are

JOE WAS BUSY 99.87% OF THE TIKT
THE MlMBER OF HAIRCUTSIDAY WAS
THE NAXIMUM NO. OF PEOPLE WAITING WAS 5
THE AVERAGE W E R IN THE QUEUE WAS
AVERAGE TIME FOR A HAIRCUT WAS

31.90

2.02
15.03

As can be seen, Joe is kept quite busy since his time to give a haircut is often
slower than the arrival rate of his customers. The maximum content of the
queue was 5, and the average time to give the hairam was 15.03. Notice that
the function FLT was used to convert the FC(J0EB) from an integer to a float-
ing point. If this was not done, the result would have been 31.00 and not 31.90.

EXERCISES, CHAPTER 15

1. What will the following blocks or statements do?
0 WVANCE m(FIRST) *Q(SECOND) / 3 n(a)
0 BENERATE 010,2,, ,FR(MACHl) O(b)
0 BENERATE 35,1,, ,FRN1*100 O (C)

ODRILL W C T I O N OFR(M?iCH) , D4 [I(d)
250 ,5 /600 ,8 /700 ,9 /1000 ,12
OTOP W C T I O N m(BL0CKA) , L5 Oie)
,5i, 6 / , 9 / , 1 0 / , 1 5

2. Would the following block compile correctly? What would it do in the
program?
0 DRANSFER O,Q(WAIT)+l

SOLUTIONS, CHAPTER 15

1. a. The transaction is placed on the FEC for a time given by the product of
the queue length at FIRST times the queue length of SECOND. This
product is divided by 3. The result is truncated to an integer.

b. Transactions are generated every 10 * 2 time units. Each will have a
priority given by the fractional utilization in parts per thousand of the
facility MACHl.

156 The GPSS/H Slmulatlon Language

c. Transactions are generated every 5 * 1 time units. Each is given a pri-
ority given from 0 to 99. (To have priorities from 1 to 100, the number
1 needs to be added to FRNl"100.)

d. When the function DRILL is called, it will return a value of 5,8,9, or
12 depending on the fractional utility of the facility MACH.

e. The function TOP is a list function and will return either 5,6,9,10,
or 15 depending on the total block count of the block BLOCKA. This
is the same function as one with the integer 1,2 ,3 ,4 , and 5 in the
first position.

2. The block will compile correctly but, if the value of Q(WAIT) was 0 when
a transaction arrived, it would be routed to block 1. This is most probably
a GENERATE block, so a run time error will occur.

The TEST Block
CHAPTER 16

So far transactions have moved through the various systems sequentially from
block to block. The only way we had to route them to different blocks was via
the TRANSFER block. There are many times in a model when the program-
mer will want to route a transaction to one block or another depending on
some aspect of the system. There also will be times when the programmer will
want to keep transactions from moving forward until a specific condition is
met. One way to do this is by means of the TEST block.

It is possible to do a test on two SNAs and then route the transaction to one of
two blocks depending on the result of the test. Examples of where a TEST
block might be used arise frequently during a simulation. Some possible
examples where a TEST block might be used are

1. If the queue at a shop is greater than 5, arriving customes do not enter.
2. After 12 hours of working, a machine is shut down for maintenance for

3. At 5:00, the barber locks the door on his shop, but customers already in
1/2 hour.

are still served.

GPSWH can make tests to determine (1) how long the queue is, (2) how long
the machine has been in use, and (3) whether it's before or after 5 o'clock.
GPSS/H also can perform a test on two SNAs and hold the transaction at the
block doing the test until the test is true. Examples of the usefulness of this
approach include:

1. A ship cannot enter the harbor until 1 of 2 tugboats is free to guide it into

2. A part will not move from one machine unless the next machine has been

3. If it is between noon and 12:30 p.m., no customer can enter a repair facility.

the berth.

used less than 75% of the time.

157

158 The GPSS/H Slmulatlon Language

4. Once a machine has finished making 500 parts, it is taken out of service
for repairs and maintenance. This downtime lasts for 2 hours. Parts arriv-
ing have to wait until the repairs and maintenance are finished.

The use of TEST blocks will greatly expand our programming ability- There
are two basic forms of the TEST block, described next.

THE TEST BLOCK I N REFUSAL MODE

This form of the TEST block is as follows:

0 DES?ZIR D t B

where R is a relational operator that is one of the following:

Symbol Meaning
L less than
LE less than or equal

E
NE

equal

not equal

G greater than

GE greater than or equal

The relational operator must be placed 1 space after the operation TEST. A
and B are any SNAs to be tested via the relational operator. Some examples of
the TEST block are

O(a) DES?OE oQ(T0M) ,Q(BILL)
O(b) OTES”E @(DOCK),4
O (c) DES”&J @R(MACH) ,400
G (d) mESm [7w(BACK1), 1
O (e) DESm @(BLOCKA),N(BLOCKB)
O (f) DESmE @AC1,480
O (g) DES?DE m(ONE)+Q(TWO) , 5

The way the TEST block works when a transaction enters it is that the first
SNA is compared with the second by using the relational operator. If the test
is true, the transaction moves to the next sequential block. If the test is false,
the transaction must wait in the TEST block until somefuture time when the test
becomes m e . In addition, the transaction waits on the CEC. Thus, in (a), the
test is “Is the length of the queue named TOM equal to the length of the queue
named BILL?” If the answer is yes, the transaction will move to the next block,
but if the answer is no, the transaction will remain in the TEST block until
such time that the test is true.

In (b), the remaining storage of DOCK must not be equal to 4 before the
transaction can move to the next block. Similarly, for (c), the fractional utili-
zation of the facility MACH must be less than 0.400 or the transaction will
reside in the TEST block until that condition is attained. In example (d), the
transaction will test to see if the current count of the block BACK1 is greater

The TEST Block 159

than 1. Unless the current count is greater than 1, the transaction will not
leave the TEST block.

In (e), the transaction will be held until the total block count of the block
labeled BLOCKA is equal to the count of the block labeled BLOCKB. In (0, the
AC1 must be greater than 480 before the transaction can move to the next
sequential block. In (g), the sum of the queue contents of queues ONE and
TWO must equal 5 before the test is true.

Example 16.1

This example should be studied to understand how a TEST block in refusal
mode can be used. Joe cuts hair in 15 f 6 minutes. Customers arrive every 14
* 8 minutes. Joe has only one chair for them to wait in, so if a customer
arrives to find this taken, he will leave. Of the people who leave, 30% will be
gone for 30 k 12 minutes and then return to see if the waiting-area chair is
free. (If the chair in the waiting area is not available this second time, he will
again leave; 30% of the customers who checked back for the second time will,
after 30 f 12 minutes, return for a third attempt, etc.). The rest will go else-
where. Joe works from 8:OO to 5:OO with no time off for lunch. At 500, Joe
locks the door, but will finish cutting the hair of anyone in his shop. Simulate
for a typical day.

Solutlon
3 DSIMULATE
r/ USTORAGE 0s (WAITAREA) ,1
(XOMEIN B E N E R A T E 014,8 W S T O M E R S ARRIVE
9 mES$?L @ (T I M E) ,1 CIS I T PAST 5 O’CLOCK YET7
$BACK m R A N S F E R D O T H , , >.WAY 01s THERE A CHAIR TO WAIT I N ?
QINSHOP W E R B A I T A R E A P A K E A CHAIR TO WAIT I N
/ O S E I Z E S O E B m G A G E J O E

// [LEAVE B A I T A R E A DEAVE WAITING-AREA CHAIR
0 W V A N C E 515,6 m E C E I V E HAIRCUT
SNDONE m E L E A S E S O E B Z R E E J O E
// D E P Z i I N A T E 3 E A V E THE SHOP
’/AWAY CTRANSFER 1 . 7 , , GONE 170% LEAVE
P rMVANCE 1 3 0 , 1 2 23 0 % WAIT
/ WRANSFER [,BACK %ETURN TO SHOP
//GONE D E R M I N A T E DEAVE SYSTEM
’/TIME S E N E R A T E 7480 55 O‘CLOCK COMES
5 m E S 0 D(ND0NJZ) , N (I N S H O P) x I S SHOP EMPTY7
5 B E R M I N A T E 11 k%ES, J O E CPX GO HOME

@TART ,1
JPUTPIC :LINES=6,ACl,N(COMEIN),FR(JOEB) /lo.,-

N(ND0NE) , N (G O N E) ,“AWAY)
SIMULATED TIME SHOP WAS OPEN * * * * . * *
NUMBER T O COME TO SHOP * * *
J O E WAS BUSY * * * . * *%
NUMBER OF HAIRCUTS
“ M B E R TO GO AWKf AND NOT TRY TO COME BACK * * *
NUMBER TO GO .WXf AND TRY TO COME BACK

* * *

* * *

/ :END

160 The GPSS/H Slmulatlon Language

There are several TEST blocks in the program. The first (TEST L) is used to
stop any customer transactions from entering the shop after 5:OO. The simula-
tion starts at time t = 0 and, with 1 minute as the basic time unit, 5:OO will be
given by time t = 480. At time t = 480, no more customers will be allowed in
the shop. This block is

0 mES?DL m (T I M E) , 1

At simulated time t = 480, a transaction leaves the following block:

OTIME I-JENERATE 0 4 8 0

This event makes the block count 1 for the block labeled TIME. The test result
of the TEST block is then false, and any transactions that enter it will be held
up and not be allowed to proceed. This procedure corresponds to not allow-
ing any customers to enter the shop after 5:OO. Note that an alternate block to
use would have been

0 BESm D C 1 , 4 8 0

The second TEST block (TEST E) is the timer transaction segment of the
program. At time t = 480, the timer transaction arrives to shut off the pro-
gram. This corresponds to 5:OO. However, the transaction first enters the
TEST block

0 mESm m(ND0NE) ,N(INSHOP)

INSHOP is the label for the ENTER block, which corresponds to a customer
entering the shop. N(ND0NE) corresponds to the total number of customers
who have left the shop. It is the label for the RELEASE JOEB block. Suppose
that, at simulated time t = 480, N(INSH0P) was 33 and N(ND0NE) was 31.
The effect of the second TEST block would then be to hold the timer transac-
tion until all of the customers in the shop had been given haircuts by Joe.

The output from the simulation is as follows:

SIMULATED TIME SHOP WAS OPEN 496.72
NUMBER TO COME TO SHOP 33
JOE WAS BUSY 91.52%
NUMBER OF HAIRCUTS 30
NllMBER TO GO AWAY AND NOT TRY TO COME BACK 2
XDBBER TO W AWAY AND TRY TO COME BACK 2

Joe was busy 91.52% of the time. A total of 30 customers were able to enter
the shop and receive haircuts. Joe worked until time 496.72 or 16.72 minutes
past the normal closing time. The program should be rerun by using a RMULT
to see the effect of using different random numbers in the simulation.

Whenever a TEST block in refusal mode is used in a program, great care must
be exercised that the transaction does not remain in the block forever if this is
not the programmer's desire. There is another caution in using this block that
we have not been too concerned with up to this time. Whenever a transaction
is in a blocked condition at a TEST block, it remains on the current events
chain. Whenever the processor does a rescan, this block must be tested. This
constant testing can be quite costly in terms of execution time. In some cases,

The TEST Block 161

there will be ways to avoid using such inefficient blocks. The TEST block is
both convenient and easy to understand. However, if it is possible to avoid
using it, alternative programming should be used. Some other blocks that
might be used in its place will be introduced in Chapter 21. In some cases,
however, there is no method available other than the TEST block.

TEST BLOCK I N NORMAL MODE

The other form of the TEST block has a C operand. The form of it is

0 B E S m @LB,C

where C is the label of the block to which the transaction is routed if the test is
false. Thus,

0 D E S D @(TOMMY) ,Q(SALLY) ,DOWN

will test the length of the queue TOMMY and the queue SALLY. If they are
equal, the transaction will go to the next sequential block. If they are unequal,
the transaction will go to the block named DOWN. For programmers who are
used to the logic of Fortran, the way GPSS/H works for the TEST block is
going to seem to be quite the opposite to what one would expect. Thus, great
care is required when using this block.

Example 16.2

In a manufacturing process, parts come to a machine for forming. The inter-
arrival rate is 14 * 7.5 minutes. There are 2 machines available for forming.
The first can form in 16 f 5.4 minutes, and the other takes considerably
longer: 24 * 8 minutes. In fact, this second machine is in such poor condition
that it is not used until the first machine is utilized to its fullest. The faster
machine cannot be used more than 85% of the time, however, or it may over-
heat. Parts enter the room where both machines are located and are formed
on the faster machine until it reaches the 85% utilization, at which time the
slower machine is also used until the utilization is again below 85%. Build a
GPSS/H model to represent the system. Simulate for 100 straight shifts of 8
hours (480 minutes).

Solution
0 OSIMLTLATE
0 KENEFATE 014,7.5
3 OQWm W A I T
’2 B E S m E Z R (MACH1) , 850 , DOWN1
/i DSEIZE m C H 1
9 D E P A R T P A I T
5 W V A N C E i]16 ,5 .4
(?DONE1 B E L E A S E m C H 1

<DOWN1 Z S E I Z E m C H 2
9 D E P A R T m A I T
3 @DL4”JE :24,8
QDONE2 B E L E A S E m C H 2
‘/ DERMINATE

A DERMINATE

162 The GPSS/H Slmulatlon Language

0 BENERATE 0480*100
0 mERMINATE 01
0 USTART 01
0 UPUTPIC ~INES=6,FR(M?CH1)/10.,FR(MACH2)/10.,QM(WAIT),-

QA(WAIT),N(DONE1)/100.,N(DONE2)/100.
UTIL. OF MACHINE 1 ***.**%
UTIL. OF MACHINE 2 *** . **%
MAX. QUEUE
AVERAGE QUEW3
DONE BY MACHINE 1 ***.** (PER SHIFT)
DONE BY MACHINE 2 ***.** (PER SHIFT)

*** . * *

0 W D

The results of the simulation are as follows:

UTIL. OF MACHINE 1 85.01%
UTIL. OF MACHINE 2 45.06%
MRY. QUEUE 4
ACZRAGE QUEUE 0.60
DONE BY MACHINE 1 25.37 (PER SHIFT)
DONE BY MACHINE 2 9.02 (PER SHIFT)

Machine 1 was busy for the maximum allowable time of 85.01%. The reason
for the slightly higher percentage is that a transaction can use the machine
when the percent utilization is less than 85%, and this additional usage
increases the utilization to greater than 85%. The secondary machine was
used only 45.06%. The maximum queue was 4, and the average queue was
0.60. Machine 1 produced 25.37 units per shift, and machine 2 produced 9.02
units per shift.

EXERCISES, CHAPTER 16

1. What do the following blocks do?
O(a) CITEST@ @(WAIT),3
O (b) CITES- @(STOPl)*Q(STOPl) ,4
O (c) D E S O @AC1,5000
> (d) DEST@ m(BL0CKA) ,N(AWAY)
0 (e) D E S m (BLOCKC) 3 5, DDDD
O (f) D E S m E mR(MACH1) ,500
O(g) DESm nS("UGS1) ,R(TUGS2) ,BYBYE

2. A truck and single shovel system involves the following times:

Operation Time (minutes)

load a truck
travel to crusher 5 + 1

dump into crusher

return to shovel

2 k 0.3

1 f 0.2

4.5 k 0.7

The mine currently has 6 trucks working. Only 1 truck can dump at a
time. All the loads are ore, and none of the equipment ever breaks down.
The mine works for 450 minutes per 480-minute shift, after which the

The TEST Block 163

drivers bring their trucks to the shovel and then leave for the day. The
mine works 3 shifts per day. Simulate for 100 shifts to determine the pro-
duction.
In exercise 2, suppose that the actual working time is 400 minutes per
shift. Determine how this fact changes the production per shift.
For the mine in exercise 2, it is discovered that 20% of the loads are waste
and need to be hauled to a waste area. Travel time there is obtained by
sampling from a normal distribution with a mean of 6.5 minutes and a
standard deviation of 1 minute. Dumping has no restriction in that a
truck can dump as soon as it is at the waste area. Return time to the
shovel is obtained by sampling from a normal distribution with a mean of
5.3 minutes and a standard deviation of 1.1 minutes. Determine the pro-
duction of ore and waste per shift.
A car repair shop has room for only 2 vehicles to wait while it repairs
other cars. Cars that arrive when the shop is full leave and do not return.
There are two repair bays, so there can be as many as 4 cars at the shop.
Cars arrive every 30 f 12.5 minutes, and it takes 58 f 20 minutes to repair
each car. The shop is open 24 hours a day. Simulate for 500 days to deter-
mine how many cars arrive when the shop is full. Suppose that there
could be room for another car to wait. Will this additional space result in
much of a change in how many cars arrive when the repair shop is full?

SOLUTIONS, CHAPTER 16

1. a. The transaction is delayed in the TEST block until the length of the

b.

C.

d.

e.

f.

€5

queue at WAIT is equal to 3. Once this is true, it passes to the next
Sequential block.
The transaction is delayed in the TEST block if the product of the
queues, STOP1 and STOP2, are equal numbers other then 4; else it
moves to the next sequential block.
The value of the absolute clock, AC1, must be greater than 500 before
the transaction moves to the next sequential block.
The number of transactions that have entered the block with the label
BLOCKA is compared to the number that have entered the block with
the label BLOCKB. If they are equal, the transaction moves to the next
sequential block; else it is routed to the block with the label AWAY.
The number of transactions that have entered the block with the label
BLOCKC must be less than 35 in order for the transaction to move to
the next sequential block; else it is routed to the block with the label
DDDD.
The fractional utilization of the facility MACH1 must be greater than
or equal to 500 before the transaction moves to the next sequential
block.
The storage used as storage TUGS1 must be equal to the remaining
storage of the storage TUGS2 in order for the transaction to move to
the next sequential block; else the transaction is routed to the block
with the label BYBYE.

164 The GPSS/H Simulation Language

2. The program to do the simulation is:
SIMULATE
GENERATE , ,,6

UPTOP QUEUE WAIT
SEIZE SHOVEL
DEPART WAIT
ADVANCE 2, .3
RELEASE SHOVEL
ADVANCE 5,1
SEIZE CRUSHER
ADVANCE 1, .2
RELEASE CRUSHER
ADVANCE 4.5,.1
TRANSFER ,UPTOP
GENERATE 480*100
TERMINATE 1
START 1
PUTPIC LINES=3,FR(SHOVEL)/lO.,FC(CRUSHER)/100.O
SOLUTION TO EXERCISE 16.2

SHOVEL WAS BUSY * * * . * *% OF THE TIME
PRODUCTION PER SHIFT IS *** . ** LOADS DUMPED

END

The results of the simulation are:
SOLUTION TO EXERCISE 16.2

SHOVEL WAS BUSY
PRODUCTION PER SHIFT I S 204 .96 LOADS DUMPED

91.188 OF THE TIME

3. The changed program is:
SIMULATE
GENERATE

UPTOP QUEUE
SEIZE
DEPART
ADVANCE
RELEASE
TRANSFER
ADVANCE
SEIZE
ADVANCE
RELEASE
ADVANCE
TRANSFER

WASTE ADVANCE
ADVANCE
ADVANCE
TRANSFER
GENERATE
TERMINATE
START
PUTPIC

,,,6
WAIT
SHOVEL
WAIT
RVNORM(1,2,.3)
SHOVEL
. 2 , ,WASTE
RvNORM(1,5,1)
CRUSHER
RVNORM(l,l, . 2)
CRUSHER
RvNORM(1,4.5,.7)
, UPTOP
RVNORM (1,6.5,1)
RVNORM(l,l, .2)
RVNORM(l,5.3,1)
, UPTOP
450*100
1
1
LINES=3,FR(SHOVEL)/lO.,FC(CRUSHER)/100.0

SOLUTION TO EXERCISE 16.3
SHOVEL WAS BUSY * * * . * *% OF THE TIME
PRODUCTION PER SHIFT IS *** . ** LOADS DUMPED

END

The TEST Block 165

The results of the simulation are:
SOLUTION TO EXERCISE 16.3

SHOVEL WAS BUSY 91.18% OF THE TIME
PRODUCTION PER SHIFT IS 182.21 LOADS DUMPED

4. The program to simulate this is:
SIMULATE
STORAGE S(REPAIR),2

COMEIN GENERATE 30,12.5
TEST L Q(WAIT),Z,AWAY
Q- WAIT
ENTER REPAIR
DEPART WAIT
ADVANCE 58,20
LEAVE REPAIR
TERMINATE

AWAY TERMINATE
GENERATE 480*3*500
TERMINATE 1
START 1
PUTPIC LINES=I,N(COMEIN),N(AWAY),SR(REPAIR)/10.
RESULTS OF SIMULATION

NUMBER OF CARS TO COME TO SHOP (500 DAYS) ******
NUMBER OF CARS TO LEAVE AS SHOP IS FULL * * * * * *
UTIL. OF REPAIR SHOP * * * . * *%

END

The results of the simulation are:
RESULTS OF SIMTJLATION

NUMBER OF CARS TO COME TO SHOP (500 DAYS) 23997
NUMBER OF CARS TO LEAVE AS SHOP IS FULL 406
UTIL. OF REPAIR SHOP 95.178

Adding another space for a car to wait will change the number of cars
that leave to 157, which is quite significant.

GPSS/H
Supplied Functions

.
CHAPTER 17

In Chapter 14, functions were introduced. By using piecewise linear approxi-
mations, it is possible to approximate any continuous function. Two functions
that are very commonly used in simulations are the Poisson (exponential) dis-
tribution and the normal (Gaussian) distribution. These arise in simulation
studies of a great many systems. For example, the interanival rates of tele-
phone calls often is given by the exponential dismbution, the times to travel
from point A to point B by truck is normally distributed, the time for a ship to
return to a port is exponential, the time between storms is exponential, etc. It
is assumed that both of these functions are well known to students of simula-
tion. Since these functions are so commonly referred to in simulation studies,
they are built into GPSS/H, and sampling from them is quite easy.

THE P O I S S O N DISTRIBUTION

The Poisson distribution is a one-parameter dismbution being completely
specified by its mean value. The built-in function to be used in sampling from
it is given by

0

where s is an integer that indicates which random-number stream is used and
m is the mean of the exponential distribution. Recall that GPSS/H has nearly
an infinite number of these s a - e m , but one normally uses only small num-
bers such as 1,2 ,3 , etc. (Note: RVEXPO comes from random variate exponen-
tial distribution.)

Examples of using the Poisson distribution function are

~ ~ X P O (s , m)

2 (a) W V A N C E mVEXP0(1,12.3)
T/(b) BENERATE 3VEXP0(1,3.4)

In (a), the transaction is placed on the FEC for a time given by sampling from the
exponential dismbution with a mean of 12.3. In (b), transactions are generated
at times given by sampling from the exponential distribution with a mean of 3.4.

167

168 The GPSS/H Simulation Language

THE NORMAL DISTRIBUTION

The normal distribution is a two-parameter distribution and is specified by
the mean and standard deviation. The GPSS/H built-in function to sample
from the normal distribution is given by

0 DRVNORM(s,m,d)

where, again, s is an integer that indicates which random-number stream is
used, rn is the mean of the normal distribution, and d refers to the standard
deviation. RVNORM comes from random variate normal distribution. Exam-
ples of using the normal distribution function are

0 (a) WVANCE mVNORM (1,20,2.3)
O(b) EENERATE ~VNORM(1,30,5.5)

In (a), the transaction is placed on the FEC for a time that is obtained by sam-
pling from a normal distribution with a mean of 20 and a standard deviation
of 2.3. In (b), transactions are generated according to the normal distribution
with a mean of 30 and a standard deviation of 5.5.

GPSS/H samples from a distribution bounded by 44 standard deviations
above and below the mean, so, while it is theoretically possible to obtain sam-
ples that are negative, such an occurrence is rare.

THE TRIANGULAR DISTRIBUTION

GPSS/H has another built-in function that represents the triangular distribu-
tion. This distribution is one that looks like a triangle with one side on the x-
axis. The side extends from a minimum value to a maximum value. The most
likely value is the mode. A triangular distribution with a minimum value of
10, a maximum value of 100, and a mode of 20 will be skewed to the left. A
triangular distribution with minimum value of 10, maximum value of 100,
and a mode of 80 will be skewed to the right. If the mode of this distribution
was 55, the distribution would be symmetrical. To sample from a triangular
distribution in GPSS/H, one uses the built-in function

0 DRVTRI (s,minimum,mode,maximum)

where again s is an integer that indicates which random-number stream is
used. RVTRI comes from random variate triangular distribution. Thus,

0 W V A N C E DVTRI (2,0,3,10)

will sample from the triangular distribution having a minimum value of 0, a
mode of 3, and a maximum value of 10.

OTHER BUILT-IN FUNCTIONS

The other built-in functions are given below. In every case, s is an integer that
indicates which random-number stream is used, i.e., s = 1 implies the use of
random-number stream 1 (RNl), etc. Unless specified as an integer, every
parameter in the function is real. For the exact definition of the function as
well as the meaning of the parameters, see any detailed textbook on statistics.

GPSS/H Supplied Functions 169

~ - ~ ~ ~~~~~ ~~

Function Form and Explanation
Beta RVBETA(s,al,a2), where a, is shape parameter 1, is

shape parameter 2, and a1 and a2 > 0.0

Binomial RVBIN(s,no.-of-trials,probability), where no. of trials is an
integer >O and probability is in the interval (0, l .O)

Discrete Uniform RVDUNl(s,lower-endpoint,upper-endpoint), where lower and
upper endpoints are integers; lower endpoint I upper endpoint

M-Erlang RVERL(s,rn,P), where rn is an integer (the order of the distribu-
tion) and p is mean value

Extreme Value A RVEVA(s,y,P), where y (location) has no limits and f.3 (scale) >
0.0

Gamma RVGAMA(s,a,P), where a (shape) > 0.0 and p (scale) > 0.0
Geometric RVGEO(s,probability), where probability is in interval (0.0,l.O)
Inverse Gausian RVIGAU(s,a,P), where a (shape) > 0.0 and p (scale) > 0.0

Inverted Weibull RVIWEIB(s,a,P,y), where a (shape) > 0.0, p (scale) z 0.0, and
y (location) has no limit

Bounded-Johnson RVJSB(s,al,a2), where al has no limit and a2 > 0

Unbounded-Johnson RVJSB(s,al,a2), where a1 has no limit and a, > 0

Laplace RVLAP(s,y,P), where y (location) has no limit and p (scale) z
0.0

Logistic RVLGTC(s,y,P), where y (location) has no limit and p (scale) >
0.0

Log-Laplace RVLLP(s,a,P), where a (shape) > 0.0 and p (scale) > 0.0
Lognormal RVLNOR(s,mean,variance), where mean > 0.0 and variance >

0.0

Negative Binomial RVNBIN(s,successes,probability), where "successes" is an
integer >O and probability is -00 to 4 .0

Poisson RVPSSN(s,mean), where mean z 0.0
Pearson Type V RVPTS(s,a$), where a (shape) > 0.0 and p (scale) > 0.0
Pearson Type VI RVPTG(s,a,P), where a (shape) > 0.0 and p (scale) > 0.0

Random Walk RVRWK(s,a,P), where a (shape) > 0.0 and p (scale) > 0.0
Uniform RVUNl(s,mean,spread), where mean has no limit; spread has

no limit but must be less than or equal to mean

Weibull RWVEIB(s,a,P), where a (shape) > 0.0 and p (scale) > 0.0

USING EXPONENTIAL AND NORMAL DISTRIBUTIONS OTHER THAN
THE BUILT-IN ONES

Before the exponential and normal distributions were built in, one had to
sample from a %piecewise linear approximation to them.

The exponential distribution can be put in a form so that given a random sam-
ple in the interval [0,1), a corresponding interamval time is given by

170 The GPSS/H Slmulatlon language

where

RN = random number
= mean value of distribution

The 24-piecewise approximation for the dismbution (In 1)/(1- RN) to be
used in sampling from the exponential distribution is as follows:

OEXPDIS W C T I O N m 1 , C24
0,@!.1 . 1 0 4 / . 2 , . 2 2 2 / . 3 , . 3 5 5 / . 4 , . 5 0 9 / . 5 , . 6 9 / . 6 , . 9 1 5 / . 7 , l . 2 / . 7 5 , 1 . 3 8
.8,i.6/.84,1.83/.88,2.12/.9,2.3/.92,2.52/.94,2.81/.95,2.99/.96,3.2
.97,3.5/ .98,3.9/ .99,4.6/ .995,5.3/ .998,6.2/ .999,7/ .9998,8

Normally, one samples from the exponential dismbution in either a GENER-
ATE or an ADVANCE block. Some examples of how this can be done are as
follows:

O(a) &ENERATE ~lOO,FN(EXPDIS)
O (b) W V A N C E @225,FN(EXPDIS)

In (a), a transaction is generated by sampling from the exponential dismbu-
tion with a mean of 100. In (b), a transaction is placed on the FEC for a time
specified by sampling from the exponential distribution with a mean of 225.

Recall that, when either a GENERATE or ADVANCE block has afunction as
the B operand, the effect is to rnurtiply the value in the A operand by the value
of the function. This is true whenever a function is in the B operand, nor only
for the exponential distribution. Thus, if you had

0 @ADVANCE W(0NE) ,FN(TWO)

and the value of FN(0NE) is 20 and that of FN(TW0) is 8, the transaction is
put on the FEC for 160 time units, nor for a time obtained by sampling from
the distribution 20 * 8.

The normal distribution is a two-parameter distribution. These parameters
are the mean and standard deviation. A standard normal dismbution is one
whose mean is 0 and standard deviation is 1. To sample from such a distribu-
tion, one first samples from the standard normal distribution and then con-
verts the result to the nonstandard distribution. This procedure is as follows:

Sample value = [(std dev) x (value from S N P)] + mean

The S N P is the value drawn from the standard normal population. The piece-
wise continuous function used in sampling from the S N P is

OSNORM W C T I O N W l , C 2 5
0,-5/ .00003,-4/ .00135,-3 i .00621,-2.5/ .02275,-2
.06681,-1.5/.11507,-1.21/.15866,-1/.21186,-.8/.27425,-.6
.34458,-.4/.42014,-.2/.5,0/.57926,.2/.65542,.4
.72575,.6/.78814,.8/.84134,1/.88493,1.2/.93319,1.5
.97725,2/.99379,2.5/.99865,3/.99991,4/1,5

GPSS/H Supplied Functions 171

Examples of this are

O(a) @ADVANCE 03.2*FN(SNORM)+20.7
O(b) @ADVANCE 010*FN(SNORM)+100
O (c) EENF.RATE 02.2*FN(SNORM)+20.8

In (a), the transaction is placed on the FEC for a time given by sampling from
the normal distribution with a mean of 20.7 and a standard deviation of 3.2.
In (b), the transaction is placed on the FEC for a time given by sampling from
the normal distribution with a mean of 100 and a standard deviation of 10. In
(c), transactions are generated at times obtained from sampling from the nor-
mal distribution with a mean of 20.8 and a standard deviation of 2.2.

Notice that the function SNORM, used in sampling from the normal distribu-
tion, can return a value as low as -5. Suppose one had

0 @ADVPJICE 02.1*FN(SNORM)+10

and just such a value was returned. The resulting time is (-2.1 x 5) + 10 or
-0.5 time units. This result is meaningless as one cannot go back in time, and
an execution error would result. It is necessary to guard against such prob-
lems by always ensuring that the standard deviation is less than 9% (20%) of
the mean. Alternatively, one can add other GPSS/H code to test for negative
times and filter them out.

EXERCISES, CHAPTER 17

I. A careful study of a widget manufacturing facility showed that each wid-
get is made from start to finish by a single person. This worker takes a
raw form and turns it into a widget. After this is done, the worker takes
the widget to a single finishing machine where it is polished and boxed
for shipment. There are assumed to be an infinite number of raw forms
available so that the widget maker always will be able to begin work on a
new one as soon as one is done being boxed. The dismbution of times for
forming a widget is as follows:

~

Assembly Time (minutes) Relative Frequency

25 0.01
26 0.03
27 0.05
28 0.10
29 0.18
30
31
32
33
34
35

0.26
0.18
0.10
0.05
0.03
0.01

172 The GPSS/H Slmulatlon Language

The distribution of time to finish a widget is as follows:

Finishing Time (minutes) Relative Frequency

6
7
8

0.05
0.25
0.40

9 0.25
10 0.05

Each widget manufactured earns the company a profit of $26.25. The
plant has an overhead of $125 per day, and each worker earns $96 per
day. The workers work 8-hour shifts. For the sake of this exercise, you can
assume that the workers work continuously and that there is 1 shift per
day. Determine the optimum number of workers to have making widgets.

2. The data for making a widget have been changed. Further careful study
by you indicates that the assembly time is normally distributed with a
mean of 30 and a standard deviation of 20%. The finishing time is also
normally distributed with a mean of 8 and a standard deviation of 20%.
Does the optimum number of workers change much?

3. Change the data in exercise 2 to be exponentially distributed with a mean
of 30 for assembling and 8 for finishing. How does the answer change as
the simulation is run with 4,5,6, etc., assemblers?

Only 4 units can wait at station 1 and 2 at station 2. If another unit comes
along when the waiting space at station 1 is full, it leaves and a penalty is
incurred. Arrivals are exponentially distributed with a mean of 0.4 time
units. Service times are exponentially distributed at both stations with
means of 0.25 and 0.5, respectively. Model this system to see how effi-
cient it is. Simulate for 5000 time units.

5. Change the station working times in exercise 4 to have means of 0.35 for
station 1 and 0.40 for station 2. Note that their sum is s t i l l 0.75 as it was
before. Is the system improved?

6. Repeat exercise 4, but now with waiting space for the stations allocated
as3and3.

7. Repeat exercise 6, but now with the service times changed as in exercise 2.
8. Repeat exercises 4 to 7, but with the interarrival and service times follow-

ing an M-Erlang distribution with an order of 2. Recall that an M-Erlang
distribution is one obtained by a Poisson distribution but with the mean
divided by the order. Thus, if one had a Poisson distribution with a mean
of 5, an M-Erlang distribution with an order of 4 would be 4 Poisson dis-
tributions, each with mean 1.25 (5 divided by 4).

9. Most queueing theory problems have no exact solutions. A few, however,
do, and these can be studied to compare the simulation solution with the
expected result obtained by using a formula. One such example is the
exercise presented next.

4. A manufacturing system consists of two waiting lines and two servers.

GPSS/H Supplied Functlons 173

A car-wash facility has 1 bay to wash cars. The cars arrive with an average
interarrival time of 5 minutes. The washing time is 4 minutes. If a car
arrives and there is no waiting space, it will leave and not return (or if it
does return, it is considered as a "new" car). Determine the behavior of
the system for 1,2, and 3 waiting spaces.
The exact solution for this problem gives as the fractions served:

fraction served = 1 -

where x is the utilization factor, which is the ratio of the mean service time
to the mean interarrival time, and m is the number of waiting spaces.
Thus, for a single waiting space and x = 4/5 (as given in the setup), the for-
mula gives 0.738 as the theoretical fraction served over an infinite time.
Determine how many simulated time units are needed for the simulation
result to approach this number.

10. A particular worker tends to work at a progressively slower rate as the 8-
hour day goes by. During the first 2 hours, it takes him 12 minutes to per-
form a service; during the next 2 hours, his average service time is IS
minutes; during the fifth, sixth, and seventh hours, each service takes him
an average of 17 minutes; and service started during the eighth hour
requires an average of 20 minutes. With a simulated time unit of 0.1
minute, define a discrete function to model this person's service time.

il. Change exercise 10 to a continuous function by assuming the following:
at time t = 0, the service time is 12; by the end of the second hour, it is 15;
at the end of the fourth hour, it is 17; by the end of the seventh hour, it is
20; and finally, at the end of the eighth and last hour, it is 21.

SOLUTIONS, CHAPTER 17

I . The program to do the simulation is:
SIMULATE

MAKEIT FUNCTION RN1,DlO
.01,251.04,26/.09,21/.19,28i.38,231.64,30/.82,31/.92,32
.91,33/1,34

.05,6/.3,1/.1,81.95,311,10
FINISH FUNCTION RN1,DS

WORKER GENERATE , , , 6
UPTOP ADVANCE FN(MAKE1T)

SEIZE FINISH
ADVANCE FN(FIN1SH)
RELEASE FINISH
TRANSFER , UPTOP
GENERATE 480*500
TERMINATE 1
START 1
PUTPIC LINES=4,N(WOFXER),FR(FINISH)/10.,FC(FINISH~ 525.,-

26.2 5*FC (FINISH) 1500 . - 1 2 5 4 (WORKER) '96
NUMBER OF WORKERS * * * *
ITIL. OF FINISHING MACHINE * * * . * *%
WIDGETS MADE PER SHIFT *t*. t *

PROFIT *** . * *
END

174 The GPSS/H Slmulatlon Language

The results of the simulation are:
NllMBER OF WORKERS 3
UTIL. OF FINISHING MCHIh'E 62.55%
WIDGETS MADE PER SHIFT 37.51
PROFIT 571.81

NLrMBER OF WORKERS 4
UTIL . OF FINISHING MACHINE 82.2 0%
WIDGETS MADE PER SHIFT 49.32
PROFIT 786.81

"IMBER OF WORKERS 5
UTIL. OF FINISHING MCHINE 97.79%
WIDGETS MALIE PER SHIFT 58.64
PROFIT 934.90

NUMBER OF WORKERS 6
UTIL. OF FINISHING MACHINE 99.99%
WIDGETS MADE PER SHIFT 60.00
PROFIT 873.92

The optimum number of workers to have is 5.

are summarized:
2. The changes to the program are minimal. The results of the simulation

Workers Profit

$540.09
$720.08
$848.81
$860.35
$775.59

Now the optimum number of workers to have is 6.
3. The results of the simulation are:

Workers Profit

3 $483.00
4
5
6

$605.79
$684.71
$713.30

7 $689.12

As can be seen, the number of workers needed remains as 6, but the
profit goes down dramatically.

GPSS/H SUDDIM Functions 175

4. The program to do the simulation is:
SIMULATE

COMEIN GENERATE RVEXPO(l,.4)
TEST L Q(WAIT1),4,AWAYl
QUEUE WAITl
SEIZE SERVEl
DEPART WAITl
ADVANCE RVEXPO (1, .25 1
RELEASE SERVE1
TEST L Q(WAIT2), 1,AWAY2
Q W E WAIT2
SEIZE SERVE2
DEPART WAIT2
ADVANCE RVEXPO(1, .5)
RELEASE SERVE2
TERMINATE

AWAY1 TERMINATE
AWAY2 TERMINATE

GENERATE 5000
TERMINATE 1
START 1
PUTPIC LINES=4,N(COMEIN),FR(SERVEl)/lO.,QA(WAIT~),-

FR(SERVEZ)/lO.,QA(WAIT2),N(AWAYl),N(AWAY2)
NUMBER TO ENTER SYSTEM * * *
UTIL. OF SERVER 1 ***.**% AVERAGE NO. IN QUEUE AT SERVER 1 * . **
UTIL. OF SERVER 2 * ** . **% AVERAGE NO. IN QUEUE AT SERVER 2 *. **
NO. TO NOT USE FIRST SERVER * * * NO. TO NOT USE SECOND SERVER * * * *

END

The results of the simulation are:
"UMBER To ENTER SYSTEM 12405
UTIL. OF SERVER 1 59.18% AVERAGE NO. IN QUEUE AT SERVER 1 0 .66
UTIL. OF SERVER 2 73.38% AVERAGE NO. IN QUEUE AT SERVER 2 0.40
NO. TO NOT USE FIRST SERVER 451 NO. TO NOT USE SECOND SERVER 4763

The number of parts that could not use either server is: 5214
5. The results from making these changes are:

"UMBER TO ENTER SYSTEM 12464
UTIL. OF SERVER 1 78.33% AVERAGE NO. IN QUEUE AT SERVER 1 .41
UTIL. OF SERVER 2 62.41% AVERAGE NO. IN QUEUE AT SERVER 2 0.29
NO. TO NOT USE FIRST SERVER 1497 NO. TO NOT USE SECOND SERVER 3041

The number of parts that could not use either server is: 4538
6. The results from making these changes are:

NUMBER TO ENTER SYSTEM 12561
UTIL. OF SERVER 1 59.09% AVERAGE NO. IN QUEUE AT SERVER 1 0.50
UTIL. OF SERVER 2 87.46% AVERAGE NO. IN QUEUE AT SERVER 2 1.52
NO. TO NOT USE FIRST SERVER 847 NO. TO NCT USE SECOND SERVER 3078

The number of parts that could not use either server is: 3925

176 The GPSS/H Slmulatlon Language

7. The results from making these changes are:
M E R TO ENTER SYSTEM 12484
UTIL. OF SERVER 1 7 4 . 8 1 % AVERAGE NO. I N QUEUE AT SERVER 1 .oo
UTIL. OF SERVER 2 7 4 . 4 6 % AVERAGE NO. I N QUKVE AT SERVER 2 0.95
NO. TO NOT USE F I R S T SERVER 1 9 1 4 NO. TO NOT USE SECOND SERVER 1 2 6 4

The number of parts that could not use either server is: 3178

the four examples (4,5,6, and 7) are:
8. The number of parts that are unable to use either server for the data in

Example Number to Leave

4 4,649
5 3,749
6 3,292
7 2,386

In all cases, the number to leave without using either server is less than
when Poisson distributions were assumed. This is because the Erlang dis-
tribution tends to cut off the long tail found in the Poisson distribution.
Thus, extreme values are not found as much with the Erlang distribution
as with the Poisson distribution.

9. The program to do the simulation is easily written. It is:
SIMULATE
RMULT 123456

ARRIVE GENERATE RVEXPO(1,5)
TEST L Q(WAIT), 1,AWAY
QUEUE WAIT
SEIZE WASH
DEPART WAIT
ADVANCE RVEXPO [1,4)
RELEASE WASH
TERMINATE

AWAY TERMINATE
GENERATE 480
TERMINATE 1
START 1
PUTPIC LINES=I,N(ARRIVE),N(AWAY),l.-FLT(N(AWAY))/N(ARRIVE),-

FR(WASH) /lo.
NUMBER OF CARS TO ARRIVE: ****
NUMBER TO GO AWAY * * * *
FRACTION SERVED * * *
UTIL. OF CAR WASH ***.**%

The results of the simulation for 480 time units are:
END

NUMBER OF CARS TO ARRIVE: 95
M E R TO W AWAY 29
FRACTION SERVED .695
UTIL. OF CAR WASH 64.95%

GPSS/H Supplied Functions 177

Running the program for 10*480 time units yields:
NUMBER OF CARS TO ARRIVE: 949
NUMBER TO GO AWAY 261
FRACTION SERVED .725
LJTIL. OF CAR WASH 60.613

Running the program for 100*480 time units yields:
NUMBER OF CARS TO ARRIVE: 9575
NUMBER TO GO AWAY 2548
FRACTION SERVED .734
UTIL. OF CAR WASH 59.30%

Finally, running the program for 1000*480 time units yields:
NUMBER OF CARS 'M rlRRIVE: 95580
NUMBER TO GO AWAY 25191
FRACTION SERVED .736
LJTIL. OF CAR WASH 59.153

It would appear that running the simulation for lOO"480 time units gives
a satisfactory result.

10. WORK F"CT1ON ACl,D4
200,12/400,15/700,17/800,20

WORK FUNCTION ACl,C5
0,12/200,15/400,17/700,20/800,21

If the simulation runs for more than 800 time units, it is possible to have
AC1@800 as the first operand in the FUNCTION statement.

.
CHAPTER 18 Parameters, the

LOOP Block, and the
EQU Statement

P A R A M E T E R S ATTACHED TO E A C H T R A N S A C T I O N

As each transaction travels from block to block, it carries with it several things.
For example, we already know that transactions can have different levels of pri-
ority. In addition, there are other ways to make each transaction different.

Each transaction possesses a set of abstract things known as parameters.
These are carried with the transaction as it moves through the simulation and
can be modified during the program. The values of these are not normally a
part of the output report but can be used during the program by the program-
mer. Transactions can be viewed conceptually as “stick people,” and it may be
helpful to think of parameters as “pockets on the pants” of the stick people.
Just as you can place items in pants’ pockets, you can put numbers (or, less
commonly, names) inside each of the pockets to differentiate between the
transactions. Each parameter has a number from 1 to 255. You can give
parameter number 12 the value 4, parameter number 7 the value -47, etc.
The transaction will carry these values with it as it moves through the blocks.
How you do this will be explained below.

Each transaction can have 4 different kinds of parameters. There can be up to
255 of each, although it is rare that one would use more than a few in a typi-
cal program. Parameters are designated by two letters to show the parameter
type. The 4 types of parameters in GPSS/H (and their designations in GPSWH
code) are as follows:

1. Halfword parameters (PH) may be assigned integer values in the range

2. Fullword parameters (P F) may be assigned integer values in the range

3. Byte-word parameters (PB) may be assigned integer values in the range

-32,768 to +32,767.

-2,147,483,648 (= -Z3’) to +2,147,483,647 (= +231 - 1).

-128 (= -Z7) to +127 (= +27 - 1).

179

180 The GPSS/H Simulation Language

4. Floating-point (decimal) parameters (PL) may be assigned floating-point
values whose maximum (or minimum) size is machine dependent, but
can be as large as 10308 (or as small as as far as the GPSS/H pro-
cessor is concerned.

Parameters can be thought of as a collection of SNAs or values that the trans-
action o m . The form of a parameter when used as an SNA is the two type-
indicating letters followed by a number to indicate which parameter of that type
is to be evaluated (recall that GPSS/H evaluates any SNA in a line of code
before doing anything else with the line of code). The form of a parameter
when used to refer to a specific, previously defined value is a number followed by
the parameter type. The values of these parameters are normally numbers,
although one also can give them names. For the purposes of this book, the
parameters used will have only number values.

As an example of the use of parameters, in the GENERATE block, every trans-
action initially receives 12 halfword parameters by default. Thus, although
we didn’t know it, all of our transactions so far had 12 of these halfword
parameters. The number of halfword parameters can be increased or
decreased, and other types of parameters can be attached to a transaction, in
the GENERATE block in operands F through I. In the GENERATE block, half-
word parameters are defined by nPH, fullword parameters by nPF, byte-word
parameters by nPB, and floating-point parameters by nPL, where the R indi-
cates the number of available parameters of that type. I t makes no diflerence
where in operands F through Iyou indicate the number of each type of parame-
ter, so the following two lines of GPSS/H code are equivalent:

0 KENERATE 0100,3,, , ,3PH,4PF, SPB, 6PL
0 GENERATE 0100,3,,,,5PB,6PL,3PH,4PF

Some examples of parameter definitions in GENERATE blocks follow:

V (a) 5ENERATE O12,2,, , ,4PH

O (c) GENERATE 0, , ,12,, 5PF

O (e) BENERATE 0100,3,,,,3PH,4PF,5PB,6PL
O (f) EENERATE 0,,,10,1,12~~
V (g) BENERATE 0100, , , , ,20PH,50PB

Block (a) generates transactions with 4 halfword parameters. Block (b) gener-
ates transactions with 12 fullword parameters and 20 halfword parameters.
Block (c) generates transactions with 5 fullword parameters. Block (d) gener-
ates transactions with no halfword parameters and 1 fullword parameter. Block
(e) generates transactions with 3 halfword parameters, 4 fullword parameters,
5 byte-word transactions, and 6 floating-point transactions. Block (f) generates
transactions with 12 floating-point transactions. Block (g) generates transac-
tions with 20 halfword transactions and 50 byte-word transactions.

O (b) GENERATE 0,,,5,,12PF,20PH

O(d) EENERATE n12,4, , , , OPH, 1PF

Parameters, the LOOP Block. and the rQu Statement 181

It is important to remember that, once you spec& any parameter types and
numbers via the F-I operands of the GENERATE block, you no longer have the 12
halfword parameters by default. Thus,

0 BENERATE 0, , ,I, , IPL

generates a single transaction with only 1 floating-point parameter and no
halfword parameters. If, later in the program, you tried to use the following
ASSIGN block (this kind of block is described next), an error would result:

0 @ASSIGN 01,1, PH

Owing to storage constraints, it is best to use halfword or byte-word parame-
ters unless the numbers used as parameter values are beyond the ranges of
these parameter types. In addition, although it may not seem obvious, it is
preferable to specify that all the transactions in a program have the same
number and type of parameters. For example, you may have the main GEN-
ERATE block as

0 BENERATE n,,,5,,20PH

Later in the program, the timer transaction enters via

0 BENERATE 0480*100 DIMER TRANSACTION ARRIVES

It is preferable to have this as

0 BENERATE 0480*100,,,,,2OPH D I M E R TRANSACTION ARRIVES

even though it is going to be terminated immediately.

Similar to other SNAs such as Qn, FRn, and SCn, parameters that are SNAs
(i.e., PHn, PFn, PBn, and PLn) can be used as operands in other blocks besides
the ASSIGN block (described in the next section). For example, consider the
following lines of code:

O (a) WVANCE OPF4
0 (b) D E S Q OPHl , PH4, DOWN1
O (c) OQUEUE OPHl
O (d) W E R W G S , P B 2

In (a), the transaction wiU be placed on the FEC for a time given by the trans-
action's fullword parameter 4. In (b), a test is made to see if the first and
fourth halfword parameters are equal (TEST E is covered in Chapter 16). If
so, the transaction moves sequentially to the next block. It they are not equal,
the transaction is routed to the block with the label DOWN1. In (c), the trans-
action joins the queue given by its first halfword parameter. In (d), the trans-
action will enter the storage TUGS and use a storage as specified by its second
byte-word parameter.

In addition, consider the following:

OTIMES W C T I O N OPHl , D4
1,100/2,125/3,150/4,175

3.82 The GPSS/H Stmulation Language

Now, when a transaction enters the block

C WVANCE (TIMES)

it will be placed on the FEC for a duration of 100,125,150, or 175 time units
depending on the value of its first halfword parameter.

THE ASSIGN BLOCK

Initially-i.e., when a transaction is created in a GENERATE block-the values of
all the transaction’sparameters are zero. The value(s) of a transaction’s param-
eter(s) can be modified via the immediately following ASSIGN block(s):

0 @ASSIGN D,B,C

where operand A is the parameter number, which must be between 1 and 255
or may be any SNA whose value falls in that range; operand B is the value
(either given by a number or an SNA) to be assigned to the parameter; and
operand C is the parameter type (PH, PF, PB, or PL) (the parameter type can
be omitted for certain cases, but it is not considered good programming to do
so in general). For example, if the transaction is given only the 12 halfword
parameters by default, as has been the case in preceding chapters in this
book, it would be acceptable to omit the parameter type. Thus, when a trans-
action leaves the block

0 D S S I G N 01,5, PH

the halfword parameter 1 will have the value of 5. The following code

0 CGENEMTE a,, , 3
0 @ASSIGN 0 2 , 1 0 0 , P H

generates 3 transactions, and the value of their second halfword parameter is
set to 100. The result of

OVALUE W C T I O N m 1 , D 3
. 2 , l f . 5 , 2 1 1 , 3
0 KENERATE 0, I I 1
3 DSSIGN 0 2 , FN (VALUE) , PH

is that the transaction’s second halfword parameter will have the value of 1
for 20% of the time, the value of 2 for 30% of the time, and the value of 3 for
the rest of the time. An example might be a mine in which 20% of the trucks
are type 1,30% are type 2, and the remainder are type 3. Later in the pro-
gram, these parameters can be used to differentiate the trucks. For example,
suppose that the loading rates for the 3 mck types are given by the functions
TYPEI, TYPE2, and TYPE3. A simulation of the loading of the fleet of trucks
might be given by

OLOADIT @UNCTION OPH2 , M3
1, FN (TYPE1) / 2 , FN (TYPE21 / 3 , FN (TYPE3)
OLOAD~ OFUNCTION @ ~ 1 , c 2 0
0 o-----
OLOAD2 W C T I O N m l , C 2 4
0 o-----

Parameters. the LOOP Block. and the EQU Statement 183

OLOAD3 W C T I O N @RN2,C25
0 n-----
0 o-----

Since any of the operands of the ASSIGN block can be an SNA, it is possible to
have the following:

0 W V A N C E @N (LOADIT)

0 DSSIGN UPHl , 3 , PH

In this block, which parameter is going to be assigned the value 3 depends on
what value is already in the transaction’s halfword parameter 1 (PH1). If PHI
contains a value of 4, then halfword parameter 4 (4PH) will be assigned the
value 3. If PHI contains a value of 8, then halfword parameter 8 (8PH) will be
assigned the value 3.

The following code containing the SNA N(TIMES) (which tracks the total
number of transactions to have entered the ASSIGN block) in the B operand

0 @ASSIGN O~,N(TIMES) ,PH

creates 5 transactions. The first will have a 1 assigned to its halfword parame-
ter 1, the second a 2 assigned to its halfword parameter 1, the third a 3, etc.
This code pair is a method of generating a series of transactions with a single
GENERATE block and giving the transactions sequential numbers in halfword
parameter 1. The block

0 @ASSIGN M(WA1T) +1,1.23, PL

will assign the value of 1.23 to the floating-point parameter whose number is
given by the value of Q(WAITj+l.

Giving Parameters Names

As mentioned, it is also possible to designate the parameter by a name instead
of a number, as in the following:

OTIMES EENERATE 0,,,5

0 @ASSIGN BOM, 10, PH

Later, when reference to the halfword parameter named TOM is made, it is
done as follows:

0 @ADVANCE UPH (TOM)

The transaction will be put on the FEC for a time of 10, since the value
assigned to the halfword parameter TOM is 10. The preference here, how-
ever, is to use parameters given by numbers rather than by name.

The A S s I GN Block in Increment or Decrement Mode

You can add to (or subtract from) the value of a parameter by putting a plus
(or minus) before the first comma in the operands. The following ASSIGN
block will take the value in halfword parameter 4 and add 5 to it:

0 DSSIGN 04+, 5, PH

284 The GPSS/H Slmulatlon Ianguage

The following ASSIGN block will subtract 6 from the value in halfword
parameter 3:

0 @ASSIGN 03-, 6, PH

The following ASSIGN block will add the length of the queue WAIT to the
transaction’s first halfword parameter. If the queue length was 4 and the
value of PH1 was 12, its new value would be 16.

C BSSIGN al+, Q(WA1T) , PH

The following ASSIGN block will add the average waiting time of the nonzero
entry transactions for the queue WAIT1 to the transaction’s seventh floating-
point parameter:

0 DSSIGN 07t, QX (WAIT11 , PL

Example 18.1

In Chapter 12, we had an example (number 12.4) of a hardware store with
shoppers selecting items from each of 4 possible aisles. Each shopper who
went through the store took 45 f 12 seconds to check out. Shoppers who
went directly to the checkout counter took 20 f 8 seconds. In actual practice,
the time to check out is a function of how many items each person has in the
shopping cart. Suppose the number of items selected by each person who
goes down each aisle is given by the following:

Aisle No. of Items Selected

1 3f2
2 4 f 3
3 3 f 1
4 5 + 4

At the checkout counter, all people select additional items as follows:

No. of Additional Items Relative Probability

0
1
2

0.30
0.25
0.45

Checkout time is 3.5 seconds per item. Shoppers arrive in a Poisson stream
with a mean of 82.5 seconds. Simulate for 100 shifts of 8 hours each. Deter-
mine the number of carts to have in the store so that a shopper will always be
guaranteed of having a cart. How busy is the checkout person? M o d e the
program written previously to include these changes.

Solution

0 O~IMULATE
OAISLEl m C T I O N Nl, C2 USHOPPING IN AISLE 1
0,1/1,6

Parameters. the r.00~ Block. and the EQU Statement 185

()AISLE2 @UNCTION @RN1, C2
0,1/1,8
OAISLE3 @UNCTION ml , C2
0,2/1,5
OAISLE4 I-JF.JNCTION m1, C2
O,l/l,lO
OWAIT m C T I O N ml,D3
.3,0/.55,1/1,2
0 @STORAGE nS(CARTS), 1000
0 EENERATE mVEXP0(1,82.5)
0 W S F E R 0.12,,COUNTER
0 W E R BARTS
0 e S F E R 0.2, ,AISLE2
0 DSSIGN 01, F'N (AISLE11 , PH
0 @ADVANCE 0125,70
0AISLE2 W S F E R 0.25,,AISLE3
0 I-JASSIGN Ill+, FN(AISLE2), PH
0 @ADVANCE 0140,40
OAISLE3 W S F E R 0.15,,AISLE4
0 DSSIGN gl+,FN(AISLE3),PH
0 WVANCE 0150,65
OAISLE4 BRANSFER O.lO,,CHECK
0 DSSIGN 01+, FN(AISLE4) , PH
0 @ADVANCE 0175,70
=HECK DSSIGN 01+, FN (WAIT) , PH

0 BEIZE BHECKER
0 DEPART @INE
0 @ADVANCE OPH1*3.5
0 BELEASE BHECKER
0 DEAVE BARTS
0 mERMINATE
MOUNTER WSIGN ul,FN(WAIT) ,PH

0 @SEIZE EHECKER
0 DEPART DINE
0 @ADVANCE OPHl* 3 .5
0 BELEASE BHECKER
0 DERMINATE
0 KENERATE 03 600 * 8 * 100
0 DERMINATE 01
0 @START 01

0 m m DINE

9 DQVEUE ~ I N E

USHOPPING IN AISLE 2

@HOPPING IN AISLE 3

[?SHOPPING IN AISLE 4

UPROVIDE 1000 CARTS

012% GO TO COUNTER
N S T TAKE A CART
080% GO TO AISLE 1
USELECT ITEMS IN AISLE 1
USHOP IN AISLE 1
075% GO TO AISLE 2
USELECT ITEMS IN AISLE 2
USHOP IN AISLE 2
085% GO TO AISLE 3
USELECT ITEMS IN AISLE 3
USHOP IN AISLE 3
090% GO TO AISLE 3
@ELECT ITEMS IN AISLE 4
BHOP IN AISLE 3
USELECT ITEMS AT COUNTER
OSTAND IN LINE
mEADY TO CHECK OUT
@E.?VE THE QUEUE
mHECK OUT
BREE THE CHECKER
EET RID OF CART
DEAVE THE STORE
USELECT ITEMS AT COUNTER
@STANTI IN LINE
W Y TO CHECK OUT
DEAVE THE QUEUE
%HECK OUT
@FREE THE CHECKER
DEAVE THE STORE
USIMULATE FOR 20 DAYS
DIMER TRANSACTION ARRIVES

WSTOMERS ARRIVE

0 OPUTPIC mINES=7,N(COMEIN),N(TAKECART),-
N(C0UNTER) ,FR(CHECKER) 110. ,QM(LINE)-
QA (LINE) SM (CARTS)

NUMBER TO COME TO SHOP * * * * *
NUMBER TO USE AISLES * * * * *
NUMBER TO GO DIRECTLY TO COUNTER *****
UTIL. OF CHECKER AT CHECKOUT *** . **%
MAXIMUM QUEUE AT CHECKOUT * * * *
AVERAGE QUEUE AT CHECKOUT
MAXIMUM CARTS IN USE AT ONE TIME * * * *

**** . * *

r3 aEND

186 The GPSS/H Simulatlon Language

The output from the simulation is

NUMBER TO COME TO SHOP 34973
" B E R TO USE AISLES 30841
NUMBER TO GO DIRECTLY TO COUNTER 4132
UTIL. OF CHECKER AT CHECKOUT 49.94%
MAxIMlTM QUEUE AT CHECKOUT 8
AVERAGE QUEUE AT CIECKOUT 0 .31
MAXIMUM CARTS IN USE AT ONE TIME 18

The results of the simulation show that 34,973 people entered the hardware
store. Of these, 30,841 went shopping down the various aisles. The remaining
4,132 went directly to the checkout counter. The checkout person was busy
49.94% of the time, and the average queue at the checkout was 0.31. Notice
that, even though the average queue length was short, there was at least once
a queue length of 8. The maximum number of carts in use in the shop at one
time was 18. It would appear that having 20 carts available would be suffi-
cient to guarantee that no person would come and find them all taken.

General Form of the AS s I GN Block

There is a more general form of the ASSIGN block that is not used much any-
more since the exponential distribution now is built in and is referenced by a
single function call. However, the more general form is presented here for the
sake of being complete:

0 D S S I G N @A, B , C, D

Operands A and B have their usual meaning. C, however, is the name or num-
ber of a function. D is the type of parameter that A is. If C is omitted, then D
takes its place, and we have the ASSIGN block presented previously. If one
used all 4 operands, the effect is as follows:

1. The function as specified by the C operand is evaluated. If the value
returned is a decimal, the value is truncated if the parameter is an integer
type-

2. This value is then multiplied by the number in the B operand.
3. The result of the multiplication in step 2 is placed in the transaction's

For example,

parameter as specified by the A operand.

0 D S S I G N 03,6,5, PH

The function defined with the label 5 is evaluated. Suppose the result is 2.
This is multiplied by 6 and the new result-namely, 12-is placed in the trans-
action's third halfword parameter. In the following block,

0 D S S I G N 01,3, F I R S T , PL

the function FIRST is evaluated. Suppose the number returned is 2.9543. This
is multiplied by 3. The result, 8.8629, is placed in the transaction's first float-
ing-point parameter. If the ASSIGN block had been

Parameters, the LOOP Block, and the EQU Statement 187

0 @ASSIGN 01,3, FIRST, PH

the result returned would have been 8 and not 8.8629 because values are
truncated to integers.

Notice the form in the two preceding lines of code. If you had written

0 @ASSIGN 01,3, FN (FIRST) , PH

a run-time error would probably result unless there happened to be a function
with the number (i.e., as a label) given by the value returned by referencing
the function FIRST because GPSS/H evaluates the function FIRST before
doing the ASSIGN specification. If, for example, FN(F1RST) returns the value
7, then the function with the label 7 is evaluated. If no such function exists, a
run-time error occurs.

In Chapter 14, it was mentioned that the block

0 N V A N C E W(0NE) ,FN('IWO)

would place the transaction on the FEC for a time of FN(0NE) x FN(TWO),
not for a time given by FN(0NE) f FN(TW0). If this latter result is needed,
the way to accomplish it is with the following three lines of code:

0 @ASSIGN el, FN (ONE) , PH
0 @ASSIGN 02,F'N(TWO) , P H
9 W V A N C E OPHl , PH2

THE LOOP BLOCK

GPSS/H does not have general DO loops as blocks. These are common in
other languages such as Fortran and Pascal. In Chapter 23, however, we shall
see that it is possible to have DO loops that are used in control statements.
These DO loops are very useful in running programs multiple times with
selected variables changed.

GPSS/H does have a block that acts similarly to the DO loop, but it is
restricted. This block is the LOOP block, and it acts in connection with a trans-
action's specified parameter. The general form of it is

0 rJL0OP OA, B

where operand A is a parameter and operand B is the label of the block at the
start of the loop. An example of such a block is

3 D O O P OlPH,BACKl

The way the LOOP block works is as follows: The transaction's parameter, as
specified in the A operand, is used to control the looping. (Note that the first
iteration of the loop has already been done by the time that the transaction
reaches the LOOP block.) When the transaction enters the LOOP block, the
value given by the A operand is decremented by 1, and the result is compared
with 0. If the value is 0, the transaction is routed to the next sequential block
If the value is greater than 0, the transaction is routed to the block whose

188 The GPSS/H Simulation Language

label is given in the B operand of the LOOP block. The destination block is
always before the LOOP block. Some examples of LOOP blocks are

0 (b) LaOOP OPH~,UPTOP

In (a), suppose that the value of the transaction’s third halfword parameter is
6. Then the looping is done for values of 5 ,4 ,3 ,2 , and 1. In (b), the transac-
tion’s first halfword parameter is used. Suppose its value is 4, and the value of
halfword parameter 4 is 5. Looping is done for 4 ,3 ,2 , and 1. In (c), the loop-
ing depends on the value of the transaction’s fullword parameter 5.

Looping is done only by a decrement of 1 and cannot be done by increments.
As restrictive as this block may seem, there are many uses for it.

O(a) DOOP 133 PHI BACK1

/ > (c) EOOP 05PF, OVER

THE EQU STATEMENT (COMPILER DIRECTIVE)

You can use parameters as operands of other blocks such as the QUEUE and
SEIZE blocks. In fact, this is often done. Thus, one could have blocks such as

0 WLJFJJE uPH2
0 [IQUEUZ C]PHltPHI
0 USEIZE CPH4

Use of such code can greatly compress the number of lines of GPSS/H. For
example, suppose that there are 3 types of ships entering a harbor. Type 1
requires 1 tugboat to berth it, type 2 requires 3 tugboats, and type 3 requires
4 tugboats. Rather than have three nearly identical segments of code, you
could set each ship type to have a different number in one of its parameters,
say halfword parameter 5. Thus, type 1 ships might have a 1 in halfword
parameter 5, type 2 ships have a 3, and type 3 ships have a 4. Then you could
use the block

0 W E R WGS,PHS

where TUGS has been defined as the STORAGE to represent the number of
tugboats available. In addition, you could have the ships enter separate
queues according to ship type by using the block

0 OQUEUE nPH5

If you wanted the ships to be in a global queue, it is tempting to write

0 OQUEUE m A I T
0 OQUETJE 3PH5

Unfortunately, there is a problem. If it is assumed that there are no other
queues in the program or that the queue WAIT is the first queue encountered
by the compiler, the queue WAIT is assigned to the first queue during compil-
ing. Now, when a type 1 ship enters queue 1, this is not only QUEUE 1 but
also QUEUE WAIT. The statistics will be incorrect. One way around this is to
have the queue WAIT renamed as, say,

0 mum 1310

Parameters, the LOOP Block, and the EQU Statement l.89

This approach will work, but it is better to use mnemonics that represent
names that are more meaningful than just numbers. The EQU compiler direc-
tive allows programmers to use names for operands but also to assign them
specific numbers. The general form of this statement is

OLABEL B Q U [7A, B

The label is the mnemonic that you want to use. Operand A is the integer
number that you want to assign to the entity. Operand B is the family name of
the entity. These are

Entity Family Name
facility

function

parameter

queue
random number
storage

F
z
PH, PB, PF, or PL

Q
RN

S

Some examples of the EQU statement are discussed next.

OMACHl D Q U 010,F O(a)
OHALT D Q U 04,Q O(b)

In (a), the facility MACH1 is specified as being the tenth facility. In (b), the
queue HALT is specified as being the fourth queue.

OWAIT D Q U O 7 , Q O (c)

In (c), the queue WAIT is specified as being the seventh queue of all of the
possible queues GPSS/H has. Example 18.2 uses a similar statement, but
there is a caveat. In a program, if you had

0 m u m ~ A I T

and PHI was between 1 and 6, there would be no problem in having the
queue WAIT specified as queue 7, but if PH1 could be 7 or more, then a run-
time error could arise.

Finally, in the following code, both queue HALT and facility HALT are desig-
nated as the tenth queue and tenth facility, respectively.

+HALT D Q U Clot Q, F
0 n-----
0 n-----
0 B m W T
9 @SEIZE W T

0 B U F U E OPHl

Example 18.2

Three types of ships use a harbor: type 1, type 2, and type 3. Ships of type 1
and type 2 enter the harbor and are guided into a dock by either 1 or 2 tug-
boats. Type 1 ships need one tugboat and type 2 ships require two tugboats.

190 The GPSS/H Simulation Language

Type 3 ships require three tugboats. When the ships leave the docks, type 1
and type 2 ships sail to another port and eventually return in a closed circuit
or cycle. Type 3 ships enter the harbor every 14 * 7 hours and then leave for
good. The number of ships of type 1 and of type 2 and the unloading and
reloading times for all ships in the harbor are as follows:

Ship Type Number Time in Dock (hours) Time to Cycle (hours)

1 12 24 k 6.6 180 & 25
206 & 27 2 14 28 k 8.6

3 - 27 k 7.7 -

When a ship enters the harbor, it must wait until a berth is free. There are 3
berths available. There are 3 tugboats available. When a berth is free, and
there are ships waiting in a queue, the captain of the first ship in the queue
checks to see if enough tugboats are available. If so, the tugboat takes 1 hour
to dock the ship. After unloading and reloading, the captain of the ship again
checks to see if enough tugboats are available. If so, it takes 0.15 hours for the
tugboat to move the ship far enough away to free the berth. It then takes 1 f
0.2 hours to complete unberthing and free the tug(s>.

Write a GPSS/H model to simulate the harbor facility. When the ship transac-
tions are put into the system, have them spaced out by 24 hours each, and
have the ships of type 1 and type 2 enter the system via their respective
ADVANCE blocks so that they are initially at the beginning of their circuit sail-
ing away from the harbor. Form separate queues for each type of ship as well
as a global queue. The program is to have all the ships in the main segment
rather than to have 3 separate segments. Simulate for 2 years of 365 days, 24
hours per day, of operation.

Solutlon
0 @SIMULATE
0 USTORAGE US (DOCK) ,3 / S (TUGS) , 3 UPROVIDE BERTHS, DOCKS
OWHICH W C T I O N UPHl,D3
l,FIRST/Z,SECOND/3,THIRD
0FJ.AIT D Q U 010,Q D E F I N E WAIT AS QUEUE NO. 1 0
OSHIPA 5ENERATE 0, , , 1 2 , , lPH, 2PL OPROVIDE TYPE 1 SHIPS
0 DSSIGN C1,1, PH m E R THEM 1
0 DSSIGN n 1 , 2 4 , PL UNLOAD & LOAD TIME

0 WVANCE m (S H 1 P A) *24 OSPACE OUT THE SHIPS
0 DTT(ANSFER 0, FIRST USEND TO SEA
OSHIPB [?GENEFATE 0, , ,14, , lPH, 2PL OPROVIDE TYPE 2 SHIPS
0 @ASSIGN 1 1 , 2 , PH m E R THEM 2
0 @ASSIGN 01,28, PL UNLOAD & LOAD TIME
0 DSSIGN 01,8.6, PL OSPREAD
0 WVANCE m (S H 1 P B) *24 @PACE OUT THE SHIPS
0 DTT(ANSFER 0, SECOND CSEND TO SEA
O JENERATE 0 1 4 , 7 , , , , 1 P H , 2 P L W P E 3 SHIPS ARRIVE
3 @ASSIGN 01,3, PH m E R THEM 3
0 @ASSIGN 0 1 , 2 7 , P L @EAN UNLOAD & LOAD TIME

‘3 @ASSIGN 0 2 , 6 . 6 , P L OSPREAD

0 @ASSIGN [31 ,7 .7 , PL gs PREAD

Parameters, the LOOP Block, and the 1 ~ 3 3 Statement 191

OHARBOR I-&UELl'E mAIT DOIN GLOBAL QUEUE
0 mUEU'E 0PHl DOIN INDIVIDUAL QUEUES

0 W E R WGS,PHl @ R E TUGBOATS FREE?
0 @DEPART @AIT DEAVE THE GLOBAL QUEUE
0 DEPART OPHl DEAVE INDIVIDUAL QUEUE
0 @ADVANCE 01 WGBOATS BERTHS SHIP
0 DEAVE wGS,PHl @REE THE TUGBOATS
0 @ADVANCE OPLl, PL2 W O A D & LOAD A SHIP
0 W E R WGS,PHl W G A G E TUGBOATS
0 WVANCE 0.15 DEAVE DOCK
0 DEAVE W K @REE DOCK
0 WVANCE 01, .2 BINISH UNBERTHING
0 DEAVE WGS,PH1 B'REE TUGBOATS
0 W S F E R n, FN (WHICH) mRANSFER SHIPS
OFIRST WVANCE 0180,25 W P E 1 SHIPS AT SEA
0 DFANSFER o,H?iRBOR DACK TO HARBOR
OSECOND @ADVANCE @206,27 W P E 2 SHIPS AT SEA
0 DRANSFER O,HARBOR DACK TO HARBOR
OTHIRD mERMINATE mYPE 3 SHIPS LEAVE
0 BENERATE 024*365*2 BIMULATE FOR 2 YEARS
0 DERMINATE 01
0 @TART 11,NP
0 @u"PIC @.LINES=lO,FILE=SYSPRINT,(S(WCK)+R(WCK),-
S(TUGS)+R(TUGS),QA(WAIT),QAl,QA2,QA3,SR(DOCK)/lO,SR(TUGS) 110)

01s A DOCK FREE? 0 WER m K

0 .
1 I NUMBER OF DOCKS WAS * * *

1 I NUMBER OF TUGBOATS WAS * * *

1 I
1 I AVERAGE NO. TYPE 1 SHIPS IN QUEUE * * . * *

I I AVERAGE NO. TYPE 3 SHIPS IN QUEUE * * . *t
1 I UTILIZATION OF DOCK **. * *%

1 I UTILIZATION OF TUGBOATS **. **%
.

AVERAGE NUMBER OF SHIPS IN GLOBAL QUEXIE * * . * *

* * . * * AVERAGE NO. TYPE 2 SHIPS IN QUEUE

0 OcLEAR
0 USTORAGE US(TUGS) ,4
0 BTART n1,NP
0 OPUTPIC ~INES=10,FILE=SYSPRINT,(S(DOCK)+R(DOCK),-
S(TUGS)tR(TUGS),QA(WAIT),QAl,QA2,QA3,SR(DOCK) /lO,SR(TUGS)/lO)
0 .

I NUMBER OF DOCKS WAS * * * 1
1
1 I AVERAGE NUMBER OF SHIPS IN GLOBAL QUEUE * * . * *

1 1 AVERAGE NO. TYPE 1 SHIPS IN QUEZE **. **

1 I AVERAGE NO. TYPE 2 SHIPS IN QUEUE **. * *

1 I AVERAGE NO. TYPE 3 SHIPS IN QUEUE **.**
1 I UTILIZATION OF DOCK **. * *%

1 1 UTILIZATION OF TUGBOATS **.**%
.

* * * I NUMBER OF TUGBOATS WAS

0 O c L M
0 USTORAGE @(TUGS) ,3/S(DOCK),4
0 OSTART 01,NP
0 UPUTPIC @JNES=12,(S(DOCK)+R(DOCK),-
S(TUGS)+R(TUGS),QA(WAIT),QAl,QA2,QA3,SR(DOCK)/lO,SR(TUGS)/lO)

192 The GPSS/H Slmulatlon Language

0

The program should be carefully studied. Notice the use of the EQU compiler
directive:

OWAIT B Q U 010, Q

This statement sets the queue WAIT equal to the tenth queue in the program.
If this directive had not been given, then when a type 1 ship transaction
entered the block

3 mUEUE OPHl

it also would have been entering the queue WAIT. The output from the pro-
gram is as follows:

1===ll==1==1=111111====11=111.11111====1===============~

I NUMBER OF WCKS WAS 3 1
I NUMBER OF TUGBOATS WAS 3 1
I AVh'RAGE NUMBER OF SHIPS IN GLOBAL QUEUE 1.37 I
I AVERAGE NO. TYPE 1 SHIPS IN QUEUE 0.36 I
1 AVERAGE NO. TYPE 2 SHIPS IN QUEUE 0.47 I
I AVERAGE NO. TYPE 3 SHIPS IN QUEUE 0.54 I
I UTILIZATION OF DOCK 92.01% I

2 8 . 2 8 % I I UTILIZATION OF TUGBOATS
111=11==11=1=1=11==1111=1111===11=11_===========================~

I 1====5:1:-- ..
1 NUMBER OF DOCKS WAS 3 1
1 NUMBER OF TUGBOATS WAS 4 1
I AVERAGE NUMBER OF SHIPS IN GLOBAL QUEUE 1 .20 I
I AVERAGE NO. TYPE 1 SHIPS IN QUEUE 0.30 I
I AVERAGE NO. TYPE 2 SHIPS IN QUEUE 0.42 1
I AVERAGE NO. TYPE 3 SHIPS IN QUEUE 0 .48 I
I UTILIZATION OF DOCK 90.66% I
I UTILIZATION OF TL'GBOATS 21 .14% I Illl==ll=:l=IIz=lll====1111:1=1==11==:=1===============~
1=1====11=:1:;1=II11=1=1:1111=1=1===1=1================~
I NUMBER OF DOCKS WAS 4 1
I NUMBER OF TUGBOATS WAS 3 1
I AVERAGE NUMBER OF SHIPS IN GLOBAL QUEUE 0.28 I

I AVERAGE NO. TYPE 2 SHIPS IN QUEUE 0.11 I
I AVERAGE NO. TYPE 3 SHIPS IN QUEUE 0 . 1 0 I

11==11=111111========IIIIIIIc.I=ll===1II===============~

I ALTRAGE NO. TYPE 1 SHIPS IN QWUE 0.08 I

I UTILIZATION OF DOCK 6 8 . 9 6 % I
28.40% I I UTILIZATION OF TUGBOATS

Parameters, the IX)OP Block, and the EQu Statement 193

The results of the program indicate that, with 3 docks and 3 tugs, the docks are
used 92.01% of the time and the tugboats are busy 28.28% of the time. The
average number of ships waiting in the global queue is 1.37. When another
tugboat is added, the changes are minor: the docks are sti l l busy more than
90%, namely, 90.66% and the tugboats are busy 21.14%. The average queue
of all the ships is 1.20. When another dock is added, the changes are quite dra-
matic: the docks are now used only 68.96% of the time and the tugboats are
busy 28.40% of the time, but the average global queue is reduced to -28 ships.

EXERCISES, CHAPTER 18

I. A transaction has values 1 and 2 in halfword parameters 1 and 2,
respectively.
OFIRST @UNCTION OPHl , D2
1,6/2,10
OSECOND W C T I O N OPH2, D2
1,2/2,3

State what will happen when the transaction enters each of the following
blocks:
O(a) @ADVANCE uPH1*60
O (b) D V A N C E '$"FIRST) *FN(SECOND)
O (c) OQUEXJE nPH2
O (d) W E R WGS,PHl
O (e) mEAVE OSHIP,PHl*PH2
O (f) @ADVANCE W(F1RST) ,PH2
O (g) @ADVANCE nlO,FN(FIRST)

Also state the effect of each of the following three blocks:
O (h) PSSIGN 03,PHl,PH
0 PSSIGN 04, PH2, PH
G @ADVANCE nPH3 * PH4

O (i) @ASSIGN 03,PHl,PH
0 @ASSIGN 04, PH2, PH
0 W V A N C E nPH4, PH3

2. Assume that the following entities hold the following values at a particu-
lar time in a program:

Entity Value

F(MACH 1) 1
Q(WAIT1) 2

Q(WAIT2) 3
FRf MACH 1) 578
SUUGS) 5

R(TUGS) 2

%(TUGS) 123

A transaction has the value of its first 6 halfword parameters as follows.
All other parameter values are 0.

194 The GPSS/H Simulation language

~~ ~~ ~

Halfword Parameter Number Value

1 3
2 -1
3
4

5

-2

5
4

6 6

State what happens if the transaction were to enter each of the following
independent blocks:
O(a) @ASSIGN 04,F(MACHl) ,PH

O (c) mSSIGN OPH4,F(MACHl) ,PH

O (e) M S I G N 01,PHl*PH5,PH

0 (g) DSSIGN m(WAIT1) ,PH3,PH

O (i) @ASSIGN nl,Q(WAITl)+Q(WAITZ) ,PH
O (j) mSSIGN nS(TUGS) ,SC(TUGS) ,PH

O (b) @ASSIGN 04+,F(MACH1) ,PH

O (d) @ASSIGN @PH4-,F(MACHl) ,PH

0 (f) @ASSIGN 31 - , PHI * PH5, PH

O (h) @ASSIGN UPH5,FR(MACHl)/S(TUGS) ,PH

0 (k) SSSIGN US (TUGS) -PH1, PH6, PH
O(1) @ASSIGN OPH5+,SC(TUGS)-F(MACHl) ,PH

3. A construction job is using 1 shovel and 10 trucks-6 of type 1 and 4 of
type 2. The shovel can load only 1 truck at a time. Each truck is loaded in
1.2 f 0.5 minutes. Both types of trucks then travel to a junction in the
same time, namely, a time given by the normal distribution with a mean
of 5 minutes and a standard deviation of 0.75 minutes. At the junction,
trucks of type 1 travel to a dump area in 2 f 1.2 minutes. Type 2 trucks
travel to a different dump area in 2.5 * 0.8 minutes. Both types of trucks
take 1 f 0.2 minutes to dump. Type 1 trucks return to the shovel in 5.5 f
2 minutes, and type 2 trucks return to the shovel in 3.5 * 1.2 minutes.
Simulate for 100 continuous shifts of 480 minutes each. You are to use
the same ADVANCE blocks for both truck types.

4. Consider the following code:
0 EGENERATE a , ,
3 aSSIGN el, 5, PH
0 DSSIGN G5,2, PH
CBACK @ASSIGN 02+, PH1, PH
0 DOOP OlPH, BACK

0 @TART 01
0 ~EFXINATE C1

What will be the value of the tTansaction’s second parameter at the end of
the program?

5. Suppose that the LOOP block was LOOP PH1,BACR in exercise 4. What
would the value of the transaction’s second parameter be at the end of
the program?

Parameters, the LOOP Block, and the SQU Statement 195

SOLUTIONS, CHAPTER 18

1. a. It will be put on the FEC for 60 time units.
b. It will be put on the FEC for 18 time units.
c. It will enter queue number 2.
d. It will use 1 of the storages TUGS.
e. It will free 2 of the storages, SHIP.
f. It will be placed on the FEC for a time of 6 f 2.
g. It will be placed on the FEC for a time of 10*1 time units, NOT 10 f 1.
h. The effect of the 3 blocks is to place the transaction on the FEC for 2

time units.
i. The transaction will be placed on the FEC for 2 * 1 time units.

2. a. Halfword parameter 4 has the value 1.
b. Halfword parameter 4 has the value 6.
c. Halfword parameter 5 has the value 1.
d. Halfword parameter 5 has the value 4.
e. Halfword parameter 1 has the value 12.
f. Halfword parameter 1 has the value -9.
g. Halfword parameter 2 has the value -2.
h. Halfword parameter 4 has the value 115. (integer division)
i. Halfword parameter 1 has the value 5.
j. Halfword parameter 5 has the value 123.
k. Halfword parameter 2 has the value 6.
1. Halfword parameter 4 has the value 122.

3. The program to do the simulation is as follows:
SIMULATE

TODUMP FUNCTION PH1,M2
1, FN (ONE) /2, FN (TWO)

0,.8/1,3.2

0,1.7/1,3.3

l,FN(THREE) /2,FN(FOUR)

0,3.5/1,7.5

0,2.3/1,4.7

ONE FUNCTION RNl,C2

TWO FUNCTION RN1,CZ

TOSHOVEL FUNCTION PH1, M2

THREE FUNCTION RNl,C2

FOUR FUNCTION XNl,C2

GENERATE ,,,6
ASSIGN 1,1, PH
TRANSFER ,DDDD
GENERATE , , ,4
ASSIGN 1,2, PH

DDDD Q m WAIT
SEIZE SHOVEL
DEPART WAIT

196 The GPSS/H Simulation Language

ADVANCE 1.2,.5
RELEASE SHOVEL
ADVANCE RvNORM(1,5,.75)
ADVANCE FN (TODUMP)
ADVANCE 1, .2
ADVANCE FN(TOSH0VEL)
TRANSFER ,DDDD
GENERATE 480*100
TERMINATE 1
START 1
PUTPIC LINES=3,FC(SHOVEL)/100.,FR(SHOVEL)/10
RESULT OF SIMULATION

TRUCKS LOADED PER SHIFT * * * . * * UTIL. OF SHOVEL *** . **%
END

The results of the simulation are:
RESULT OF SIMULATION

TRUCKS L0A.DED PER SHIFT 321.36 UTIL. OF SHOVEL 80.528

4. The value of the second parameter will be 15.
5. The value of the second parameter will be 15. This value is not obtained in

the same manner as in Exercise 14.4 but is the result of adding 5 + 5 + 5. In
Exercise 14.5 the value of 15 was obtained from adding 5 + 4 + 3 + 2 + 1.

Tables in GPSS/H
CHAPTER 19

It is possible in GPSS/H to make tables of any SNA values. A table might be
the length of a queue, the value of a parameter, the percentage of time a
machine is working, etc. Often, the time a transaction has been in the system
is tabulated or how long it took to go from one point in the program to
another point is of interest. GPSS/H makes these tables in the form of histo-
grams. For example, in studying people entering a hardware store and using
the shopping carts, the simulation might give the maximum number of carts
in use as 14. The mean number of carts in use at any time might be 4.5. It
would be insauctive to see how often 14 carts were in use as well as the dis-
mbution of the usage of the carts during the simulation. These data can be
easily acquired via GPSS/H programs.

In making up the tables, GPSS/H also computes the sample mean of the data,
the sample distribution, the number of samples that fall into each of the
ranges, and the percentage of values in the sample that fall into each of the
ranges in the series. The computations are done automatically.

Recall that a histogram has intervals that record the number of times a vari-
able falls within each interval. Since a person doing a simulation often is con-
cerned with tabulating data, GPSS/H provides a very simple method of doing
this. In fact, to make a histogram for any SNA takes only 2 lines of code! One
of these is a block and the other a statement.

THE TABLE STATEMENT

To record data in a table requires the defining of a statement called the
TABLE statement. Its general form is

OLABEL ZABLE m , B , C , D , E

where operand A is an SNA, operand B is the starting data point, operand C is
the interval width (for all but the starting and ending intervals), operand D is

197

198 The GPSS/H Slmulatlon Language

the number of intervals, and operand E gives the time span to be used (if
any). GPSS/H will count the intervals you speclfy in the following way:

I. The first interval will be from -00 to the value specified by the B operand.
2. The succeeding D - 1 intervals (where D refers to the D operand) will

3. The last or Dth interval will be from the value obtained by using the B, C,
each be of the width specified by the C operand.

and D operands to +-.

In general, therefore, the beginning interval and ending intervals are the
regions from --M to the first data point of the histogram as specified in the B
operand and from the last data point of the histogram to +-. These two “extra”
intervals, which are included in the interval count indicated by the D operand,
are important to keep in mind when you are using the TABLE statement. For
example,

OMYTAB BABLE O Q (F I R S T) , 0 , 3 , 4

would have 4 intervals as follows: --M to 0 , O to 3,3 to 6, and 6 to +-. Some
other examples of the TABLE statement are

OFIRST BABLE uS(CARTS),O,1,20
OMARK1 DABLE m (W A I T) , 0 , 1 , 1 5
ONEXT BABLE B R (MACH1) , 0 ,50 ,22

The table FIRST will record the amount of storage used in the storage CARTS
and put the values in a table with intervals from 0 to 18. The interval widths
will be 1. The first interval will be from -- to 0 (even though there will never
be an entry here), the second from 0 to 1, etc., and the last interval (i.e., the
twentieth) from 18 to +w.

The table MARK1 will give the distribution of the number of people who were
in the QUEUE called WAIT. The table will have 15 intervals, which include
the interval from -00 to 0 and the interval from 13 to +-M.

The table NEXT gives the utilization of the facility called MACH1. The table
will go from 0 to 50, 50 to 100,100 to 150, etc. (not counting the end inter-
vals). The class interval of 50 was chosen because the utilization is given in
parts per thousand.

THE T A B U L A T E BLOCK

To make an entry in a table, you use the TABULATE block:

0 DABUTATE

where the operand A is the label of the appropriate TABLE statement. Every
time a transaction enters this block, an entry in made in the TABLE that has
the label given as operand A in the TABULATE block. Thus, the combination
of a TABLE statement and a TABULATE block such as

Tables In GPSS/H 3.99

OPEOPLE DABLE Oa (WAIT) , 0 ,1,10
0
0
0
0 [IrABULATE OPEOPLE

would make a table (histogram) of the people in the queue named WAIT.

To illustrate what a table from a program looks like, consider the program to
study people using a single facility. People amve every 12 * 4 minutes. The
service time is 11 f 7 minutes. If the server is busy, people wait in a queue
until the server is free. The program to simulate for 50 days of 480 minutes
per day and to obtain a table of times for people who had to wait for service is
as follows:

0 -____ 0 _-___
0 __--- 0 -___-

0
OINQUE
0
0
0
0
0
0
0
0
0
0
0
0

OSIMULATE
[IrABLE B X (W A I T) , 0 , 1 , 2 0
5ENERATE 012 ,4
OQUEUE @AIT
OSEIZE mCH1
mABULATE UINQUE
DEPART W A I T
WVANCE 011,7
DELEASE mCH1
[IrERMINATE
EENERATE 0480*50
BERMINATE 01
USTART 01
DEND

BLOCK CURRENT
i

2
3
4
5
6 1
7
8
9
10

The block entry count and the table from the output are as follows:

TOTAL
1997
1997
1997
1997
1997
1997
1996
1996

I

TABLE INQUE
ENTRIES I N TABLE MEIllv ARGUMENT STANDARD DEVIATION SziM OF ARGUMENTS

1997.0000 10.4626 1.3307 20893.7941 NON-WEIGHTED
UPPER OBSERVED PERCENT CUMULATIVE MULTIPLE DEVIATION DEVIATION
L I M I T FREQUENCY OF TOTAL PERCENTAGE REMAINDER OF MEIW FROM MErzN

0. 1. OOOO 0.05 0.05 99.95 0. -7.8625
1 . 0 0 0 0 3.0000 0.15 0.20 99.80 0.0956 -7.1110
2.0000 3.0000 0.15 0.35 99.65 0.1912 - 6.3596
3.0000 4.0000 0.20 0.55 99.45 0.2867 -5.6081

200 The GPSS/H Simulation Language

4.0000 1.0000
5.0000 4.0000
6. 0000 50.0000
7.0000 16.0000
8. 0000 9.0000
9. 0000 3.0000

10.0000 268.0000
ll.CCC0 557.0000
1 2 . - ; a 0 717.0000
13.JOOO 30.0000
14.0000 1.0000

0.05 0.60
0.20 0.80
2.50 3.30
0.80 4.11
0.45 4.56
0.15 4.71

13.42 18.13
44.42 62.54
35.90 98.45
1.50 99.95
0.05 100.00

99.40
99.20
96.70
95.89
95.44
95.29
81.87
37.46
1.55
0.05
0. 00

0.3823
0.4779
0.5735
0.6691
0.7646
0.8602
0.9558
1.0514
1.1469
1.2425
1.3381

-4.8566
-4.1051
-3.3536
-2.6021
-1.8506
-1.0991
-0.3476
0.4039
1.1553
1.9068
2.6583

As shown in TABLE INQUE, there were 1997 entries. The output stops at the
upper limit of 14.0000 as there were no entries beyond this. GPSS/H does not
give output if there are no entries. Thus, the D operand of the TABLE state-
ment could have been any number greater than 14, and the same output
results would be produced, for this example.

There is nothing else to do to make tables of SNAs. This ability to make tables of
any SNA so easily and rapidly is often hard for people to believe the first time
they are introduced to it.

SNAs ASSOCIATED WITH TABLES

There are several SNAs associated with tables. These are as follows:

TB(LABEL) or TBj Sample mean. For the previous table, labeled INQUE, this is
10.4626, as shown.

TC(IABEL) or TCj Number of observations (= entries). This SNA’s value is 1977 for
the table INQUE.

TD(LABEL) TDj Standard deviation. For the table INQUE, this value is 1.3307.

T H E SNA M i

An SNA that is quite useful when constructing tables-first introduced in
Chapter 15-is M1; it gives the time a transaction has been in the system.
Whenever a transaction is created, it is marked with the time it enters the sys-
tem (by using the absolute clock!). At any later time in the simulation, when
the SNA M 1 is referred to, the compiler takes the time of the absolute clock
and subtracts the transaction’s entry time from it. This procedure gives the
time that the transaction has been in the system; i.e., M1. For example, a
transaction entered the system at time 404.56; when the absolute clock reads
625.77, the transaction’s M 1 is 231.21. Consider the following lines of code:

9 o-----
0 q-----

CTIMES DABLE 3 1 , 0 , 2 5 , 3 0

0 DABULATE DIMES

The table TIMES will give the tabulation of times that the transactions are in
the system from the time they entered up to the time that they encounter the
block TABULATE TIMES. The times will be in intervals of 25, and there will
be 30 such intervals.

Tables In GFSS/H 201

THE MARK BLOCK

Suppose you want a tabulation of times for the transaction to go from point A
to point B in a system. It is first necessary to make a record of the absolute
clock time when the transaction arrives at point A by making a record of the
absolute clock value in a parameter of the transaction. Which parameter this
value is to be stored in must be specified by using the MARK block. The gen-
eral form of the block is

0 DMARK OA

where the A operand is the number of the chosen parameter followed by its
tyqe (PH,PF ,PL,,ar P B \ , e . ~ . , 4 P K . N Q t ~ t ~ ~ ~ ~ ~ ~ ~ =.sseh&+&
block is nor an SNA. Also note that the form MARK (number of parame-
ter)$(parameter type) will also work. Thus, the following will work but is not
used in this book:

0 m 05SPL

When a transaction leaves the MARK block, the effect is to put the absolute
clock time in the transaction’s parameter specified by the number in the A
operand. Since the absolute clock value is a real number, if the parameter
number does not refer to a floating-point parameter, the value is truncated to
an integer. When this happens, a message such as the following appears:

“IN STATEMAT 9 - WARNING 393 - Clock value (floating point) w i l l be truncated to
an integer value. ”

Thus, if the absolute clock was at 1234.567 and you had:

0 m 04PH

then halfword parameter 4 would have the value of 1234. Such truncation is
normally not desired and, so, when using this block, it is recommended that
floating-point parameters be used to avoid truncation error. For example, you
could have

0 NENERATE 0, , , I , I 5PL
0
G [IMARK 05 PL

If you had omitted the PL in the MARK block, you would get an error mes-
sage. Don’t forget that, since you are now specifying in the GENERATE block
that the transaction has 5 floating-point parameters, it does not have any half-
word parameter.

In order to tabulate the time it takes for a transaction to go from point A to
point B, the SNA that is used in the A operand of the TABLE statement in
conjunction with the MARK block is MPxn, where M refers to time (as in the
SNA Ml), Px indicates the parameter type (x = H, B, F, or L), and n is the
parameter number (the parameter type and number must match the usage in
the associated MARK block; see Appendix B for more information). In the
TABLE statement, the effect of this SNA is to subtract its value from the cur-
rent absolute clock value. Referring to the same example, if the clock value

0 ___-_ 0 - -___

202 The GPSS/H Simulation language

was now 2344.777, the value of MPL4 would be 1110.21. Examples of this
SNA are as follows:

B P L L , 0 , 5 0 , 2 0
B P L 2 , 0 , 4 0 , 2 2
m P L 3 , 0 , 3 0 , 2 5
? 3 0 , 1 2 , , , , 1 2 P H , 3 P L

02 PL

p3 PL

DFIRST
OSECOND
B H I R D

The preceding code will give 3 tables of the simulated times it takes the
transactions to travel from the 3 MARK blocks to the 3 TABULATE blocks in
the program.

ADDITIONAL TABLES

There are several tables described next that GPSS/H can make for you with
only a minor change to the program.

IA Mode Table

Whenever a GENERATE block is used, the dismbution of interamval times is
required as data. Often, the interarrival (LA) times at points interior to a
model are required. For example, at a particular point in a model, whenever a
transaction arrives, a record is made of the arrival time, say, 456.78 time
units. At a later time, say, 666.99 time units, a second aansaction arrives at
the same point. The interarrival time is then determined as 666.99 - 456.78
or 210.21.

The interarrival time can be tabulated by the following lines of code, for
example,

CFIRST ITABLE ' I A , 0 , 2 0 , 2 5 ~

3 LTABUWTE D I R S T

r 5 u-----

The SNA IA in the TABLE statement must be operand A

RT Mode Table

Closely related to the IA mode is the rate (RT) of the arrivals at a point, for
example, the arrivals per 10 seconds, the arrivals per minute, etc. A table
showing arrival rates is constructed as follows:

OSECOND LTABLE 3 T , 0 , 1 5 , 2 5 , 1 0

Tables In GPSS/H 203

Notice that there is an E operand in the TABLE statement. Recall that, in a
TABLE statement, the E operand gives the time span to be used. In the above
example, the table will give arrivals per 10 time units. To make an entry in the
table, the following block is used in conjunction with the TABLE statement
labeled SECOND:

0 DABTJLATE CSECONE

QTABLE Mode

The average residence time in a queue is often required. The average time is
given in the ordinary output. The QTABLE gives the table of average times in
the queue. Amazingly enough, this table requires only a single line of code:

OLABEL OQTABLE m , B , C , D

where operand A is a queue label and operands S, C, and D are the same as in
the TABLE statement. For example, in the code

OLINEl &TABLE mAIT, 0,600,20

whenever a transaction leaves the queue WAIT, an entry is made in the
QTABLE labeled LINE1; the entry is the time that the transaction spent in
the queue.

EXERCISES, CHAPTER 19

1. At stage A, parts enter a system every 15 i 6 seconds. They join a queue
before the first machine, which can work on only 1 part at a time. The
process takes 13 1?: 7 seconds. The parts then move to stages B, C, and D
before leaving the system. However, after stage D, 10% of the parts go
back for complete reworking and must go through the system again.
Determine (a) the average time for the parts to go completely through the
system, (b) the average time for the parts to go from A to C, (c) the aver-
age time for the parts to go from A to D, and (d) the average time for the
parts to go from B to finish.

2. Shoppers enter a small grocery store in a Poisson stream with a mean of
75 seconds. Each takes a shopping cart. Each person will purchase from 0
to 25 items, uniformly dismbuted. It takes 3.2 seconds per item at the
checkout counter, and there is only 1 checkout clerk. The shop is open 10
hours each day. Determine a histogram of the number of carts in use for a
20-day period.

trucks that come for repairs: type 1, type 2, and type 3. The percentage of
each that amves are 35% for type 1,40% for type 2, and 25% for type 3.
A truck arrives every 16 f 6 minutes for repairs. There are two types of
repairs: normal and long. The time to repair the trucks if the service type
is normal is

3. At a repair shop there are 3 bays to repair trucks. There are 3 types of

204 The GPSS/H Simulation Language

Time in Minutes (normal distribution)

Type Mean Standard Deviation
1
2

3

30
35

50

6.0
5.5
8.4

Of the total trucks that come for repairs, 20% require a longer time to fin-
ish. The repair time for all three types of these trucks is the same, 80 k 30
minutes. However, the long-repair-time mcks are given a lower priority
than trucks requiring normal service. Determine how long each truck is in
the repair shop.

SOLUTIONS, CHAPTER 19

1. The program to do the simulation is given below:
SIMULATE
STORAGE S(MACHB),2/S(MACHD),3

TOTTIME TABLE M1,10,5,30
TIMATOC TABLE MPlPL,10,5,30
TIMATOD TABLE MP2PL, 10,5,30
TIMBTOX TABLE MP3PL,10,5,30

GENERATE 15,6,,,,10PL
BACK MARK 1 PL

MPRH 2 PL
QUEUE WAITA
SEIZE MACHA
DEPART WAITA
ADVANCE 13,l
RELEASE MACHA
MARK 3 PL
QUEUE WAITB
ENTER MACHB
DEPART WAITB
ADVANCE 26,8
LEAVE MACHB
TABULATE TIMATOC
QUEUE WAITC
SEIZE MACHC
DEPART WAITC
ADVANCE 12,8
RELEASE MACHC
TABULATE TIMATOD
QUEUE MACHD
ENTER MACHD
DEPART MACHD
ADVANCE 40,12
LEAVE MACHD
TRANSFER .10,,BACK
TABULATE TOTTIME
TABULATE TIMBTOX
TERMINATE

Tables in GPSS/H 205

GENERATE 3600*8,,,,,10PL
TERMINATE 1
START 1
PUTPIC LINES=4,TB(TIMATOC),TB(TIMATOD),TB(TIMBTOX),-

TB (TOTTIME)
TIME FROM A TO C * * * * * * * *
TIME FROM A TO D ***** . **
TIME FROM B TO FINISH *****.**
TIME IN SYSTEM ***** . **

END

The result of the simulation is:
TIME FROM A TO C 262.96
TIME FROM A TO D 89.63
TIME FROM B TO FINISH 11 0.94
TIME I N SYSTEM 195 .46

2. The program to do the simulation is as follows:
SIMULATE
STORAGE S (CARTS) ,1000

ITEMS FUNCTION RN1,CZ
0,0/1,26
CARTSIN TABLE S(CARTS),1,1,20

GENERATE RVEXPO(l,75)
ENTER CARTS
ADVANCE 300,300
ASSIGN
QUEUE WAIT
SEIZE CHECKER
DEPART WAIT
ADVANCE 3 .2 * PH1
RELEASE CHECKER
TABULATE CARTSIN
LEAVE CARTS
TERMINATE
GENERATE 3600*10*20
TERMINATE 1
START 1
PUTPIC

1, FN(ITEMS) , PH

LINES=3, SM (CARTS) , TB (CARTSIN) , FR (CHECKER) /lo.
MAXIMUM NUMBER OF CARTS USED * * * *
AVERAGE NUMBER OF CARTS IN USE * * * * . **
UTIL. OF CHECKER * * * * *%

END

The results of the simulation are:
MAXIMUM NUMBER GF CARTS USED 15
AVERAGE NUMBER OF CARTS IN USE 5.99
UTIL. OF CHECKER 54.17%

3. The program to do the simulation is as follows:
SIMULATE
STORAGE S (BAYS) ,3

TYPE FUNCTION RN1,D3
.35,1/.75,2/1,3

206 The GPSS/H Simulation Language

WHICH FUNCTION PH1,M4
1, RVNORM (1,30,6) / 2 , RVNORM (1,35,5.5) /3, RVNORM (1 , 5 0 , 8 . 4) /4, FN (BIGFIX)
BIGFIX FUNCTION
0,50/1,110
TIMEIN TABLE
COMEIN GENERATE

ASSIGN
TRANSFER

BACKUP QUEUE
ENTER
DEPART
ADVANCE
LEAVE
TABULATE
TERMINATE

MAJOR PRIORITY
ASSIGN
TRANSFER
GENERATE
TERMINATE
START
PUTPIC

RN1, c2

M1,10,5,30
16,6,, ,1
l,FN(TYPE) ,PH
.2 0, , MAJOR
WAIT
BAYS
WAIT
FNIWHICH)
BAYS
TIMEIN

0
1,4,PH
, BACKUP
480*100
1
1
LINES=3,N(COMEIN),SR(BAYS)/10.,TB(TIMEIN)

NUMBER OF TRUCKS TO COME FOR SERVICE (100) SHIFTS * * * *
UTIL. OF THE SERVICE BAYS * * * . * * g

AVERAGE TIME IN THE SYSTEM FOR ALL TRUCKS * * * * * *
END

The results of the simulation are as follows:
NLTMBER OF TRUCKS TO COME FOR SERVICE (1 0 0) SHIFTS 2972
UTIL. OF THE SERVICE BAYS 93 .18%
AVERAGE TIME IN THE SYSTEM FOR ALL TRUCKS 59.84

.
CHAPTER 20 Savevalues

Up to this point, all of the SNAs we have used were supplied by one of the
blocks or were internal to GPSS/H. Often the programmer will want to have
his or her own user-supplied SNAs. Parameters have been used to store vari-
ous numbers, but these are not printed out after a program is run. There are
two ways to provide such user-supplied SNAs. The original way will be pre-
sented here; the other in Chapter 23. Although the methods have a lot in com-
mon, there are several significant differences.

GPSS/H provides for user-defined SNAs and calls them savevalues (values
that are "saved"). These values are printed out in the output report, except for
zero values. GPSS/H has 4 different types of savevalues:

I.. Halfword savevalues are integers in the range -32,768 to +32,767. Their
family name is XH.

2. Futlword savevalues are integers in the range -231 (= -2,147,483,648) to
+231 - 1 (= +2,147,483,647). Their family name is XF. A fullword
savevalue is referenced in this book by XF(name) if a name is used or
XFn, where n is a number, if a number is used.

3. Byte-word savevalues are integers in the range -128 to +127. Their family
name is XB.

4. Floating-point savevalues are decimal values whose family name is XL.
Their size depends on the computer, but can be as large (or small) as

to 10308.

To reference a savevalue, it is necessary to do so by using the family name
with parentheses around the user-supplied name. Thus,

6 @DVANCE D F (SPEED)
9 BENERATE @L (AVG) , XL (SPREAD)
G EQlJEUE W(H(WA1T)
/I BASSIGN Pl,XL(FIRST),PL
// CSEIZE 5 (MACH1)
/i BELEASE m2

207

208 The GPSS/H Slmulatlon Language

are all examples of using savevalues as operands of various blocks.

If the second letter in the family name is omitted, the GPSS/H processor
assumes that the savevalue is a fullword savevalue (such omission is not rec-
ommended, however). For example,

0 @ASSIGN O~,XF(TEST),PH

and

V @ASSIGN 01, X (TEST) , PH

are the same. In both cases, the value of the savevalue TEST will be given to
the transaction’s first halfword parameter. In this book, however, the exact
type of the savevalue will be fully specified; thus, reference to savevalues as
X(TEST) will not be done.

An old way of referencing savevalues that still works in GPSS/H is to use the
dollar sign ($). Thus, =$NUMB and =(NUMB) are the same. The dollar sign
method of referencing savevalues will not be used here as it is a holdover
from the original versions of GPSS.

THE SAVEVALUE BLOCK

All savevalues are initially 0. (How to give them initial values different from 0
will be considered in the section on the INITIAL statement at the end of this
chapter.) During the running of a program, it is often desired to change their
values. This is done by the SAVEVALUE block. Its general form is

VLABEL OSAVEVALUE @A, B, C

where operand A is the name the programmer chooses for the savevalue; the
name can be a ”word” (must start with a letter and be no longer than 8 char-
acters), a number, or any SNA. Operand B is the value to be assigned to the
savevalue and can be a number or an SNA. Operand C is the family name of
the savevalue (XH, XF, XB, or XL). If operand C is omitted, the savevalue is a
fullword savevalue by default. The label for this block is omitted unless the
block is cross-referenced.

Some examples of the SAVEVALUE block are

OSAWALUE DIM, 2, XF
OSAVEVALUE mOMMY, -100, X H
NAVEVALUE GJANE.32,XF
@SAVEVALUE 01,4,XF
OSAVEVALUE M A , 25.63, XL
OSAVEVALUE W T , 25 /2, XL
@SAVEVALUE mTHER,25.0/2,XL
ESAVEVALUE gPH4,12,XH

In (a), the fullword savevalue JIM is set equal to 2. In (b), the halfword
savevalue TOMMY is set equal to -100. In (c), the fullword savevalue JANE is
set equal to 32. In (d), the fullword savevalue 1 is set equal to 4. In (e), the
floating-point savevalue ANNA is set equal to 25.63. In (0, the value of NEXT

Savevalues 209

is set equal to 12.0000. It is not 12.5000 because division is integer division
unless spec#ied by using a t least onefioating-point number in the operand list.
In (g), the division is floating-point division because of the decimal point in
the 25.0 value (GPSS/H converts the 2 to a floating-point number). Here the
value of OTHER is 12.5000. (There are 4 decimal places because this is the
format that GPSS/H prints out for savevalues, not because this is the number
of digits actually stored). In (h), it is not known what halfword savevalue will
have the value of 12. This assignment will depend on the number stored in
the transaction’s fourth halfword parameter. If that number is 5, then
savevalue 5 will have the value 12.

The use of a number for the name of a variable may seem confusing since, in
other languages, variable names normally must be alphanumeric and must
start with a letter. For example, in Fortran, one might have statements defin-
ing variables such as JIM = 2, TOMMY = -100.0, and JANE = 32. These 3 For-
tran statements have the same effect as the first 3 examples (a-c) of the
SAVEVALUE block. Corresponding Fortran statements for examples (e), (f),
and (8) might be ANNA = 25.63, N M T = 25/2, and OTHER = 25.5. But there
is no equivalent Fortran statement for example (d), i.e., in Fortran you cannot
say 1 = 4.

The use of numbers for names of savevalues will be avoided in this book
wherever possible. (However, there are times when this feature is very handy,
especially when using a parameter for the first operand of the savevalue.) For
example, consider the SAVEVALUE

0 OSAVEVALUE OPHl , 3 , PH

Here the savevalue to be given the value of 3 will depend on the transaction’s
first halfword parameter. If it happened to be 4, then the savevalue 4 is given
the value 3. Referencing values by means of another number may seem
strange, but there are times when this feature is very useful. This technique is
possible because the equals sign (=) in computer programming does not mean
“the lefr-side value is equal to the right-side value” but, rather, means “the old
value is replaced by the new value.”

THE F I X AND FLT MODE C O N V E R S I O N

Suppose you want to have the value of savevalue FIRST be equal to Q(0NE)
plus Q(TWO), the s u m of which is divided by Q(THREE), and you want an
exact floating-point result. It would not be correct to write

9 flSAVEVALUE @FIRST, (Q(ONE)+Q(TWO)) /Q(THREE)XL

Since the length of a queue (Q) is an integer, the quotient will represent inte-
ger division. In order to have floating-point division, one could write the fol-
lowing:

’/ OSAVEVALUE ~iNNKl,Q(ONE)+Q(TWO),XL

’/ @AWALUE ~FIRST,XL(JUNKl)/XL(JUNK2),XL

P flSAVEVALUE -2 , Q (THREE) , XL

210 The GPSS/H Simulation Language

This code is a bit awkward. GPSS/H offers two mode-conversion operaton-
FIX and FLT-to convert to fixed-point (integer) or floating-point mode. They
work identically to the mode converters found in other languages, such as
Fortran, where the corresponding mode converters are IFIX and FLOAT. In
GPSS/H, one might have

FLT(Q(0NE))
FIX(XL(TEST))
FLT(FC(MACHA))

Thus, one could have written the desired savevalue as

0 USAVEVALUE DIRST, (Q(ONE)tQ(TWO))/FLT(Q(THREE)) ,XL

Notice that it was not necessary to convert all 3 fixed-point queue values.

Savevalues can be used in increment or decrement mode, just as the ASSIGN
block was used. Thus,

0 !a) OSAVEVALUE DOADt, 2 5, XF

0 (c) OSAVEVALUE UPILEt, FN (TRUCK) , X F
6 (d) OSAVEVALUE UPHlt,PH2,XF
O(e) OSAVEVALUE mTt,FN(LAST)tFN(FIRST) ,XL
O (f) OSAVEVALUE U~OM-,Q(ONE)/~,XL

O (b) DSAVEVALUE BOST-,XF(PRICE) ,XF

0 (g) USAVEVALUE DOM-,Q(ONE)/3.0,XL

In (a), the savevalue LOAD is incremented by 25. In (b), the savevalue COST is
decremented by whatever the savevalue PRICE is. In (c), the savevalue PILE is
incremented by reference to the function TRUCK. In (d), the savevalue speci-
fied by the transaction’s first halfword parameter is incremented by the value
in its second halfword parameter. In (e), the value of the savevalue is given by
reference to the sum of the functions LAST and FIRST; this sum is added to the
current value of the savevalue NEXT. In (0, the savevalue TOM is decre-
mented by the length of the queue ONE divided by 3 (integer division!). In (g),
the savevalue TOM is decremented by the length of the queue ONE divided by
3.0 (floating-point division). In the first 4 examples, the savevalues are full-
word savevalues. In the other 3, the savevalues are floating point. In another
language, such as Fortran, corresponding statements might be

LOAD = LOAD t 25
COST = COST - PRICE
PILE = PILE t F(TRUCK)

NEXT = NE.XT t F(LAST) + F(F1RST)
X(1) = X(1) t X(2)

TOM = TOM - QONE/3
TOM = TOM - QONE/3.0

A common error in programming is to omit the family name XH, XF, XB, or XL
with the savevalue in parentheses when referencing it. If the family name is
omitted, the value of the savevalue is taken to be 0 no matter what it actually
is, This type of error is most insidious as it can be extremely hard to detect and
no run-time error takes place. Thus, if you had intended to write

0 m E S m m!VALUE) ,l,AWAY

Savevalues 211

but instead wrote:

0 mESm mALUE, 1, AWAY

The test would always be false. There would be no run-time error.

THE INITIAL STATEMENT

As has been indicated, the values of all savevalues are set equal to 0 by the
processor when a program begins. Often, however, a programmer wants
savevalues to be initially set to nonzero values. This is done with the INITIAL
statement. The general form of the INITIAL statement is

0 OINITIAL m , B , C , D , ...
where each operand (as many as necessary) contains a pair of items: Item 1 is
the family name of the savevalue followed by the specific name of the
savevalue in parentheses or just the number of the savevalue without paren-
theses; item 2 is the value to be assigned to the specific savevalue. The two
parts of each operand are separated by a comma (no space), and the various
operands are separated by slashes V).

For students who have studied Foman, the INITIAL statement in GPSS/H is
analogous to the DATA statement. An example of the INITIAL statement is

0 OINITIAL [PLF(FIRST),100/XH(TEST),-340/XF1,1OOOO

An alternate way (a holdover from the early days of GPSS) to write the above
is with dollar signs:

0 OINITIAL [PLF$FIRST,lOO/XH$TEST, -340/XF1,10000

A shorthand form can be used for multiple initialization, as follows:

9 OINITIAL wl-XH10,3/XH(PLACE) ,125/XL(TOWN) ,1234.5432

This statement sets the halfword savevalues 1 through 10 equal to 3. The half-
word savevalue PLACE is set equal to 125, and the floating-point savevalue
TOWN is set equal to 1234.5432.

EFFECT OF R E S E T AND C L E A R O N SAVEVALUES

A RESET statement does not affect the savevalues, but a CLEAR statement sets
all savevalues to 0. If the program is to be rerun with the original initialized
(ie., nonzero) values, there are two things that can be done: (1) Reinitialize
all the values with a new INITIAL statement (or statements) or (2) use a form
of the CLEAR statement called the selective CLEAR. The selective CLEAR is
simply the CLEAR statement followed by a list of savevalues that are not to be
set to zero. The general form of the selective CLEAR statement is

c @CLEAR @ A , B , C , D , . . .

212 The GPSS/H Simulation Language

where each operand (as many as necessary) is a savevalue that must retain its
value in the succeeding simulation. Thus,

0 mLF.AR @XH(TOM) ,XF(JOHN) ,XH(PLACE) ,XF7

will clear all the savevalues in the program except for TOM, JOHN, PLACE,
and 7.

Example 20.1

A common problem in inventory control is known as the “newspaper boy’s
problem,” which concerns a newsboy who sells his papers on the street corner,
as opposed to one who delivers papers from house to house. The demand for
newspapers is uncertain each day but, by building up past records, the news-
boy can determine a probability dismbution of expected sales. The newsboy
must go in the morning to the main newspaper office and purchase papers. If
he does not have enough to sell (demand greater than supply), he must buy
papers from a newsstand. These cost him more than if he were able to pur-
chase them himself at the newspaper office in the morning, but he sti l l makes a
profit by doing so. If he has too many, the main office will purchase back his
unsold stock for a token amount. Suppose that the following data held:

cost per paper: $0.36
selling price: 0.55
cost per paper later in the day: 0.45
refund per unsold paper: 0.15

The expected sales are given by the following data from past sales of newspapers:

No. of Papers Sold Relative Probability

50 0.05
55 0.08
60 0.14
65 0.20
70 0.15
75 0.13
80 0.10
85 0.08
90 0.05
95 0.02

Determine the number of papers the newsboy should obtain each day from
the main office to maximize his expected profit each day. Simulate for 200
days of sales. Use supply amounts from 50 to 95 in increments of 5. Use the
PUTPIC statement to print out only the number of papers supplied and the
resulting expected profit each day. Use a LOOP block to run the program sev-
eral times.

Savevalues 29.3

Solution

The program to do the simulation is as follows:

0 USIMULATE
0 @RMJLT 0123 NUMBER SEED
0 OINITIAL CpM (SUPPLY) ,50 O I N I T I A L I Z E SUPPLY AMOUNT
OSELL W C T I O N @"1,D10 WOW MANY TO SELL?
. 0 5 , 5 0 / . 1 3 , 5 5 / . 2 7 , 6 0 / . 4 7 , 6 5 / . 6 2 , 7 0 / . 1 5 , 7 5 / . 8 5 , 8 0 / . 9 3 , 8 5 l . 9 8 , 9 0 / 1 , 9 5

DUMMY TRANSACTION 0 BENERATE 0, , ,1
OUPTOP D S S I G N 01, FN (S E L L) , PH DETERMINE SALES FOR DAY
0 D E S m E (SUPPLY) , PH1, DOWN 01s THIS GREATER THAN SUPPLY?
*
* I F SUPPLY GREATER THAN DE-MAND, DETERMINE PROFIT
*
0
0
0

* BELOW

*

*
ODOWN

9
3
0
0
2
3
0

USAVEVALUE ~PROFIT+,19*PHl-(XH(SUPPLY)-PH1)*15,XL
@ADVANCE 01 WNE DAY PASSES
W S F E R u, UPTOP @BACK FOR ANOTHER DAY

I S FOR THE CASE I N WHICH THE SUPPLY I S NOT ENOUGH

OSAVEVALUE OPROFIT+,55*PH1-36*XH(SUPPLY)-
- 4 5 * (PHl-XH(SUPPLY)) ,XL

W V A N C E 01 WNE DAY PASSES
m S F E R 0, UPTOP D A C K FOR ANOTHER DAY
BENERATE DO0 OSIMULATE FOR 200 DAYS
EAVEVALUE @ONEY,XL(PROFIT) /200 ,XL DETERMINE AVERAGE PROFIT
DERMINATE El OF SIMLZATION
USTART 01 D E G I N PROGRAM
DEND

From the output of the program, the following table was constructed:

No. of Papers to Stock Expected Profii (cents)

50 1142
55 1180
60 1210
65 1222 *
70 1207
75 1176
80 1127
85 1067
90 1000
95 929

As can be seen from the asterisk in the table, the number of papers to stock
each day is 65. This will result in an expected profit per day of $12.22.

214 The GPSS/H Slmulatlon Language

E X E R C I S E S , CHAPTER 20

1. Determine the value of the savevalue for each of the following. All
savevalues were initially 0. Assume the following values:
Q(0NE) is 1
F(MACH) is 0
PH1 is 3
S(TUGS) is 4
O(a) @AVEVALUE NOE,PHltF(MACH) ,XH

O (c) USAVEVALUE OPH1,50/20,XH
O (d) OSAVEVALUE M + , 5 . 0 / 3 . O , X H
O (e) OSAVEVALUE mOMMY,Q(ONE)-PHl,XL
O (f) OSAVEVALUE ~ILLY,PHl*S(TUGS),XE

C(bt USAVEVALUE gIM-,S(TUGS) , X F

2. A storage bin can hold 10,000 tons of coal. The amount removed each
day varies from 600 to 900 tons (uniform distribution). The stock is
checked each morning. When the stock reaches 5,000 tons or less, an
order is placed for 1,000 tons. This order takes 7 days to arrive. Simulate
for 1,000 days and determine the number of stockouts that occur. (A
stockout occurs when there is not enough coal to satisfy the demand for
the day.) Initially there are 9,000 tons in the bin.

storages for the storage bin. Redo it by using a storage of 10,000 for the
bin. You will need to initialize the program by means of a dummy trans-
action that has no other purpose than to initialize the storage of the coal
in the bin.

3. Although not obvious, exercise 2 can be done by using the concept of

SOLUTIONS, CHAPTER 20

1. a. The value of the savevalue JOE is 3.
b. The value of the savevalue JIM is -4.
c. The value of the third savevalue is 2 (integer division).
d. The value of the second savevalue is 1 (integer conversion).
e. The value of the savevalue TOM is -2.
f. The value of the savevalue BILL is 12.

2. The program to do the simulation is as follows:
SIMULATE
INITIAL XH(ST0CK) ,9000

STOCKDMD TABLE XH(STOCK),0,500,500
DEMAND FUNCTION RNl,C2
0,600/1,900

GENERATE 1, , , ,1
TEST L XH(STOCK),5000,ITSOK
ADVANCE 7
SAVEVALUE STOCKt,lOOO,XH

ITSOK TERMINATE
GENERATE 1

Savevalues 215

SAVEVALUE USED,FN(DEMAND) ,XH
TEST G XH(STOCK),XH(USED),STOCKOUT
SAVEVALUE
TABULATE STOCKDMD
TERMINATE 1

STQCK-, XH (USED) , XH

STOCKOUT SAVEVALUE TIMESOUT+,l,XH
TERMINATE 1
START 1000
PUTPIC XH(TIMES0UT)

OUTAGES ***
END

The output is:
OUTAGES 35

3. One such program is as follows:
SIMULATE
STORAGE S(STOCK),10000

STOCKDMD TABLE S(STOCK),0,500,500
DEMAND FUNCTION RNl,C2
0,600/1,900

GENERATE 1,,,,1 ONE DAY GOES BY
TEST L S(STOCK),5000,ITSOK IS LEVEL BELOW 5000?
ADVANCE I WAIT A WEEK
ENTER STOCK, 1000 ADD COAL TO BIN

ITSOK TERMINATE
GENERATE 1 ONE DAY GOES BY
ASSIGN l,FN(DEMAND), PH WHAT WILL DEMAND BE?
TEST G S(STOCK),PHl,STOCKOUT IS THERE ENOUGH COAL?
LEAVE STOCK, PH1 YES, TAKE IT
TABULATE STOCKDMD TABULATE COAL- IN BIN
TERMINATE 1

STOCKOUT SAVEVALUE TIMESOUT+,l,XH STOCKOUT HAS OCCURRED
TERMINATE 1
GENERATE , , , 1 , 2 INITIALIZE COAL IN BIN
ENTER STOCK, 9000
TERMINATE
START 1000
PUTPIC X H (TIMESOUT)

OUTAGES * * *
END

The output is the same as for Exercise 2:
OUTAGES 35

.
CHAPTER 21 Logic Switches and Gates

LOGIC SWITCHES

In many simulations, transactions are frequently in a blocked condition in
which a certain condition or conditions are true (or false). A given mansaction
may be forced to remain blocked until the blocking condition becomes false
(or true) or may be routed to another block. This blocking can be done by
using a TEST block. However, the TEST block is the most inefficient block in
GPSWH. A much better way to block or route a transaction is the GATE block.
A GATE block is always used with another condition that (1) allows the mans-
action to pass to the next sequential block, (2) delays the transaction until the
blocking condition changes from true to false (or vice versa), or (3) routes the
transaction to another block. Before the GATE block is described further,
however, a block that is used primarily with the GATE block will be intro-
duced-the LOGIC block.

THE LOGIC BLOCK

Consider the following program code:

0
0
0
0

0
0
0
0

OBACK

When the program begins, the value of the halfword savevalue LOCK is 0
(as are all savevalues unless an INITIAL statement is used to specify nonzero
initial values) so the transactions that enter the TEST block will pass
through to the next sequential block. The transaction created in the GENER-
ATE block is put on the FEC chain for a time given by sampling from the

217

218 The GPSS/H Slmulatlon Language

exponential distribution with a mean of 125. After this transaction is
returned to the CEC, the value of the savevalue LOCK is set equal to 1 (any
other value could have been selected for the savevalue for this example).
The transaction is then put on the FEC for a time given by sampling from the
exponential distribution with a mean of 12.5. Now, any transactions that
enter the TEST block will be delayed until the value of the savevalue LOCK
becomes equal to 0. This delay might represent a traffic light turning red, a
break at a factory for lunch, a breakdown of an assembly line, etc.

Rather than using savevalues and TEST blocks in this manner, there is a bet-
ter way to handle such conditions in GPSS/H by using switches that are either
“on” or The “on7’ condition is known as “set,” and the “off’ condition is
known as “reset.” These switches are turned on and off by the LOGIC block.
Its form is as follows:

0 DOGIC[P(@A

where R is a relational operator whose value is S for set, R for reset, or I for
invert and operand A is the name or number of the switch. When a Bansac-
tion enters a logic block, the effect is as follows:

i. If the logic relationship is S, the switch is put in a set position.
2. If the logic relationship is R, the switch is put in a reset position.
3. If the logic relationship is I, the switch is inverted, i.e., if it was set, it

becomes reset or vice versa.

Examples of LOGIC blocks are as follows:

5 0 ~ 1 ~ 0 s W T
0 @LOGIC@ 01
0 DOGICOI BAIT

Notice that logic switches can be named either symbolically or numerically.
The usual rules apply for selecting names or numbers for these switches,
namely, they start with a letter and can be up to 8 characters in length.

When a program begins, all switches are in a reset position. It is possible to
have the switches in a set position by means of the INITIAL statement, a form
of which is

0 OINITIAL @S (SWITCHA) /LS (SWITCHB) /LS1

An example of this statement is

0 OINITIAL @S(HALT)/LS(PATH)/LSl

Alternatively, in place of the parentheses, one can use a single dollar sign. The
above line of code could have been written as

0 OINITIAL nLS$HALT/LS$PATH/LSl

If you have multiple switches all given by numbers, there is a shorthand way
to put them in a set position:

0 OINITIAL DS1-5/LS9-12

Logic Swltches and Gates 219

This statement would put logic switches 1 through 5 in a set position and also
switches 9 through 12 in a set position. Although rarely needed, LR may also
be used in the INITIAL statement to reset logic switches.

Some sample program code might be

0 &ENERATE 0, ,,I DUMMY TRANSACTION
OUPTOP @ADVANCE mVEXP0 (1,200) W C H I N E WORKING
0 I-JLOGICUS USTOPIT @fACHINE DOWN
0 @ADVANCE @VNORM(1,20,3.5) W C H I N E BEING FIXED
0 I-JLOGICB USTOPIT W C H I N E FIXED
0 mRANSFER 0, UPTOP DACK TO WORK

This code might be used to represent a machine that works for a certain time
and then is shut down when repairs and/or maintenance is performed. The
time between breakdowns is given by sampling from the exponential distribu-
tion with a mean of 200 time units. When the machine is down, it is fixed or
otherwise maintained. This work takes a time that is normally distributed
with mean of 20 time units and a standard deviation of 3.5 time units. Notice
how the dummy transaction keeps looping in the program segment and alter-
nately sets the logic switch from set to reset. Although it would not be as
clear, it would have been all right to have the 2 LOGIC blocks replaced by just

0 I-JLOGICOI @TOPIT

THE GATE BLOCK

Logic switches generally need another block in the main program in order to
be of any use. This block is often the GATE block. This block works as its name
implies, much like a gate in the path of the transactions. When the gate is
open, transactions pass through; when it is closed, they either wait until the
gate becomes open or they are routed elsewhere.

There are two forms of the GATE block. The first is refusal mode. The general
form is

0 C G A T m D A , B

where R is a relational operator such as LS (“logic switch set”) or LR (“logic
switch reset”), operand A is the name or number of a logic switch, and oper-
and B is the label of a block to which a transaction will be routed if the logic
switch is in a set position. (Operand B is omitted in some cases.) An example
of this block might be

0 &AT@LS N T

When a transaction arrives at this block, the GPSS/H processor tests to see if
the logic switch HALT is in a set position. If so, the transaction moves to the
next sequential block. If the logic switch HALT is in a reset position, the trans-
action remains in the previous block. It also remains on the CEC. However, an
internal flag is turned to the “on” position, and the transaction is not scanned
again until such time as the switch is turned to an “off” position. The internal
flag is turned off when the LOGIC block is entered by another transaction.

220 The GPSS/H Simulation Language

If a machine in a simulation is to be periodically shut down, one might use a
GATE block as follows:

0 OQUETJE B A I T
0 EATQR ISTOPIT
0 B E I Z E mCH1
0 DEPART WAIT
0 W V A N C E mVEXPO(1,25)
0 W L E A S E m C H 1

Whenever the logic switch STOPIT is in a set position, the transaction is kept
in the block QUEUE WAIT.

GATE blocks can also be used with facilities and storages as follows:

0 D T m @

where operand A specifies a facility or storage entity such as a machine or a
ship’s berth and relational operator R can be one of the following:

R Gate Block Tests for
Fu facility in use

M U facility not in use

FS facility can be seized

FNS facility cannot be seized
SF storage full
SNF storage not full

SE storage empty

SNE storage not empty

(There are other relationships that can be used with a GATE block, but they
will not be used in this book.) Some examples of using facilities and storages
in GATE blocks are

O(a) @ A T m W C H 1
O (b , WATaSNE W G S
O (c) EATEDWJ OSHOP
O(d) B A T m S F DERTH

In (a), the transaction will be held in the previous block if the facility MACH1
is not in use. In (b), the transaction is delayed if the storage TUGS is in any sit-
uation other than empty. Thus, if the storage of TUGS is 4 and 1 is being used,
the transaction will be held up. In (c), the transaction is delayed if the facility
SHOP is being used. Finally, in (d), the transaction is held up if the storage
BERTH is not full.

THE GATE BLOCK I N CONDIT IONAL TRANSFER M O D E

When a GATE block has a B operand, this is the label of a block. If the GATE is
closed, the transaction will be transferred to the block with this label. Thus,

13 K A T a R W T I T , AWAY

Loglc Switches and Gates 221

will send the transaction to the block AWAY whenever the logic switch
HALTIT is in a set position.

Example 21.1

A contractor is excavating for a large shopping center. He has 5 trucks, num-
bered 1 to 5, that haul excavated dirt away to a dump. There is a single shovel
to load the trucks. The trucks travel in a circuit: load, haul, dump, and return.
All times for these activities are found to be normally distributed, as follows:

Time (minutes)

Truck Activity Mean Standard Deviation

Loading 2.5 0.35
Traveling to dump

Dumping
7.5
1.75

1.26
0.2

Returning to shovel 5.6 1.1

Only 1 truck can be loaded at a time, but there is no such restriction on dump-
ing. The various times for the trucks are the same regardless of the truck.

The trucks periodically break down and/or must be serviced. Each has a differ-
ent reliability. The downtimes for the trucks follow the exponential distrihu-
tion, and the time to repair a truck follows the normal distribution, as shown:

Truck No. Downtime Distribution Repair-Time Distribution

400
425
550
345
300

(20,3.5)
(35,6.9)
(55.5,12)
(40,7)
(50.8)

The downtimes are given as the means for the exponential distribution and
the repair times are given as (mean, standard deviation) for the normal distri-
bution. Write the GPSS/H program to simulate the situation by using GATE
blocks and LOGIC switches to cause the trucks to be down periodically. Even
though the breakdowns of the trucks can be any place in the system, it is suffi-
cient to have the trucks tested for breakdowns after they dump.

Solutlon

The program is written such that halfword parameter 1 is used to store a
number from 1 to 5 to represent the 5 different trucks. When a truck dumps,
it is sent to 1 of 5 different GATE blocks depending on what type of truck it is.
If a truck is down, the corresponding LOGIC switch will be in a set position,
and it will be held up at this point (the transaction will remain in the TRANS-
FER block). There are 5 program segments to alternately put the logic
switches in set and reset positions. Notice how the two segments work. For
example, for the first truck, the lines of code for when it is tested to see if it is
down and the segment to shut it down are written side by side:

222 The GPSS/H Simulation Language

OBLOCKA B U F F E R WENERATE 0, I , 1 , 1 0
0 [J C J T a R B I R S T m A C K 1 @ADVANCE mVEXP0(1,400)
0 m S F E R 0, DOWN W I M E A mCGIC& B I R S T

U T E S 0 (BLOCKA) 1
UADVANCE mVN0RMj 1,5.6,1.1)
@ O G I C B D I R S T
DRANSFER n ,BACKl

When a truck transaction is to be tested to see if it is down, it first goes to a
BUFFER block. This causes a rescan of the CEC. The dummy transaction that
will alternately set and reset the logic switch FIRST has a priority of 10. Thus,
in case of a time tie, it will be moved forward first. Let us suppose that the
dummy transaction has left the ADVANCE RvExp0(1,400) block so that the
truck is to be down. The switch FIRST is placed in a set position. However,
before the transaction can enter the ADVANCE RVNORM(1,5.6,1.1) block to
represent the truck being down, it is held up in the block TEST E
W(BL0CKA)l. This is so that the truck will, indeed, be delayed. For example,
suppose the truck breakdown occurred just after the truck was loaded, this
breakdown lasted for 8 minutes, and then the truck took 9 minutes to reach
BLOCKA. If the dummy transaction was not delayed, it would immediately
enter the ADVANCE RVNORM(1,5.6,1.1) block, and when the truck arrived
at BLOCKA, the logic switch FIRST would no longer be in a set position, and
the truck therefore would not experience any delay.

The effect of testing for failures in this manner introduces a slight error in that
the trucks will continue to operate when they are to be down until they reach
the various GATE blocks to delay them. This error can be overcome in several
ways: Have more such GATE blocks in the program, which will tend to
increase the lines of code, or adjust the statistical distributions to compensate
for the error introduced.

The program listing follows. In Chapter 31, the technique of using macros is
presented. Macros greatly reduce the length of the programming code.

0 DSIMULATE
OWHEPE W C T I O N F P H l , L5
l,BL3CKA/2,BLOCKB/3,BLOCKC/4,BLOCKD/5,BLOCKE
CTIMES WENERATE 0 , , , 5
3 I@SSIGN 01, N (T I M E S) , PH
CUPTOP BUEXJE LWAIT
0 B E I Z E ESHOVEL
0 D E P A R T m A I T
3 [?ADVANCE BVNORM(1,2.5,.35)
0 N L E A S E DSHOVEL
0 W V A N C E @ V N O R M (1 , 7 . 5 , 1 . 2)
0 [?ADVANCE m V N O R M (1 , 1 . 7 5 , .2)
3 BRANSFER C,FN(WHERE)
p)BLOCKA & A T a R D I R S T
‘2 BRANSFER 5,DDWN
GBLOCKB K A T a R OSECOND
3 @‘WSFER h,DDWN
CBLOCKC W T a R W I R D

Loglc Swltches and Gates 223

0 DRANSFER 0 , D D W
OBLOCKD N T a R DOURTH
0 BRANSFER n,DDWN
OBLOCKE N T a R B I F T H
ODDWN W V A N C E mVNORM(1,s. 6,l.l)
0 m S F E R 0 ,UPTOP
0 EENERATE I,,
OBACKl W V A N C E DVEXPO (1 , 4 0 0)
OTIMEA [9.OGIC@S B I R S T
0 IJADVANCE mVNORM(1 , 2 0 , 3 . 5)
0 [9 .OGICm @FIRST
0 m S F E R 0,BACKl
0 OGENERATE 0, , ,I
OBACKZ W V A N C E m V E X P 0 (1 , 4 2 5)

0 @ADVANCE mVNORM(1 , 3 5 , 6 . 9)
0 D O G I C m @SECOND
0 m S F E R 0, BACK2
0 E W R A T E 0, ,
OBACK3 W V A N C E D V E X P O (1 ,55 0)
QTIMEC DOGIC@S D H I R D
0 W V A N C E @W"ORM(1,55,10)
0 r J L O G I a rJl'HIRD
0 DRANSFER 0, BACK3

OBACK4 W V A N C E D V E X P O (1 ,344 1
OTIMED @ O G I m S @FOURTH
0 @ADVANCE mVNORM (1,40,7)
0 E O G I C m rJOURTH
0 m S F E R O,BACKI
0 GENERATE U,, ,1
OBACK5 @ADVANCE DVEXPO (1 , 3 0 0)
OTIMEE @OGICOS D I F T H
0 D V A N C E mVNORM(1,50 ,8)
0 @ O G I C m B I F T H
0 DRANSFER a, BACK5
0 BENERATE @ 4 8 0 * 1 0 0 0
0 DERMINATE 01
(> CjSTART 01
3 0PUTPIC ~INES=lO,FC(SHOVEL)/lO00.,-

OTIMEB [~.OGIC@S ~ E C O N D

0 0G-m n,,

FR(SH0VEL) /lo. ,N(TIMEA) ,_
N (T I M E B) , N (T I M E C) , -
N (T I M E D) , N (T I M E E)

0 RESULTS OF SIMULATION FOR 1 0 0 0 S H I F T S
LOADS DUMPED PER S H I F T * * * * . **
UTILIZATION OF SHOVEL * * * . * * g

T I N E S TRUCK 1 DOWN
TIMES TRUCK 2 DOWN
TIMES TRUCK 3 DOWN
TIMES TRUCK 4 DOWN * * * *
TIMES TRUCK 5 DOWN

* * * *
* * * *
* * * *

* * * *
CiEND ,-

224 The GPSS/H Slmulatbn Language

The output is as follows:

RESULTS OF SIMILATION FOR 1000 SHIFTS
LOADS DUMPED PER SHIFT 124.09
UTILIZATION OF SHOVEL 64 .62%
TIMES TRUCK 1 DOWN 1104
TI&% TRUCK 2 DOWN 1031
TIMES TRUCK 3 DOWN 770
TIMES TRUCK 4 DOWN 1167
TIMES TRUCK 5 DOWN 1340

EXERCISES, CHAPTER 21

1. In Example 21.1, the shovel was busy only 64.62% of the time. Assume
that the trucks never failed or, if one did fail, a replacement was immedi-
ately available. Determine the utilization of the shovel under this condi-
tion.

2. What GATE block can be used to replace the following TEST blocks:
C(a) ttl’ES”2 OR(TUGS),O
O (b) B E S O m(MACH1),1
O i c i mES?DE flS(B0ATS) , O
O (d) BES?DE D (B O A T S) , 0

3. Write the GATE block in refusal mode so that it will be used to hold the
transaction unless the condition is true: (1) The logic switch STOPl is in
a set position. (2) The facility MACH1 is being used. (3) The logic switch
STOPl is in a reset position. (4) The storage of TUGS is all taken.

The bin can hold 75 tons. If the bin is full when the ore arrives, it will spill
and have to be loaded onto an ore car later. A truck comes along every 60
A 5 minutes. The truck has room for 100 f 50 tons of coal. The time to
load the truck is insignificant. Simulate for 500 days and determine the
average spillage per day (1 day = 3 times 480 minutes).

5. In exercise 21.4, increase the bin by units of 5 up to 90 tons. Determine
the spillage per day. Suppose you can speed up the trucks, and they now
amve every 50 5 5 minutes. Determine the spillage per day for bin sizes
of 75 tons and 80 tons.

6. Trucks come to a repair facility every 20 f 10 minutes. There are 3 repair
areas and repairs take 55 * 20 minutes. The facility also does other
repairs, and, on an average of 100 minutes (exponentially distributed),
the repair shop works on other projects. These take 10 minutes (also
exponentially distributed). Trucks waiting for the repair shop, or trucks
that arrive during this time, remain at the shop until it is ready for them.
Any trucks being repaired continue to be repaired. Determine the utiliza-
tion of the shop, the number of trucks repaired in 1 day, and the maxi-
mum number of trucks that were waiting.

4. At a storage bin, 1 ton of ore arrives every 1 minute in a Poisson stream.

Lo& Swltches and Gates 225

SOLUTIONS, CHAPTER 21

1. The program to do the simulation is obtained by removing the segments
that cause the trucks to be down. It is not necessary to remove the GATE
blocks as the logic switches are always reset.
The results of the simulation are that the average number of loads
dumped each day are 133.00 and the utilization of the shovel is 69.25%

2. a. GATE SNE TUGS

b. GATE FNS MACH

d. GATE SNE BOATS

3. a. GATE LS nopi

C. GATE SNE BOATS

b. GATE F'NS MACH1

C. GATE SE TUGS

d. GATE SF TUGS

4. The program to do the simulation is as follows:
SIMULATE
STORAGE S (BIN), 80

INCAR FUNCTION RNl,C2
0,50/1,150
INBIN

AWAY

NOTSO

TABLE
GENERATE
GATE SNF
ENTER
TERMINATE
SAVEVALUE
TERMINATE
GENERATE
TABULATE
ASSIGN
TEST GE
LEAVE
TERMINATE
LEAVE
TERMINATE
GENERATE
TERMINATE
START
PUTPIC

S(BIN),20,1,75
RVEXPO (1,l)
BIN, AWAY
BIN, 1

ONE TON OF COAL COMES

OVERFLOW+, 1, XI3

50,5
INBIN
l,FN(INCAR) ,PH
PH1, S (BIN) , NOTSO
BIN, S (BIN)

BIN, PH1

480*3*100
1
1
LINES=2,TB(INEXN),XH(OVERFLOW)/100.

AVG. AMOUNT IN BIN WHEN TRUCK COMES * * . * *
TONS OVERFLOWED PER DAY *** . **

END

The results of the simulation are:
AVG. AMOUNT IN BIN WXEN TRUCK COMES 61.37
TONS OVERFLOWED PER DAY 7.63

226 The GPSS/H Slmulatlon Language

5. The results of the simulation for different bin sizes are:

Avg. Ore in Bin When
Bin Size Truck Comes Avg. Spillage

80 60.41 3.41
85 60.52 1.59
90 60.58 0.76

If the truck now arrives every 50 * 5 minutes, the results are:

Avg. Ore in Bin When
Bin Size Truck Comes Avg. Spillage

75
80

49.91
49.93

0.17
0.01

It would appear that it is much better to increase the truck speed than the
bin size.

6. The program to simulate this is as follows:
SIMULATE
STORAGE S (REPAIR) , 3
GENERATE 20,lO
QUEUE WAIT
GATE LR SHOPOPEN
ENTER REPAIR
DEPART WAIT
ADVANCE 55,20
LEAVE REPAIR
TERMINATE
GENERATE , , ,1

BACK ADVANCE RVEXPO (1,100)
LOGIC S SHOPOPEN
ADVANCE RVEXPO (1 , l O)
LOGIC R SHOPOPEN
TRANSFER ,BACK
GENERATE 480*3*500
TERMINATE 1
START 1
PUTPIC LINES=5,SC(REPAIR)/500.,SR(REPAIR)/lO.,N(BACK)/500.,_

QM(WAIT),QA(WAIT)
TRUCKS REPAIRED PER DAY * * * - * *
UTIL. OF REPAIZ SHOP * * * . * * g

NUMBER OF TIMES DOWN PER DAY ***.**
MAXIMUM QUEUE

END

AVERAGE QUEUE LENGTH * * . * *

The results of the simulation are:
TRUCKS REPAIRED PER DAY 71 .82
mrL. OF REPAIR SHOP 91 .59%
NUMBER OF TIMES DOWN PER 3AY 13.22
MAXIMUM QUEUE 8
AVERATE QUEUE L m G T H 0.62

Other Forms of the
TRANSFER Block

.
CHAPTER 22

In Chapter 7, three forms of the TRANSFER block were discussed: the uncon-
ditional TRANSFER, the conditional TRANSFER, and the TRANSFER 3OTH
modes. The first two of these are by far the most commonly used. However,
there are other forms of the TRANSFER block that can be quite handy when
they are needed. Each will be discussed here along with possible applications.

THE TRANSFER BLOCK IN P I C K MODE

This form of the TRANSFER block will select a block to which to transfer the
transaction at random from a number of possible blocks. The transaction will
unconditionally go to this block. Each of the blocks to be selected will have
the same probability of being selected. Thus, if there are 3 blocks, each will be
selected with a probability of 0.3333; for 4 blocks, the probability of picking a
particular one is 0.250, etc. The form of the block is

0 DRANSFER D , B , C

where operand A is the word ‘‘PICK‘ and operands B and C are block labels.
The block with the label in operand B must appear in the program code before
the block with the label in operand C. Each block between these two blocks is
considered to be in the range of the transfer. This resmction means that, in
general, only TERMINATE and TRANSFER blocks are between the blocks labeled
in operands B and C. Consider the following code:

0 DRANSFER UPICK, FIRST, LAST
OFIRST mRANSFER 0, MACH1
0 DRANSFER 0, MACH2
0 rJ”RANSFER n, MACH3
0 DRANSFER @, MACH4
OLAST DRANSFER n,MACH5

A transaction will be routed with equal probability to one of the blocks
labeled MACH1, MACH2, MACH3, MACH4, and MACHS.

227

The GPSS/H Simulatlon Language 228

Example 22.1

What will the following program do?

G
0
0
3
'..>FIRST
0
0
0
3
GLAST
rJ
0
0
0

DSIMULATE
KENERATE 01
W V A N C E 01
m S F E R n P I C K , F I R S T , L A S T
DERMINATE
DERMINATE
DERMINATE
DERMINATE
TERMINATE
mERMINATE
KENERATE Dl000
DERMINATE 01
CSTART 01
DEND

T H I S I S BLOCK 1

WIS IS BLOCK 3

D H I S I S BLOCK 5
WIS IS BLOCK 6
D H I S I S BLOCK 7
D H I S I S BLOCK 8
B H I S I S BLOCK LAST
D H I S I S BLOCK 1 0
D H I S I S BLOCK 11

5 ~ 1 s IS BLOCK 2

5 ~ 1 s IS BLOCK FIRST

Solution

The program will generate a transaction every 1 time unit. The transaction
will be put on the FEC for 1 time unit. When the transaction returns to the
CEC, it will then be transferred to one of 6 TERMINATE blocks with equal
probability. The following is selected output from running the program for
the 999 transactions that enter the TRANSFER block:

RELATIVE CLOCK: 1000.0000 ABSOLUTE CLOCK: 1000.0000
BLOCK CUIUZENT T D A L BLOCK CURRENT TOTAL
1 999 11 1
2 1 999
3 998
FIRST 1 7 7
5 1 6 4
6 1 4 6
7 1 7 5
8 170
WST 1 6 6
10 1

Each of the TERMINATE blocks between and including FIRST and LAST can
be expected to be entered approximately 166 times, as shown in the TOTAL
columns of the output.

THE TRANSFER BLOCK I N ALL MODE

The T R A N S F E W mode attempts to route the transaction to a series of
blocks by trying each one in sequence. For example, if the blocks relating to a
truck-repair shop are BAYA, B A D , BAYC, and BAYD, the transaction attempts
to first enter the block labeled BAYA. If it can, it does so. If not, it tries the
block labeled BAYB, etc. If all of the blocks are in refusal mode, the transac-
tion waits until the first block in the series is free.

The form of the TRANSFER block in ALL mode is as follows:

3 m S F E R S , B , C , D

Other Forms of the -sP'JrR Block 229

where the word ALL must be in operand A, operands B and C are block labels
that define the range of the transfer, and operand D must be a positive integer
that indicates that the blocks to which the transaction is to be transferred are
D program lines (i.e., blocks) apart. For example,

0
OBEGIN
0
0
0
OBLWKX
0
OBLOCKY
0

0
0
0

OBLOCKZ

&TOP

W S F E R @ALL, BEGIN, STOP, 4 o-----

According to the program outline, the transaction first attempts to enter the
block labeled BEGIN because that is the value of operand B in the TRANSFER
block. If the transaction can do so, it does. If not, it attempts to enter the block
with the label BLOCKX because, although the BLOCKX block is not directly
specified in the TRANSFER block, it is 4 blocks down from the block START.
(The labels of intermediate blocks at appropriate spacing-here, BLOCKX and
BLOCKZ-need not be in the program.) This attempt of the transaction to
enter a block is continued until all blocks 4 lines apart are considered by the
GPSS/H processor up to and including block STOP. If all are in refusal mode,
the transaction is held in the TRANSFER block until future scans of the CEC
show that one of the blocks has become able to accept the transaction.

Example 22.2

A factory has 3 machines to rework failed parts. Parts arrive every 12 f 4.5
minutes. Machine A is the best and can finish a part every 14 f 4.3 minutes. If
this machine is free, the part goes there; otherwise, it is sent to machine B,
which works in 20 f 5.7 minutes. If both machines A and B are busy, the part
is sent to machine C, which is quite slow, working at 30 f 3.4 minutes. If all
machines are busy, the part waits for the first one to be free. Simulate for 100
days of operation of 24 hours per day.

Solution

0
0
0
0-
0
0
0
G
0

6 - OSIMUMTE
OGENERATE 0 1 2 , 4 . 5
@AIIVANCE 00
mRANSFER NL,AAAA,BBBB,4
OSEIZE mCH1
D V A N C E 0 1 4 , 4 . 3
N L E A S E W C H l
DERMINATE
OSEIZE W C H 2
@ADVANCE D 0 , 5 . 7

230 The GPSS/H Simulation Language

O
0
OBBBB
0
0
0
0
0
0
0

mELEASE
DERMINATE
CSEIZE
W V A N C E
W L E A S E
DERMINATE
@ENERATE
mERMINATE
USTART
UPUTPIC

m C H 2

m C H 3
u30,3.4
w C H 3

u480*3*100
13
01
~ I N E S = 4 , F R (M A C H l) / l O . , F C (M A C H 1) / 1 0 0 . , _
FR(MACH2)/lO.,FC(MACH2}/100.,_
FR(MACH3)/10.,FC(MACH3)/100.

FACILITY UTIL. PARTSPERDAY
MACH1 * * * . * *% *** . **
MACH2 * * * . * *g * * * . * *

***. * *% * * * . * * MACH3
0 DEND

The results of running the simulation are as follows:

FACILITY ma. PARTS PER DAY
MACH1 68.38% 70.27
MACH2 57.39% 41.24
MACH3 16.82% 8.09

The output shows that the first machine is busy 68.38% of the time and is
repairing 70.27 parts per day. The second machine is busy 57.39% of the time
and is repairing 41.24 parts per day, while the third machine is working only
16.82% of the time and is repairing 8.09 parts per day.

THE TRAMSFER BLOCK I N FUNCTION MODE

The TRANSFER PICK transfers the transactions to different blocks with equal
probability. Sometimes you want to transfer a transaction to particular blocks
with set but different percentage probabilities for each. The TRANSFER block
in function mode is used for this procedure. Since this form of the TRANSFER
block is so similar to the unconditional TRANSFER block, it has been used in
previous chapters in a simple form. However, it will be discussed in detail
here. There can be several forms, but the one most frequently used is

0 BRANSFER n , B

where operand A is omitted (as shown by the comma) and the B operand is
FN (for “function”) followed by the block label of the line of code defining the
function. The function referenced can have blocks in the number pairs in the
function definition. For example,

OFIRST rJ”NCTI0N m 1 , D 4
.l,BLOCKA/.35,BLOCKB/.8,BLOCKC/l,BLOCKD
0 E-----
0 U-----
0 D W S F E R u,FN(FIRST)

BLOCKA, BLOCKB, BLOCKC, and BLOCKD are block labels. The transaction
will be transferred to BLOCKA 10% of the time, to BLOCKB 25% of the time,

Other Forms of the TRANS= Block 231

to BLOCKC 45% of the time, and to BLOCKD 15% of the time. This is a very
useful form of the TRANSFER block.

Example 22.3

Trucks arrive for service at a repair shop. Interarrival times are 28 * 6 min-
utes. Serious repairs are needed for 10% of the trucks, and a special crew is
called in to do the work. These repairs take 200 & 60 minutes to complete.
The other services can be broken into two types, type B and type C. Type B
service is required by 30% of the trucks, and type C service is needed by the
remaining 60%. Both of these types of service are done by the same crew.
Type B service takes 45 * 15 minutes, and type C service takes 20 f 6 minutes.
Simulate for 20 shifts of 8 hours each.

Solutlon

0 OSIMULATE
O W I C H W C T I O N m1,D3
.l,SERVA/.4,SERVB/l,SERVC
0 EENERATE m8,6

0 m S F E R n,FN(WHICH)
OSERVA OSEIZE mTHER
0 DEPART m A I T
0 @ADVANCE m00,60
0 W L E A S E WTHER
0 mERMINATE
OSERVB OSEIZE D I R S T
0 DEPART 3 A I T
0 WVANCE 045,15
0 BELEASE D I R S T
0 BERMINATE
OSERVC OSEIZE m I R S T
0 @DEPART m A I T
0 @ADVANCE 020,6
0 BELEASE D I R S T
0 DERMINATE
0 BENERATE 0480*20
0 DERMINATE 01
0 ISTART 01
0 UPUTPIC ~INES=3,FC(OTHER)/100.,FR(OTHER)/10.,-

0 mum ~ A I T

FC(FIRST)/100.,FR(FIRST)/10,QM(WAIT),QA(WAIT)
0 OEND

The results from running the program are as follows:

TIMES FACILITY OTHER USED/DAY 5.19 UTIL OF FACILITY OTHER 71.628
TIMES FACILITY FIRST USED/DAY 46.12 V"IL OF FACILITY FIRST 90.138
MICTM QUEUE 1 0 AVERAGE QUEL?E 1.82

When using the TRANSFER function mode, it is possible to have a function
that returns a number. This number then refers to the number of the program
block to which the transaction is to be transferred. (Recall that the GPSS/H

232 The GPSS/H Slmulatlon Language

processor numbers ali of the blocks consecutively during compiling, as shown
in the .US file.) For example, if the block

0 m S F E R n,FN(WHERE)

returns the value 12, the transaction is routed to the block in numerical posi-
tion 12. The problem with using this form of the TRANSFER block is that, if
any changes are made to the program such as adding or deleting blocks, all
such TRANSFER blocks must also be changed.

It is also possible to include arithmetic operations, such as in the following:

0 DRANSFER 1, FN (THIRD) t5

The function THIRD is referenced and a value is returned, say, 14. Then 5 is
added to 14, and the transaction is routed to the block in position 19.

THE TRANSFER BLOCK IN PARAMETER M O D E

It is possible to transfer to a block number whose value is given by one of the
transaction’s parameters. The form of this TRANSFER mode is shown by

0 DRANSFER O,B,C

where operand A is blank (again shown by the comma), operand B is the
transaction’s parameter that identifies the block to which the transaction will
be transferred, and operand C (may be omitted) is a positive or negative value
that is added to the value stored in the parameter given in operand B. Con-
sider the code

0 m S F E R n,PH4

In this example, the transaction is routed to the block given by the value of the
transaction’s fourth halfword parameter. If this value is 15, the transaction is
routed to block 15; if the value is 20, the transaction goes to block 20, etc.

The following code is an example of use of the C operand in such transfer
blocks:

0 DRANSFER u, PH7,3
Now, 3 is added to the value stored in the transaction’s seventh halfword
parameter, and the transaction is routed to the block whose number is given
by this total. For example, if the value stored in halfword parameter 7 was 30,
the transaction would be routed to block 33. However, because it is possible
to have arithmetic in operands, the use of the C operand in the TRANSFER
block is hardly ever used. For example, the above transfer also could have
been coded as

0 DRANSFER n,PH7+3

The simulation in Example 22.3 could have been written by using the TRANS-
FER block in parameter mode as follows:

Other Fomrs of the TRANSFER Block 233

0 BIMULATE
OWHICH W C T I O N m 1 , D 3
. 1 , 4 / . 4 , 1 0 / 1 , 1 6
0 BENERATE 028,6
0 D S S I G N 05, FN (WHICH) , PH
0 W S F E R O,PH5

0 B E I Z E W H E R
0 D E P A R T m A I T
0 @ADVANCE 0 2 0 0 , 6 0
0 W L E A S E m R

0 MUEUE D A I T
0 OSEIZE B I R S T
0 D E P A R T W A I T
0 @ADVANCE 0 4 5 , 1 5
0 W L E A S E B I R S T

0 OQm ~ A I T

0 DERMINATE

3 DERMINATE
0 ~ A I T

0 DEPART ~ A I T
0 B E I Z E B I R S T

0 @ADVANCE m 0 , 6
0 W L E A S E D I R S T
0 BERMINATE
0 BENERATE 3480*20
0 DERMINATE 01
0 OSTART 01
0 OPUTPIC ~INES=3,FC(OTHER)/lOO.,FR(OTHER)I10.,-

FC(FIRST)/lOO.,FR(FIRST) / lO,QM(WAIT) ,QA(WAIT)
TIMES FACILITY OTHER USED/DAY ** . ** U T I L OF FACILITY OTHER * * * . * *%
TIMES FACILITY F I R S T USED/DAY **.** U T I L OF FACILITY F I R S T * * * . * * %

MAXIMUM QUEUE ** AVERAGE Q m * * . * *
0 rn
The output from this program is identical to that of the previous one.

THE TRANSFER BLOCK I N SUBROUTINE MODE

It is possible to transfer to a subroutine and then return to the main program.
This approach might be taken when there are a series of identical blocks that
have to be repeatedly referenced. The general form used is

0 DRANSFER m , B , C

The “word” SBR must be in operand A. Operand B contains the block label to
transfer the transaction to, i.e., the initial block of the subroutine. Upon enter-
ing the TRANSFER SBR block, the transaction is unconditionally routed to the
subroutine block. The GPSS/H processor places the block number of the
TRANSFER SBR block in the transaction’s parameter as specified by operand
C. Unlike in other programming languages, when the transaction finishes with
the subroutine, it does not automatically return to the main program. The trans-
action must be directed back to the block it came from in order to continue
moving from block to block. To accomplish returning the transaction to the

234 The GPSS/H Simulation Language

main program once the transaction finishes the subroutine, the following
form of code can be used:

0 m S F E R n , B

where the A operand is again blank and the B operand is the transaction's
parameter that was listed in the C operand of the original TRANSFER SBR
block plus 1. The effect of this line of code is that the transaction is trans-
ferred back to the main program at the block below the one that transferred
the transaction to the subroutine. For example, if the initial TRANSFER SBR
block is

0 DTRANSFER OSBR, SUBFIVE, 2PH

then the code to return the transaction to the main program would be

0 DRANSFER n , P H 2 + 1

THE TRANSFER BLOCK I N SIMULTANEOUS MODE

Another form of the TRANSFER block is the TRANSFER SIM mode. This mode
was used more in earlier versions of GPSS when it was more important to
write code that took the minimum time for execution. This form of the
TRANSFER block makes use of the fact that, every time a transaction is
delayed, it has a switch called the SIM indicator that is put in a set position.
Whenever a transaction leaves an ADVANCE block, this switch is reset. Also
when a transaction leaves the TRANSFER SIM block, the switch is reset. The
general form of this block is

0 DRANSFER OSIM, B, C

The "W~rd~' SIM must be in operand A. Operand B is the label of the block
where the transaction is routed when the switch is in a reset position. It is
rarely used because the next sequential block is often the one to route the
transaction to. In this regard, TRANSFER SIM is similar to the TRANSFER
BOTH block. Operand C is the block where the transaction is routed when the
switch is in a set position. This block is usually the first of a series of GATE
blocks or other blocks used in logic testing.

Consider the following series of blocks that might have to do with a ship
ready to enter a harbor. In order for the ship to enter, three conditions must
be satisfied simultaneously: (1) There must be a high tide. (2) The single tug-
boat must be available. (3) A berth must be free.

OBACKl @ A T n S @NE 01s THERE A HIGH T I D E ?
0 BAT- W G 01s THE TUG AVAILABLE?
0 B A T a S N F D E R T H 01s A BERTH FREE?
0 DTRANSFER nSIM, ,BACKl

The first GATE block has to do with the fact that there must be a high tide.
The second and third control the availability of the tugboat and the berth.

Suppose that a transaction arrives at the first of these blocks. The transac-
tion's SIM switch is reset. If the transaction is not delayed at any of the three
GATE blocks, it simply leaves the TRANSFER SIM block and enters the next
sequential block.

Other Fonns of the TRANSFER Block 235

Alternatively, suppose that there was no high tide. The transaction waits in
the block before BACKl until high tide. Since it has now been delayed, its SIM
switch is placed in a set position. If the other two GATE blocks allow it to pass
through, it arrives at the TRANSFER SIM block with its SIM indicator in a set
position. While in the TRANSFER SIM block, the transaction’s SIM switch is
placed in a reset position, and then it is routed to try to enter the BACKl block
again, as given by the C operand. If there is st i l l a high tide, the transaction’s
switch is reset; if the two succeeding blocks also allow it to pass through, then
when it again encounters the TRANSFER SIM block, it passes through to the
next sequential block.

Suppose that another transaction enters the series of three blocks at a later
time. The tide is high but the tugboat is busy. The transaction is held at the
second GATE block until a tugboat is free. Now, suppose that, while the ship
was waiting for the tugboat, the tide changes to a low tide. When the transac-
tion reaches the TRANSFER SIM block, the switch is in a set position because
of the delay in waiting for the tugboat. Thus, it will be routed to the first
GATE block. But now the tide is low, so the transaction will be delayed here
until the tide becomes high. The transaction will continue to cycle through
the three GATE blocks and the TRANSFER SIM block until all three conditions
as given by the GATE blocks are satisfied.

The above situation could have been simulated by using a single TEST block
and Boolean logic (covered in Chapter 27), but this approach causes more
execution time than using the three GATE blocks. Whenever possible, the pro-
grammer is encouraged to avoid the use of the TEST block because it
increases execution time.

EXERCISES, CHAPTER 22

1. What will happen when a aansaction enters the following TRANSFER
PICK block?
0 I-J’RANSFER OPICK,FIRST,LAST
O F f R S T W S F E R 0,AAAA
0 DRANSFER G,BBBB
9 m S F E R 0,CCCC
0 rJ”ERM1NATE
0 I-J’RANSFER g, DDDD
O U S T m S F E R [l,EEEE

2. Explain what happens for each of the following TRANSFER function
blocks:
OWHERE W C T I O N m 1 , D 3 U(a)

0 n-----
0 n-----
0 W S F E R G,FN(WHERE)
OWHAT W C T I O N O P H 1 , L I O(b)
, AAAA/, BBBB/ , CCCC / , DDDD
5 o-----
9 U-----

.25,BLOCKA/.8,BLOCKB/1,BLOCKC

0 W S F E R O,FN(WHAT)

236 The GPSS/H Simulation Language

3. Ships arrive at a port every 8 f 2 hours, and there are 3 berths for the
ships. A ship will remain in a berth for 21 f 4 hours. It cannot enter or
leave when the following conditions hold:
a.

b.

C.

A storm has closed the harbor. These come up on average every 24
hours (exponentially dismbuted). They last for an average of 2.5
hours, also exponentially dismbuted.
Miscellaneous work stoppages occur every 12 * 2 hours and last for 1 *
0.5 hours.
The tide is out every 10 f 3 hours, and this condition remains for 1.5
20.5 hours.

Model the harbor to determine how busy the berths are and the maxi-
mum number of ships that had to wait in the queue. Model for 5 years.

4. Run the following program and discuss the output.
0 BIMULATE
OMYSUB B E S W (TIMER) , AC1, AWAY

OTHE TIME I S NOW ***.**
0 OSAVEVALUE mIMER,ACl,XL
OAWAY OTT(ANSFER @,PH1+1
0 OGENERATE @ 1 8 , 6
0 OTT(ANSFER BBR,MYSUB,lPH
0 mUEUE m A I T
0 USEIZE W B E R
0 DEPART m A I T
0 WVANCE 0 1 6 , 8
0 W L E A S E DARBER
0 mRANSFER OSBR , MYSUB, 1PH
0 BERMINATE
0 EENERATE 060*2
0 DERMINATE 01
0 @TART 01

0 ipPuTPIC @ACl

0 m

takes 35 f 4 seconds, is used for 50% of the parts; machine 2, which takes
77 f 3.5 seconds, is used for 25% of the parts; machine 3, which takes 85
f 5 seconds, is used for 15% of the parts; and machine 4, which takes 150
* 7 seconds, is used for 10% of the parts. Simulate for 100 days of 1440
minutes each. Determine the utilization of each of the 4 machines. Use a
TRANSFER function block.

6. It is possible to write the program in exercise 22.5 by using a TRANSFER
block as a parameter. Make the necessary changes to use this approach.

5. In a factory, parts come along every 20 f 10 seconds. Machine 1, which

SOLUTIONS, CHAPTER 22

L The transaction will be routed to any of the 6 blocks between and includ-
ing the one labeled FIRST and LAST with equal probability. In 5 of these
cases, the transaction will be routed to different parts of the program; in
the other, it is terminated.

Other Forms of the T R I W S ~ R Block 237

2. The transaction will be routed to the blockwith the label BLOCKA 25% of the
time; it will be routed to the block with the label BLOCKB 55% of the time
and it will be routed to the block with the label BLOCKC 20% of the time.

3. The program to do the simulation is given:

BACK1

BACK2

BACK3

BACK4

BACK5

SIMULATE
STORAGE
GENERATE
QUEUE
GATE LR
GATE LR
GATE LR
TRANSFER
ENTER
DEPART
ADVANCE
GATE LR
GATE LR
GATE LR
TRANSFER
LEAVE
TERMINATE
GENERATE
ADVANCE
LOGIC s
ADVANCE
LOGIC R
TRANSFER
GENERATE
ADVANCE
LOGIC s
ADVANCE
LOGIC R
TRANSFER
GENERATE
ADVANCE
LOGIC s
ADVANCE
LOGIC R
TRANSFER
GENERATE
TERMINATE
START
PUTPIC

S (BERTH) ,3
8,2
HARBOR
STORM
STOPAGE
TIDE
SIM,,BACKl
BERTH
HARBOR
21,4
STORM
STOPAGE
TIDE
SIM, , BACK2
BERTH

I I ,1
RVEXP0(1,24) STORM COMING
STORM
RVEXP0(1,2.5)
STORM
, BACK3
I I ,1
12,2 WORK STOPPAGE
STOPAGE
1, .5
STOPAGE
, BACK4
I I ,1
10,3 TIDE OK
TIDE
1.5, .5
TIDE
, BACK5
24*365*5
1
1
LINES=2, SR(BERTH) /lo., QM(HARB0R)

UTIL. OF BERTHS ***.**%
MAXIMUMQUEUE **

END
The result of running the simulation give the following:
UTIL. OF BERTHS 89.83%
MAXIMlTMQUEUE 3

238 The GPSS/H Simulation Language

4. The program puts the simulation clock time on the screen every time it
changes. If the subroutine is called and the clock time has not changed,
nothing is done. (For this example, every time the subroutine is called,
there will be a change in the clock time.

5. The program for this example follows.
SIMULATE

WHERE FUNCTION RN1,D4
.5,BLOCKA/.15,BLOCKB/.90,BLOCKC/l,BLOCKD

GENERATE 20,lO
QUEUE WAIT
TRANSFER , FN (WHERE)

BLOCKA SEIZE MACHl
DEPART WAIT
ADVANCE 35,4
RELEASE MACHl
TERMINATE

BLOCKB SEIZE MACH2
DEPART WAIT
ADVANCE 71,3.5
RELEASE MACH2
TERMINATE

BLOCKC SEIZE MACH3
DEPART WAIT
ADVANCE 85,5
RELEASE MACH3
TERMINATE

BLOCKD SEIZE MACH4
DEPART WAIT
ADVANCE 150,7
RELEASE MACH4
TERMINATE
GENERATE 480*100*3
TERMINATE 1
START 1
PUTPIC LINES=4,FR(MACH1)/10.,FR(MACH2)/10.,-

FR(MACH3)/10.,FR(MACH4)/10.
UTIL. OF MACHl * * * . * *%
UTIL. OF MACH2 * * * . * *%
UTIL. OF MACH3 * * * . * *%
UTIL. OF MACH4 * * * . * *%

END

The results of running the simulation are:
UTIL. OF MACHl 87.21%
UTIL. OF MACH2 77 .35%
UTIL. OF MACH3 65.51%
UTIL. OF MACH4 72.26%

Other Forms of the TRIWS- Block 239

6. The modified program is:
SIMLTLATE

WHERE FUNCTION RN1,D4
.5,5/.75,10/.90,15/1,20

GENERATE 20,lO
QW WAIT
1, FN (WHERE) , PH
TRANSFER ,PH1
SEIZE MACHl
DEPART WAIT
ADVANCE 35,4
RELEASE MACHl
TERMINATE
SEIZE MACH2
DEPART WAIT
ADVANCE 77,3.5
RELEASE MACH2
TERMINATE
SEIZE MACH3
DEPART WAIT
ADVANCE 85,s
RELEASE MACH3
TERMINATE
SEIZE MACH4
DEPART WAIT
ADVANCE 150,7
RELEASE MACH4
TERMINATE
GENERATE 480*100*3
TERMINATE 1
START 1
PUTPIC LINES=4,FR(MACHl)/lO.,FR(MACH2)/10.,_

ASSIGN

FR(MACH3)/10.,FR(MACH4)/10.
UTIL. OF MACHl *** . **%
UTIL. OF MACH2 ***.**%
UTIL. OF MACH3 *** . **%
UTIL. OF MACH4 * * * . * *%

m
Although the program gives identical results to the one used to simulate
exercise 18.5, this program is harder to follow since the blocks where the
transfer takes place do not have labels.

.
CHAPTER 23 Ampervaria bles;

DO LOOPS; GETLIST
Statements; IC GOTO,
WERE, and LET Statements

AMPERVARIABLES

It is possible to have variables that change in a GPSS/H program each time it
is run. We have done this already by redefining the block that we wanted to
be changed. For example, a program that was run once with 4 workers in a
factory had

/jWORKERS GENERATE 0, , ,4

After the first run, we might have had statements such as

0 OSTART 91
9 BLEAR
5 m T c777
CWORKERS DGENERATE 0, , , 5
9 USTART G1

Now the program is run a second time but with 5 worker transactions being
used in the simulation. If it is desired to run the program again but now with
6 workers, it is easy to add the necessary lines of code. However, it is possible
in GPSS/H to simplify this procedure further by using the concept of amper-
variables. These are variables that have their values changed during the run-
ning of the program. They are defined by the use of the ampersand as their
first character (hence, their name).

241

242 The G W / H Slmulatlon Language

GPSS/H allows for 5 types of these ampervariables: integer, real or floating
point, 2 character types, and external. Integer ampervariables cannot have a
decimal point; real or floating-point ampervariables must have a decimal point;
character ampervariables are for character strings; and external ampervariables
refer to external functions and subroutines. In the following discussion, only
integer, real, and character ampervariables are covered as they are the ones
most commonly used. The other two are not used in this book.

All ampervariables must be defined prior to their use. They are defined by a
statement, as follows:

0 OINTEGER m, B , C, . . .
0 DEAL D , B , C , . . .
0 EHAR*n @A, B , C, . . .

where the operands are the list of ampervariables. INTEGER and REAL amper-
variables may have as many as 8 alphanumeric characters. Character (CHAR)
ampervariables have their maximum (s255) length specified by the n. Thus,

O(a) UINTEGER O&I,&JOE,&K123456,&JJJ,&XYZ
V (b) W @ZX, &Urn, &TRUCKS, &SPEED
0 (c) mHAR*2 n&ANS, &YES, &NO

The code labeled (a) defines the integer ampervariables I, JOE, K123456, JJJ,
and XYZ. The code labeled (b) defines the real ampervariables ZX, KLMN,
TRUCKS, and SPEED. That in (c) defines three character ampervariables of
length 2 (note that the length of the name of an ampervariable may be differ-
ent from the length of the string it represents). In the main program blocks, it
is then possible to have the following, for example:

0 OQm @&I
0 @ADVANCE @&SPEED
0 @ENl?RATE 0, , , &JJJ
0 OSEIZE O&JOE
0 DSSIGN 01, &zx, PL

One defines values for ampervariables by the LET statement or the BLET
block. These are used as follows:

0 DET 0&1=4
0 D E T D&SPEED=45.67
0 D E T DEANS= 'Y'

Notice that character ampervariables are enclosed in single quotation marks.
In Chapter 8 it was mentioned that ASCII extended characters (e.g., the k

symbol) are not normally allowed in the PUTPIC statement. However, recall
that one can have the following:

0 mHAR*1 @&PLUSMNUS
0 BET @&PLUSMNUS='t'

Then, one can place &PLUSMNUS in a PUTPIC statement and the output will
contain the 2 symbol.

Ampervariables; DO Loops: GETLIST Statements; IF. 00~0, mnt~, and LET Statements 243

THE GPSS/H DO LOOP

GPSS/H has DO loops that can be used to greatly shorten the code for control
statements. Integer ampervariables are commonly used in connection with
DO loops. The form is quite similar to that found in other programming lan-
guages:

0 [3Do m, B , C
0 o-----
0 n-----
0 OENDW

where operand A is an integer ampervariable and has the form &I=lower
limit, operand €3 is the upper limit, and operand C is the increment. Explicitly
giving the increment is optional. It is not possible to decrement the amper-
variable in a DO loop.

Here is how the DO loop works. The integer ampervariable is set equal to its
lower limit, and the statements from the DO statement down to the ENDDO
statement are executed. The integer ampervariable is then incremented. If the
increment is missing (as it often is), the value is assumed to be 1 by default.
The statements are then executed up to ENDDO. This looping through the
code is continued until the value of the ampervariable is greater than the
upper limit. Thus, the lines of code

0 OINTEGER O&I
0 OD0 0 & 1 = 2 , 1 0
0 ELEAR
0 m T 09
OWORKS EENERATE a , , ,&I
0 OSTART 01
0 W D D O

would run the program first with I = 2 and then with I = 3, etc., up to and
including I = 10 for a total of 9 times. There would be 9 reports written.

The lines of code

0 OINTEGER a & K
0 OD0 0 & K = 4 , 1 0 , 2

0 m T 0777
0 UINITIAL m (V A L U E) , & K t 3
0 USTART 01
0 W D D O

0 O C L M

would run the program first for values of K = 4 and XHWALLJE) = 7. The sec-
ond time, the values would be K = 6 (increment is 2) and XHWALUE) = 9,
etc., up to K = 10 and XHWALUE) = 13.

It is possible to have nested DO loops. Each DO loop must have its own
ENDDO statement:

0 OINTEGER O&J
0 D O 0 & J = 2 , 6

244 The GPSS/H Simulation Language

0
0
OTRUCKS
0
0
0
0
0

OCLEAR
[PCMULT 054321
E N R A T E n, , , &J
ow U&I=l, 3
@STORAGE US (TUGS) , &I
USTART 01
I-JENDDO
W D D O

The value of &J is first set equal to 2. The block

>TRUCKS GENERATE 0, , , &J

would be

@RUCKS BENERATE 0, , , 2

next, the value of I is 1, and so the STORAGE is

0 USTORAGE OS(TUGS), l

The program is run for these values. The value of I is next incremented to 2,
and the program run with the STORAGE of TUGS equal to 2 (&J remains
equal to 2). Thus, the main program will be executed 18 times. (&J = 2,3,4,
5, 6, and &I = 1,2, and 3.)

SIMULATION OF A TIRE SUPPLY PROBLEM

Example 23.1

The owner of a garage stocks snow tires for sale during the winter months. He
places one order at the end of summer and cannot receive any more tires if
the demand is greater than the supply. In addition to a $20.00 service charge
per order, tires cost $25.00 times the number of tires ordered. The $20 is a
fixed cost no matter how many tires are ordered. The tires sell for $45 each. If
any tires are left over, there is a penalty of $5 per tire in "holding" costs. If a
person wants to buy a tire and it is no longer in stock, the $20 profit is consid-
ered as a loss. From past records, the owner feels that the demand for tires is
given by the following relative probability distribution:

Demand for Tires Relative Probability

100
105
110
115
120
125
130
135
140
145
150

0.03
0.05
0.10
0.15
0.18
0.14
0.12
0.10
0.08
0.03
0.02

Ampervarlables; DO Loops; GETLIST Statements; IF, =TO, RERE. and LET Statements 245

Determine the number of tires the garage owner should order to maximize his
expected profit. Simulate for 200 winters.

Solutlon

The way to do the simulation is to first assume a supply amount of a reason-
able amount of tires. Suppose this amount is 120. Then by using the owner's
data on demand distribution, a demand is simulated by means of Monte Car10
simulation. Suppose this is 100. This means that the store made a profit of
(100 x $45) - $20 - ($120 x 25) - [$5 x ($120 - $loo)]= $1,380. If the
demand had been 130, however, the profit would have been (120 x 45) - $20
- ($120 x 25) - [$20 x ($130 - $l20)] = $2,180.

Such computations are done for a large number of possible demands, say 200.
The expected profit is then the average of the simulated ones. This result is
then taken to be the expected profit (or loss) for the given supply amount.
The following program to do the simulation assumes supply amounts of 90 to
150 tires in increments of 5, i.e., amounts of 90,95,100, . . . , 150.

GPSS/H is ideal for such inventory problems. The program to do the simula-
tion is given below:

0 OSIMULATE

0 mEAL O&PROFIT,&RESULT

0 OPUTSTRING a (,mi)

0 OINTEGER O&I,&STOCK,&DMD

OMYOUT BILEDEF 0'TIRES.OUT'

0 OPUTSTRING O(om')
0 OPUTSTRING o ()

0 OPUTSTRING o (' SIMULATION OF A TIRE SUPPLY PROBLEM')

0 OPUTSTRING I(' A DEALER PLACES AN ORDER FOR TIRES')
0 OPUTSTRING O(' THIS IS DONE ONLY ONE TIME')
13 OPUTSTRING o (' THESE COST $20 t $25*("MBER ORDERED)')
0 OPUTSTRING I(' TIRES SELL FOR $45 EACH')
0 UPUTSTRING n (' IF ANY TIRES ARE LEFT OVER, A PENALTY')
0 OPUTSTRING o (' OF $5.00 PER TIRE RESULTS')
0
0 UPUTSTRING O(' IS NOT IN STOCK, THE $20 PROFIT IS')
0 OPUTSTRING D (' CONSIDERED TO BE A LOSS')
0 nPUTSTRING n (' THE DEMAND PROBABILITY DISTRIBUTION IS GIVEN')

0 OPUTSTRING U (' THE SIMULATION IS IN PRCGRESS . . . ')
ODEMAND W C T I O N W1,Dll
.03,100/.08,105/.18,110/.33,115/.51,120/.65,125/.77,130
.87,135/.95,140/.98,145/1,150
0 WENEMTE 0, ,
OBACKl DLET I&DMD=FN (DEMAND)

DPUTSTRING a (' IF A PERSON WANTS TO BUY A TIRE AND IT')

0 OPUTSTRING o (am')

0 DES~OGE O&STOCK,&DMD,DDDD
0 DLET O&PROFIT=&PROFIT+&DMD*45.-(20.t25.*&STOCK)--

5.*(&STOCK-&DMD)
0 @ADVANCE 01
0 DRANSFER 0, BACK1
ODDDD @LET ~&PROFIT=&PROFIT+&STOCK*45.-(2O.t25.*&STOCK)--

20.*(&DMD-&STOCK)

246 The GPSS/H Slmulation Language

0 W V A N C E 01
0 DRANSFER 0, BACK1
0 ow 0&1=90,150,5

0 m T ~111111
0 m E T O&STCCK=&I

0 OCLEAR

0 KENERATE 0200
0 DERMINATE 01
0 USTART 01
0 OLET ~&RESULT=&PROFIT/200.

;PUTPIC ~INES=3,FILE=TIRES.OUT,&I,&RESULT
RESULTS OF TIRE SHOP SIMULATION
NUMBER OF ITEMS IN STOCK WAS ***
WITH THESE, THE EXPECTED PROFIT IS **** . **

0 DLET O&PROFIT=O
0 W D o
0 r n D

While the simulation takes place, the following is shown on the screen:

A DEALER PLACES Ah' ORDER FOR TIRES
THIS I S DONE ONLY ONE TIME
THESE COST $20 t $25*(NuMBER ORDERED)
TIRES SELL FOR $45 EACH
I F ANY TIRES ARE LEFT OVER, A PENALTY
OF $ 5 . 0 0 PER TIRE RESULTS
I F A PERSON WANTS TO BUY A TIRE dND IT
I S NOT I N STOCK, THE $20 PROFIT I S
CONSIDERED TO BE A LOSS
THE DEMAND PROBABILITY DISTRIBUTION I S GIVEN

THE SIMLTLATION I S IN PROGRESS.. .

The output file TIRES.OUT has been created to hold the results of the simula-
tion. Had they been sent to the screen, it would not have been possible to read
them as they would scroll by too rapidly. The file TIRES.0UT is as follows:

RESULTS OF TIRE SHOP SIMULATION
NUMBER OF ITEMS I N STOCK WAS 90
WITH THESE. TfE EXPECTED PROFIT I S 1102.50

RESULTS OF TIRE SHOP SIMULATION
NliMBER OF I T E IN STOCK WAS
WITH THESE, THE EXPECTED PROFIT I S 1302.50

NUMBER OF ITEMS I N STOCK WAS 1 0 0
WITH THESE, THE EXPECTED PROFIT I S 1 5 0 2 . 5 0

95

RESULTS OF TIRE SHOP SIMULATION

RESULTS OF TIRE SHOP SIMULATION
NUMBER OF ITEMS I N STOCK WAS 105
WITH THESE, THE EXPECTED PROFIT IS 1693.75

NUMBER OF ITE3l.S IN STOCK WAS 110
WITH THESE, THE EXPECTED PROFIT IS 1864.00

RESULTS OF TIRE SHOP SIMULATION

R E s m r s OF TIRE SHOP SIMULATION
NUMBER OF ITEMS I N STOCK MAS
WITH THESE, "HZ EXPECTED PROFIT I S 2009.75

115

Ampewariables; DO Loops; GETLIST Statements; IF, GOTO. HERBI. and L ~ T Statements 247

RESULTS OF TIRE SHOP SIMULATION
NUMBER OF ITEMS I N STOCK WAS
WITH THESE, THE EXPECTED PROFIT

RESULTS OF TIRE SHOP SIMULATION
NUMBER OF ITEMS I N STOCK WAS
WITH THESE, TXE EXPECTED PROFIT

RESULTS OF TIRE SHOP SIMULATION
NUMBER OF ITEMS I N STOCK WAS
WITH THESE, THE EXPECTED PROFIT

RESULTS OF TIRE SHOP SIM7JLATION
NUMBER OF ITEMS I N STOCK WAS
WITH THESE, THE EXPECTED PROFIT

RESULTS OF TIRE SHOP SIMULATION
NUMBER OF ITEMS I N STOCK WAS
WITH THESE, THE EXPECTED PROFIT

RESULTS OF TIRE SHOP SIMULATION
NUMBER OF ITEMS I N STOCK WAS
WITH THESE, THE EXPECTED PROFIT

RESULTS OF TIRE SHOP SIMULATION
NUMBER OF ITEMS I N STOCK WAS

120
I S 2110.00

125
I S 2131.50

130
I S 2112.75

135
I S 2050.25

1 4 0
I S 1 9 5 4 . 5 0

145
I S 1 8 1 8 . 5 0

1 5 0
WITH THESE, THE EXPECTED PROFIT I S 1673.75

From the output, it is found that the optimum number of tires to order is 125,
which will result in an expected profit of $2,131.50. However, if 120 or 130 are
ordered, the expected profit is only slightly less. If desired, the program can be
rerun by using supply amounts from 120 to 130 in increments of 1. (Note: This
example is modified from one found in Cooper et al. [1977, p. 3441.)

THE GETLIST S T A T E M E N T

Once ampervariables are defined, they can be read into the program by
means of the GETLIST statement. This causes the program execution to stop
until the ampervariables as specified in GETLIST are read from the user's
input device. A prompt appears on the screen until the data are input. The
general form of this statement is

OLABEL E E T L I S T D,B, C, . . ,

where the label is optional, the A operand is FILE=filename, and the remain-
ing operands are ampervariables, the values of which must be input by the
user. The filename GUSER is commonly used for interactive screen input.
(However, the FILE = GUSER specification can be omitted as GPSS/H
assumes this is the file by default.) Multiple ampervariables may be read in by
a single GETLIST statement, for example,

0 B E T L I S T mILE=GUSER,&I ,&J ,&K

If values of 2, 3, and 7 are to be assigned to &I, &J, and &K, respectively, the
data must be input as

2 3 1

i.e., they must be separated by blanks, not commas. If a GETLIST statement
asks for more than 1 value to be read in and fewer than this number is input,
the prompt remains on the screen until all the data are input.

248 The GPSS/H Slmulatlon Language

Example 23.2

Go back to example 23.1 and add the necessaty code so that the number of
years to simulate for is a variable. Also, have the supply amounts and the
increments as variables.

Solution

The changes are as follows: Replace

0 OINTEGER $I,&STOCK,&DMD

with

C, OINTEGER g&I, &J, &K, &L, &M, &STOCK, &DMD

Add the code

OPUTSTRING a (' HOW MANY YEARS DO YOU WANT TO SIMUL?.TE FOR?')
BETLIST fl&J

OPU"RING E (' NEXT WE NEED THE SUPPLY AMOUNTS TO CONSIDER IN')
EPUTSTRING y (' THE SIMULATION. INPUT THE BEGINNING AMOUNT,')
OPUTSTRING 0 (' THE END AMOUNT, AND THE INCREMENT SEPARATED BY ')
GPUTSTRING n(' BLANKS - NOT COMMAS ! ! ')
CPUTSTRING g ('a')
BETLIST n&K, &L, &M

 PUT STRING ~ (' m l)

Replace

0 D O 3&1=90,150,5

with

3 OGENERATE @J

and change

0 S E T G&RESULT=&PROFIT/200.

to

0 S E T z&RESULT=&PROFIT/&J

THE IF, GOTO, AND HERE STATEMENTS I N GPSS/H

It is possible to have IF statements in GPSS/H. These can be used in the con-
trol statements to check on the input data or after the program has executed
to prompt the user to rerun the program, often with different data. The form
of the IF statement is

Ampervarlables; DO Loops; GSTLIST Statements; IF, GOTO, ?iBRE, and LET Statements 249

OLABEL OIF OA
0 n-----
0 o-----

where operandA is a condition. Conditions are logical statements such as the

0 N D I F

following:

&I +& J< =&K
&KLM-&MMM=O
&YES E 1

If the condition in operand A is m e , the group of statements after the IF state-
ment are executed.

It is also possible to have ELSEIF and ELSE statements contained between the
IF and ENDIF statements, such as is typical in other programming languages.
Their form is

OLABEL
0
0
0
0
0
0
0
0
0
0

In this code, the threeA operands would be different conditions of interest,
for example,

0 UIF fl&I ' E ' 2
0 D E T @J=O

0 m E T O&J=l
0 D L S E
0 OLET n&J=2

0 DLSEIF c & I ' E ' ~

0 @ENDIF

Often GOTO is used with the IF statement. The form is simply

0 BOTO OA

where the operand A is the label of the block to which the transaction is to be
transferred. For example, you might have

0 OPUTSTRING o f ' THE DATA YOU TYPED IN I S AS FQLLOWS')
0 OPUTPIC m I N E S = 3 , & I , & J , & S P E E D

THE VALUE OF I = * * *
THE VALUE OF J = * * *
THE SPEED I S *** . **

0 OPUTSTRING @('a')
0 EPUTSTRING 1 (' ARE YOU HAPPY WITH THESE? ')

250 The GPSS/H Slmulatlon Language

0 OPUTSTRING I(' RESPOND: 1 = YES; 0 = N O ')
0 K E T L I S T O&L
0 DIF @L'E'O
0 E O T O mRYAGAIN
0 WDIF

The effect of the code in the example is to prompt the user to examine the
data already input. If something in the data is not satisfactory, control returns
to where the data items were originally input.

It is possible to have control return to a target of the GOT0 that is a dummy
statement known as the HERE statement. The form of this is

OLABEL W R E

Thus, in the previous example, there might have been the following statement:

OTRYAGAI-RE

The HERE statement is analogous to the Fortran CONTINUE statement.

Example 23.3

Consider the following code:

0
0
0
0
0
0
0
0
0

OPUTSTRING O (* U l i)
OPUTSTRING O(' DO YOU WANT TO DO ANOTHER SIMULATION? (Y / N) ')
OPUTSTRING ocnm.)
B E T L I S T n&ANS

UIF U(sLANS'E' ' Y ') O R (& A N S ' E ' ' y ' ')

W E A R
E O T O DGAIN
W D D O
UPUTSTRING 0 (' SIMULATION OVER')

What will this code do?

Solution

The ampervariable &ANS needs to be defined as a character ampervariable of
length 1. The effect of the above code is to prompt the user to redo the exam-
ple. If the response is Y (or y), the program clears the previous results, and
control transfers to the statement with the label AGAIN.

Example 23.4

Consider the following code:

0 OINTEGER o&I
0 I 30 O&I=l, 25
0 OPUTSTRING n('m')
0 W D D o

What will this code do?

Ampervariables; DO Loops; aETLIsT Statements: IF, 00~0, IIERE, and LET Statements 251

Solutlon

The computer screen holds 25 lines of text per screen. The effect of the above is
to put 25 blank lines on the screen. This code, therefore, gives a clear screen.

EXERCISES, CHAPTER 23

L A program is to prompt the user to input the number of trucks to use in
the simulation. This number cannot be 0 or less and also cannot be more
than 10. Give the code to check that the input number of trucks is correct.

2. A program is to be run 4 times for storages of TUGS from 3 to 6. Show
how this situation can be simulated with an appropriate DO loop.

3. The user is to be prompted after a program is run as to whether it should
be run again. If the answer is 'Yes," the user is to be prompted as to
whether all new data are to be input or the only change is to be the num-
ber of trucks.

4. A simple barbershop example has customers arriving everyA f B minutes;
haircuts take C f D minutes. Write a program to simulate such a system
with all data as input variables, including the length (i.e., number of time
units) of the simulation.

5. Add the code to Exercise 23.4 to prompt the user to run the program
again.

SOLUTIONS, CHAPTER 23

1. PUTSTRING
PUTSTRING
GETLIST
IF
PUTSTRING
PUTSTRING
PUTSTRING
GOT0
ENDIF

2. DO
CLEAR
INITIAL
START
PUTPIC

(' HOW MANY TRUCKS TO HAVE IN THE SIMULATION? ')

(' ')
&TRUCK
(&TRUCK'LE'O)OR(&TRUCK'G'lO)
(' THE NUMBER OF TRUCKS MUST BE BETWEEN')
(' 1 AND 10. GO BACK AND INPUT THE')
(' CORRECT NUMBER.')
BACK

&I=3,6

S(TUGS) ,&I
1
..................

..............................
ENDDO

3. PUTSTRING
PUTSTRING
PUTSTRING
GETLIST
IF
PUTSTRING
PUTSTRING
GETLIST

(# ')
(I RUN AGAIN? (Y/N)')
(' ' 1
&ANS

(&ANS'E"Y)OR(&ANS'E"y')
(' WITH ONLY THE TRUCKS CHANGE? (Y/N)')
(' ')
&ANS

252 The GPSS/H Simulation Language

IF (&ANS'E' 'Y')OR(&ANS'E"y')
GOTO TRUCKS
ENDIF
GOTO ALLOVER
ENDIF

Note: For better readable of the code, it is a good idea to indent as is done
here. However, care must be taken not to exceed column 25. If this hap-
pens, the OPERCOL statement will be needed.

4. The program is as follows:

AGAIN

SIMULATE
INTEGER
REAL
CHAR* 1
DO
PUTSTRING
ENDDO
PUTSTRING
PUTSTRING
PUTSTRING
PUTSTRING
GETLIST
WTSTRING
PUTSTRING
PUTSTRING
PUTSTRING
PUTSTRING
GETLIST
PUTSTRING
PUTSTRING
PUTSTRING
GETLIST
PUTSTRING
PUTSTRING
PUTSTRING
GETLIST
PUTSTRING
PUTPIC

&I, &MINUTES
&MEANl, &SPREADl, &MEAN2, &SPREAD2, &SHIFTS
&ANS
&I=l, 25
(' ')

(FOR THE ARRIVAL OF PEOPLE, INPUT THE')
(' MEAN AND THE SPREAD. SEPARATE THESE')
(' WITH A SPACE, NOT A COMMA')

')

')

&MEANl,&SPREADl

(' FOR THE SERVICE RETE, INPUT THE')
(' MEAN AND THE SPREAD. SEPARATE THESE')
(' WITH A SPACE, NOT A COMMA')
(# ')

(' ')

(' ')
&MINUTES
(I ')

(I ' 1

')

-2, &SPREAD2

(' INPUT THE NUMBER OF MINUTES IN A SHIFT)

(' HOW MANY SHIFTS TO SIMULATE FOR?')

&SHIFTS

LINES=4,&MEANl,&SPREADl,&MEAN2,&SFREAD2,-
&MINUTES, &SHIFTS

THE INPUT DATA IS AS FOLLOWS:
FOR ARRIVALS: MEAN ****.** SPREAD * * * * * * *
FOR SERVICE : MEAN **** . ** SPREAD * * * * . * *
MINUTES OF WORK/SHIFT * * * SHIFTS TO SIMULATE FOR ****

PUTSTRING (' ' 1
PUTSTRING (' IS THE DATA ALL RIGHT? (Y/N) ')

PUTSTRING (' ')
GETLIST &ANS
IF (&ANS'E"N')OR(&ANS'E"n')
GOTO AGAIN
ENDIF
PUTSTRING (' SIMULATION IN PROGRESS...')
GENERATE &MEANl,&SPREADl
Q m E WAIT
SEIZE BARBER

Ampervarfables; DO Loops; GETLIST Statements; IF, GOTO. m, and LBT Statements 253

DEPART WAIT
ADVANCE &MEAN2, &SPREAD2
RELEASE BARBER
TERMINATE
GENERATE &MINUTES*&SHIFTS
TERMINATE 1
START 1
Do &I=l, 25
PUTSTRING (' ')
ENDDO
PUTPIC LINES=3,FC(BARBER)/&SHIFTS,FR(BARBER)/10.

RESULTS OF SIMULATION FOR BARBER SHOP
HAIRCUTS PER DAY **** . **
UTIL. OF BARBER ****.**

END
5. The code to add is as follows:

PUTSTRING (I ')
PUTSTRING (' RUN THE PROGRAM AGAIN? (Y/N)')
PUTSTRING (I ' 1
GETLIST &ANSWER
IF (&ANSWER'E"Y')OR(&ANSWER'E"y')
GOT0 AGAIN
ENDIF
PUTSTRING (' ')
PUTSTRING (' SIMULATION OVER. . . .)

The ampervariable &ANSWER needs to be specified by means of the
statement CHAR*l.

REFERENCE

Cooper, L., U.N. Bhat, and L.J. LeBlanc. 1977. Inrroduction to Operations
Research Models. Philadelphia: W.B. Saunders Company.

The SELECT and
COUNT Blocks

.
CHAPTER 24

THE SELECT BLOCK

Each of the features of a GPSS/H program-including the blocks, the queues,
the facilities, the savevalues, e t c . 4 known as an entity class. Each entity class
has SNAs associated with it, and these are also known as entities. GPSS/H has
several powerful blocks that can be used to search several of these entities (or
SNAs) and test their current values for a specific condition when a transaction
enters the block. When this condition is met, a record is placed in one of the
transaction’s parameters. Such scans are common in real-life situations. For
example, a person entering a bank that has individual queues at each teller
will scan these queues, determine which is the shortest, and then join the
queue that is the shortest. The block to both scan and test at the same time is
the SELECT block. When a transaction enters this block. a scan of selected
entity members is made. When one of these scanned members is found that
satisfies some stated condition, the scan is terminated. Other examples of
where such a block might be used to model real-life situations are as follows:

I. Ore is delivered to 4 silos. The one that has the least ore in it is to be filled
first. Alternatively, ore is to be taken out of the 4 silos starting with the
one with the most ore in it.

2. A part comes along an assembly line to a point at which 3 machines can
work on it. The part will be sent to the first machine that is not in use. If
all 3 machines are in use, the part is sent to another section of the plant.

In order to do this scanning and testing, the SELECT block needs to know
what entities to scan, what the test is, where to put the result of the scan, and
what to do if the scan is not successful. A s a result, the SELECT block can have
up to 6 operands. As such, it is the most complicated block encountered since
the GENERATE block. One general form of the SELECT block is

OLABEL OSELECVB @, B, C, D, E, F

255

256 The GPSS/H Simulation Language

where R is a relational operator, which, as we saw in Chapter 16 on the TEST
block, is one of the following:

G greater than

GE
E equal to
NE not equal to
LE
L less than

greater than or equal to

less than or equal to

-

Operand A is the parameter number (and parameter type unless you are
only using halfword parameters) into which the first entity number that sat-
isfies the test is to be placed. Thus, if queues numbered from 5 to 8 are
scanned and queue number 7 satisfies the condition, the number 7 is placed
in the transaction’s parameter given by A. Operand B is the smallest number
of the entities to be scanned and may be any SNA. Operand C is the largest
number of the entities to be scanned and may be any SNA. Operand D is the
specific condition sought in the test. Operand E is the family name of the
SNA to be used in the scan. This might be F, PH, S, Q, etc. Operand F
(optional) is the block label of the block to which the transaction is to be
transferred if the scan is not successful.

Note that R follows the operation SELECT plus exactly 1 blank space. The
SELECT block is best understood by considering examples of its use, as follows:

O(a) U S E L E C m n3PF,Ir5,2,Q

When a transaction enters this block, a scan will be made of queues (Q) 1 to
5. These will be tested to see if any has a queue length of 2. If so, the number
of that queue will be placed in the transaction’s third fullword parameter. If
none of the queues 1 to 5 has a queue length equal to 2, the transaction
moves to the next sequential block. If the queue lengths at all the queues are 0
except at queues 4 and 5 where they are both 2, the number 4 is placed in the
transaction’s second fullword parameter.

O(b) USELECT$ 05PH,3,7,250,FR

A scan is made of the utilization of facilities (FR) 3 to 7, stamng with facility 3
and going up to facility 7. Once a facility is found that has a fractional utiliza-
tion greater than 250 permil (recall that the fractional utilization FR is always
expressed in parts per thousand), the scan is stopped, and the facility number
is placed in the transaction’s fifth halfword parameter. If no facility from 3 to
7 has a fractional utilization greater than 250 permil, the transaction moves
to the next sequential block.

0 (c)

Storages 1 to 3 are scanned. If one has a remaining storage (R) of less than or
equal to 1, that storage’s number is copied into the transaction’s tenth half-
word parameter. If no storage in the scan satisfies the criterion, the transac-
tion is routed to the block with the label AWAY.

ESELEClfLE UlOPH, 1,3,1, R , AWAY

The SELECT and corn Blocks 257

O(d) @ S E L E C W 04PH. 7,12,0, PH

The scan is of the transaction’s halfword parameters (PH) 7 to 12. Once one
of these is found to be not equal to 0, the number of that halfword parameter
is copied into the t~ansaction’s fourth halfword parameter.

0 (e) U S E L E C m 0 3 P H , PH3, P H 4 , 3 , Q , DOWN

The result of the scan will be placed in the transaction’s third halfword
parameter. The queues (Q) to be scanned will depend on the values of the
transaction’s third and fourth halfword parameters. Suppose these values are
5 and 9, respectively. Then queues 5 through 9 are scanned, and if any has a
length equal to 3, the number of that queue is placed in the transaction’s third
halfword parameter. If none of the queues has a length equal to 3, the trans-
action is routed to the block with the label DOWN.

Example 24.1

Parts come along an assembly line to a point where they are to be worked on
by 1 of 3 identical maqhhes. The parts arrive at a rate of 1 every 8 f 4.5 min-
utes. The machines finish a part in 20 f 6 minutes. If a machine is free, the part
is worked on by that machine, but if all 3 machines are busy, the part is sent
away to another part of the factory. Determine the utilization of the 3
machines and how many parts are sent away for 20 shifts of 480 minutes each.

Solution

0 OINTEGER O&I

3 OPUTSTRING y(*mi)

3 USIMULATE

3 D O O & I = l , 2 5

0 WDm
$TIMES DGENERATE U 8 , 4 . 5
CJ U S E L E C m E 2 , 1 , 3 , 0 , F , AWAY 0 (NOTE : NO PARAMETER TYPE : SEE
*FOLLOWING EXPLANATION)
9 CSEIZE nPH2
9 N V A N C E C 2 0 , 5
9 D E L E A S E CPH2
5 DERMINATE
CAWAY DERMINATE
9 rJXN?3RATE E 4 8 0 * 2 0
9 DERMINATE 51
0 ISTART El
3 Dw G & I = l , 2 5
9 OPUTSTRING F(’m’)
3 D D D O
3 UPUTPIC ~INES=5,N(TIMES),N(AWAY),FRl/lO.,FR2/10.,FR3/10.

THE NUMF3ER OF PARTS ENTERING THE SYSTEM = * * * *
THE NUMBER SENT TO OTHER MACHINES
UTILIZATION OF MACHINE 1 - * * * . * *%
UTILIZATION OF MACHINE 2 - * * * * * %

- * * * . * *% UTILIZATION OF MACHINE 3

- * * * *

3 m

258 The GPSS/H Slmulatbn Language

The output from the program is as follows:

THE NUilBER OF PARTS ENTERING THE SYSTEM = 1198
THE NUMBER SENT TO OTHER MACHIh'ES = 151
UTILIZATION OF MACHINE 1 = 81.56%
UTILIZATION OF MACHINE 2 = 75.12%
liTILIZATION OF MACHIh'E 3 = 62.48%

For the 20 shifts, 1198 parts came to the 3 machines. Of these total parts, 151
were turned away because all 3 machines were busy. The utilization of the 3
machines was 81.56% for machine 1, 75.12% for machine 2, and 62.48% for
machine 3. The reason for the decrease in utilization is because, when a new
part arrives at the machines, the scan checks to see if any of the 3 machines is
free. The scan stops when one machine is found to be free, and the scanning
always starts at machine 1.

This problem also could have been solved by using the TRANSFER ALL block.

Notice that, in Example 24.1, the parameter type was not specified. As long as
you have only halfword parameters, this shortcut is acceptable. But if the
mansaction had other types of parameters, it is necessary to specify the type in
the SELECT block. For example,

0 NENERATE 020,6.5, , , ,2PH, lOPF
0
0
0 OSELEC?OE 02,1,5,1 I Q

would give an error. The correct form of the SELECT block would have to be

0 O S E L E C m 02PH,1,5,1,Q n(or 2PF)

0 ----- 0 ---__
0 --_-_ 0 _ _ _ _ _

THE COUNT BLOCK

The COUNT block resembles the SELECT block in that, when a transaction
enters, it mggers a scan of specified entities. The result of the scan is placed in
a specified parameter. In the case of the SELECT block, once the scan finds an
entity to sausfy the given test, the scan is over. The COUNT block counts the
number of the entities that satisfy the criteria and places the number that sat-
isfy the test criteria into the transaction's specified parameter. One general
form of the COUNT block is

0 m O U " l 3 m, B , C, D, E

R is one of the relational operators used in the SELECT block. Thus, it must be
one of the following: G, GE, E, NE, L, or LE. A, B, C, 0, and E have the same
meanings as the operands in the SELECT block. Since the number of the enti-
ties in a COUNT block will always be a number greater than or equal to 0,
there cannot be any F operand.

Some examples of the COUNT block are as follows:

G(a) oCOup31oE 0 1 , 1 , 4 , 0 , Q
G (b) i]cOuN?oG 03,3,6,25O,FR

The SELECT and c o r n Blocks 259

In (a), a count is made of all the queues from 1 to 4 that have lengths equal to
0. The result of this count is placed in the transaction’s first halfword parame-
ter. In (b), a count is made of the facilities 3 to 6 that have a utilization
greater than 250 permil. The total number of such facilities is placed in the
transaction’s third (halfword) parameter.

OTHER FORMS OF THE SELECT AND COUNT BLOCKS

The SELECT Block In M I N 0 1 M A X Mode

The SELECT block can be used to scan a group of entities and determine which
has a maximum (or minimum) value. The general form of this block is either

0 OSELEC-, 3, C, , E

or

0 O S E L E C m I W , 3, C, , E

The “word” MIN (or MAX) is called an auxiliary operator and appears in the
same position as a relational operator, i.e., separated from the operation
SELECT by exactly 1 space (as shown by the open box in the code line). The
A, B, C, and E operands are the same as for the regular SELECT block. There is
no D operand, but the two commas are necessary.

When a transaction enters this form of SELECT block, a scan is made of the enti-
ties specified by the B and C operands. The processor selects the minimum (or
maximum) from the desired entity class and places the number of that entity
into the transaction’s parameter number and type as specified by theA operand.

O(a) O S E L E C m I m 3 P H , 1 , 4 , , F R
0 (b)
0 (c)

In (a), facilities 1 to 4 are scanned, and the processor places the number of
the facility in this group that has the least fractional utilization into the trans-
action’s halfword parameter 3. Thus, if facility 1 had FR = 350, facility 2 had
FR = 599, facility 3 had FR = 500, and facility 4 had FR = 222, the processor
would place the number 4 in the transaction’s third halfword parameter. In
(b), queues 3 to 7 are scanned. The queue that has the greatest length is
determined, and its number is placed in the transaction’s halfword parameter
1. In case of a tie, i.e., if both queue 4 and queue 7 had equal lengths of 5 and
this value was the maximum, the number 4 is placed in halfword parameter
1. This approach of “the first wins in the event of a tie” is also the case if
SELECT MIN is used. In (c), storages from 1 to 3 are scanned, and the one
with the least remaining storage is placed in the transaction’s halfword
parameter 5.

Use with Loglc Switches

A SELECT or COUNT block can be used with logic switches. The general form is

OSELEC-lPH, 3 , 7 , , Q
O S E L E C m I m 5 P H , 1,3, , R

0 O S E L E C m S m, B , C, , , F

260 The GPSS/H Slmulation Language

LR can be used in place of LS. Operands D and E are omitted and F is optional.
If F is used, the commas are required; otherwise, they can be omitted.

The scan is made of logic switches from B (minimum value) to C (maximum
value). As soon as the processor encounters one that satisfies the test (either
LS for set or LR for reset), the scan is finished, and the number of the logic
switch is placed in the transaction’s parameter given by operand A. The F
operand is a block label where the transaction is routed if no logic switch sat-
isfies the scan criteria. If the scan fails and there is no F operand, the transac-
tion is routed to the next sequential block and nothing eke is done.

The COUNT block in this mode is

0 ~ O ~ S D , B , C

LR could be used in place of LS. The only difference in form from that of the
SELECT block is that operand F is never used. In the COUNT block, a scan is
made of the logic switches from B to C, and the number of switches in set (or
reset) condition is placed in the parameter given by operand A. For example,
suppose a transaction entered the following two sequential blocks in a pro-
gram:

\3 B E L E C D S [?3 PHI 2 , 6
0 R0-R a4PH,2,6

And suppose that the logic switches 2 through 6 were as follows:

LS2 is reset

LS3 is reset

LS4 is set
LS5 is reset

LS6 is set

The transaction would have a 4 in halfword parameter 3 and a 3 in halfword
parameter 4.

Use with Facilities and Storages

The form of the SELECT block is

3 C S E L E C a (x) r A , B , C , , ,F

where x is an auxiliary operator. It can be one of the following:

Auxiliary Operator Meaning

Fu facility in use

FN U

SE storage empty

SNE storage not empty
SF storage full

SNF storage not full

facility not in use

The SELECT and COUNT Blocks 261

There are no D or E operands, and the F operand is optional. The meaning of
the operands is the same as before.

The general form of the COUNT block in this mode is

V DcOrmrrO(x) DA,B,C

A scan is made of the entities and the total number of them satisfymg the cri-
teria is placed in the transaction's parameter as specified by the A operand.
Several examples of these blocks are

V (a) OSELEC-lPH, 3,6
O(b) 0 c O U " u D P H , 3,6
(> (c) BELEClflSE 03PH,1,7,,,AWAY
O (d) EOUN?CSF 0 4 P H , 1 , 7

In (a), the scan is of facilities 3 to 6 in ascending order. Once one is found to be
not in use, the scan is finished and the facility number is placed in the transac-
tion's halfword parameter 1. In (b), a count is made of facilities 3 to 6 that are
not in use. The total is placed in halfword parameter 2. In (c), a scan of stor-
ages 1 to 7 is made to determine if any are empty. The number of the first one
to satisfy the criterion is placed in halfword parameter 3, and the scan is
stopped. If no storage is found to satisfy the criterion, the transaction is sent to
the block with the label AWAY. In (d), a count is made of the storages 1 to 7
that are found to be full. The total is placed in halfword parameter 4.

Example 24.2

Did you ever wonder why banks, post offices, airline ticket agent counters,
and other places where multiple servers are used now have customers wait in
an individual queue rather than forming separate queues at each teller or
agent? The single-queue system is known as a "quickline" system. This exam-
ple will illustrate why a quickline system is better than individual queues.

Suppose customers arrive in a store that has 6 clerks behind desks to serve the
customers. Customers come in and lirst see if any clerk is free. If so, the cus-
tomer will go to that desk. If all the clerks are busy, the person will go to the
back of the shortest queue. Once at a desk, no queue jumping is allowed.

Customers arrive in a Poisson stream, with an interarrival time of 10 seconds.
A given customer will transact any one of 4 types of business. The amount of
time each type of business requires and the relative percentage of customers
transacting each type of business are as follows:

Time Taken (seconds)

Business Mean Standard Deviation Relative Percent

Type 1 25 4 28

Type 2 32 5 17
60
80

10
10

30
25

Model this system for 10 days with both individual queues and the quickline
approach. The store works 10 hours straight.

262 The GPSS/H Slmulatlon Language

Solution

The program to model the quickline is quite easy to write by using the clerks
as storages. The code is as follows:

0 US IMULATE
0 DINTEGER @I
0 DEAL n&AVGQ, &AVGUTIL, &AVGIN, &AVGTIM
0MYOUT BILEDEF 0'BANKl.OUT'
$MEAN W C T I O N D l , D 4
.28,25'.4.32/.7,60/1, ao
vSTDDEV W C T I O N DPH1,DI
25,4/32,6/60,10/80,10
0 USTORAGE nS(TELLER),6
0 EENERATE mVEXPO(1,lO) KUSTOMERS ARRIVE
0 NUEUE mAIT
0 DSSIGN Ol,FN(MEAN),PH
0 OSSIGN 02, FN (STDDEV) , PH

N E R @TELLER
c OQUEUE OQLINE

v) DEPART NLINE
(5 DVANCE DVNORM (1, PH1, PH2)
0 5 E A V E WELLER
0 DEPART mAIT
3 DERMINATE
0 OGENERATE 03600*10 OSIMULATE FOR 10 DAYS
0 DERMINATE 01
0 D O O&I=l, 10
0 O C L W
9 USTART 01
0 UPUTPIC 51NES='I,FILE=MYOUT,&I,QM(QLINE)QX(QLINE)-

QA(QL1NE) SR(TELLER) /lo, QA(WA1T) , QT (WAIT)
SIMULATION RESULTS FOR DAY * * * *
MAXIMUM QUEUE WAS * * * *
AVERAGE TIME IN QUEUE
AVERAGE NUMBER IN QUEUE * * * . * *
UTILIZATION OF TELLERS *** . **%
AVERAGE PEOPLE IN SHOP * * * * * *

* * * . * * AVERAGE TIME IN THE BANK

* * * . * *

3 5 E T @AVGQ=&AVGQ+QA(QLINE)
0 D E T E&AVGUTIL=&AVGUTIL+SR(TELLER)
3 D E T [I&AVGIN=&AVGIN+QA(WAIT)
> DET G&AVGTIM=&AVGTIM+QT(WAIT)
0 W D O
0 flPUTPIC OLINES=4,FILE=MYOUT,srAVGQ/lO., (&AVGUTIL/lO.)/lO.,_

&AVGIN/lO.,&AVGTIM/lO.
* * * . * * AVERAGE NUMBER IN QUEUE FOR THE 10 DAYS WAS

AVERAGE UTILIZATION OF THE TELLERS FOR THE 10 DAYS WAS * * * . * *%
AVERAGE NUMBER OF PEOPLE IN THE BANK WAS * * * . * *
AVERAGE TIME IN THE BANK FOR EACH CUSTOMER WAS * * * . * *

3 m
The output is sent to the file BANKLOUT. The part of the output that is of
concern is the average length of time each person spends in the bank.

The SELECT and com Blocks 263

AVERAGE NUMBER IN QUEUE FOR THE 10 DAYS WAS 2 . 8 6
AIERAGE UTILIZATION OF THE TELLERS FOR "HE 10 DAYS WAS 88 .19%
AVERAGE NUMBER OF PEOPLE IN THE BANK WAS 8 . 0 5
AVERAGE TIME IN THE BANK FOR EACH CUSTOMER WAS 81.31

The important statistic is that each person could expect to be in the bank for
81.31 seconds. Next, the program is given for the case of individual queues
for each teller. As each person enters the bank, he or she scans the tellers to
see if any is free. If so, the person goes to that teller. If no teller is free, the
person scans the queues and goes to the teller who has the minimum queue
length. The program code is as follows:

0 [SIMULATE
0 UINTEGER n&I
0 mAL BINBANK, &TIMBANK
OMYOUT BILEDEF n'BANK2.0UT'
WAIT D Q U nlo,Q
CMEAN W C T I O N m 1 , D 4
.28,25/.4,32/.1,60/1,80
OSTDDEV @FUNCTION OPHl , D4
25,4/32,6160,10/80,10
0
0
0
0
0
OBACK
0
0
0
0
0
0

0
0
0
3
0
0
0

@AWAY

EENERATE BVEXPO (1,10)
@ASSIGN Ol,FN(MEAN) ,PH
@ASSIGN

OSELECm 03PH,1,6,O,F,AWAY
OQUEXIE nPH3
[SEIZE OPH3
DEPART nPH3
WVANCE
WLEASE OPH3
DEPART mAIT
DERMINATE
nSELECmIm3 PHI 1,6, , Q
W S F E R U,BACK
BENERATE 03600*10
DERMINATE a1

02, FN (STDDEV) , PH
mmm ~ A I T

BVNORM (1, PH1, PH2)

D O 0&1=1,10
BLEAR
@START 31
UPWTPIC ~INES=6,FILE=MYOUT,&I,QM(WAIT),QX(WAIT),-

QA~WAIT~,FR1/10,FR2/10,FR3/10,FR4/10,FR5/10,~FR6/10.
SIMULATION RESULTS FOR DAY * * * *
MAXIMUM QUEUE WAS * * * *
AVERAGE TIME IN QUEUE * * * * * *
AVERAGE NUMBER IN Q U m * * * . * *
UTIL. TELLER 1 * * * . * *% UTIL. TELLER 2 *** . **% UTIL. TELLER 3 * * * . * *%
UTIL. TELLER 4 * * * . * *% UTIL. TELLER 5 *** . **% UTIL. TELLER 6 * * * . * *%

J DET O&INBANK=&INBANKtQA (WAIT)
3 BET i?&TIMBANK=&TIMBANKtQT (WAIT)
0 N D D O
0 OPUTPIC ~ILE=HYOUT,LINES=2,&INBANK/10.,&TIMBANK/10.
AVERAGE NUMBER IN BANK FOR THE 10 DAYS WAS * * * . * *
AVERAGE TIME IN BANK FOR THE 10 DAYS WAS ***.**
3 CDJD

264 The GPSS/H Slmulatlon Language

Again, the important statistic is the length of time each person can expect to
be in the bank. The output from the program is as follows:

AVERdGE NUMBER I N BANK FOR TXE 1 0 DAYS WAS 9.07
AVERAGE TIME IN BANK FOR THE 1 0 DAYS WAS 90.55

As can be seen, the quickline is faster than individual queues. For the bank
using the quickline, people were in the bank an average of 81.31 seconds, and
there were an average of 8.05 people in the bank at any one time. For the
bank using individual queues, people were in the bank for 90.55 seconds, and
there were an average of 9.07 people in the bank.

Notice that the EQU compiler directive was necessary in the program for indi-
vidual queues since the various queues could not be identified during compil-
ing. If the EQU compiler directive had not been used, the queue WAIT would
have been queue 1. This would be the same queue as the people in line before
teller 1 and, thus, would give incorrect statistics.

EXERCISES, CHAPTER 2 4

I. Explain what happens when a transaction enters each of the following
SELECT blocks:
O(a) OSELECm fl3PH, 1 , 5 , 3 , Q

o (c)
0 (b) USELECm UlPH, 2 , 7 , 9 0 0 , FR

O (d) USELECm 03PH,4,12,O,PH,AWAY
0 (e) DELECQ OlPH, PH2, PH3,100, DDDD
O (f) K O - f l1PH,1,5,0,XH
O (g) C r O U W I l 3 0 1 0 P H , 5 , 2 0 , 1 , Q

SELECT blocks.
O(a) n S E L E C m 2 P F , 1 , 1 0 , , Q
0 (b) n S E L E C a I m 3 P H , 1 , 5 , , X F
0 (c) OSELEC-IPH, PH1, PH2, , FR

3. P m come along for repairs every 10 * 4.5 minutes. There are 3 identical
machines to do these repairs. Each takes 26 i 5 minutes to repair an item.
Write a program to simulate the situation in which a part is assigned to
the machine that has worked the least amount. Contrast the results with
those for a situation in which the part always goes to the first machine if it
is free and only goes to the second if the first is busy or goes to the third
only if the first and second machines are busy.

OSELECW U ~ P H , i , i o , 1, F

2. Explain what happens when a transaction enters each of the following

SOLUTIONS, CHAPTER 2 4

i. a. A scan is made of the queues from 1 to 5 to determine if any has a
length of 3. If so, the number of this is placed in the transaction’s 3rd
halfword parameter.

b. A scan is made of the facilities from 2 to 7. If any has a fractional utili-
zation greater than 900, the number of this facility is placed in the
transaction’s 1st halfword parameter.

The SEL8cT and c o m Blocks 265

C.

d.

e.

f.

g-

2. a.

b.

C.

A scan is made of the facilities from 1 to 10. If any is not currently
being seized, a the number of this facility is placed in the transaction’s
5th halfword parameter.
A scan is made of the parameters from 4 to 12 to see if any has the
value 0. If so, the number of this parameter is placed in the transac-
tion’s 3rd halfword parameter. If no parameter in the scan has the
value zero, control transfers to the block with the label AWAY.
A scan is made of the parameters which are given by the values in
parameter 2 and 3. The test is for any parameter in this range with the
value less than 100. If so, the number of this parameter is placed in the
transactions’s first halfword parameter.
Halfword savevalues from 1 to 5 are scanned. The number of these
having the value of 0 is placed in the transaction’s 1st halfword
parameter.
The queues from 5 to 20 are scanned. The number having a length of 1
is placed in the transaction’s 10th halfword parameter.
The queues from 1 to 10 are scanned. The number of the largest one is
placed in the transaction’s 2nd fullword parameter.
The full word savevalues from 1 to 5 are scanned. The number of the
one having the lease value is placed in the transaction’s 3rd halfword
parameter.
Facilities are scanned to determine which has the greatest utilization.
The number of these facilities to be scanned depends on what values
are stored in halfword parameters PHI and PH2.

3. The program to simulate this is:
SIMULATE
GENERATE 10,4.5
QW WAIT
SELECT MIN 1PH,1,3,,FR
SEIZE PH1
DEPART WAIT
ADVANCE 26 ,5
RELEASE PH1
TERMINATE
GENERATE 480*10
TERMINATE 1
START 1
PUTPIC LINES=3,FR1/10.,FR2/10,FR3/10.

UTIL. OF FIRST MACHINE *** . **%
UTIL. OF SECOND MACHINE *** . **%
UTIL. OF THIRD MACHINE *** . **%

END

The results of the simulation are:
V T I L . OF FIRST MACHINE 8 4 . 3 4 %
UTIL. OF SECOM, MACHINE 84.65%
UTIL. OF THIRLl MACHIliE 84.49%

266 The GPSS/H Slmulatlon language

The program for the second part is:
SIMULATE
GENERATE 10,4.5
Q= WAIT
TRANSFER ALL, FIRST, LAST, 5

FIRST SEIZE MACH1
DEPART WAIT
ADVANCE 26,s
RELEASE MACH1
TERMINATE
SEIZE MACH2
DEPART WAIT
ADVANCE 26,5
RELEASE MACH2
TERMINATE

LAST SEIZE MACH3
DEPART WAIT
ADVANCE 26,5
RELEASE MACH3
TERMINATE

GENERATE 480*10
TERMINATE 1
START 1
PUTPIC LINES=3,FR(MACH1)/10.,FR(MACH2)/10,FR(MACH3)/10.

UTIL. OF FIRST MACHINE * * * . * *%
UTIL. OF SECOND MACHINE * * * . * *%
UTIL. OF THIRD MACHINE * * * . * *%

END

Now, the results of the simulation are:
UTIL. OF FIRST MACHINE 89.06%
UTIL. OF SECOND MACHINE 83.06%
UTIL. OF THIRD MACHINE 84.03%

.
CHAPTER 25 Matrices

GPSS/H allows for the use of matrices in a manner similar to that found in
other computer languages. The matrix has to be first defined. This means
specifying the number of rows, the number of columns, the type of elements
that will be in the matrix, and the name (or number) of the matrix. A
savevalue can be considered as a linear array. A matrix can be considered as a
savevalue with two or more dimensions. The general form of the statement
that specifies the matrix is

OLABEL W ' l X I X D , B , C

The label is a name (or number) that follows the usual rules for naming
savevalues. Operand A designates the type of matrix, operand B gives the
number of rows, and operand C gives the number of columns. There are 4
types of matrices in GPSS/H:

Matrix Type Specification Kind of Matrix Savevalue

MX (M can be omitted)
MH (M can be omitted)

MB byteword
ML floating-point

The size and integer nature of the elements used in the various types of
matrices are the same as for regular savevalues. Some examples of matrix
definitions are

fullword

halfword

OFIRST W T R I X m,1,3
04 W T R I X m , 2 , 1 0
O U S T W T R I X m, 3 , 3
WTHER W T R I X m,5,4

Matrix FIRST is a halfword matrix having 1 row and 3 columns, i.e., it might be

(2 4 -3)

267

268 The GPSS/H Simulatlon Language

For this example, the values of the halfword matrix FIRST are as follows:
(l , l) is2; (1,2) is4;and(1,3) is-3.Maaix4isafloating-pointmatrixwith2
rows and 10 columns. Matrix LAST is a byte-word matrix of size 3 by 3.
Matrix OTHER is declared to be a fullword matrix with 5 rows and 4 columns.
Note that it would have been all right (but not recommended, according to
the best programming practice) to omit the M in MH and the M in Mx:

OFIRST W T R I X @,1,3
OTHER W T R I X m , 5 , 4

G I V I N G I N I T I A L VALUES TO MATRICES

Once a matrix is defined via the matrix declaration statement, all its elements
are set to zero. It is possible to have initial values assigned to the various ele-
ments by using the INITIAL statement, just as was done for ordinary saveval-
ues. When initializing ordinary savevalues, two forms were possible. One was
the older form that used the dollar sign, "$," and the other used left and right
parentheses. Only the $ sign is allowed for initializing matrices. Thus,
whereas for savevalues one can have

3 OINITIAL cpLF$JILL,4
3 OINITIAL ~F$(TOMMY),-S/XH(SAM),lO/XL$SALLY),12.345

When initializing matrices that are referenced by labels that are not numbers,
the only form one can use is the $ sign. Thus, one might have

OFIRST W T R I X m,l,3
0 @INITIAL m$FIRST(1,1),2/MH$FIRST(1,2),-4

The elements of the 1 by 3 dimensioned halfword matrix would be

(2 -4 0)

If a matrix is referenced by a label that is a number, one need not use the $
approach, for example,

131 @MATRIX m,2,2
0 ZINITIAL ml(1,l) ,3/MH2 (2 , 2) .5

would be all right. Note that in the INITIAL statement, MH1 refers to the half-
word matrix with the name 1 and MH2 refers to the halfword matrix with the
name 2.

Example 25.1

Large and small trucks come to an inspection and refueling station. A large
mck arrives every 8 + 1 minutes, and a small truck arrives every 6.5 f 2.2 min-
utes. The sequence for each mck as it passes through the station is as follows:

I. It takes 2.5 f 1 minutes to position each truck. Only one truck can be posi-

2. A single worker then fuels a truck in 2.7 5 1 minutes.
3. After fueling, a single worker checks gauges inside the cab. The gauge

tioned at a time.

check takes 2.9 + 1 minutes.

Matrices 269

4. Next, two workers wash each truck in 6.5 f 1.2 minutes.
5. A single worker checks and fills tires if needed. This process takes 3 f 1

6. There are two final checks, and these are done by two people. Their times
minutes.

vary depending on the type of truck and are as follows:

2 Axles 3 Axles
Inspector 1 6.1 k 2 6.4 k 2
Inspector 2 6.9 f 1 7.5 f 1

Simulate for 1 week's operation to determine if there are any bottlenecks
in the system.

Solutlon

The solution will utilize a matrix whose size is 2 by 2 and whose elements are
the mean times.

0
0
OSERV
0
0
0
0
0
0
0
0
ODDDD
0
0
0
c,
0
0
0
0
3
3
0
0
0
0
3
0
0
WTHER
0
0
QBACKIN
+TYPE1

~ I M U L A T E
OINTEGER [7&1
W T R I X 5 , 2 , 2
OINITIAL 5$SERV(I,1),6.1/ML$SERV(1,2),6.4
OINITIAL m$SERV(2,1),6.9/ML$SERV(2,2),7.5

BENERATE 08,l @LARGE TRUCK COKES ALONG
D S S I G N 01,1, PH E A L L I T 1
W S F E R 0,DDDD
BENERATE 0 6 . 5 , 2 . 2 USMALL TRUCK COMES ALONG
@ASSIGN 0 1 , 2 , PH B A L L I T 2
WVANCE 0 2 . 5 , l UPOSITION I T
E E I Z E B O R K l
WVANCE m . 7 , 1

OSEIZE mORK2
&dNANCE Ll2 .9 ,1
W L E A S E mORK2
W E R OWORKERS
@ADVANCE u 6 . 5 , 1 . 2
S E A V E OWORKERS

CISTORAGE ns (WORKERS) , 2

DIELEASE WORK^

OSEIZE ~ O R K ~
WVANCE n 3 , 1
N L E A S E mORK3
W S F E R BOTH, , OTHER
OSEIZE OINSPl
[?ADVANCE m S S E R V (1 , P H l) , 2
BELEASE g INSP1
DRANSFEF. F, BACKIN
USEIZE nINSP2
@ADVANCE m $ S E R V (2 , PH1) ,1
BELEASE DINSP2
DESm gPH1,1,TYPE2
DERMINATE

?TYPE2 mERMINATE

270 The GPSS/H Simulation Language

0 BENEFATE 0480*100
0 DERMINATE 01
0 USTART 01
0 gw o&I=l, 25
0 UPUTSTRING Z('m')

0 nPUTPIC ~INES=8,FRjWORKl)/10.,FR(WORK2)/10.,-
0 OENDm

SR(WORKERS)/lO.,FR(WORK3)/10.,_
FR(INSPl)/lO.,FR(INSP2)/10.,-
N(TYPE1) /lo. ,N(TYPE2) /lo.

UTIL. OF WORKER 1 * * * . * *%
UTIL. OF WORKER 2 * * * . * * g
UTIL. OF WORKERS * * * . * * g
UTIL. OF WORKER 3 ***.**%
UTIL. OF INSP. 1 *** . **%
UTIL. OF INSP. 2 *** . **%
NUMBER OF LARGE TRUCKS/DAY * * * . * *
NUMBER OF SMALL TRUCKS/DAY *** . **

0 OEND

The output from the program is as follows:

UTIL. OF MOFXER 1 75.39%
UTIL. OF WORKER 2 80.92%
UTIL. OF WORKERS 90.81%
UTIL. OF WORKER 3 83.63%
UTIL. OF INSP. 1 92.45%
IITIL. OF INSP. 2 94.67%
NUMBER OF LARGE TRUCKS/DAY 599.50
NUMBER OF SWILL TRUCKS/DAY 737.50

As can be seen, the system is fairly well balanced. If anything, the two final
inspectors are a bit overworked.

THE MATRIX SAVEVALUE BLOCK

Matrices can have their elements modified by having a transaction move into
a block known as the MSAVEVMUE block. The genera1 form of it is

0 @lSAVEVALU@A, B, C, D, E

where A is the name or number of the MSAVEYALUE, B is the row, C is the
column, D is the new value, and E refers to the matrix type. Some examples of
this block are

O(a) m S A V E V A L m O E , 1,2,5, MI4
0 (b) @lSAVEVALa4,4 I 4 I 4 Mx
0 (c) ~SAVEVAL~OMMY,1,10,5.678,ML
0 (d) mSAVEVALmETTY,FN(JOE)PH2,XH(BILL),MH

In (a), the element (1,2) of the matrix JOE is given the value 5; JOE is a half-
word matrix. In (b), the element (4,4) of matrix 4 is given the value 4; the
matrix 4 is a fullword matrix. In (c) , the element (1 , l O) of the matrix TOMMY
is given the value of 5.678; TOMMY is a floating-point matrix. In (d), the
matrix BETTY is given a value as specified by savevalue BILL. This will go in

Matrlces 271

the element referenced by the function JOE and the transaction’s second half-
word parameter; BETTY is a halfword matrix.

Matrix savevalues can also be used in increment and decrement mode just as
ordinary savevalues. Thus,

9 (a) @SAVEVALmIRST+,2,5,8,MH
O (b) O M S A V E V ~ ~ 3 - , 1 , 5 , F N (~ O N E) , M H

In (a), the matrix FIRST will have the element at (2,s) incremented by 8. In
(b), the matrix 3 will have the element at (1,5) decremented by the value
obtained by referencing the function AMTONE.

Example 25.2

This example is a modification of one presented by Schriber (1974, p. 295-
301; see Preface for availability).

A production shop is composed of 5 different groups of machines. Each group
consists of a number of machines of a given kind, as indicated by Table 25.1.

TABLE 25.1 Composition of machlne groups

Machines in Group

Number of Storage
Group Kind That Kind Available Designation

A Machine 1

B Machine 2

C Machine 3

D Machine 4

E Machine 5

9

5
3
7
16

s1
s2

s3

s4

s5

Note: In the simulation, these groups will be used as storages.

The shop produces four variations of the same product, designated as model
1,2,3, or 4. Production of a given model requires that operations be per-
formed at specified kinds of machines in a specified sequence. The total num-
ber and kind of machines that each model must visit during its production-
and the corresponding visitation sequences-are shown in Table 25.2. For
example, model 1 must visit a total of 4 machines. The machines themselves,
listed in the sequence in which they must be visited to make a finished model
1 product, are machine 1 (there are 9 machines of this kind available, per
Table 25.1), machine 2 (there are 5 machines of this kind available), machine
4 (there are 7 machines of this kind available), and machine 5 (there are 16
machines of this kind available). (Machine 3 is not used to produce model 1.)
Table 25.2 also shows the mean time required by each machine for each oper-
ation that must be performed to produce a given model. For example, the
machine 1 operation to produce model 1 requires 250 seconds, on average.
These times are all exponentially dismbuted. Jobs arrive at the shop in a Pois-
son stream at a mean rate of 1 job every 15 seconds; 15% of the jobs are
model 1,25% are model 2,40% are model 3, and the rest are model 4.

272 The GPSS/H Slmulatlon Language

TABLE 25.2 Vlsttatlon sequence and operation times for the machlnes to produce
each model

Model Total Number of Machine Mean Operation
Number Machines to be Visited Visitation Sequence Time (seconds)

1 4 Machine 1 250

4 3

Machine 2 105
Machine 4 140
Machine 5 130
Machine 2 45
Machine 3
Machine 5

95
50

Machine 4 75
Machine 5 270
Machine 3 25
Machine 2 85
Machine 1 150
Machine 3 30
Machine 4 65
Machine 5 210

~~

Write the GPSS/H code to simulate the operation of the shop to determine
the utilization of each of the 5 different machines and the production of each
of the 4 models per day. Run the simulation for 10 days with each day consist-
ing of 8 hours of work.

Solutlon

The following is a rather remarkable example of the use of matrices for
greatly reducing the number of programming lines. It would be a straightfor-
ward and simple exercise to program this situation by using different code
segments with the jobs arriving and then being routed to the appropriate seg-
ment, depending on which model was to be produced. A much more elegant
solution using matrices is described next.

Table 25.3 gives in matrix form the “visitation sequence” for each model for the
machine groups yet to be visited. The visitation sequence is ‘%backwards” from
what may be expected. The reason for this sequencing will be explained below.

TABLE 25.3 The ‘vlsltatlon sequence” matrix

Column Headings Represent the Machines
Yet to be Visited, in Reverse Sequence

Row Labels Represent
the Model Numbers 1 2 3 4 5

5 4 2 1

5 3 2
1 2 3 5 4
5 4 3

Note: Values in the matrix are the specific machine numbers for each step of produc-
ing each model. Compare this matrix with Table 25.2.

Matrices 273

There are four rows in the matrix, one for each model. The matrix entries are
the machines yet to be visited, in reverse sequence, for the specific model.
Thus, for model 1, the machine sequence for doing the required work is 1,2,
4, and then 5 (see Table 25.2). Another matrix is shown in Table 25.4 that
gives the corresponding times in seconds for each machine’s operation. Again,
for each model, this matrix gives the times for each machine’s operation yet to
be done.
Table 25.4 Mean operatlon tlme matrix

Column Headings Represent the Machines
Yet to be Visited, in Reverse Sequence

Row Labels Represent
the Model Numbers 1 2 3 4 5

1 130 140 105 250
2 50 95 45
3 150 85 25 270 75
4 210 65 30

Note: Values in the matrix are the required times of operation (in seconds) for
machines yet to be visited, in reverse sequence, for each step of producing each
model. Compare this matrix with Tabfe 25.2.

At this point, it is probably not at all obvious why these matrices were set up
and how they will be used to simulate the system. Here is how the program
will work (see the code listing that follows).

Suppose a job (i.e., a transaction) comes into the system and requires some
kind of work; the exact kind of work, i.e., what model the job is, depends on
the probability of the job’s being a particular model (model 1,2,3, or 41,
which is determined by the function labeled MODEL. For example, a job
arrives to be worked on that is determined by this function to be a model 3;
farther on in the code, an ASSIGN block places a 3, the value of FN(MODEL),
in the transaction’s PHI. Next, the function labeled CLASS marches the value
of the model-3-to the number of machines required to produce the model-
which is 5, as seen in Table 25.2; a subsequent ASSIGN block places a 5, the
value of FN(CMS), in the transaction’s PH2.

To produce a model 3, Table 25.2 also shows that the sequence of the job’s
visitation to the various kinds of machines is 4,5,3,2,1. The same table
shows that the times for these machines to finish their operations to produce
a model 3 are 75,270,25,85, and 150 seconds, respectively. In the code,
therefore, matrices are set up that have the same values as those in Tables
25.3 and 25.4. Continuing the example, the first machine to work on model 3
is machine 4. The next one is machine 5, the next is machine 3, then machine
2, and finally machine 1. Notice that the value in Table 25.3 in position (3,5)
is 4. The entry for (3,4) is 5, that for (3,3) is 3, that for (3,2) is 2, and that for
(3,l) is 1. The code has the transaction enter the machine sequence in the
same manner as defined in the third INITIAL statement, representing the
third row of halfword matrix 1 (Table 25.3). A similar sequence is made for
the four rows in Table 25.4 for the times to do each operation (halfword
matrix 2). Finally, the various numbers of machines of a given kind are set up
as storages, i.e., group A has 9 machines of kind 1 so S1 = 9 (see Table 25.1).

274 The GPSS/H Simulation Language

0
*
*
*
0
0
0
0
0
*

*
01
02
*
*
*
OMODEL

DSIMULATE
The next line makes certain that enough computer storage is
available. This statement is required for the student
version of GPSS/H.
GREALLOCATCPOM, 3 0 0 0 0
OINTEGER D&I,&MODELA,&MODELB,&MODELC,&MODELD
13Do 0&1=1,25
OPUTSTRING o c q l ')
m m

The next pair of lines creates halfword matrices numbered 1 and 2,
each of size 4 by 5.
NTRIX @H,4,5
mTR1x w , 4 , 5

The next pair of lines statistically determines which model the next
incoming job will be.
@UNCTION m 1 , D 4

.15,1/.4,2/.8/3/1,4
*
*
*

The next pair of lines matches the model of the incoming job
to number of machines required to produce the model (Table 25.2).

OCLASS @UNCTION ZPH1,LI
1,4/2,3/3,5/4,3
*
* The next 4 lines represent the visitation sequence for models 1 to 4,
* respectively (halfword matrix 1; Table 25.3).
0 OINITIAL Nl(1,l) ,5/MH1(1,2) ,4/MH1(1,3) ,2 /MH1(1,4) ,1
0 @INITIAL Nl(2,l) ,5/MH1(2,2), 3/MH1(2,3) ,2
0 OINITIAL @H1(3,1),1/MH1(3,2),2/MH1(3,3),3/MH1(3,4),5/MH1(3,5),4
0 OINITIAL N1(4,1),5/MH1(4,2),4/MH1(4,3),3

* The next 4 lines represent the operation times for models 1 to 4,
respectively (halfword matrix 2; Table 25.4).

0
0 EINITIAL m 2 (2,l) ,50/MH2 (2,2) ,95/MH2 (2,3) ,45
0 OINITIAL m2(3,1),150/MH2(3,2),85/MH2(2,3),25/MH2(3,4),270/MH2(3,5) ,75
0 DINITIAL m2(4,1),210/MH2(4,2),65/MH2(4,3),30

OINITIAL @H2 (1,1), 130/MH2 (1 , 2) , 140/MH2 (1,3), 105/MH2 (1,4) ,250

*
* The next line represents the number of machines in each group (Table 25.1).
0 USTORAGE OS1,9/S2,5/S3,3/S4,7/S5,16
0 EENERATE mVEXP0(1,15)
0 @ASSIGN nl,FW(MODEL) ,PH
0 @ASSIGN D,FN(CLASS) ,PH
OBACKUP W E R wl (PH1, PH2)
0 WVANCE DVEXPO (1, MH2 (PH1, PH2))
0 @EAVE m1 (PH1, PH2)
9 ijL0OP IZPH, BACKUP
0 B E S W @PHl , 1 , NEXT1
0 DLET O&MODELA=&MODELA+l
0 DERMINATE
@4EXT1 D E S W @PHl, 2, NEXT2
0 @LET @MODELB=&MODELBtl
0 mERMINATE
ONEXTZ D E S m GPHl ,3, NEXT3

Matrlces 275

0 DLET O&lODELC=&MODELCtl
0 WRMINATE
O m 3 @LET O&MODELD=&MODELD+~
0 DERMINATE
0 BENFRATE 03600*8*10
0 DEWINATE 81
0 @START 01
0 ooo O&I=l, 25
0

0 UPUTPIC [PIINES=11,SR1/10.,SR2/10.,SR3/10.,SR4/10.,SR5/10.,~

OPUTSTRING 0 (‘a’)

0 [IEM)Do

&MODELA/lO.,&MODELB/10.,&MODELC/10.,&MODELD/10.
UTIL. OF MACHINES IN GROUP A ***.**%
UTIL. OF MACHINES IN GROUP B ***.**%
UTIL. OF MACHINES IN GROUP C ***.**%
UTIL. OF MACHINES IN GROUP D ***.**%
UTIL. OF MACHINES IN GROUP E ***.**%

AMOUNT MADE PER DAY
MODEL AMOUNT
1 ***. **

*** . ** 2
3 ***.**
4 ***.**

0 DEND

The output from the program follows:

UTIL. OF MACHINES IN GROUP A 71.76%
UTIL. OF MACHINES IN GROUP B 79.00%
UTIL. OF MACHINES IN GROUP C 88.92%
UTIL. OF MACHINES IN GROUP D 60.10%
UTIL. OF MACHINES IN GROUP E 74.71 %

AMOUNT MADE PER DAY
MODEL AMOUNT

1 281.50
2 477.40
3 755.70
4 382.70

As can be seen, the system seems to be working all right, i.e., all the groups of
machines have about the same utilization. The machines in group D are used
the least (60.100/0), and those in group C are used the most (88.92%). Perhaps
another machine needs to be added to group C. This is left as an exercise.

Example 25.3

The following matrix is called a “transition matrix” to find brand loyalty for 3
brands of soft drinks.

Brand X Brand Y Brand Z Total

Brand X 0.65 0.25 0.10 1.00

Brand Y 0.30 0.40 0.30 1.00

Brand Z 0.15 0.10 0.75 1.00

276 The GPSS/H Simulation bnguage

The matrix gives the probability that a person who last purchased a particular
brand will purchase it again or another brand. Thus, a person who purchased
brand Y the last time has a 30% chance of purchasing brand X the next time, a
40% chance of purchasing brand Y again, and a 30% chance of switching to
brand Z. Notice that the probabilities add up to 100%. This matrix assumes
that there are only the 3 choices available. In reality, there will be quite a few
other possibilities, and the transition matrix will be considerably larger.

The problem is to determine what the long-term market shares for each of the
3 products will be, assuming that the transition matrix does not change owing
to different advertising campaigns, consumer purchasing habits, etc. For
example, if there are 10,000 purchases, which of these will be brand X, which
brand Y, and which brand Z? Such a process is called a Markov process.

The method of solving this by simulation is as follows. A matrix such as the
following is set up with the following initial given values:

X

Y
Z

This says that at time 0 one person is drinking brand X. This person is now
going to make a purchase. Suppose this is brand X again. The matrix is now

X

Y

Z

The next purchase is brand Y. This gives the matrix

X Y

X 2 1

Y 0 0

z 0 0

This says that a person who was drinking brand X made brand Y his next pur-
chase. If the next purchase is brand Z, the manix becomes

X

Y

Z

X Y Z

2 1 0

0 0 1

0 0 0

This is continued for a very long number of purchases. The matrix will even-
tually reach a steady state. The percentage of the number of switches to each
brand will give the market shares. For example, if there were 1000 purchases
and brand X was selected 600 times, its market share would be 60%.

Matrices 277

Solutlon

The program to do the simulation is remarkably short:

0 USIMULATE

0 m m O&SUM
OTLOYAL UTABLE O&NEw,1,1,10
OLOYAL DlATRIX DdH,3,3

0 OINTEGER @NEW, &OLD, &I

ODRINK @FUNCTION O&NEW,M3
1, FN (BRANDX) /2, FN (BRANDY) /3, FN (BRANDZ)
OBRANDX @FUNCTION Nl,D3
0.65,1/.9,2/1,3
OBRANDY @FUNCTION [3RNl,D3
0.3, 1/.7,2/1,3
OBRANDZ @FUNCTION [3RNl,D3
.15,1/.25,2/1,3

0 OGENERATE 01

0 DLET O&OLD=&NEW

0 DET @NEW=l

0 UTABULATE BLOYAL

0 5LET O&NEW=FN(DRINK)
0 ~ S A V E V A L ~ O Y A L + , & O L D , & N E W , ~ , M H
0 UTERMINATE 01

0

0 DET @$NEWMAT (1,i) =MH$LOYAL (1,l) /&SUM

0 ISTART ~ l O O 0 0 0
0 D O o&I=1,25

0 W D D O
0

0 BET W$NEWMAT(1,2)=MH$LOYAL(1,2)/&SUM
0 DET W$NEWMAT (1,3) =MH$LOYAL (1,3) /&SUM
0 DET @SUM=MH$LOYAL(2,1)+MH$LOYAL(2,2) +MH$LOYAL(2,3)
0 DET W$NEWMAT (2,l) =MH$LOYAL (2,l) /&SUM
0 BET @$NEWMAT(2,2) =MH$LOYAL (2,2) /&SUM
0 CjLET m$NEwMAT (2,3) =MH$LOYAL (2,3) /&SUM
0 CLET @SUM=MH$LOYAL(3,1)+MH$LOYAL(3,2)+MH$LOYAL(3,3)
0 DLET @$NEWMAT(3,1)=MH$LOYAL(3,1) /&SUM
0 DET 5$NEwMAT(3,2)=MH$LOYAL(3,2)/&SUM
0 DET N$NEWMAT(3,3) =MH$LOYAL (3,3) /&SUM
0

OPUTSTRING 0 (ma)

DET O&SUM=MH$LOYAL (1,l) +MH$LOYAL (1,2) +MH$LOYAL (1,3)

UPUTPIC ~INES=7, MHSLOYAL (1,l) , MHSLOYAL (1,2) , MHSLOYAL (1,3) , -
MHSLOYAL (2,1) ,MH$LOYAL (2,2) , MHSLOYAL (2,3) , _
MHSLOYAL (3,1) , MHSLOYAL (3,2) ,MH$LOYAL (3,3)

LOYALTY MATRIX

BRAND X Y 2
0 TIME SWITCHED TO

**** **** WHEN DRINKING X ****
y **** * * * * ****

* * * * **** ****
0 NUMBERS CORRESPOND TO NEW PURCHASES WHEN DRINKING OLD BRAND
0 OPUTPIC &INES=5,ML$"AT(l,l) ,ML$NEWMAT(1,2) ,_

ML$NEWMAT(1,3) ,-
MLSmT(2,l) ,ML$NEwMAl'(2,2) ,ML$NEWMAT(2,3) ,_
MLSNEWMAT (3,1) ,ML$NEWMAT (3,2) ,ML$NEWMAT (3,3 1

278 The GPSS/H Slmulatlon Language

0 NEW TRANSITION MATRIX
0 BRAND X Y z

X *.** * , * * * . **
Y *.** * .** * - * *
2 * . ** * . ** * . **

0 m
The output looks as follows:

LOYALTY MATRIX
TIME SWITCHED TO

BRAND X Y Z
WHEN DRINXING X 23392 9130 3677

Y 6526 8614 6726
Z 6280 9122 31533

NUMBERS CORRESPOND TO NEW PURCHASES WHEN DRINKING OLD BRAND
NEW TRANSITION MATRIX
BRAND X Y Z

X 0.65 0.25 0 .10
Y 0.30 0.39 0.31
Z 0.15 0.10 0.75

EXERCISES, CHAPTER 25

z Give the code to specify a halfword maL: with dimensions of 3 by 3. The
initial values along the diagonafs are 1,2, and 3. The other initial values
are 0.

2. Give the code to specify a floating-point matrix with dimensions of 1 by 4.
The initial values are to be 0,1,2, and 3.

3. In the following exercise, values for the various entities are R(TUGS) = 1,
Q(F1RST) = 3, FN(JJJJ) = 5, and all PH values are 3. Determine what hap-
pens when a transaction passes through each of the following matrix
savevalue blocks:
0 (a) c] M S A W A L ~ O M M y , 1 , 3 , 5 , MH
V (b) m S A V E V A L m I L L Y + , 3 , 5 , 7 , M H
0 (C)
0 (d)
O(e)

4. Suppose a transition matrix for 5 brands is as follows:

B S A V E V A L W I R S T , 1,1, PH3, MH
m S A V E V A L a P H 3 , 2 , 2 , Q (FIRST) , MH
BSAVEVAL- (JJJJ) , PH1, PH2, PH3 ,MH

~ ~ ~~ ~

BrandA BrandB BrandC BrandD BrandE

Brand A 0.45 0.20 0.10 0.20 0.05
Brand B 0.20 0.60 0.10 0.05 0.05
Brand C 0.05 0.20 0.50 0.15 0.10
Brand D 0.05 0.05 0.05 0.70 0.15
Brand E 0.10 0.10 0.25 0.15 0.40

Modify the program used in Example 25.3 to determine the long-term
market shares.

Matrltes 279

5. In Exercise 25.4, the creators of Brand E have decided to spend consider-
able funds on a new advertising campaign. They feel that the transition
matrix will be changed to the following:

BrandA BrandB BrandC BrandD BrandE

Brand A 0.40 0.10 0.10 0.15 0.25
Brand B 0.10 0.45 0.05 0.05 0.35
Brand C 0.05 0.10 0.50 0.10 0.25
Brand D 0.05 0.05 0.05 0.50 0.35
Brand E 0.10 0.10 0.05 0.05 0.70

Modify the program developed in Exercise 25.4 to determine the new
long-term market shares assuming that none of the other brands reacts to
the Brand E advertising campaign.

SOLUTIONS, CHAPTER 25

1. PROBl MATRIX MH3,3
INITIAL MH$PROB1(1,1) , l/MH$PROB1(2,2) ,2 /MH$PROB1(3,3) ,3

2. PROB2 MATRIX ML,1,4

3. a.

b.

C.

d.

e.

INITIAL ML$PROB2(1,2),1/ML$PROB2(1,3),2/ML$PROB2(1,4),3

The halfword matrix savevalue TOMMY will have the value 5 in posi-
tion (1,3).
The halfword matrix savevalue BILLY will have the value 7 added to
whatever is currently in position (33).
The halfword matrix savevalue FIRST will have the value 3 in position
(L1)-
The 3rd halfword matrix savevalue will have the value of 3 in position
(2,2).
The 5th halfword matrix savevalue will have the value of 3 in position
(3,3).

4. The program to do the simulation is as follows:
S IMLTLATE
INTEGER &NEW, &OLD, &I
REAL &SUM

MYOUT FILEDEF 'MARKET2.0UT'
TLOYAL TABLE &NEW, 1,1,10
LOYAL MATRIX m,5,5
NEWMAT MATRIX m,5,5
DRINK FUNCTION &NEW,M5

l,FN(BRANDA)/2,FN(BRANDB) /3,FN(BRANDC) /4,FN(BRANDD)/5,FN(BRANDE)
BRANDA FUNCTION RN1,D5
0.45,1/.65,2/.15,3/.95,4/1,5
BRANDB FUNCTION RN1,D5
0.2,1/.8,2/.9,3./.95,4/1,5

.05,1/.25,2/.15,3/.9,4/1,5
BRANDD FUNCTION RNl,D5

BRANDC FUNCTION RN1,D5

280 The GPSS/H Simulation Language

.05,1/.1,2/.15,3/.85,4/1,5
BRANDE FUNCTION RN1,D5
.1,1/.2,2/.45,3/.6,4/1,5

LET &"= 1
GENERATE 1
TABULATE TLOYAL
BLET &OLD=&NEW
BLET &NEW=F'N(DRINK)
MSAVEVALUE LOYAL+, &OLD, &NEW, 1, MH
TERMINATE 1
START 100000
DO &I=l, 25
PUTSTRING (' ')

ENDDO
LET &sUM=MH$LoYAL(1,1)tMH$LoYAL(1,2)tMH$LoYAL(1,3)t~

MH$LOYAL(1,4)+MH$LOYAL(1,5)
LET MLSNEWMAT (1,l) =MH$LOYAL (1,l) /&SUM
LET MLSNEWMAT (1,2) =MH$LOYAL (1,2) /&SUM
LET MLSNEWMAT (1,3) =MH$LOYAL (1,3) /&SUM
LET MLSNEWMAT (1,4) =MH$LOYAL (1,4) /&SUM
LET ML$NEWMAT(1,5)=MH$LOYAL(1,5)/&SUM
LET &suM=MH$LoYAL(2,1)tMH$LoYAL(2,2)tMH$LoYAL(2,3)t~

MHSLOYAL (2,4) tMH$LOYAL (2,s)
LET MLSNEWMAT (2,l) =MH$LOYAL (2,l) /&SUM
LET MLSNEWMAT (2,2) =MH$LOYAL (2,2) /&SUM
LET ML$NEWMAT (2,3) =MH$LOYAL (2,3) /&SUM
LET ML$NEWMAT(2,4)=MH$LOYAL(2,4)/&SUM
LET MLSNEWMAT 12,5) =MH$LOYAL (2,5) /&SUM
PUTPIC &SuM,MH$LOYU (2,s) ,ML$NEWMAT (2,5)

SUM * * * LOYAY(2,5) * * * NEWMAT * . * *
LET

LET
LET
LET
LET
LET
LET

LET
LET
LET
LET
LET
LET

LET
LET
LET
LET
LET
PUTPIC

&suM=m$LoYAL(3,1)tMH$LoYAL(3,2)tMH$LoYAL(3,3) t-

MHSLOYAL (3,4) tMH$LOYAL (3,5)
ML$NEWMAT(3,1)=MH$LOYAL(3,1) /&SUM
MLSNEWMAT (3,2) =MH$LOYAL (3,2) /&SUM
MLSNEWMAT (3,3) =MH$LOYAL (3,3) /&SUM
MLSNEWMAT (3,4) =MH$LOYAL (3,4) /&SUM
ML$NEWMAT(3,5)=MH$LOYAL(3,5)/&SUM

MHSLOYAL (4,4) tMH$LOYAL (4,5)
MLSNEWMAT (4,l) =MH$LOYAL (4,l) /&SUM
ML$NEWMAT(4,2)=MH$LOYAL(4,2) /&SUM
MLSNEWMAT (4,3) =MH$LOYAL (4,3) /&SUM
ML$NEWMAT(4,4)=MH$LOYAL(4,4)/&SUM
ML$NEWMAT(4,5)=MH$LOYAL(4,5) /&SUM

MHSLOYAL (5,4) tMH$LOYAL (5,5)
ML$NEWMAT(5,1)=MH$LOYAL(5,1) /&SLW
ML$NEWMAT(5,2)=MH$LOYAL(5,2)/&SUM
ML$NEWMAT(5,3) =MH$LOYAL (5,3) /&SUM
MLSNEWMAT (5,4) =MH$LOYAL (5,4) /&SUM
ML$NEWMAT(5,5)=MH$LOYAL(5,5)/&SUM
LINES=9,FILE=MYOUT,MH$LOYAL(l, 1) ,MH$LOYAL(1,2) ,-

&suM=MH$LoYAL(4,1)tMH$LoYAL!4,2)tMH$LoYAL(4,3)t~

&suM=MH$LOYAL(5,1)tMH$LO'I'AL(5,2)tMH$LOYAL(5,3)t...

Matrices 281

0

0

0
0

TIME SdITCHED TO:
BRAND A B c D E

WHEN USING A 6771 3034 1578 2997 767
THIS BRAND B 4662 13937 2248 1259 1241

C 917 3453 8899 2688 1737
D 1435 1505 1477 20956 4595
E 1361 1418 3493 2068 5504

NUMB2RS CORRESPOND TO NEW PuTlCXASES WEN USING OLD BRAND

NEW TRANSITION MkTRIX IS:

a m A B c D E

282 The GPSS/H Simulation Language

A 0 . 4 5 0.20 0 . 1 0 0.20 0.05
B 0.20 0.60 0 . 1 0 0.05 0 .05
c 0.05 0.20 0.50 0 . 1 5 0 . 1 0
D 0 .05 0.05 0 .05 0 . 7 0 0.15
E 0 . 1 0 0 .10 0.25 0.15 0.40

From the .US file the market shares are:

BRAND Share

15.15
23.35
17.69
29.97
13.84

5. The program given for Exercise 25.4 is easily modified by changing the 5
functions BRANDA, BRANDB, BRANDC, BRANDD and BRANDE.
The results of the simulation are as follows:

~~ ~

BRAND Share
A 12.61
B 14.11
C 10.21
D 12.30
E 50.25

As can be seen, the advertising campaign was tremendously successful
with Brand E now enjoying over 50% of the market.

.
CHAPTER 26 Variables, Expressions,

and the PRSNTBlock

ARITHMETIC IN GPSS/H

Arithmetic in GPSS/H was mentioned in Chapter 5 and also in other chapters.
It has been used regularly throughout the book with little explanation
because arithmetic is allowed in the operands of the various blocks and is
done in a logical manner. This feature did not exist in earlier versions of
GPSS: all arithmetic was done by reference to an expression. Thus, in this
book, when we have had a block such as ADVANCE 2" 100, it has not been
necessary to point out that the time on the FEC for the transaction was 200.
This chapter formally presents the steps in performing arithmetic; however,
there are certain cautions that must be observed. These cautions have to do
with the original integer nature of calculations in GPSS. In addition, there will
be a time when one will need to do arithmetic calculations by referencing an
expression, which is introduced in this chapter.

Recall that arithmetic is accomplished in GPSS/H by using SNAs together
with various arithmetic operations:

+ addition
-

/ division

* multiplication

@ modular division

subtraction (both unary and binary subtraction)

We have been using all of these operations when needed except, possibly,
modular division. Modular division can be quite handy. It is defined as the
remainder when two numbers are divided. For example, 7 (2 3 is 1; 9 (2 9 is 0
(no remainder); 8 @ 12 is 8 since the result of division is 0 with a remainder
of 8. An example of its use is

c, @ASSIGN 32,RN1@3+1, PH

283

284 The GPSS/H Simulatlon Language

would assign to halfword parameter 2 a number from 1 to 3 with equal
probability.

OTIMEF W C T I O N @C1@480, E8
60,FN(TIME1)/120,FNTJTIME2)/180,FN(TIME3)/240,FN(TIME4)
300,FN(TIME5)/360,FN(TIME6)/420,FN(TIME7)/480,FN(TIME8)

would reference the absolute clock and sample from 1 of 8 functions. If a
working shift is 480 minutes in duration, this code might be used to have a
different time for doing a process depending on the hour.

An arithmetic expression is most often placed in an operand, but it also can be
referenced in a manner similar to referencing functions. This approach is use-
ful when a particular expression is referenced many times and can save con-
siderable time in writing the code. Expressions are referenced by defining the
expression through the use of either a VARIABLE (for integer arithmetic) or
an €VARIABLE (for floating-point arithmetic) statement. The forms are

OL?.BEL VARIABLE FA

and

*;LABEL rjFVARIABLE

where the A operand is the expression to be defined. Numbers can be used for
the labels. So,

OTOMMY WARIABLE a3PH+FR(MACH) /200-Q(WAIT)
01 mARIABLE 2F(FIRST)@XF(SECOND)+QM(NEXT)
(XALC m A R I A B L E ~3+Q(LAST)*F(MACH)-R(TUGS)

are possible ways to define variables TOMMY, 1, and CALC. Notice that no
spaces are allowed in expressions whereas, in other programming languages,
such as Fortran or Pascal, blank spaces are recommended for clarity. A blank
space in an expression in GPSWH will terminate the expression and most
probably cause an error.

Referencing variables is done by

V (LABEL)

or

VSLABEL

i.e., by V followed by the label of the variable definition either in parentheses
or preceded by a dollar sign, "$.,' When an expression is referenced, it is eval-
uated and the result is returned. Evaluation of expressions follows the usual
rules found in other programming languages: calculations proceed from left
to right, and multiplication, division, and modular division have precedence
over addition and subtraction. Parentheses are used for grouping and clarity.
Whatever expression is innermost in nested parentheses is done first. Inner
parentheses have preference over outer parentheses.

Variables, Expressions, and the PRINT Block 285

If the variable expression is defined by a VARIABLE statement, only integer
calculations are done. AU division is integer division, i.e., the result is trun-
cated. However, thefinal result is a decimal whoZe-number d u e . This decimal
value must end in 6 zeroes owing to the nature of having done integer calcu-
lations. Thus, the variable JERRY defined as

OJERRY DARIABLE 03/2+1

would return a value of 2.000000 when referenced by V(JERRY). With
FVARIABLES, the expression is evaluated by doing floating-point calcula-
tions. If necessary, nondecimal values are converted to floating-point values.
So, if the variable JERRY was instead defined as follows, the value returned
will be 2.5:

OJERRY W m I A B L E 03/2+1

If an expression is used in an operand, then the type of calculations per-
formed depend on whether integer or floating-point values are used. Many
times a floating-point result is desired, but the variables used in the expres-
sion are integers. For example, suppose that the simulation went for 100 days
and what was desired was the time a facility was captured per day. The
expression for this might look like

0 D E T C]&AVGPROD=FC (CRUSHER) /&DAYS

The result will be an integer even though the ampervariable &AVGPROD has
been specified as REAL. As described in Chapter 20, GPSS/H has two built-in
functions to handle arithmetic calculations when one wants to specify either
fixed-point or floating-point calculations. These are FIX for fixed-point con-
version and FLT for floating-point conversion. Once you spec@ FLT in an
expression for a single SNA, the whole expression is evaluated as though it
was using floating-point calculations. Thus, to achieve a floating-point result,
the preceding code could have been written as

3 DLET C&AVGPROD=FLT(FC(CRUSHER))/&DAYS

Consider the following examples:

+(a) WVANCE Cj3/2+1
9 (b) FflVANCE pLT(3) / 2 + 1

In (a), the delay time is 2.0, but in (b), the delay time is 2.5. However, to
achieve the desired result in any given line of code, one must use appropriate
GPSS/H components, for example:

C (C) CSAVEVALUE pIRST,FLT(3) I2 t1 ,YJI

9 (e)
5 (d) CSAVEVALUE zSECOND,FLT(3)/2+1,XL

JSAVEVALUE [;THIRD, 3 / 2 + 1 , XL

In (c), although a floating-point result is apparently desired from the use of
FLT, FIRST has an integer value of 2 because of the use of XH (there would be
a compiler warning: “floating-point constant truncated to an integer value”).
In (d), the value of SECOND is 2.5 since the savevalue is specified as being
floating point. In (el, the value of THIRD is 2.0.

286 The GPSS/H Simulation Language

THE PRINT BLOCK

It is possible to have statistical information sent to the report while the pro-
gram is being run. This statistical information consists of the SNAs associated
with a particular entity at the time the information is sent to the report. Col-
lecting this information is done using a PRINT block. When a transaction
enters this block, all the statistics associated with the specified entity (or enti-
ties) are sent to the report file. The form of the PRINT block is

0 OPRINT F$i,B,C

where operandA is the lower limit of the entity range (often omitted), oper-
and B is the upper limit of the entity range (often omitted), and operand C is
the family name of the entity to be printed out. Formerly, there was an oper-
and D that was used as a printer directive, but is now ignored. It will not be
used in this book. IfA and B are omitted, all the statistics for the entity class
are printed out. Furthermore, if you use labels for an entity, as is the common
case, it is not possible to have only selected ones printed out. Some examples
of the PRINT block are as follows:

\>(a) OPRINT [11,3,XL
O (b) OPRINT 0, ,Q
O (c) OPRINT Li3,7,F
3 (d) OPRINT 0, , M H
O (e) UPRINT 02,2,XF

In (a), the floating-point savevalues 1 to 3 are printed out. In (b), all the
queue statistics are printed out. In (c), statistics for facilities 3 to 7 are printed
out. In (d), all the halfword matrices are printed out. In (e), the fullword
savevalue XF2 is printed out.

Since output is added to the normal GPSS/H report every time a transaction
passes through a PRINT block, caution must be taken in using it. It is mostly
used for debugging purposes and, then, only when the program is run for a
limited time.

Some other possible entities that can be used in the PRINT block are

AMP

B
C

F

LG

MB, MH, ML, MX

N

Q
RN
S
T

W

all ampetvariables
current and total block execution counts
absolute and relative clock values
facilities
all logic switches that are in a set position
various matrix values
current and total block execution counts
queue statistics
random number stream
storage statistics
table statistics
current and total block execution counts

Variables, Expressions, and the PRINT Block 287

Notice that, regardless of whether B, N, or W is used, the statistics sent to the
report are identical.

EXERCISES, CHAPTER 26

I.. Determine the value of the ampervariable or savevalue after the expres-
sion or operand is evaluated. Assume the following values and defini-
tions: &FIRST is real; &I and 8J are integers; and PH1= 3, PH2 = 4, PH3 =

3, PH4 = 2, and &J = 560.
O(a) D L E T O&FIRST=2+3/(PHl+l)
O (b) @LET o&I=&J@400
9 (~) OSAWALUE DOM,5/PH3-PH4,XL
O(d) OSAVEVALUE uPH3,PH3/PH2-&J@558,XH
O (e) DLET o&FIRST=PH3*PHl-PH4*4

2. Variables are defined as follows:
OBETTY WAPJABLE 02+PH3-&J@555
&JANE WAPJABLE nPH3/2+1-PH3/5

Using the same data as for exercise 26.1, determine the values that will
be obtained when the operands are evaluated for the following:
$(a) @ADVANCE m(BE"Y)
3 (b) USAWALUE mOM,V(BETTY)-FV(JANE)XH
O (C) W V A N C E nPH3*PH2-PH4/4
0 (d) OSAWALUE 01, PH3 -V (BETTY) , XL
O (e) @SAVnrALUE mIKE,&J@550/PH3,XL

SOLUTIONS, CHAPTER 26

I. a. &FIRST has the value 2.00
b. &I=160
C. TOMis-3.00
d. The third floating point savevalue has the value -2.00
e. &FIRST has the value 0.00

2. a. The transaction will be placed on the FEC for a time of 2.00
b. TOM has the value 1
c. The transaction will be placed on the FEC for a time of 12
d. The first savevalue has the value 1.00
e. MIKE has the value 4.00

.
CHAPTER 27 Boolean Variables

The TEST block and the GATE block have been used to allow the programmer
to control the flow of transactions through the program blocks. When the
transaction enters a TEST block or a GATE block, depending on the type it is,
the transaction may be delayed until some condition is true, it may pass
through to the next sequential block, or it may be routed to another part of
the program. However, both the TEST block and the GATE block only allow
for one condition to be tested. In many situations, there will be multiple con-
ditions to be tested for when a transaction arrives at a particular part of the
program. These types of delay situations can be modeled by the use of Bool-
ean variables. Boolean variables allow the programmer to specify user-
supplied logic conditions to control the flow of transactions through a system.
As such, they can be used to model very complex situations that require many
different conditions to be satisfied. For example, a plane attempting a landing
at a distant airport might need to meet the conditions: Is the airport open? Is
the runway clear? Is there room in the hangar for the particular type of plane,
etc.? The captain of a ship entering a harbor has to ask if the following condi-
tions are true: Is there room for the ship to dock? Is a tugboat free to berth it?
Is the harbor even open?

OPERATORS

Chapter 26 covered how fixed-point and floating-point expressions could be
defined by using the VARIABLE and FVARIABLE statements. Another type of
variable used in GPSS/H is known as a Boolean variable and must be defined
in a BVARIABLE statement. This is a variable that is defined by the program-
mer. It will have only one of two values-either 0 or 1. Just as with other vari-
ables, the Boolean variable will have an associated expression, called a logical
expression, which is evaluated. The value of the expression will be either 1
(me) or 0 (false). Boolean expressions are made up of SNAs or entities con-
nected by one or more of the following:

289

290 The GPSS/H Simulation language

I. relational operators
2. Boolean operators
3. logical operators

Relational (Comparison) Operators

These were introduced with the TEST and SELECT blocks. For convenience,
they will be repeated here. When they are used in the TEST block or the
SELECT block, they are used alone, but in Boolean expressions, they must
have single (left) quotes on either side or the equivalent symbol may be used:

Meaning
Relational
Operator

Equivalent
Symbol

~

Greater than 'G'
Greater than or equal 'GE'
Equal 'E'
Not equal 'NE'

Less than or equal 'LE'

Less than 'L'

Both the relational operator and the equivalent symbols are used in this book,
but preference is given to the relational operator form as so many GPSS/H
programs already written use this form. Some Boolean expressions illustrat-
ing the above are gwen next. For

Q(TOM)'E'Q(BILL)

or the equivalent

Q (TOM) =Q (BILL)

if the queue length of the queue TOM is equal to the queue length of the
queue BILL, the expression is true and is set equal to 1; otherwise, the value is
0. For

XF(TESTl)'L'XF(TESTZ)

the fullword savevalue TEST1 must be less than the fullword savevalue
TEST2 in order for the expression to be true and, thus, set equal to 1. For

FR (MACHA) ' G ' 2 50

the utilization of the facility MACHA must be greater than 250 for the expres-
sion to be true and thus set equal to 1. (Recall that the utilization of a facility
is expressed in parts per thousand.)

Boolean Operators

The real power of Boolean variables comes from using Boolean operators to
connect relational operators. There are three Boolean operators in GPSS/H.
These are AND, OR, and NOT. These actual words are inserted between
expressions that are enclosed in parentheses. The effect of each is identical to
similar operators in languages such as Fortran, Pascal, BASIC, etc. Thus, the

Boolean Variables 291

Boolean operator AND returns a true result-and, thus, sets the Boolean vari-
able's value to l-only when the value of the expressions on both sides of it
are true. Thus,

(true)AND(true) is true or 1
(false)AND(true) is false or 0

(true)AND(false) is false or 0
(false)AND(false) is false or 0

The operator OR returns a true result if either or both of the values of the
expressions is true. Thus,

(true)OR(true)

(false)OR(true)

(true)OR(false)

(false)OR(false)

is true or 1
is true or 1
is true or 1
is false or 0

~ ~~

NOT inverts the value of an expression. Thus,

NOT(true) is false or 0
NOT(false) is true or 1

In the following examples assume that Q(T0M) = 3, Q(B1LL) = 2, X(F1RST) =

5, X(SEC0ND) = 6, and PH1= -4. The Boolean expressions are

(Q(TOM)'LE14)AND(PH1'G'-5)
(Q(BILL)'E'2)0R(XF(FIRST)'E'6)
(XF(SEC0ND) 'LE'XF(FIRST))AND(PHl'G'O)
(Q(TOM)'G'2)AND(NOT(XF(SECOND)'E'6))

The first two are true (value = l), but the second two are false (value = 0).

Alternate symbols that can be used are + for OR and * for AND. Since these
symbols also are used for arithmetic operations, this means that one cannot do
addition or multiplication in Boolean expressions! Thus, if any addition or mul-
tiplication is required, one has to do it in another variable that is then refer-
enced in the Boolean expression. For example,

CONE SARIABLE DF(F1RST) tXF(SEC0ND) -PH2
OTWO DVARIABLE 0 (Q (TOM) >=2) OR (V (ONE=O))

The Boolean variable TWO will be true if the queue TOM is equal to or greater
than 2 or if the variable ONE is equal to 0. It would not have been correct to
write the Boolean variable as follows:

>'TWO DVARIABLE g(Q(TOM)>=2)0R(XF(FIRST)tXF(SECOND)-PH2)

The plus sign would not mean addition but would be taken as the Boolean
operator OR.

The choice of + and ?: for OR and for AND is also confusing because it is so
easy to look at the plus sign and mentally associate it with AND. However
unfortunate this convention is, it is a part of the GPSS/H language. This is a

292 The GPSS/H Simulation Language

carryover from the early versions of GPSS. There is no symbol that can be
used for NOT as it was not a feature of the early versions of GPSS.

The previous examples could have been written as

(Q(TOM)'LE14)*(PH1'G'-5)
(Q (BILL) ' E ' 2) + (X F (FIRST) =6)
(XF(SEC0ND) 'LE'XF(FIRST))*(PHl'G'O)
(Q (TOM) ' G ' 2) * (NOT (XF (SECOND) ' E ' 6))

Since it is much more logical to write out AND, OR, and/or NOT, however,
that is the approach used in this book. Also, many of the parentheses used
above are not needed because of the rules for evaluation of Boolean expres-
sions, described after the next section.

Logical Operators

It is possible to use logical operators to reference various entities in GPSS/H.
A logical operator will check on the status of an entity condition. If the result
of this check is true, the value is 1; otherwise, it is 0. The logical operators are
SNAs. Some of them are listed here:

Logical Operator Condition Referenced

FU(name) [or F(name)] Is the facility in use?

FN U(name) Is the facility not in use?

FS(name) Is the facility seizeable?

FNS(name) Is the facility not seizeable?

SE(name) Is the storage empty?

SNE(name) Is the storage not empty?

S F(na me) Is the storage full?

LS(name) Is the logic switch set?

LR(name) Is the logic switch reset?

If the entities referenced by the logical operator are identified by a number
instead of by a name, the use of parentheses is optional. GPSS/H also sup-
ports the older form of referencing these logical operators using a single $
sign. Thus, LS$FIRST and LS(F1RST) are the same. Some examples of these
operators are as follows: In SNF(TUGS), if the storage of TUGS is not full, the
value is 1. In LR(STOP12), if the logic switch STOP12 is reset, the value is 1.
In F(MACHl), if the facility MACH1 is in use, the value is 1. In LS6, the logic
switch 6 is referenced; if it is set, the value is 1.

By combining relational operators, Boolean operators, and logical operators,
many complex situations can be easily modeled. For example, consider the
following:

rLR(GOIN))AND(Q(WAIT)'LE'3)AND(FNU(MACH2))

In order for this expression to be true, the following conditions must all be
true: (1) the logic switch GOIN must be reset, (2) the queue at WAIT must be
less than or equal to 3, and (3) MACH2 must be free.

Boolean Varlables 293

REFERENCING BOOLEAN VARIABLES

Boolean variables are defined and referenced in much the same way as other
variables. The general form is

OLABEL DVARIABLE

where A is the desired expression. It is possible to have a Boolean variable
with a number for a label. One references the Boolean variable by its label in
the form BV(LABEL) or by the number n in the form BVn. Thus, one might
have something like

0 BEST@ mV(STOPIT), 1

When a transaction arrives at this TEST block, the value of the Boolean vari-
able STOPIT is determined. Unless it has the value 1, the transaction cannot
move to the next sequential block. Instead, it is kept on the CEC and scanned
again when a rescan is made.

It is also possible to reference Boolean variables by use of the single dollar
sign, "$." Thus, the example above could have been written

0 m E S W @V$STOPIT,I

RULES FOR EVALUATION OF BOOLEAN EXPRESSIONS

The rules for evaluation of Boolean expressions are as follows:

1. Logical operators and relational operators have preference in a left to

2. The operators AND, OR, and NOT are evaluated in a left to right order.

Parentheses can (and should) be used for clarity. When used, whatever is in
the innermost pair is evaluated first.

right order.

Example 27.1

Consider a repair shop for trucks. Trucks arrive at the repair shop every 18 *
4.5 hours. There are 3 service bays to work on the trucks. However, the repair
shop is down quite often for one reason or the other. It is down on an average
of every 20 hours (exponentially distributed) and remains down for 3.5 hours,
also exponentially distributed. When it is down, repaired trucks cannot leave
the repaired area. After a truck is repaired, a single worker has to inspect and
refuel each truck. These tasks take 3 k 1 hours. Model this repair shop to deter-
mine the expected number of trucks to be repaired each day, the utilization of
the shop, the utilization of the single worker, and the average number of
trucks in the queue. The repair shop operates 365 days a year, each day being
defined as 24 hours of operation. Simulate for 100 years of operation.

Solution

0 USIMULATE
0 OINTEGER n&I
0 OSTORAGE US (BAYS) , 3

294 The GPSS/H Simulation Language

OINBAY DVARIABLE U(LR(ALL0K))AND(SNF(BAYS))
WUTOK DVARIABLE u(FS(HELPER))AND(LR(ALLOK))
0 BENERATE 0 1 8 , 4 . 5
0 OQUElJE CATREPAIR
L' D E S a E c$V (INBAY) ,1
0 W E R D A Y S
0 D E P A R T D T R E P A I R
a @ADVANCE 0 . 2 5
> W V A N C E DVEXPO (1 , 3 0)
3 mES?r& B V (O U T 0 K) ,1
0 USEIZE W L F E R
0 @ADVANCE 0 3 , l
3 D E L E A S E m E L P E R
3 D E A V E D A Y S

A

(>REGULAR DERMINATE
BENERATE 3, I 1
@JIVANCE DVEXPO (1 , 2 0)
D O G I C U S W L O K
EWVANCE
B O G I C D [WLOK
mRANSFER p, BACK
BENERATE 3 2 4 * 3 6 5 * 1 0 0
DERMINATE 91
USTART 01
D O U&I=l, 2 5
UPUTSTRING C('[D')
W D D O

rnVEXP0 (1 , 3 . 5)

D O I N QUEUE AT REPAIR SHOP
WK TO GO I N ?
m A K E ONE OF THREE BAYS
DEAVE THE QUEUE
OPOSITION
D E P A I R S DONE
B K TO LEAVE?
B S E THE ASSISTANT
B I S C . WORK DONE
P R E E THE HELPER
DEAVE THE BAY

DUMMY TRANSACTION
W L RIGHT FOR SO MANY HOURS
OSET SWITCH
DOWN FOR A WHILE
D E S E T SWITCH
rfiGAIN
D I M E R TRANSACTION ARRIVES

mo, LEAVE

UPUTPIC ~INES=4,N(REGULAR)/(365.*100),-
FR(HELPER1 /lo. ,_
SR(BAYS)/lO.,QA(ATREPAIR)

TRUCKS REPAIRED PER DAY * * * . * *
U T I L . OF HELPER * * * . * *%
UTIL. OF REPAIR BAYS * * * . * *%
AVERAGE TRUCKS WAITING * * * . * *

<) OEND

Notice how the Boolean variables INBAY and OUTOK control the movement
of the trucks both in and out of the repair bays. It was necessary to simulate
for such a length of time because the basic unit of time was taken as 1 hour
and exponential distributions are being used in the model. The result of the
simulation is

TRUCKS RE?AIRED PER DAY 1.33
UTIL. OF HELPER 1 6 . 0 7 %
UTIL. OF REPAIR BAYS 63 .05%
AVERAGE TRUCKS WAITING 0 .17

As can be seen, the repair facility is certainly not being overused. The person
who finishes the trucks is not very busy at all.

Boolean Variables 295

Example 27.2

Refer to Example 27.1. Suppose that the person who works on the trucks after
they are repaired is given other duties. Other items are now to be sent to the
repair shop every 20 * 8 hours. These have a higher priority than the trucks,
so the person needs to work on any of them that may be waiting before he can
finish a truck. Work on these other items takes 10 ? 4 hours. Determine how
this change affects the repair facility.

Solution

The necessary changes are made by adding the following code:

0 NENERATE 020,8, , ,1 WTHER WORK FOR HELPER
0 ~&UEIJE BAIT D O I N QUEUE
0 USEIZE OHELPER WSE THE HELPER
0 D E P A R T m A I T @EAVE THE QUEUE
0 W V A N C E 010,4 D O B BEING DONE
0 m E L E A S E OHELPER D R E E THE HELPER
0 DERMINATE @EAVE THE SYSTEM

The results of the simulation yield the following:

TRUCKS REPAIRED PER DAY 1.33
UTIL. OF HELPER 66.747%
UTIL. OF REPAIR BAYS 70.99%
AVERAGE TRUCKS WAITING 0.27

As can be seen, the worker is now busy 66% of the time. The additional work
assigned him did not affect the repairs of the trucks.

Example 27.3

The repair facility is still not utilized fully. The owner decides to have the
facility also repair trucks from another company. The owner allows 3 of these
trucks to come for repairs. They take the same amount of time as the other
trucks. However, they cycle back in 150 hours, exponentially distributed.
Otherwise, the system remains the same. Determine the utilization of the
repair area now.

Solution

The complete program is as follows:

0 OSIMULATE
0 DINTEGER @&I
0 OSTORAGE u S (B A Y S) , 3
OINBAY @VARIABLE O(LR(ALL0K))AND(SNF(BAYS))
OOUTOK @VARIABLE E (F S (H E L P E R))AND(LR(ALLCK))

296 The GPSS/H Stmutation Language

0 EENERATE 0 1 8 , 4 . 5
OINMINE WUEUE OATREPAIR
0 [I T E S D m V (INBAY) ,1
0 B T E R D A Y S
0 D E P A R T B T R E P A I R
0 @ADVANCE 0 . 2 5
0 @DJAXCE m V E X P 0 (1 , 3 0)
0 D E S m D V (O U T 0 K) ,1
0 USEIZE OHELPER
0 W V A N C E 0 3 , l
0 D E L E A S E OHELPER
0 D E A V E D A Y S
0 B E S W E @ P H l , l , C Y C L E
CREGULAR BERMINATE
CCYCLE
0
0

0
9
'j

0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
0
0
0

OBACK

W V A N C E DVEXPO (1 ,150)
BRANSFER 0, INMINE
5ENERAT.E o , , ,1
@ADVANCE D V E X P 0 (1 , 2 0)
D O G I C @ S W L O K
W V A N C E DVEXPO (1 , 3 . 5)
D O G I C m W L O K
[ITRANSFER c, BACK
BENERATE 0 2 0 , 8 , , , 1
WUEUE B A I T
OSEIZE B E L P E R
D E P A R T B A I T
@ADVANCE u10,4
B E L E A S E %ELPER
BERMINATE
BENERATE 0, I (3
D S S I G N 01,1, PH
BRANSFER 0, INMINE
EENERATE @ 2 4 * 3 6 5 * 1 0 0

USTART 01
D O D&I=l, 2 5

DENDDO

[ITERMINATE Q1

UPUTSTRING O('13')

D O I N QUEUE AT REPAIR SHOP
B K TO GO I N ?
D A K E ONE OF THREE BAYS
[7LEAVE THE QUEUE
UPOSITION
B E P A I R S DONE
W K TO LEAVE?
W S E THE ASSISTANT
m I S C . WORK DONE
DFREE THE HELPER
DEAVE THE BAY
01s I T OTHER TRUCK?

B E S , OTHER TRUCK, CYCLE
D A C K TO THE MINE
DUMMY TRANSACTION
W L RIGHT FOR S O MANY HOURS
OSET SWITCH
DOWN FOR A WHILE
B E S E T SWITCH
B G A I N
$OTHER WORK FOR HELPER
D O I N QUEUE
W S E THE HELPER
@LEAVE THE QUEUE
D O B BEING DONE
B R E E THE HELPER
@LEAVE THE SYSTEM
B H R E E OTHER TRUCKS
B A L L THESE 1
B O R K I N THE MINE
D I M E R TRANSACTION ARRIVES

mo, LEAVE

OPUTPIC mINES=5,N(REGULAR)/(365.*100),N(CYCLE) / (3 6 5 . * 1 0 0] , -
F R (H E L P E R) / l O . , -
SR(BAYS)/lO.,QA(ATREPAIR)

REGULAR TRUCKS REPAIRED PER DAY * * * . * *
* * * . * * OTHER TRUCKS REPAIRED PER DAY

U T I L . OF HELPER * * * . * * %
U T I L . OF REPAIR BAYS * * * . * *%
AVERAGE TRUCKS WAITING * * * * * *

0 OEND

Boolean Variables 297

The results of the simulation yield the following:

REGULAR TRUCKS REPAIRED PER DAY 1.33
OTHER TRUCKS REPAIRED PER DAY 0.34
UTIL. OF HELPER 70.07%
UTIL. OF REPAIR BAYS 89.99%
AVERAGE TRUCKS WAITING 2.02

Now the repair of the owner's trucks has not changed, but the repair area is
busy 89.99% of the time.

EXERCISES, CHAPTER 27

1. State what conditions need to be satisfied so that each of the following
Boolean variables will be true.

O(a)

O(b)

CCOMEIN

OAWAYl @VARIABLE B(TUGS) 'LE' (V(THREE))

ODOWN3 [IBVARIABLE @R(MACHl)'L'500)OR(FR(MACH2) 'G'500)-

DVARIABLE a(R (TUGS) ' LE' 2) OR ((Q (FIRST) 'E' 3)AND (FR1 'GE' 900

OR(FR(MACH3)'G'200)
O (C)

U(d)

O (e)

O(f,

OMYTEST

OMYNEXT BVARIABLE O(LS(STOPl))AND(BV(UPTOP))

OMYOWN BVARIABLE n((S(TLJGS)'E'O)*(Q(FIRST)'LE'2

BVARIABLE 0 (LR (SWITCH1) AND (SNF (TUGS))) OR & X ' E ' O)

)t&Y'E'O

2. Write an appropriate Boolean variable that will be true if the following
conditions are true:
a. Storage of BOAT1 is not empty, and the storage of BOAT2 is not full.
b. The sum of the contents of the queue WAIT1 and the queue WAIT2 is

less than the contents of the queue WAIT3.
c. Logic switch SWITl is set and logic switch SWIT2 is reset or logic

switch SWIT3 is set.
d. The ampervariable &X is less than 0 and the ampervariable &Y is

greater than 0 or the logic switch STOPIT is set.
e. The halfword savevalue MIKE is 0 or both logic switches TOM3 and

TOM2 are reset.
f. The fractional utilization of facility MACHA is less than 200 permil or

logic switch 1 is set.
g. Logic switch 3 is reset or 2 times the queue length of HOLDIT is less

than 6.

298 The GPSS/H Simulatlon Language

3. Trucks appear on the edge of a mine every 6 f 4 minutes. Each holds 170
tons of ore. Each shift, the trucks will go to the first shovel until 10,000
tons are hauled, in which case the trucks will go to a second shovel. If the
first shovel is down, the trucks will also go to the second shovel. The time
to go to the first shovel is 4 1 minutes, and the time to go to the second
shovel is 5 f 2 minutes. The first shovel is down every 90 f 20 minutes
and remains down for 12 f 4 minutes. This pattern is repeated each shift
of 480 minutes. Determine the daily production and the time that pro-
duction shifts to the second shovel. Run the program for 10 shifts of 480
minutes each and output the average times for when the switch to the
second shovel takes place and the average production from each shovel
per shift. Have the results from each shift sent to a file MYOUT.0UT and
have only the averages appear on the screen.

4. In exercise 3, change the program so that, when the program executes, it
prompts the user to input the amount of ore the first shovel is to produce
each shift before production shifts to the second shovel. After the pro-
gram executes for one shift, it is to prompt the user to run again. Rather
than have the program run for 10 shifts, have the results sent to the
screen after each run.

SOLUTIONS, CHAPTER 27

I. a. First, the queue at FIRST is tested to see if it is equal to 3 and if the
fractional utilization of the 1st facility is greater than or equal to 900.
If either is true or if the remaining storage of the storage names TUGS
is less than or equal to 2, the boolean variable will be true.

storage in the storage TUGS is less than or equal to this, the boolean
variable is true.

b. The variable given by V(THREE) is evaluated first. If the remaining

c. The boolean variable is true if any of the following is true:
The fractional utilization of facility MACH1 is less than 500.
The fractional utilization of facility MACH2 is greater than 500.
The fractional utilization of facility MACH3 is greater than 200.

d. First the logic switch SWITCH1 needs to be in a reset position and the
storage of TUGS must not be full. The boolean variable will be m e if
either this is true or if the ampervariable &X is equal to 0.

e. The boolean variable UPTOP is evaluated first. The boolean variable
MYNEXT is true if this is true and the logic switch STOP! is in a set
position.

f. First, the storage of TUGS is tested to see if the current content is equal
to 0 and the queue at FIRST is less than or equal to 2. If this is true or
ampervariable &Y is equal to 0, the boolean variable is true. Recall
that + means “OR” and * means “AND.”

2. a. BOATS BVARIABLE (SNE(BOATl))AND(SNF(BOATS))

b. SUMS VARIABLE Q (WAIT1) +Q (WAIT2)
SUMSBV BVARIABLE V (SUMS) ’ L ’ Q (WAIT3)

C. LTEST BVARIABLE (LS(SWITl))AND(LR(SWIT2)OR(LS(SWIT3)))

d. WEST BVARIABLE (W L ’ O) A N D ((&Y~G~O)OR(LS(STOPIT))

Boolean Variables 299

e. MIKES BVARIABLE (XH(MIKE)'E'O)OR(LS(TOM3)AND(LS(TOM2))

f. UTILBV BVARIABLE (FR(MACHA) 'L'200)OR(LS1)

g. ARITH VARIABLE 2*Q(HOLDIT)
SWITHBV BVARIABLE (LR3)0R(V(ARITH)'L16)

3. The program to simulate the mine is given below:

MYOUT

FIRST

AWAY 3

BACK

SIMULATE
REAL &AMTl,&AMl'2,&TIME.&SUM,&PROD1,&PROD2
INTEGER &I,&J
FILEDEF 'MYOUT.0uT'
DO &I=1,25
PUTSTRING (' ')

ENDDO
PUTSTRING (' SIMULATION IN PROGRESS....')
BVARIABLE (LWl'1' LE ' 10000) AND (LR (STOP1))
GENERATE
TEST E
BLET
TEST G
BLET
ADVANCE
QUEUE
SEIZE
DEPART
ADVANCE
RELEASE
TERMINATE
ADVANCE
QUEUE
SEIZE
DEPART
ADVANCE
RELEASE
BLET
TERMINATE
GENERATE
ADVANCE
LOGIC S
ADVANCE
LOGIC R
TRANSFER
GENERATE
TERMINATE
DO
CLEAR
START

6,4
BV(FIRST),l,AWAY3
&AMTl=&AEIT1+170
&AMT1,10000, AWAY3
&TIME=AC1@480
4,1
SHOVELl
SHOVEL1
SHOVELl
2,1
SHOVELl

5,2
SHOVEL2
SHOVEL2
SHOVEL2
2,1
SHOVEL2
&AMT2=&AMT2+170

,,,I
90,20
STOPl
1 2 , 4
STOPl
, BACK
480
1
&J=l, 10

1

TRUCKS COME
WHICH SHOVEL?

TRAVEL TO SHOVEL 1
JOIN QUEUE
USE THE SHOVEL
LEAVE THE QUEUE
LOAD
FREE THE SHOVEL
LEAVE MINE
TRAVEL TO SHOVEL 2
JOIN QUEXF,
USE THE SHOVEL
LEAVE THE QUEUE
LOAD
FREE THE SHOVEL
ADD TO AMOUNT
LEAVE MINE
DUMMY TRFNSACTION
OK FOR NOW
SET SWITCH
WWN NOW
RESET SWITCH
TO WORK
TIMER TRANSACTION
ALL DONE

PUTPIC LINES=3,FILE=MYOUT,&TIME,&AMT1,&AMT2
TIME PRODUCTION WAS GREATER THAN 10000 TONS * * * * . * *
AMT OF ORE FROM FIRST SHOVEL * * * * *
AMT OF ORE FROM SECOND SHOVEL * * * * *

LET &SUM=&SUMt&TIME
LET &PRODl=&PRODl+&AMTl
LET &PROD2=&PROD2t&AMT2
LET &AMTl=O

300 The GPSS/H Simulation Language

LET &AMT2=0
LET &TIME=O
CLEAR
ENDDO
PUTSTRING (' ')

PUTPIC LINES=3,&SUM/10.,&PRODl/lO.,&PROD2/10.
AVG. TIME PRODUCTION WAS GREATER THAN 10000 TONS * * * . * *
AVG. AMT OF ORE FROM FIRST SHOVEL * * * * *
AVG. AMT OF ORE FROM SECOND SHOVEL * * * * *

PUTSTRING (' ')

PUTSTRING (' SIMULATION OVER....')
END

Notice that as soon as a truck enters the mine for shovel 1, the amount of
ore mined by that shovel is increased by 170 tons. The test for the ton-
nage being exceeded is done as soon as truck is at the mine site.
The results of the simulation are:

AVG. TIME PRODUCTION WAS GREATER THAN 10000 TONS 394.11
AVG. AMT OF ORE FROM FIRST SHOVEL 10033
AVG. AMT OF ORE FROM SECOND SHOVEL 13124

4. The changes are easy to make. Add an ampervariable &CHANGE to the
program and replace the 10000 with it. At the end of the program the
code will be:

PUTPIC LINES=3,&CHANGE,&TIME,&AMTl,&PJIT2
TIME PRODUCTION WAS GREATER THAN * * * * * * TONS * * * , * *
AMT OF ORE FROM FIRST SHOVEL * * * * *
AMT OF ORE FROM SECOND SHOVEL * * * * *

PUTSTRING (' ' 1
PUTSTRING (' DO AGAIN? (Y/N) I)

PUTSTRING (' ')

GETLIST &ANS

IF
LET &AMTl=O
LET &AMT2=O
LET &TIME=O
CLEAR
GOT0 AGAIN
ENGIF
PUTSTRING (' ')

PUTSTRING (' SIMULATION OVER....')
END

(&ANS ' E ' 'Y ') OR (&PNS ' E ' ' y ')

The first time the program is run for a change over at 8000 tons the out-
put is:

TIME PRODUCTI3N XAS GREATER THAN 8000 TONS 310.52
AMT OF ORE FROH FIRST SHOVEL
rlMT OF ORE FROM SECOND SHOVEL

81 60
13770

However, the program needs to be run multiple times and the averages
values used as shown by the results of Exercise 26.3

The BUFFER Block
CHAPTER 28

THE B U F F E R BLOCK

To fully appreciate the way a GPSS/H program works, it is important to
always understand the way transactions are moved on the various chains.
Recall that, once a transaction is moved by the processor, it will be moved for-
ward as far as possible until one of three things happens to it: (1) it is termi-
nated, (2) it is put on the FEC, or (3) it is blocked. When one of these three
things happens, the processor will start a rescan. So far, this procedure is
what we have wanted. However, there are times when it is necessary to start
a rescan of the CEC before the active transaction has come to a rest. Such a
necessity can, perhaps, best be understood by considering a short example.

Suppose a delivery company has 5 trucks in its fleet. Each has a daily avail-
ability of 70% because some are used in other parts of the company or some
are in the shop for maintenance and/or repairs. At the start of each day, it is
desired to determine how many are available. If 5 are available, they will be
allocated a certain way; if 4 are available, they will be allocated a different
way, etc. The program lines for this might be (it will be explained why the
PRIORITY 0 block is added) :

9HOWMANy W C T I O N ml, D2
.l,OKTRK/l,BYEBYE
+WHERE W C T I O N W R U C K , L5
l,BLOCKA/2,BLOCKB/3,BLOCKC/4,BLOCKD/5,BLOCKE
3 EENERATE E, , ,5,1
3 :PRIORITY 50
3 DFANSFER L, FN(H0WMANY)
’NKTFX D L E T n&NTRUCK=&NTRUCKtl
3 o----- b l a n k f o r now
0 mFSNSFER 9, FN (WHERE)

Five truck transactions are generated at time t = 0. Each has priority = 1. Once a
transaction leaves the GENERATE block, its priority is reduced to 0. It then
enters the block TRANSFER ,FN(HOWMANY). The function HOWMANY will
determine whether the truck transaction will be available for the day or not. If it

301

302 The GPSS/H Simulation Language

is to be available, the next block, OKTRK BLET &NTRUCK=&NTRUCK+l, keeps
a count of the number of trucks that are available. At the point when a transac-
tion enters the TRANSFER ,FN(WHERE) block, you want the transaction to be
transferred to different parts of the program depending on how many trucks
are available. These are indicated by the block labels, BLOCKA, BLOCKB, etc.
Suppose the first transaction leaves the GENERATE block and is routed to the
block labeled OKTRK. It will increment the count of “TRUCK to 1 and then go
to the next sequential block. If this is the TRANSFER ,FN(WHERE) block, it will
be routed to BLOCKA, which is where you want the transactions to go if there is
onlv one truck available. The next thing to do is to have the second truck trans-
action leave the GENERATE block. However, the first transaction is still active
and will be moved to the next sequential block from BLOCKA. Since there are
more aucks to be tested, this approach is incorrect. The way to handle this is to
force a rescan of the CEC at this point and move the other truck transactions
that are residing in the GENERATE block. This procedure is exactly what the
BUFFER block does. Its general form is

0 DUFFER

There are no operands. When a transaction enters this block, it causes a rescan
of the CEC. It has no other purpose.

Let us see how the presence of the block BUFFER would work for the example
above. Imagine that there is a BUFFER block where the comment says “blank
for now.” The processor starts a rescan. The transaction in the BUFFER block
is part of this scan. Its priority is 0. The second truck transaction in the GEN-
ERATE ,,,5,1 block has a priority of 1 so it is moved first. Thus, the first trans-
action will be held at the BUFFER block until the second transaction has
moved forward. How far is it moved? Just as far as the BUFFER block, which
triggers another rescan. Now, the third transaction is moved forward from the
GENERATE ,,,5,1 block as far as the BUFFER block. This process is repeated
until all 5 of the transactions have left the GENERATE block. Now, when each
transaction enters the TRANSFER ,FN(WHERE) block, the correct count of
the available trucks in the system for the day is used to allocate them. A
BUFFER block should be used whenever an action in one part of a program
triggers an action in another segment. For example, a ship may be in a harbor
waiting to be loaded, and it takes 12 truckloads. Whenever a truck dumps a
load, the counter &LOADS is incremented by 1. After every load is dumped, it
is necessary to check to see if the ship is loaded and can leave the harbor. A
BUFFER block will accomplish this task. The ship transaction needs to have a
higher priority than the truck transaction, of course.

Example 28.1

Customers come to a small repair shop in a plant with up to 4 items for ser-
vice. The probability of a given customer bringing 1 item is 50%; 2 items,
30%, 3 items, 15%; and 4 items, 5%. There are 4 identical workers to assist
the customers. Each will service 1 customer at a time. The people will always
wait while the items are being repaired. The repairs require a time obtained
by sampling from the normal distribution with a mean of 8 and a standard
deviation of 1.4 for each item. Before each repair begins, there is some paper-
work to be filled out, which takes 1 * 0.5 minute, and it takes the same time

The BUFFER Block 303

to check the items after they are repaired. It costs the company $25.25 per
hour for each worker who must wait for the repairs since these people are get-
ting paid and not producing anything. The workers, however, only receive the
minimum wage of $6.25 per hour. Simulate for 4,5, and then 6 workers to
determine if another worker should be added. Use a DO loop. In addition to
determining the cost of the delays, the program should also determine the fol-
lowing: (1) How long each customer needs to wait before a worker is free. (2)
How long each customer is in the shop. (3) How busy the workers are. Simu-
late for 100 shifts of 480 minutes each and for 3 shifts per day. Have the
results sent to a data file.

Solution

9 US IMULATE
0 TNRILT 2 6 5 4 3 2
0 UINTEGER OLSERVER, &TOOLS, &I, &REPAIRS
OMYOU'I B I L E D E F n'MYOvT.OUT'
0 13Do D&I=l, 25
3 UPUTSTRING z('[u')
3 W D D O
CJWAITUP B Q U 3 2 0 , L W C E S S A R Y ! !
OHOWMANY $ U N C T I O N m1, D4
. 5 , 1 / . 8 , 2 / . 9 5 , 3 / 1 , 4
3 OPUTSTRING a (' SIMULATION I N P R O G R E S S ')
/VCOMEIN 5 E N E R A T E B V E X P O (1 , 5) , , , ,10
0 @ASSIGN E2,FN(IiOWMANY) , P H

9 n O T A L
/I W A T a S m A I T U P B A I T FOR FREE WORKER
3 D E P A R T D A I T

iJ OQum ~ A I T

3 I ~ L O G I C ~ DAIWP
J G S S I G N GI, &SERVER, PH DSERVER NUMBER I S ASSIGNED
0 D L E T fl&TOOLS=PH2

T G A T m L S Z P H l
// D E P A R T TOTAL
// IXOGICrJ q P H 1
// BERMINATE
/;WORKER CGENERATE 7, , , &REPAIRS -80. OF REPAIRMEN
3 3 S S I G N Cl ,N(WORKER) , P H
//UPTOP C T E S m ZQ (WAIT) ~ 0 W O N E WAITING?
3 m T E R :WORKERS ISTART WORKING
5 B L E T L&SERVER=PH~
/

-
3 O G I C Z S p A . I T U P L E T PERSON THROUGH

3 :BUFFER :GO TO OTHER SEGMENT

5 lSVMTCE Ll, . 5 CPAPER WORK

5 JLOOP 0 2 PHI BACKUP

/ D S S I G N z 2 , &TOOLS, PH

BACKUP ?ADVANCE 3 V N O R M (1 , 8 , 1 . 4) W E REPAIRS

I VmVMTCE ql, . 5 1JORE PAPER WORK
J DOGIC,S 'zPH1

/ JLEAVE 3 O R K E R S
/ :TRANSFER :, UPTOP

/i D U F F E R

// S E N E X A T E 1 4 8 0 * 1 0 0 * 3

304 The GPSS/H Slmulatlon Language

0 BERMINATE El
0 m O&REPAIRS=4,6

0 USTORAGE nS(WORKERS),&REPAIRS
0 USTART 01
0 flPUTPIC ~INES=8,FILE=MYOUT,&REPAIRS,N(COMEIN)/(500.*3),~

0 ELEAR

QT(WAITI ,QA(WAITI , _
QT(TOTAL),QA(TOTAL),SR(WORKERS)/lO.,-
25.25*QA(TOTAL)*8+6.25*&REPAIRS*8

NUMBER OF WORKERS
PEOPLE WHO COME IN PER SHIFT * * * * . * *
AVERAGE TIME WAITING FOR SERVER * * * . * *
AVERAGE NO. WAITING FOR SERVER *** . **
AVERAGE TIME IN SHOP * * * . * *

* * * * * * AVERAGE NO. IN SHOP
UTIL. OF WORKERS * * * . * *%
COST PER SHIFT OF THIS * * * . * *

*

0 OPUTSTRING n (' g ')
c @PUTSTRING U (' f 2 ')
9 LENDDO
j B N D

There are several important features of the program that will be discussed
here. The workers come into the system via the GENERATE
RVEXP0(1,5),,,,10 block. They are assigned the number of parts to be
repaired, and this value is placed in their second halfword parameter. They
are held in the GATE block WAITUP until a worker is free. There are 4 work-
ers. Each is numbered, and they are held in the block TEST G Q(WAIT),O until
there is someone in the block QUEUE WAIT. Once this is the case, the worker
enters a busy status. The ampervariable &SERVER is set equal to the number
of workers. The logic switch WAITUP is placed in a set position, which corre-
sponds to the first waiting person being served. Next the BUFFER block is
entered and a rescan of the CEC is performed. The transaction being held in
the GATE WAITUP block has a priority of 10, so it is moved next while the
transaction that caused the rescan is held in the BUFFER block. This transac-
tion moves, leaves the queue, places the logic switch WAITUP in a reset posi-
tion so that only 1 customer can be served at a time, and sets its first halfword
parameter equal to the worker number. It then sets the variable &TOOLS
equal to its second parameter. This parameter has the number of parts to be
repaired. It then is held in the block GATE LS PH1. Since the logic switch cor-
responding to the first parameter is in a reset position, the transaction will
remain at this block, and control passes to the worker segment. Here the
worker repairs the parts and then places the logic switch that corresponds to
his or her number (from 1 to 4) in a set position. The transaction enters the
BUFFER block, which causes a rescan of the CEC. The customer who is wait-
ing for the worker to finish then leaves the shop, which places the logic switch
PH1 in a reset position to delay the next customer who brings the next repair
item(s) to the same worker. Notice that it was necessary to have the state-
ment WAITUP EQU 20,L. The output from running the program is as follows:

NliMBER OF WORKERS 4
PEOPLE WO COME I N PER SHIFT 19 .05
AVERAGE TIME WAITING FOR SERVER 7.47
AVERAGE NO. WAITING FOR SERVER 1 . 4 8
AIrERAGE TIME I N SHOP 23.51
AVERAGE NO. I N SHOP 4.67
UTIL. OF WORKERS 79.61%
COST PER SHIFT OF " F I S 1142.69

NUMBER OF WORKERS
PEOPLE WHO COME I N PER SHIFT
AVERAGE TIME WAITING FOR SERVER
AVERAGE NO. WAITING FOR SERVER
AIrERAGE TIME I N SXOP
AVEFAGE NO. I N SHOP
U T E . OF WORKERS
COST PER Sh'IFT OF T E I S

" E E R OF WOPXERS
PEOPLE WO COME I N PER SEIFT
AVERAGE TIME WAITING FCR SEFJER
AVERAGE NO. WAITING FOR SERVER
AVERAGE TIME I N SHOP
AVERAGE NO. I N SHOP
CTIL. OF WORKERS
COST PER S H F T OF T H I S

5
19.15

1 . 4 8
0.29

17.46
3 .48

63.67%
952.57

6
i9.34

5.46
0.09

26.43
3.31

53.59%
968.47

As can be seen, it would be profitable to hire a fifth repair person.

The SPLIT Block
CHAPTER 29

C L O N E S OF T R A N S A C T I O N S

Transactions have been placed in our simulations by the GENERATE block. In
fact, this is the only way to create original transactions. However, once a
transaction has been created, it is possible to make clones of it. Such clones
will normally be identical to the original transactions, although they can be
made to differ. The clones will always be identical to the original transactions
in their priority level and their time of entry, which is called their “Mark
Time.” This latter point is worth noting. If the original transaction entered the
simulation at time t = 2050 and a new transaction was cloned at time t =
3500, the clone has a Mark Time of 2050, not 3500. The clones will normally
have the same number and type of parameters as the original, but in these
particulars, the clones can be made to differ.

The block that creates these clones is the SPLIT block. The form to create
identical transactions is

0 OSPLIT @ A , B

where operand A is the number of clones to create and operand B is the label
of the block the transactions are routed to.

When a transaction enters a SPLIT block, A identical transactions are created
and leave the block one at a time (incrementing the block count as they leave).
These are all routed to the destination block whose label is specified in the B
operand of the SPLIT block. The original transaction is not routed to this desti-
nation block but goes to the next sequential block. In fact, this original transac-
tion is moved before the clones are. Some examples of the SPLIT block are

O(a) OSPLIT 01,DOWNl
0 (b) PSPLIT [j l O , UPTOP

In (a), one clone is created and sent to the block with the label DOWN1. In
(b), 10 clones are created and sent to the block with the label UPTOP. In both
cases, the original transactions are routed to the next sequential block.

307

308 The GPSS/H Slmulatkm Language

Often it is desired to have the original transaction and the clones routed to the
same block. ThLs can be done by making the next sequential block the one
where the clones are sent to, e.g.,

cmXT1 ;----- ,I- _- - -

Here the original and the 3 clones are all sent to the same block.

SPLIT blocks can be very handy in programming problems in which a single
unit comes along and several things have to be done on different parts of the
unit simultaneously. For example, suppose a partially completed car comes
along an assembly line. At a given point, one person makes an adjustment to
the front, another connects the bumper to the rear, and a third bolts on the
steering wheel, It is convenient to split the car transaction by making 2 clones
and then to work on the clones separately. Only when all 3 transactions (the
original and the 2 clones) are finished can the car be moved along. How to do
this will be covered in Chapter 30, when the MATCH block is presented.

9 OSPLIT 03, NEXT1

Example 29.1

In a manufacturing process, parts come along an assembly line every 4 * 1.2
minutes. A n overhead crane is used to lift them from the line to another sec-
tion where they will be worked on further. It takes 2 * 0.8 minutes to load
and transport the parts. The crane then must return to its original position.
This takes 1.6 + 0.3 minutes. Give the GPSS/H code to model this segment of
the system.

Solution

3

0

‘?

A

/

/DOWN1

SENERATE 2 4 , 1 . 2
XTJEUE CWAIT

DEPART 3AIT
rWVANCE ’2, . 8
:SPLIT 11, DOWN1
:ADVANCE 71.6, . 3

OSEIZE XRANE

 ELE EASE :CRANE
:TERMINATE

9PPRT.S COME ALONG
:DOIN QUEUE
mSE THE CRANE
rJ.,EAVE THE QUEUE
NOVE PART TO NEW SECTION
KCREATE CLONE
,,NOVE CRANE BACK
[FREE CRANE
XEMOVE TRANSACTION

Notice that, after the crane moved the part, the SPLIT block formed a clone of
the part, and the clone was sent to the block DOWN1. The original part trans-
action entered the block ADVANCE 1.6,.3 to represent the travel time for the
crane to return to the original position. When the “original part” transaction
leaves the ADVANCE block, it releases the crane. Only then can another part
be moved by the crane.

The SPLIT Block 309

Example 29.2

A part in a large machine will periodically fail and have to be replaced with a
spare part while the failed part is fixed. When this happens, the machine is
shut down, and the failed part is removed. The machine is then down until
one of the following two things happen:

I. A good part is available to replace the failed part, and, once this is

2. No spare part is available, and the machine must wait until the failed part
installed, the machine starts again.

(or parts) are repaired.

The life of a part is 108 hours, exponentially distributed. The time to remove
a failed part is normally dismbuted with a mean of 7 hours and a standard
deviation of 1 hour. The time to put a repaired part in the machine is also nor-
mally distributed with a mean of 12 hours and a standard deviation of 1.1
hours. A single repair person fixes failed parts, and a single machinist runs the
machine. The time to repair a failed part is obtained from sampling the uni-
form distribution 10 f 4 hours. Each hour the machine is down costs the com-
pany $15.25. Each spare part costs the company $125 per week to keep in
stock. The company works 7 days a week, 24 hours a day. The repair shop
works for 20 hours and then is closed for 4 hours. Run the simulation for 500
years and for the following numbers of spares: 0,1,2, and 3. Determine the
optimum number of spares to have. Have the results sent to an output file.

Solution
9 USIMULATE
r, UINTEGER @I, &SPARES
0 ORE= n&COST
CiMyOUT B I L E D E F n'EXAM29B.OUT'
0 CGENERATE 0, , ,1
GBACKIN OSEIZE W C H l
3 W V A N C E B V E X P 0 (1 , 1 0 8)
r3 B E L E A S E W C H l
3 W V A N C E $VNORM(l,7,1)
3 9 S P L I T 0 1 , R E P A I R
9 L S E I Z E ?FIXER
3 W V A N C E 0 1 2 , 4
0 m E L E A S E @FIXER

0 mERMINATE
GREPAIR [f r E S C G O&SPARES, 0

0 D L E T O&SPPRES=&SPARES+ 1

9 KATE~~LR ~ O T W O R K
0 @LET C&SPARES=&SPARES-l
3 W V A N C E ~ V N O F X (1 , 1 2 , 1 . 1)

DRANSFER r, BACKIN
/- XENERATE @, , ,1

DUMMY TRANSACTION

mORKING MACHINE

m A K E PART OUT
L W E A CLONE

0 F I X THE PART

S D D ONE TO SPARES

SPARES AVAILABLE?

UPUT SPARE I N MACHINE

310 The GPSS/H Slmulatlon Language

OBACKUP
0
.3
0
0
0
0
0
i:
9
0
3

@iDVANCE c 2 0

@ADVANCE E4
r J L O G I C S @NOTWORK
DRANSFER O,BACKUP
@F.NEFATE 024*7*52*500 USIWLATE FOR 5 0 0 YEARS
DLET ~&COST=l5.25*(1-FR(MACHl) /1000.)*24*7+(&1-1)*125.
DERMINATE c1

OLOGICC~S CNOTWORK

:DO O & I = l , 4

OSTART 31
ZET U&SPARES=&I-l

OPUTPIC pILE=MYOUT, L I N E S = 8 , &I-1, FR (MACH1) / l o . , FR(F1XER) /lo. ,_
F C (M ? X H 1) / 5 0 0 . , -
F C (F I X E R) / S O O . , & C O S T

NUMBER OF SPARE PARTS
U T I L . OF MACHINE
U T I L . OF REPAIR PERSON
NUMBER OF BREAKDOWNS/YR.
NUMBER OF TIMES REPAIR PERSON USED/YR.
EXPECTED COST PER DAY

*
* * * . * *%
***. * * %
*** . **
* * * . **

* * * * . * *

:) @ET @COST=O
3
0 DDDO
0 W D

The program represents the machinist as a single transaction. This transaction
simply turns the machine on and off. When a part fails, the machine is turned
off and the part removed. A SPLIT block is used to create a clone. The original
transaction is sent to the repair shop. Once it is repaired, the number of spare
parts is incremented by 1 and the original transaction is terminated. The
clone tests to see if a spare part is available. If so, the repair person immedi-
ately starts to put one in the machine. If no part is available, the repair person
has to wait for one to be repaired.

The segment with the repair shop being down for 4 hours after working for 20
hours is easily handled with the combination of a LOGIC switch and a GATE
block. The output of the simuiation is as follows:

NUMBER OF SPARE PARTS 0
UTIL. OF MACHINE 77.55%
UEL. OF REPhIR PERSON 8 . 6 0 %
NUMBER OF BREAWONS/YR. 62 .56
NUMBER OF T I M 3 REPAIR PERSON USED/YR. 62 .56
EXPECTED COST PER DAY 7 5 . 1 1

NLIMBER OF SPARE PARTS 1
UTIL. OF MACHINE 84.75%
UTIL. OF REPAIR PERSON 9 . 4 7 %
NUMBER OF EREAKDOWS/YR. 66 .94
NUMBER OF TIMES REPAIR PERSON USEDIYR. 68.94
EXPECTED COST PER DAY 515.71

The SPLIT Block 311

NUMBER OF SPARE PARTS 2
UTIL. OF MACHINE 84 .70%
UTIL. OF REPAIR PERSON 9 . 4 8 %
NllMBER OF BREAKDOWNS/YR. 69 .09
NUMBER OF TIMES REPAIR PERSON USED/YR. 69.09
EXPECTED COST PER DAY 641.97

NUMBER OF SPME PARTS 3
UTIL. OF MACHINE 84 .86%
WIL. OF REPAIR PERSON 9 .40%
NUMBER OF BREAKDOWS/YR. 68 .42
MIMBER OF TIMES REPAIR PERSON USEDlYR. 68 .42
EXPECTED COST PER DAY 6 2 . 8 6

As can be seen, the optimum number of spare parts to have is 1. Having more
spares than this number does not change the availability of the machine as it
remains around 85%.

Example 29.3

In the previous example, the repair person was busy only about 9.596 of the
time. Suppose that this person also had duties to repair other items. Other
failed parts come along every 20 * 6 minutes, and these take 18 f 2.1 minutes
to repair. Since the repair shop will be down for 4 hours each day, it is neces-
sary to give these failed parts a higher priority than the parts from the
machine. This procedure guarantees that, when the repair shop is down,
these “other” parts will be repaired first when the shop reopens. If this is not
the case, when it starts up again, the queues in front of it may be too large,
and the program will blow up.

Solution

The only segment that must be added to the program is as follows (this code
forms a complete segment and so can be inserted anywhere in the program
after a TERMINATE block or before a GENERATE block) :

’/ EGENEFATE 02 0 , 6 , , , 1 0 COTHER PARTS

5 9 S E I Z E D I X E R
Ti D E P A R T LWAIT

5 ERELEASE P I X E R

/ WUElJE W A I T

, s-NVANCE C18’2.1

r D E F N I N A T E

Selected parts of the output from running the program are:

Util. of Util. of
Spare Parts Machine Repair Shop cost

53.50% 96.50% 2334
64.27% 98.03% 1918
69.53% 98.50% 1779
72.48% 98.81% 1757
73.90% 99.10% 1801
74.03% 99.87% 1889

312 The GPSS/H Simulation Language

As can be seen, the number of spare parts to have is now 3. The utilization of
the machine is quite low, and so, in practice, something should be done to
improve the repair-shop times.

SIMULATING 2 4 - H O U R (OR ' M I L I T A R Y ") T IME

The absolute clock measures the simulation time from the start of the simula-
tion. In many simulations, however, it is also necessary to keep track of the
simulation time, the day of the simulation, the week, etc. For example, it may
be necessary to have the workers stop for 30 minutes at noon for lunch, to
shut down the mine for the third shift (but keep the mill working), or to shut
a crusher down for 1 hour of maintenance every day at 4:OO p.m.

If a time value corresponding to what is known as "military clock time" or
"24-hour time" is used, many of these stoppages can easily be modeled, often
much more easily than by using the absolute clock. Some examples compar-
ing 12-hour time, military time, and GPSS/H simulation time are

Midnight -
Midnight 9:30 A.M. Noon 230 P.M. 1 minute

12-hour time 12:OO P.M. 9:30 A.M. 1200 A.M. 2:30 P.M. 11:59 P.M.

Military time 0000 0930 1200 1430 2359

Simulation time 0 hours 930 hours 1200 hours 1430 hours 2359 hours

This conversion of the clock time is often much easier to program compared
to using the absolute clock. For example, if the miners take their lunch break
every day at noon, this is 1200 hours. If the mine does not work on the week-
end, then the days to shut down the mining part of the simulation will be days
6 and 7.

Example 29.4

Write a program to give the military time for 2 days. Have output every hour
and place this output in a data file. Use a basic time unit of 1 minute. The data
file should give the absolute clock time, the military time, and the day of the
simulation. The program should also count the day of the week (from 1 to 7)
as well as the number of the week. (This example was kindly supplied by Rob-
ert Crain of Wolverine Software.)

Solution

c. CSIMULATE
0 [INTEGER n&MILITIME T u r r e n t time i n 24-hour format
0 [INTEGER @DAYNO monsecutive days a r e numbered
3 EINTEGER [&WKDAYNO meek days 1-7
> CINTEGER n&WEEKNO meeks a r e numbered
GMYOUT OILEDEF C'MCLOCK.OUT'
*
.

The SPLIT Block 313

NENERATE 0, , ,1,150 0
*
0 DLET O&WKDAYNO=l
*

01 master clock Xact

OStart on Monday

VNEXTMIN WVANCE 01 mlock “ticks” each minute
0 DLET ~&MILITIME=&MILITIME+l @dd 1 minute to $-digit time
*
* To close mine f o r lunch and weekends,
* code is added here; see explanation that
* follows the output.
*
0 D E S m 0&MILITIME@100,60,NEXTMIN @,Last 2 digits = 60?
0 DLET O&MILITIME=&MILITIME+40 D E S => Add 40
0 DPUTPIC @ILE=MYOUT, &WKDAYNO,ACl, MILITIME
DAY NUMBER *** S I U T I O N TIME **** MILITARY TIME * * * *
0 D E S m fl&MILITIME,2400,NEXTMIN mave we reached 2400?
0 DLET U&MILITIME=OOOO BES => reset to 0000
0 DLET I&DAYNO=&DAYNO+~ UIncrement total days
0 DLET O&WKDAYNO=&WKDAYNO+ 1 IIncrement day of week (1-7)
0 D E S m n&WKDAYNO, 8, NEXTMIN 01s this new Monday? NO
0 DLET O&WKDAYNO= 1 DES => reset day of week to 1
0 DLET u&WEEKNO=&WEEKNO+ 1 UIncrement total weeks
0 DRANSFER 0, NEXTMIN Dick again
.
0 NENFR?LTE 0480*3*2

0 DTART 01
0 DEWINATE 01

0 m

Osimulate for 2 days

The program starts by setting the day counter, &WAYNO, equal to 1, and
the clock is assumed to start at midnight. The clock repeatedly advances by 1
minute until time t = 60 is reached, which is 1 o’clock in the morning. At this
time, the military clock is to be at time t = 0100. “Setting” the military clock is
done by using modular arithmetic. The military clock is advanced every 60
basic time units (= minutes) until 1 day (24 hours) has passed. At this time,
the military clock reads 2400 hours, so the day counter is incremented and
the military clock is set back to 0000. The following is sample output from the
program:

DAY NUMBER 1
DAY NUMBER 1
DAY NUMBER 1
DAY NUMBER 1
DAY NUMBER 1
DAY NUMBER 1
DAY NUMBER 1
DAY NUMBER 1
DAY NUMBER 1
DAY NUMBER 1
DAY NUMBER 1
DAY NUMBER 1

SIMULATION TIME
SIMULATION TIME
SIMULATION TIME
SIMULATION TIME
SIMULATION TIME
SIMULATION TIME
SIMULATION TIME
SIMULATION TIME
SIMULATION TIME
SIMULATION TIME
SIMULATION TIME
SIMULATION TIME

60
1 2 0
1 8 0
2 4 0
300
3 60
420
480
54 0
6G0
660
72 0

MILITARY TIME 1 0 0
MILITARY TIME 2 0 0
MILITARY TIME 300
MILITARY TIME 400
MILITARY TIME 500
MILITARY TIME 600
MILITARY TIME 700
MILITARY TIME 800
MILITARY TIME 900
MILITARY TIME 1000
MILITARY TIME 1100
MILITARY TIME 1 2 0 0

314 The GPSS/H Simulation Language

DAY NUMBER 1
DAY NUMBER 1
DAY NUMBER 1
DAY NUMBER 1
DAY NUMBER 1
DAY NUMBER 1
DAY NUMBER 1
DAY NUMBER 1
DAY NUMBER 1
DAY . W E R 2
DAY NliMBER 1
DAY NUMBER 1
DAY NUMBER 2
DAY NUMBER 2
DAY NUMBER 2
DAY NUMBER 2
DAY NUMBER 2
DAY " B Z R 2
DAY NUMBER 2
DAY NL'MBER 2
DAY NUMBER 2
DAY NUMBER 2
DAY NUMBER 2
DAY W E R 2
DAY NUMBER 2
DAY NUMBER 2
DAY NUMBER 2
DAY NUMBER 2
DAY NUMBER 2
DAY NUMBER 2
DAY NUMBER 2
DAY NUMBER 2
DAY NUMBER 2
DAY NUMBER 2
DAY NUMBER 2
DAY NURBER 2

SIMULATION TIME 780
SIMULATION TIME 840
SIMULATION TIME 900
SIMULATION TIME 960
SIMULATION TIME 1020
SIMULATION TIME 1080
SIMULATION TIME 1140
SIMULATION TIME 1200
SLWLATION TIME 1260
SIWJLATION TIME 1320
SIMULATION TIME 1380
SIMULATION TIME 1440
SIMULATION TIME 1500
SIMULATION TIME 1560
SIMULATION TIME 1620
SIMULATION TIME 1680
SIMULATION TIME 1740
SIMULATION TIME 1800
SIMULATION TIME 1860
SIMULATIGN TIME 1920
SIMULATION TIME i 9 a o
SIMULATION T I l B 2040
SIMULATICN TIME 2100
SIMLTWTION TIME 2160
SWJLATION TIME 2220
SIMiiJiTION TIME 2280
SIMULATION TIME 2340
SI.WLATION TIME 2400
SIMULATION TINE 2460
SIMULATION TIME 2520
SIMULATION TIME 2580
SIMIUTION TIME 2640
SIMULATION TIME 2700
SIMULATION TIME 2760
SIMULATION TIME 2820
SIMULATION TIME 2680

MILITARY TIME 1300
MILITARY TIME 1400
MILITARY TIME 1500
MILITARY TIME 1600
MILITARY TIME 1700
MILITARY TIME 1800
MILITARY TIME 1900
MILITARY TIME 2000
MILITARY TIME 2100
MILITARY TIME 2200
MILITARY TIME 2300
MILITARY TIME 2400
MILITARY T I E 100
MILITARY TIME 200
MILITARY TIME 300
MILITARY TIME 400
MILITARY TIME 500
MILITARY TIME 600
MILITARY TIME 700
MILITARY TIME aoo
MILITARY TIME 900
MILITARY TIME 1000
MILITARY TIME 1100
MILITARY TIME 1200
MILITARY TIME 1300
MILITARY TIME 1400
MILITARY TIME 1500
MILITARY TIME 1600
MILITkRY TIME 1700
MILITARY TIME 1800
MILITARY TIME 1900
MILITARY TIME 2000
MILITARY TIME 2100
MILITARY TINE 2200
MILITARY TIME 2300
MILITARY TIME 2400

Notice that the week day and the week number were not output. However,
for a simulation that ran for a longer time, they would be used. This simula-
tion took place for only 2 days in order to illustrate the nature of the military
code segment. If this segment is to be used in an actual program, the follow-
ing change would be needed: (1) The BPUTPIC can be removed to reduce the
program output, and (2) the timer transaction segment

c, EGENERATE C480*3*2
> ':TERMINATE 51

LSimulate for 2 days.

should be removed as the main program will already have a timer transaction
to control the length of the simulation.

Example 29.4, although very useful for simulation in general, did not contain
any SPLIT blocks. However, suppose that one wanted to shut down a part of
the program for 'h hour (30 time units) while the miners had a lunch break

The SPLIT Block 315

every weekday at noon and the miners did not work on Saturday or Sunday.
The main program needs blocks GATE LR LUNCH and GATE LR WEEKEND to
control these. For example, the main program where the mining is taking
place might have these GATE blocks just before the blocks that model the
crusher. When the truck transactions arrive at the crusher, the first must
check to see if these GATE blocks are open or shut. A skeleton of the program
might be

OSIMULATE
c

These two GATE blocks will stop the truck transactions from moving through
the system at lunch and during the weekends when the mining is to be stopped.

The changes to the program are shown next. Rather than repeat the whole
program, only the new code is given, as well as the old code above and below:

0 o-----
0 o-----
0 @LET ~&MILITIME=&MILITIMEtl mdd 1 minute t o 4-digit time
0 DES- WILITIME, 1200,NEXTl
0 USPLIT 01, WORKSHUT
$NEXT1 D E S m 0&MILITIME@100,60,NEXTMIN mast 2 d i g i t s = 60?
0 @LET O&MILITIME=&MILITIME+40 DES => Add 40

DAY NUMBER * * * SIMULATION TIME **** MILITARY TIME * * * *
0 D E S m /_?&MILITIME,240O,NEXTMIN Dave we reached 2400?
9 DLET ~ILITIME=0000 DES => rese t t o 0000
< I @LET o&DAYNO=&DAYNOtl OIncrement t o t a l days
'i @LET o&WKDAYNO=&WyJIAYNOtl mncrement day of week (1-7)
3 m E S m o&WKDAYNO , 6, NEXT2
0 CSPLIT 01, WEEKDONE
C>NEXT2 m E S m BWKDAYNO ,8, NEXTMIN CIS this new Monday? NO
3 @LET G&WKDAYNO=~ DES => reset day of week t o 1

0 DPUTPIC PILE=MYOUT,&WKDAYNO,AC~,&MILITIME

0 rJ-----

0 3-----
OWORKSmOGICflS DUNCH
0 WVANCE 030 @W.JT FOR 1/2 HOUR LUNCH
0 SCGICm DUNCH
13 DERMINATE
.3WEEKEO~OGICOS WEKEND
0 WVANCE o480*3*2 DSHUT FOR TWO DAYS

3 BERMINATE
0 30GICB []WEEKEND

G m E S m ~~LITIME@100,60,NEXTMIN Dast 2 d i g i t s = 60?
3 ,J-----

0 @---

316 The GPSS/H Stmulation Language

When the military clock is at 1200 (noon), the original transaction enters the
SPLIT block, and 1 clone is created; the clone is routed to the block labeled
WORKSHUT. The associated logic switch LUNCH is placed in a set position.
The clone is held there for 30 time units, and then the logic switch LUNCH is
reset. A similar thing happens when the day is number 6 (= Saturday). The
original transaction enters a SPLIT block; the clone produced is then routed to
the block with the label WEEKDONE. The entry of the clone places the associ-
ated logic switch WEEKEND in a set position and holds it there for 480*3*2
time units (= 2 days).

GENERAL F O R M OF THE SPLIT BLOCK

The most general form of the SPLIT block is

0 GSPLIT m, B, C, D, E , F, G

As before, operand A is the number of clones to create, and operand B is the
label of the block the transactions are routed to. Operand C is an integer
parameter (PH, PB, or PF) and is called the serialization option; it allows one
to place sequential numbers in the parameter identified in operand C in both
the original transaction and the clones. The original transaction arrives at the
SPLIT block with a previously determined value in the parameter specified by
the C operand. The original transaction leaves the SPLIT block with this value
incremented by 1. The first clone leaves with this value incremented by 2, etc.
GPSS/H increments the parameter of each succeeding clone by 1.

Operands D, E, F, and G are the type and number of parameters each of the
clones will have. They will normally have the same values as the original
transaction, unless the serialization option is used. If more parameters are
specified than the original transaction had, each will have the value zero.
Most of the time operands D-G are not used.

An example of the C operand is:

9 OSPLIT i]l,NEXT,3PH

Suppose that the value in the third halfword parameter was 4. Then the origi-
nal transaction would have the value 5 (increment by 1) in its third halfword
parameter, and the clone would have the value 6 in its third halfword param-
eter. In another example,

3 ,SPLIT 15, AWAY, 2PH

suppose that the value in the transaction’s second halfword parameter was 0.
Then the values placed in each of the various transactions would be

The SPLIT Block 317

Value in Second
Transaction Halfword Parameter

original 1

1st clone 2
2nd clone 3
3rd clone 4
4th clone 5
5th clone 6

If one tried to use code such as

0 USPLIT 02, BBBB, 2PL

a compiling error would result because only PH, PF, and PB parameters are
allowed.

Two examples in which the number and type of parameters are changed are

9 @SPLIT 03,UPTOP, ,1PH,2PL,3PB,4PF
0 @SPLIT 02,AWAY1,3PH,12PH,12PL

This option is rarely used, as it is good programming practice to make each
transaction+ven the timer transaction-have the same number and type of
parameters.

EXERCISES, CHAPTER 29

1. State what each of the following SPLIT blocks do:
0 OSPLIT 03, DDDD O(a)
0 OSPLIT 04, AWAY, 3PH O(b)
0 USPLIT 01,BACK,5PB,lPH,lOPB Ll(C)

OBLOCK USPLIT 05, FN (WHERE) D(e)

The function WHERE is defined as
OWHERE @JUNCTION [5r(BLOCK)@5+1,L5

0 OSPLIT c]6,MARY, ,3PH,3PL,3PB,3PF @ (d)

l,BLOCKA/2,BLOCKB/3,BLOCKC/4,BLOCKD/5,BLOCKE

2. Consider the following code:
0 @ m M T E f i s t ,1
0 DSSIGN 01,3, PH
0 DSSIGN 02,5, PH
r, EPLIT 02, AWAY, 2PH
+AWAY 3DVANCE 00

What number and types of parameters will the transactions have when
they enter the ADVANCE block? What are the values in each parameter?

318 The GPSS/H Slmulation Language

3. Parts come along a conveyor belt every 10 f 4.5 minutes. A single worker
takes 8 * 3.6 minutes to work on them. When she is done, she attaches
each to an overhead crane that carries them to the next work station. As
soon as they arrive at this station, there are two workers who take 18 f 7
minutes to finish the parts. The crane takes 2 f 0.5 minutes to move from
the single worker to the finishing station and then takes 1.5 * 0.25 min-
utes to return. Model this system for 1 day’s production. Determine how
busy the workers are and how many units are produced.

SOLUTIONS, CHAPTER 29

I. a. Three transactions are created which are clones of the transaction
entering the block. All three are routed to the block with the label
DDDD. The parent transaction moves to the next sequential block. All
four transactions are identical.

b. Four transactions are created and routed to the block with the label
AWAY. The parent transaction will move to the next sequential block
and will have the value in halfword parameter 3 incremented by 1.
The first offspring will have its third halfword parameter incremented
by 2, etc.

c. One transaction will be created which will have 1 halfword parameter
and 10 fullword parameters. The value placed in the fifth byte-word
parameter for the parent will be the old value plus 1. The value placed
in the fifth-word parameter of the clone will be the old value plus 2.
The cloned transaction will be routed to the block with the label
AWAY and the parent moves to the next sequential block.

d. Six transactions are created which are routed to the block with the
label MARY. The parent is routed to the next sequential block. All six
new transactions will have 3 parameters of type halfword, floating-
point, byte- and fullword. The parameters and number of the parent
are unchained.

e. Five transactions are created. The first offspring is routed to the block
with the label BLOCKA, the second to the block with the label
BLOCKB, etc. This is done by using modular arithmetic. The value of
N(BLOCK)@5+1 will always be 1,2,3,4, or 5. The function WHERE
directs the transactions to the various blocks in sequence.

2. Two transactions are created at the SPLIT block. They, together with the
parent transaction are all sent to the next sequential block, the ADVANCE
block. All transactions will have 12 halfword parameters (from the GEN-
ERATE block) with a value of 3 in the first parameter and zeros in all
other parameters except for parameter 2. The parent will have a value of
6, the first offspring a value of 7 and the second offspring a value of 8.

SPLIT Block 319

3. The program to do the simulation is:
SIMULATE
INTEGER &I
STORAGE S(FINAL),2
Do &I=l, 25
PUTSTRING (' ')

ENDDO
COMEIN GENERATE 10,4.5

QUEUE WAITl
SEIZE WORKER
DEPART WAITl
ADVANCE 8 , 3 . 6
RELEASE WORKER
SEIZE CRANE USE THE CRANE
ADVANCE 2, . 5
SPLIT 1,DDDD MAKE CLONE
ADVANCE 1.5, .25 CRANE RETURNS
RELEASE CRANE
TERMINATE

DDDD QUEUE WAIT2 NEXT STEP
ENTER FINAL
DEPART WAIT2
ADVANCE 1 8 , l
LEAVE FINAL
TERMINATE
GENERATE 480
TERMINATE 1
START 1
Do &I=l, 25
PUTSTRING (I ')
ENDDO
PUTPIC LINES=4,N(COMEIN),FR(WORI:ER)I10.,-

SR(F1NAL) /lO.,FR(CRANE)/lO.
PARTS TO COME INTO THE SHOP * * *
UTIL. OF WORKER ******g
UTIL. OF FINAL WORKERS ***. **%

*** . **% UTIL. OF CRANE
PUTSTRING (' ')

PUTSTRING (I ')

PUTSTRING (' SIMULATION OVER....')
END

The output from running the program is:
PARTS TO COME INTO THE SHOP 48
mn. OF WORKER 80.29%
mn. OF FINAL WORKERS 83.52%
mn. OF CRANE 34.65%

Assembly Sets and the
ASSEMBLE, GATHER, and
MATCH Blocks

.
CHAPTER 30

All transactions belong to different groups known as mernbly sets. When a
transaction is created via the GENERATE block, it is assigned its own assem-
bly set. Once a transaction is assigned its own assembly set, it remains there
until it leaves the system. These sets are not numbered or named, so a person
cannot refer to them. Only after a transaction leaves the system and reenters
later can it be assigned a different assembly set. When only a single transac-
tion is in an assembly set, there is not much of interest with the set. It is when
there are multiple transactions belonging to a particular assembly set that it is
of interest to the programmer.

When a transaction enters a SPLIT block, the clone transactions belong to the
same assembly set as the original. Even if these clones themselves enter a
SPUT block, the resulting new clones belong to the same assembly set. Sev-
eral blocks are used with the concept of assembly sets. The first is the ASSEM-
BLE block.

THE ASSEMBLE BLOCK

The ASSEMBLE block acts in a manner opposite to the SPLIT block. The SPLIT
block clones new transactions into the system and the ASSEMBLE block
removes them. The form of it is

0 @ASSEMBLE

OperandA gives the number of transactions to be removed from the system.
When a transaction enters the ASSEMBLE block, it is delayed there until other
members of its assembly set also arrive in the block, where each is removed.
Only when the counter (as given by operand A) is reached is the f i s t transac-
tion to enter the ASSEMBLE block allowed to move to the next sequential
block. It is immaterial to GPSS/H if the first transaction to arrive at the
ASSEMBLE block is the original uncloned (parent) transaction or not. The
first transaction in the block is the one that is allowed to move on.

321

322 The GPSS/H Simulation Language

For example, when a transaction enters the block

0 @ASSEMBLE @2

it will be delayed until another transaction from its assembly set also enters
the block and one is subsequently destroyed. A program might have a set of
blocks such as

0 OSPLIT 02, DOWNA
0 ----- [1_---- 0
0 ----- @ ----- 0

O D O m 0 ----- 0 -----
0 ----- 0 ----- 0

0 @ASSEMBLE 03

The SPLIT block creates two clones when the original transaction enters it.
Later, two of the transactions in the same assembly set are removed from the
system. The transaction that goes to the sequential block afcer the ASSEMBLE
block is not necessarily the original transaction.

It is possible to have the same ASSEMBLE block working on more than one
assembly set, and for a given assembly set, it is possible to have assembling
operations being done at more than one ASSEMBLE block. Thus,

0
0
ODowNl
0
0
OBLOCKA
0
0
OBLOCKB
0
0

@SPLIT 06, DOWN1

r

The block TRANSFER ,FN(AWAY) might send some of the clones to BLOCKA
whereas others might go to BLOCKB.

Example 30.1

A drill press ,is used to drill various numbers of holes in boxes. There are
assumed to be an infinite supply of these boxes. A single worker takes 20 k 8
seconds to position each undrilled box in front of the drill. Next, the worker
drills a hole, and the time for this drilling is normally distributed with a mean
of 45 seconds and a standard deviation of 7 seconds. After each hole is
drilled, it is necessary to adjust the drill and check for tolerances. Then, if all
the needed holes are drilled, the box is sent along to the next stage, and the
worker takes a new box to be drilled.

Simulate for 10 shifts of work; each shift is 480 minutes long. Determine how
many boxes are drilled by the worker. The program must have the number of
holes to be drilled as a variable.

Assembly Sets and the ~SSEUBLE, GATHER, and mmw Blocks 323

Solution
0 OSIMULATE
0 OINTEGER @&HOLES, &I, &BOXES
0 ow 0&1=1, 2 5
0 OPUTSTRING O('mi)
0 m m
0 OPUTSTRING o (' HOW MANY HOLES TO D R I L L ? ')

0 G E T L I S T @HOLES
0 GENERATE O,,
OBACKUP OSEIZE D R I L L E R
3 OSPLIT 01, BACKUP
0 @ADVANCE 0 2 0 . 8 OPOSITION BOX
9 @ADVANCE BVNOW (1,45,7) D R I L L

0 W V A N C E I-JWEXPO (1 , 8) E H E C K
3 D E L E A S E D R I L L E R

3 @LET O&BOXES=&BOXES+l
3 D E W I N A T E
0 GENERATE 060*60*8*10 OSIMULATE FOR 10 S H I F T S
0 PERMINATE 01
0 OSTART 01
6 rw O & I = 1 , 2 5

9 W D o
0 OPUTPIC &INES=2,&HOLES,&BOXES/10.

0 OPUTSTRING ocq-na)

3 @ADVANCE 0 6 . 3 W s T

9 DSSEMBLE @&HOLES

3 OPUTSTRING GC

NUMBER OF HOLES TO DRILL/BOX * * *
AVERAGE BOXES DONE/SHIFT * * * . * *

/J @PUTSTRING @('m')
3 OPUTSTRING 0 (' SIMULATION OVER. . . .)

3 CDD

Notice that the worker is represented by a single transaction. He or she seizes
the drill and immediately makes a clone of the drill. This clone is sent to the
SEIZE block but cannot enter this block because it is already seized. Next, the
various processes for drilling a single hole are carried out. When they are all
done, the drill is released, and the transaction enters the ASSEMBLE &HOLES
block. If the number of transactions in this block is one less than the number
of holes needed to be drilled, the single transaction is allowed to pass through
to increment the number of boxes drilled and then is terminated. At this
point, the transaction attempting to enter the SEIZE block can now do so. The
output from the program for various numbers of holes to be drilled is

Number of Holes Boxes Per Day
10 36.40
12 30.30
14 26.00
16 22.70

324 The GPSS/H Slmulatlon Language

Example 30.2

It is common to represent a project to be completed as a series of subprojects,
each of which must be completed before the whole project is finished. For
example, in the construction of a house, the foundation needs to be finished
before the walls can be started. However, once the foundation is finished, it is
possible to begin work on several projects, not just the walls. The wiring, the
plumbing, etc., may be included in these projects. One method of graphically
showing the order of all of the subprojects that go into an overall project, such
as the construction of a house, is known as a PERT (program evaluation and
review technique) diagram. Once a PERT diagram is developed for a project,
the expected time to complete the project can be determined. These PERT
diagrams are very easy to simulate in GPSS/H by using a combination of the
SPLIT and ASSEMBLE blocks.

As an example, the PERT diagram in Figure 30.1 shows the possible steps that
are involved in a system involving trucks that come to a shop for routine
maintenance. The trucks arrive every 20 f 8 minutes. The different steps to
service a truck and the times for each step are shown. All times are in min-
utes. Estimate the average time to service a truck. How many trucks are ser-
viced in a typical 8-hour shift? How long is a truck in the service shop? How
busy is the shop? Assume that there are always enough workers in the service
shop so that a subproject can always be performed.

The program will handle the places where several jobs are to begin by the use
of the SPLIT block. This approach allows simulation of more than one job
being worked on at once.

Solution
0 OSIMULATE
0 UINTEGER 0&I
0 D O O & I = l , 25

0 W D D O
QTIMEIN @ABLE @l I 15,1,50
* TIME USED I N OUTPUT TO DETERMINE AVG
0 BENERATE 0 2 0 , 8 , , , , 1 P L
0 []QUEUE m A I T
3 BATEflLR OWAITUP
0 Z O G I C O S m A I T U P
0 B U F F E R
0 D E P A R T m A I T
0 W V A N C E 0 2 , l
0 O S P L I T 01, F I R S T
0 @ADVANCE 01, .5
0 O S P L I T 01,SECOND
0 @ADVANCE 02, . 4 5
0 BRANSFER 0,NEYT

0 OPUTSTRING o (~ m ~)

TIME I N SYSTEM
D R U C K S ARRIVE

BAN I T GO I N ?
USET GATE FOR NEXT TRUCK

B O I S T TRUCK

OREADY FOR O I L

OINSPECT

Assembly Sets and the ASSKWBLE, GATHER, and wmx Blocks 325

START

Truck arrives 20 k 8 0
Hoist 2 + 1

Ready to oil 1 k 0.3

Check 2 & 0.35

Oil 2 k 1

Check 3 + 1.5

FINISH

Misc. 5 + 2

Flgure 30.1 PERT diagram for truck In repalr shop.

'XECOND
5

3
')NEXT
3
5
rJ
5
5
3

'/FOURTH
5
9

/)FIRST

/;THIRD

W V A N C E
TRANSFER
W V A N C E
N V A N C E
DSSEMBLE
CRDVANCE
W V A N C E
ESPLIT
W V A N C E
W V N i C E
P R A N S F E R
W V A N C E
@.S SEMBLE
,>OGICLR
/fTABULATE

22, .5
d, NEXT
G2,l
g2, .35
E3
02,l
~ V E X P O (1,2)

;3 I 1
nl, THIRD

C3,1.5
D, FOURTH
?5,2
!?
WAITUP
CTIMEIN

COIL

B R E A S E
WHECK
3 A I T FOR 3 JOBS TO F I N I S H

$OWER TRUCK
 ORE OIL

CGREASE
/?CHECK ENGINE

326 The GPSS/H Simulation Language

$ALLDONE UTERMINATE
0 EENERATE 0, , ,1,1 @DUMMY TRANSACTION
CBACKUP m A T m S WAITUP @OLD UNTIL SERVICE BUSY

0 E A T m R BAITUP

0 BRANSFER G, BACKUP
0 BENERATE 0480*100

0 OSEIZE DUMMY

0 @RELEASE DUMMY

0 DEWINATE ill
0 OSTART 01
0 D O O&I=l, 25
0 OPUTSTRING E (* 1 o i)
0 W D O
0 DPUTPIC mINES=4,N(ALLDONE) /loo. ,QA(WAIT) ,TB(TIMEIN) ,_

FR(DUMMY)/lO.
TRUCKS SERVICED EACH DAY *** . **
AVERAGE WAITING NUMBER * * * * *
AVERAGE TIME IN THE SYSTEM ***.**
UTIL. OF SERVICE ***. * *%

0 B N D

Notice how the utilization of the system must be written. A dummy transaction
is created that seizes a dummy facility whenever a truck is being serviced. It is

' not possible to have regular SEIZE and RELEASE blocks in the main program
because only the original (nonclone) transaction SEIZES a facility. Since the
ASSEMBLE block destroys transactions without regard to the order in which
they have arrived, it may try to destroy a transaction that has a facility seized.
This attempt would result in a run-time error. The following output from the
program shows that the system appears to be performing satisfactorily:

TRUCKS SERVICED EACH DAY 2 4 . 0 7
AVERAGE WAITING NUMBER 0 . 0 9
AVERAGE TIME IN THE SYSTEM 1 8 . 0 6
UTIL. OF SERVICE 81.94%

Example 30.3 (from Schriber, 1974, p. 466; see Preface for availability)

In Example 30.2, it was assumed that there were enough workers to perform
the service on the truck. In practice, each job will require a set amount of work-
ers. In the following example, the number of workers for each is specified. It is
assumed that the job cannot begin until these workers are available. Thus, if a
job requires 5 workers and only 4 are available, the job cannot be started.

The network shown in Figure 30.2 represents a series of subprojects that must
be carried out to complete an overall project. A pair of circles (nodes) con-
nected by a directed line segment is used to depict each particular subproject.
For example, node 1 is connected to node 2, depicting what is called subproject
1 to 2. Each directed line segment is labeled to show how many people and how
many time units are required to perform the corresponding subproject. Sub-
project 1 to 2 requires 4 people and takes 14 * 6 time units to complete.

Assembly Sets and the ASSEMBLE, GA-, and MA= Blocks 327

START

FINTSH
FIGURE 30.2 PERT diagram.

The times and people needed for each project are as follows:

Project People Needed Time

1 to 2 4 14f6
1 to 3 3 20 f 9
2 to 4 3 10f3
2 to 5 5 18+4
3 to 4 2 22 f 5
3 to 6 1 25 f 7
4t0 7 4 15 ? 5
4t0 5 0 no time
5 to 7 2 8 f 3
6 to 7 4 l o + 3

Figure 30.2 also displays the precedence constraints, indicating which sub-
projects must be completed before other subprojects can be started. For
example, subproject-s 2 to 4 and 3 to 4 must be completed before subproject 4
to 7 can be started. Similarly, subproject 5 to 7 cannot be initiated until sub-
project 2 to 5 is finished, and until the subprojects leading into node 4 have
been completed.

In projects of this kind, it is of interest to know how much time will be
required to complete the overall project. Use GPSS/B to simulate the under-
taking of the overall project shown in Figure 30.2. Have the model determine
the average number of workers on the job at any one time. The program
should be interactive so that the number of jobs simulated is a variable as is
the number of workers.

328 The GPSS/H Slmulatkm Language

Solution
0 DSIMULATE
0 [IINTEGER o&I, &JOBS, &NJOBS, &WORK

OAGAINl & I = l , 25
0

0 EHAR*l o&ANs

DUTSTRING 0 (' c1? ')

DPUTSTRING c(' HOW MANY JOBS TO SIMJLATE FOR? ')
0 m m

0
O

3 B E T L I S T BNJOBS
3AGAIN2 DUTSTRING c] ('m ')
3 OPUTSTRING 0 ('HOW MANY WORKERS ARE THERE? ')

OPUTSTRING 3 ('2' 1

0 DUTSTRING 3 (33)
0 B E T L I S T o&WORK
0 OPUTSTRING c] ('z ')
3 USTORAGE I S (WORKER) ,&WORK
C ZPUTSTRING n(' SIMULATION I N PRKRESS ')
ORTIME mABLE N l P L , 2 5 , 2 5 , 3 0
OINUSE DABLE I S (WORKER) , 7 , 1 , 2 0

OBACK ElPL
0 BSPLIT 01, SUB13 C h J O F X O N l - 3 A N D 1 - 2
0 WER mORKER,4 I]wORKERS FOR 1 - 2

7 @ENF.RATE O,, ,I, ,1PL

0 WVANCE 0 1 4 , 6
0 =LEAVE BORKER,4
0 S P L I T 01, SUB24
0 W E R mORKER,5 i]wORKERS FOR 2 - 4
0 WVANCE i]18,4

QNODE5 DSSEMBLE 0 2
0 ImTER owoRKER,2 []WORK ON 5 - I
3 WVANCE C 8 , 3

0 aEAVE @ORKER,5

? CLEAVE *ORKER,2
9 LTRANSFER 2, NODE^
'jSUB24 WER mORKER,3 3 O R K ON 2 - 4
0 ?ADVANCE c10,3
0 c5EAVE mORKER,3
piNODE4 3SSEMBLE 2 2
> CSPLIT 3 1, NODE5
/ I m E R ?IJORKER,4 DORKERS FOR 4 - 7
3 EADVWCE Z l 5 , 5
') 3 E A V E 3ORKER,4
+NODE1 BSSEIDLE fi3 WAIT FOR JOBS TO FINISH
d DABULATE @TIME LTMULATE TIMES FOR EACH JOB

3 W S F E R 2,BACK
?SUB13 W E R PORKER,3
7 KADVANCE 3 2 0 , 9
1 DEAVE ?dORKER, 3
3 CSPLIT El, SUB34

B L E T GJOBS=&JOBStl IXOUN'I JOBS

W E R ;WORKER, 1 -WORK 3 - 6
9 WVANCE ;25,7

Assembly Sets and the ASSEMEILE, GATHER, and MATCH Blocks 329

0 CLEAVE moRKER,1
0 OENTER mORKER,4
0 WVANCE 010,3
0 CLEAVE moRKER,4
0 DRANSFER 0, NODE7
osuB34 @EWER moRKER,2 moRK 3 - 4
0 WVANCE 022,5
0 mEAVE moRKER,2
0 DRANSFER 0, NODE4
9 GENEFATE u, , , 1 ,lo, 1PL OPROVIDE 1 TRANSACTION (I.E., WORKER)
$BACKUP m OlPL m TIME IN PARAMETER 1
0 D E S W @IPlPL,O [IWAIT UNTIL CLOCK CHANGES
3 DABULATE UINWSE ENTRY IN TABLE (WORKERS USED)
0 DRANSFER 0, BACKUP BACK AND WAIT FOR CLOCK TO CHANGE
0 E-TE O,, ,1
0 D E S m E o&JOBS, &NJOBS
9 DERMINATE 01

0 tw 0&1=1,25
0 OSTART 01

3 OPUTSTRING D(om')

ci OENDDO
0 DPUTPIC DINES=C, &NJOBS , &WORK, TB (RTIME) -

SR(W0RKER) /lo, =(WORKER) , TB(1NUSE)
SIMULATION FOR ***** JOBS
NUMBER OF WORKERS * * *
AVERAGE TIMEiJOB * * * * * *

*** .** UTIL. OF WORKERS
MAX. WORKERS IN USE **
AVG. NO. WORKERS IN USE * * . * *
0 OPUTSTRING o('10')

3 OPUTSTRING ' DO AGAIN? (Y/N) ')
ci UPUTSTRING [I('9')

3 BETLIST BANS

0 DIF

9 CPUTSTRING nclml)

0 (€CANS ' E 'Y ') OR (&ANS ' E ' ' y ')
3 BLEAR
3 BET C&JOBS=O
3 OPUTSTRING C ([G)

9 OPUTSTRING 0 ()
r / OPUTSTRING o (' CHANGE ONLY THE NO. OF WORKERS? (Y/N) ')

9 BETLIST O M S
3 OIF O(&ANS'E' 'Y')OR(&ANS'E' 'y')
3 C]GOTO ~GAINZ

W I F
3 W T o GAIN^
5 W I F
9 W

Notice how the segment to handle the number of workers is done. The 5 lines
of code involved are labeled with comments. A dummy transaction cycles
through the lower 4 blocks. The time of the simulation is placed in its first
fullword parameter. Whenever the time changes in the program-which hap-
pens whenever a job is complete-an entry is made into the table INUSE,
which gives the number of workers employed.

A

330 The GPSS/H Simulation Language

The simulation was run until 100 jobs were completed. A summary of the
results of the simulation are as follows:

Number of Avg. Time to Util. of Avg. No. Maximum
Workers Complete Project Workers Working No. Working

6 98.27 71.48% 4.58 6
7 81.80 73.70% 5.15 7
8 62.73 83.98% 6.30 8
9 66.13 70.66% 6.33 9
10 65.26 64.60% 6.60 10
11 58.47 65.33% 7.38 11
12 58.44 60.03% 7.39 11
13 59.03 55.11% 7.38 13

.
500 58.92 1.43% 7.37 14

As can be seen, the optimum number of workers to have available appears
to be 11. This will depend on being able to keep all the surplus workers
busy, so there would have to be further economic study to determine the
actual optimum number of workers to have. When an infinite labor supply is
available, as indicated by the output data for 500 workers, the maximum
number ever in use is 14.

In Schribeis example, the simulation was run for 250 jobs. When 11 workers
were available, the utilization was 64.8%, and the average number of workers
in use was 7.35. The average time for a job was 59.1 time units. These num-
bers are in good agreement with those found here.

THE GATHER BLOCK

The GATHER block acts much the same as the ASSEMBLE block in that it
holds transactions from the same assembly set until a specified number is
reached. This number is given by operand A. Whereas the ASSEMBLE block
destroys all but 1 transaction when this number is reached, the GATHER
block lets all the transactions through to the next sequential block. The gen-
eral form of the GATHER block is

3 B A T H E R FA

Some examples of this block are

?(a) E A T H E R ;13
C(b) CGATHER c&AMOUNT
.>(c) S A T H E R m(MlT1)

In (a), the GATHER block holds transactions from the same assembly set until
it has accumulated 3 and then lets all 3 move to the next sequential block. In
(b) and (c), operand A is specified by the ampervariable &AMOUNT and by
the function FNfAMTl), respectively.

Assembly Sets and the A S S ~ L E , GA- and MATCH Blocks 331

There are not too many applications of the GATHER block compared to the
ASSEMBLE block since once transactions have been cloned, it is rare that
they are allowed to remain in the program for very long. Probably the most
common example of the GATHER block comes from manufacturing, as in
the next example.

Example 30.3

Parts come along an assembly line and are stacked in front of a single worker
who inspects each part. Of these parts, 10% are rejected. It is assumed that
there are always enough parts arriving for the worker to do the inspection.
The worker inspects a part in 8 * 4 seconds and sets it aside until 50 parts
have passed inspection. When the count becomes 50, the worker places the
inspected parts inside of a carton. It takes 1.5 * 0.5 seconds for the worker to
place each part in the box. Determine how many boxes the worker can fill
each day. The worker receives no breaks for lunch or coffee.

Solutlon
0 OSIMULATE
0 OINTEGER o&I , &BOXES
0 OD0 i?&I=l, 25
0 OPUTSTRING o(ml)
0 OENDW
0 O G m T E O,,
OBACKUP OSEIZE D~ORKER
0 D V A N C E 08,4
0 GSPLIT 01, BACKUP
0 [IRELEASE BORKER
0 DRANSFER 0.1, , BADPART
0 DRIORITY 010
0 GATHER 050
0 OSEIZE D O m R
0 D V A N C E 01.5, .5
0 W E A S E BORKER
0 DSSEMBLE C50
0 B L E T O&BOXES=&BOXEStl
0 BERMINATE
OBADPART BERMINATE
0 EENERATE 03600*8
0 DTERMINATE 01
0 ISTART 01
0 OD0 O&I=l, 25
0 UPUTSTRING OC'm')
0 W D O
0 UPUTPIC DINES=~,&BOXES

9 om
BOXES FILLEDIDAY * * *

DUMMY TRANSACTION
01s BUSY
EHECKS A PART
EREATE NEW TRANSACTION
B R E E , BUT.. .
010% ARE BAD
@IGH PRIORITY
B A I T FOR 50 DONE
B O W , SEIZE WORKER AGAIN
UPLACE PART I N BOX
BREE WORKER TO PLACE NEXT PART I N BOX
WED 50 I N THE BOX
i]cOUNT BOXES

OSIMULATE FOR 8 HOURS

The worker will produce 55 boxes a day.

332 The GPSS/H Simulation Language

THE MATCH BLOCK

The MATCH block is very useful in modeling manufacturing systems. A
MATCH block always has a “twin” block that is in another part of the pro-
gram. The effect of a MATCH block is to cause a pair of uansactions to “wait
for each othei‘ before both can move on to the next block in the program. The
form of the MATCH block is as follows:

OLABELl W T C H W E L 2

In another part of the program, there must be a corresponding block that has
the following form:

0LABEL2 W T C H W E L 1

Thus, operand A of the first MATCH block becomes the label of the second
MATCH block and vice versa. A transaction arriving first at either of these
blocks will be delayed until a member of its assembly set arrives at the other
block. The MATCH blocks can be thought of as “pointing” at each other. Once
a member of the same assembly set arrives at the matching block, both trans-
actions are allowed to move to the next sequential blocks.

Example 30.4

Trucks amve at a repair shop every 18 f 4 minutes. There are two crews to
service a truck. Both can begin work simultaneously. When a truck comes for
service, the “blue crew” can begin lubrication of the underside of the truck,
which takes 6 * 1.5 minutes, and the “green crew” does an engine inspection,
which takes 6.5 k 1 minutes. Only when both jobs are done can the truck be
repositioned for the next jobs. The blue crew does minor adjustments in 7 * 3
minutes, and the green crew does minor repairs to the engine in 8 f 4.5 min-
utes. When these jobs are done, the blue crew does a quick wash of the truck,
which takes 3 f 1 minutes. Simulate for 100 shifts of 480 minutes each to
determine the number of trucks that can be serviced in a shift, the average
number of trucks waiting in the queue at the repair shop, and the utilization
of both crews.

Solution

0
0
0
0
0
0
3
0
0
0
3
0
OWAITUP
0
0
0

OSIMULATE
OINTEGER @I
D O u&I=l, 2 5
OPUTSTRING o c m)
CDDW
GENERATE lJ18,4
OQUEUE m A I T
OSPLIT 01, AWAY
USEIZE D L U E
DEPART m A I T
@ADVANCE @6,1.5
BELEASE D L U E
W T C H (?OTHERS
OSEIZE B L U E
@ADVANCE 0 7 , 3
DELEASE @IRST

UTRUCKS ARRIVE

DLUE CREW

OUBRICATE
B L U E CREW
D A I T FOR OTHER CREW
B L U E CREW
BINOR ADJUSTMENTS

Assembly Sets and the A S S ~ L E , GATHER, and MATCH Blocks 333

OBACKUP DSSEMBLE 0 2
0 nSEI7.E D L U E @BLUE CREW
0 @ADVANCE 03,l B U I C K WASH

OTRUCK DERMINATE
OAWAY @SEIZE &REEN E R E E N CREW
0 @ADVANCE 0 6 . 5 , l W G I N E INSPECTION
0 D E L E A S E EREEN E R E E N CREW
COTHERS W T C H D A I T U P m A I T FOR OTHER CREW
0 E E I Z E E R E E N &REEN CREW
0 @ADVANCE 0 7 , 3 DINE TUNING
0 B E L E A s E E R E E X 5 R E E N CREW
0 DRANSFER 0, BACKUP
0 EENERATE 0480*100

0 B E L E A S E D L U E B L U E CREW

0 UTERMINATE 01
0 OSTART 01

0 OPUTSTRING IJ(lm')
0 DENDDO

0 D O 0 & 1 = 1 , 2 5

0 UPUTPIC @INES=4,N(TRUCK)/lOO.,FR(FIRST)/lO.,-
F R (S E C O N D) / l O . , Q A (W A I T)

TRUCKS SERVICED PER S H I F T * * * . **
U T I L . OF BLUE CREW *** . **%
U T I L . OF GREEN CREW *** . **%
AVERAGE NO. OF TRUCKS WAITING ***.**

0 aEND

The results of the simulation are

TRUCKS SERVICED PER SHIFT 26.59
UTIL. OF BLUE CREW 88.67%
UTIL. OF GREEN CREW 74.95%
AVERdGE NO. OF TRUCKS WAITING 0.07

As can be seen from the results, the service area seems to be working all right.

EXERCISES, CHAPTER 30

I. A race car comes into the pits for a routine stop. It needs the following
operations done, each of which start at the same time and each of which
requires a different crew of mechanics. All times are in seconds.
a. Refueling: 18 k 6
b. New tires: 22 f 7
c. Refresh the driver: normal distribution, mean of 15, standard devia-

d. Engine check: exponential distribution, mean of 19
Simulate for 5000 pit stops to determine the expected time in the pits.

2. The average time in the pit for the race car in exercise 1 is found to be too
long. Suppose that the engine check time can be changed to being from
the normal distribution with mean of 19 and standard deviation of 3.1.
How does this change the expected time in the pits?

tion of 3

334 The GPSS/H Slmulatkn language

SOLUTIONS, CHAPTER 30

I. The program to do the simulation is:
SIMULATE
INTEGER &I, &NO, &NOSIM
Do &I=l, 25
PUTSTRING (I ')

ENDDO
PUTSTRING (' HOW MANY PIT STOPS TO SIMULATE FOR?')
PUTSTRING (' ')

GETLIST &NOSIM
WHERE FUNCTION N(BLKK)@3+1,L3

l,BLOCKAI2,BLOCKBI3,BLOCKC
INPITS TABLE MPLlPL,15,1,30

BACKUP MARK 1 PL
BLOCK SPLIT 3,FN(WHERE)

GENERATE , , ,1, ,1PL

ADVANCE 18,6 REFUEL
TRANSFER ,READY

BLKKA ADVANCE 22,7 NEW TIRES
TRANSFER ,READY

BLOCKB ADVANCE RVNORM(1,15,3) DRIVER REFRESHED
TRANSFER ,READY

BLOCKC ADVANCE RVEXPO(1,19) ENGINE CHECK
READY ASSEXBLE 4

TABULATE INPITS
BLET &NO=&NO+l
BUFFER
TRANSFER ,BACKUP
GENERATE , , ,1,1
TEST GE &NO, &NOSIM
TERMINATE 1
START 1
DO &I=l, 25
PUTSTRING (' ')

ENDDO
PUTPIC LINES=2,&NOSIM,TB(INPITS)

NUMBER OF PIT STOPS TO SIMULATE FOR * * * *
AVERAGE TIME IN TXE PITS * * * - * *

END
END

The results of the simulation are somewhat surprising as they are:
NUDER OF PIT STOPS TO SIMULATE FOR 500o
AVERAGE TIME I N THE P I T S 28 .67

2. The change to the program requires only changing the block:
BLOCKC ADVANCE RVEXPO(1,19)

to
BLCCKC ADVANCE RVNORM(1,19,3.1)

Making this change and running the simulation yields an average
expected time of 23.32. This is a considerable time difference from the
results of Exercise 30.1.

.
CHAPTER 31 Macros

MACROS

Anyone seeing a complex GPSS/H program for the first time will most cer-
tainly be confused by the cryptic appearing nature of the code. Part of the rea-
son for this is that it is good programming to use as many macros as possible.
A macro is a shorthand way of writing lines of code that are repeated in the
program with the only differences being in text or numbers. Most of these dif-
ferences are found in the labels, operands, and the output from BPUTPICS but
may be found in other blocks as well. For example, many large programs have
the following lines of code repeated many times with the only difference
being in the operands:

’/ WURTE P A I T 1
// OSEIZE mCH1
/ DEPART m A I T 1
/ r@DVANCE 1 2 0 , 5
/ PELEASE lmCH1

Then in another part of the program, there might be the following lines of code:

/ SQUEUE MAIT2

/ ‘?DEPART P A I T 2
5 :SEIZE 3lACH2

// rADVANCE 5 1 5 , 5
// -ELEASE m C H 2

These 5 lines of code are very similar with the only differences being in the
operands. A macro will replace these lines of code by a single line. The macro
must first be defined before it is used. Most macros are defined near the top of
the program before the first GENERATE block, but this positioning is only for
the convenience of the programmer. The statements that specify the macro
are known as macro definition statements. Text to be replaced when the
macro is expanded during compiling are indicated by the number sign, “#,”
followed by a letter from A to J. Thus, the 5 blocks given previously could be
written in the macro definition as

335

336 The GPSS/H Simulation Language

c BUEUE n#A
0 USEIZE C#B
0 D E P A R T r # A
0 W V A N C E a # C , # D
9 D E L E A S E a # B

In the program, one would have a single line of code. This might be as follows:

OMYFIRST W C R O m A I T 1 , MACHl , 2 0 , 5

where WAIT1 replaces #A, MACH1 replaces #B, 20 replaces #C, and 5
replaces #D. Since the macro text replacement is indicated by a letter from A
to J, this means that a macro can have only 10 such replacements. However, it
is possible to have a macro invoke another macro, which in turn can invoke a
macro, etc.; so, in practice, there can be many such replacements.

The formal definition of a macro is as follows:

OLABEL USTARTMACRO
C----- .macro definition statements

3 ?----- .macro definition statements
3 WDMACRO

The "words" STARTMACRO and ENDMACRO must be as shown. When a
macro is invoked in the main program, the form is

OLABEL W C R O C]A,B,C . . .

where operands4 B, C, . . . are a list of values or even text.

Thus, one might have a macro definition as

OMYFIRST USTARTMACRO
0 i3QUEUE U#A
3 JSEIZE C#B
0 D E P A R T C#A
0 W V A N C E Z # C , # D

0 N D M A C R O

h
/ N L E A S E Z#X

In the main program, one might have the following to correspond to the
macro definition:

" Y F I R S T W C R O D A I T 1 , MACHl , 2 0 , 5

In the .US file, the macro is shown expanded with plus signs, "+," before the
various blocks.

Another example of a macro is

'IMYNEXT 2STARTMACRO
'J OSEIZE -CH#A
9 D V A N C E 3 V E X P O (4, #B)
<> 3 E L E A S E W C H # A
\ :ENDMACRO

In the body of the program, if one had the statement

Macros 337

OMYNEXT W C R O 01,20

The macro would be expanded to be

0 OSEIZE m C H 1
0 WVANCE mV!IXP0(4,20)
0 N L E A S E m C H 1

Since the text output in a BPUTPIC is not case sensitive, it is possible to have a
macro with lowercase letters as follows:

0 @HAR*11 n&J
0 OLE" 0&J='hello there'
0 o-----
0 I-----
OMYMAC @TARTMACRO
0 OPUTPIC @ACl, #A

0 DDMACRO
THE CLOCK TIME I S *** . ** *

In the body of the program, it would be permissible to have

OMYMAC W C R O n&J

The output from the program might be, for example,

THE CLOCK TIME I S 1 2 3 . 4 5 hello there

Alternatively, one could have the following:

OMYMAC2 ISTARTMACRO
0 D P U T P I C O#A, #B

0 WDMACRO
THE TIME I S *** . ** *

And then in the program, one could have the following:

MYMAC2 W C R O @ACl, program ok t o here'

The output from this code might be

THE TIME I S 123.45 program ok t o here

The advantage of using macros not only is in their economy of lines of code,
but they can easily be lined up under each other so that typing errors are easy
to detect. The use of macros is illustrated in the next example.

Example 31.1

There are 6 trucks in a mine. A single shovel loads a truck in 2 f 1 minutes.
Trucks haul ore to the crusher and return to the shovel. These other times are

Operation Time (minutes)

travel to crusher 5 f 2
dump 1 k 0.5

338 The GPSS/H Simulatbn Language

Only one truck can dump at a time. Each truck has been found to have the fol-
lowing time distributions (in minutes) for when it is working and for how
long it is down. For convenience, the trucks are numbered from 1 to 6.

Truck No.
Time Down

Running Time (exponential distribution)

100 f 15
130 f 20
120 f 15
100 f 25
105 f 23
100 f 20

15
13
15
25
23
24

Simulate for 500 shifts of 480 minutes each to determine the average produc-
tion per shift, the utilization of the shovel, and the utilization of the crusher.
Run the program again with none of the trucks ever being out of production.

Solution Using Macros

0
3
3
0
O
0
OMYFIRST
3
+#A
0
0
0
'>
<>
9-
5 # A

>

,
',WHERE

2s IMULATE
@XUL,T 3654321
EINTEGER n&I
rn G&I=l, 25
OPUTSTRING n('g')

CISTARTMACRO
mENERATE E, , ,1
W V A N C E C#B, #C
!&OGIC]S C#D
W V A N C E 3 V E X P O (l , # E)
X O G I C D Z#D
W S F E R r , # A
W M A C R O
$TARTMACRO
[? G A T G R nSTOP#B
2 F S X S E R 2, BACKUP
m C R O
W C T I O N I P H l . L 6

m w

l,BLOCKA/2,BLOCKBI3,BLGCKC~4,BLGCKD/5,BLOCKE/6,BLOCKF
',TRUCK ':GENERATE C6, , 0 , 6 ITRUCKS I N THE
> :ASSIGN :l,N(TRUCK) , P H m E R THEM
*>BACKUP LQUELTE :WAIT CAT SHOVEL

> ZSEIZE $HOVEL
J D E P A R T P A I T
0 m V A N C E 1 1 2 ~ 1 S O A D A TRUCKS
3 B E L E A S E ISHOVEL

MINE

T R A V E L TO CRUSHER W V A N C E 15,2
>SEIZE -€RUSHER
-

-
(; 'ADVANCE - 31, . 5 _DUMP A L C . a
, X E L E A S E ;€RUSHER
> EADVANCE 73.5,1.2 IRETURN TO SHOVEL

- 9 ZTTRFNSFER 1, FN (WHERE) -CHECK EACH TRUCK

Macros 339

OMYNFXT N C R O DLOCKA,l DRUCK 1
OMYNEXT M C R O mLOCKB,2 mRUCK 2
OMYNEXT W C R O oBLOCKC.3 W U C K 3
OMYNEXT W C R O mLOCKD,4 m U C K 4
OMYNEXT W C R O mLOCKE,5 W U C K 5
+MYNEXT W C R O DLOCKF, 6 DRUCK 6
OMYFIRST W C R O ~ACK1,100,15,STOP1,15 BELIABILITY FOR TRUCK 1
GMYFIRST W C R O ~ACK2,130,20,STOP2,13 BELIABILITY FOR TRUCK 2
GMYFIRST W C R O mACK3,120,15,STOP3,15 BELIABILITY FOR TRUCK 3
OMYFIRST W C R O mACK4,100,25,STOP4,25 DELIABILITY FOR TRUCK 4
+MYFIRST W C R O mACK5,105,23,STOP5,23 WLIABILITY FOR TRUCK 5
OMYFIRST N C R O DACK6,100,20,STOP6,24 BELIABILITY FOR TRUCK 6
9 BENERATE 0480*500
0 BERMINATE 01
9 OSTART 01
3 D O O&I=l, 25
G OPUTSTRING o('a')
9 W D D O
0 OPUTPIC ~INES=3,FC(CRUSHER)/500.,FR(SHOVEL)/lO.,_

FR(CRUSHER)/lO.
LOADS DUMPED PER SHIFT *** . **
UTIL. OF SHOVEL *** . **%
UTIL. OF CRUSHER * * * . t*g
3 W D

Notice how the macros line up underneath each other in the program listing.
In the .US file, one can see how the program looks when each macro is
expanded. The output from the program is as follows:

LOADS DUMPED PER SHIFT 199.59
UTIL. OF SHOVEL 83 .15%
UTIL. OF CRUSHER 41.54%

When the program is run with the trucks never being down, the output is as
follows:

LOADS DUMPED PER SHIFT 2 1 9 . 5 9
UTIL. OF SHOVEL 9 1 . 4 8 %
UTIL. OF CRUSHER 4 5 . 6 8 %

In the case of an actual mine, there would be a slight error in the above results
since the trucks are only tested at one place in the mine. This error can be cor-
rected by several means, such as testing the trucks at more places or simply
adjusting the downtime distributions.

Other GPSS/H BZocks
CHAPTER 32

As the GPSS simulation language evolved over the years from the original,
crude form to its present modem, dynamic form known as GPSS/H, the num-
ber and power of the programming blocks changed. At one time, there was a
block known as the HELP block whose operand was a compiled program from
another language. When a transaction entered a HELP block, the executable
program (normally written in Fortran) was executed. The block is still sup-
ported by GPSS/H but is considered obsolete and will not be discussed in this
chapter. Instead, other blocks that are of use to the mining engineer will be
presented with short programs to illustrate their salient features. Every block
used in the examples in Part 111 of this book has been introduced in Part 11.
However, the blocks presented here are such that they may be useful in devel-
oping other programs for mining simulation.

BGETLIST AND BPUTSTRING BLOCKS

These blocks act exactly the same way as the GETLIST and PUTSTRING state-
ments except that now they are blocks. The program will stop execution, and
the user will be prompted for input values when a transaction enters the
BGETLIST block. The BPUTSTRING puts text onto the screen. It is possible to
read from a data file when a BGETLIST block is entered by a transaction. For
example, it is possible to have

,, DPUTSTRIN@(' INPUT VALUES FOR &K, &J, P N D & L ')

Control would pass to the keyboard, and the screen would show the message

5 DGETLIST I & K , &J, &L

INPUT VALUES FOR &K, &3, and &L

The cursor would flash until values for &K, &J, and &L have been keyed in. If
they are all to be input at the same time, they need to be separated by spaces.
One can read a data file by the following code:

341

342 The GPSS/H Slmulatlon language

0 OSIMULATE
OMYOWN ~ I L E D E F O'DATA.TXT'
0 n-----
0 g-----
0 D G E T L I S T BILE=MYOWN,&K,&J,&K

FAVAIL A N D FUNAVAIL BLOCKS

These blocks are used to shut down a facility and allow the transaction the
option of leaving the facility when that is desired. The general form of the
FUNAVAIL block is quite complex:

0 W A V A I L @ A , B , C , D , E , F , G , X

The A operand is the name or number of the facility to be made unavailable.
When a facility is made unavailable, if there is a transaction that has seized it,
the transaction will give up control of the facility until the facility becomes
available again. Consider the following example

0 USIMULATE
3 B E N E W T E 0, , ,1
0 USEIZE B I R S T
0 W V A N C E Dl0
0 W L E A S E D I R S T
0 D P U T P I C Dc1

TIME IS ***.**
0 BERMINATE 01

OBACK W V A N C E 05
0 W A V A I L B I R S T
0 W V A N C E g20
0 B A V A I L D I R S T
0 m S F E R n,BACK
0 USTART 01

0 CGENERATE 0, , I 1

c CJEND

A transaction is created at time t = 0. I t uses the facility FIRST and is placed
on the FEC for 10 time units, so it normally would come off at time t = 15.
However, a second transaction is also created at time 0 and placed on the
FEC for 5 time units. At this time, it comes off the FEC and makes the facility
FIRST unavailable until time 25. The original transaction now retains con-
trol of the facility and has 5 minutes left on the FEC. When it releases the
facility FIRST, the clock will be at time t = 30. The BPUTPIC will indicate
this time on the screen.

The B operand will be either CO or RE. If it is CO, the transaction that is seize-
ing the facility when it is made unavailable will continue to control the facility
until it is finished. If it is RE, the transaction that is seizeing the facility is
removed and routed to the block as specified by the C operand. However, the
transaction that is so removed no longer controls the facility and does not
need to release it. A program to illustrate this is as follows:

Other GPSS/H 343

0 @SIMULATE
0 EENERATE 0, , , l , , lOPL
0 OSEIZE P I R S T

0 W L F A S E D ' IRST
0 BERMINATE 01
0 BELEASE D I R S T
0 BERMINATE 01
OBLOCKA B P U T P I C D C l

0 DERMINATE 01
0 D C m R A T E 'k,,1
OBACK @ADVANCE 05
0 W A V A I L D I R S T , RE, BLOCKA
0 WVANCE 020
0 BAVAIL D I R S T
0 BRANSFER 0,BACK
9 5 T A R T 01

0 @ADVANCE 010

TIME IS * * * . * *

3 m
A transaction is created at time t = 0 from the first GENERATE block and seizes
the facility FIRST where the transaction is to remain for 10 time units. How-
ever, the transaction that is created by the second GENERATE block makes the
facility FIRST unavailable at time t = 5 and removes the earlier-created trans-
action from contention for the facility FIRST. The earlier-created transaction is
routed to the block with the label BLOCKA. When the program is run, the out-
put shows that the time is 5.00. If the program has the line of code

9 W A V A I L rFIRST,CO,BLOCKA

facility FIRST would have to be released or a run-time error would occur.

Operand D is the name or number of the parameter of the transaction cur-
rently using the facility that has been made unavailable. The time remaining
for the transaction to be on the FEC is placed in this parameter. This operand
can be used only if the RE option is used for operand B. The parameter needs
to be floating point or a warning message is sent to the screen. Consider the
following program:

9 [,SIMULATE
9 EENERATE C , , , l , , l O P L
A J WVANCE 020
r3 ESEIZE B I R S T
0 WVANCE 010
C BELEASE @IRST
3 DERMINATE @1
OBLOCKA @PUTPIC UPLl

PARAMETER IS * * * . * *
9 @ELEASE S I R S T
r / BERMINATE 31
9 OGENERATE D,, ,1

344 The GPSS/H Slmulatlon Language

OBACK W V A N C E 1/25

0 D V A N C E 1 2 0
0 D A V A I L D I R S T
0 OTRANSFER D, BACK
0 @TART J1

0 DWNAVAIL @FIRST,CO,BLOCKA, ~ P L

0 CIEND

When this code is executed, the value of the first floating-point parameter is
5.00, since this is the time remaining for the transaction that was using the
facility when it was made unavailable.

The E operand has to do with a transaction that is using the facility via a PRE-
EMPT block, which will be covered later in this chapter. It is coded as either
CO or RE and has the same effect as the B operand. The F operand goes with
the E operand and gives the name of the block the transaction is to be routed
to. The G operand has to do with any transaction that might be waiting to
seize or preempt the facility that is now unavailable. If omitted, these transac-
tions are removed from competing for the facility (as one would expect). If
coded as RE, the transactions will be sent to the block given by the label spec-
ified by the operand in position H.

LINK AND UNLINK BLOCKS

The LINK block is used when there is a blocking condition and the blocked
transactions are to be temporarily removed from the CEC and placed on a dif-
ferent chain, known as the ‘’user chain.” Once these transactions are placed
on this user chain, the order in which they are placed back in the program is
controlled by the programmer, hence the name “user.” Normally, the transac-
tions that are placed on the user chain are taken off when the blocking condi-
tion no longer exists. Imagine a shop with a single worker. When the worker
is busy with a customer, the transactions waiting for service are kept on the
CEC and are included in every rescan. Even though this scan will often be
only to check what is known as the “scan indicator,” this still takes time.
Imagine that the transactions are removed from the system instead, just as
the people waiting for service are (somehow) transported into another place
to wait until the server is free. How they are sent from this room to the shop
when the server is free depends on the logic of the program. Transactions are
placed on the user chain by the LINK block. Later, when the transactions are
to leave this chain and return to the CEC, the UNLINK block is used. The LINK
block and the UNLINK block are complementary.

The general form of the LINK block is

0 CLINK DA,B,C

Operand A is the name or number of the user chain. Operand B shows the pri-
ority criterion; it can be FIFO (first in, first out), which places the transactions
on the back of the user chain. This is the normal sequence of people joining a
queue and being served in the order which they arrived. Operand B could also
be LIFO (last in, first out) where transactions are placed on the user chain in
front of the other transactions. Thus, when transactions are removed from the

Other GPSS/H Blocks 345

user chain, they are taken in the reverse order from which they were placed
on it. The B operand could also be an integer parameter. In this case, the
transactions are placed on the user chain in ascending order according to the
value of the parameter. For example, consider the block

0 CLINK N C H A I N , 3PH

Suppose the transactions having the third halfword parameters 1,5, -8, 16,
and 2 were placed on the user chain. They would be placed on it in the order

(end of chain) 16 5 2 1 -8 (front of chain)

If a transaction anived with the third halfword parameter having a value of 3,
the new transaction would be placed on the user chain between the transac-
tions whose third halfword parameters are 5 and 2.

Operand C is optional. When it is used, the LINK block is said to be in condi-
tional mode. A transaction entering the LINK block either will be routed to the
block with the label given by this operand or be placed on the user chain. This
block is normally the next sequential block. When is a transaction placed on
the user chain and when is it routed to this block? The answer is given by
what is known as the user chain's link indicator. This is a switch that is either
"set" (on) or "reset" (off). The link indicator is originally in a reset (off3 posi-
tion. When a transaction comes to a LINK block, it tests the condition of the
link indicator. If it is on, it enters the block and turns the indicator on and
then moves to the next sequential block and is not placed on the user chain. If
the link indicator is on when the transaction comes to the LINK block, the
transaction is removed from the CEC and placed on the user chain in accor-
dance with operands A and B. Consider the following sequence of blocks:

iaINK D~YCHAIN,FIFO,NEXT
+NEXT OSEIZE m C H 1
3 [ADVANCE 520,5 .6
9 D E L E A S E m C H 1

;I- - - - - 0 -J

When the first transaction enters the LINK block, the link indicator is 0%
therefore the transaction turns the link indicator on and moves to the SEIZE
block since this is the block with the label NEXT. Suppose that another trans-
action arrives to find the link indicator on. It will be taken off the CEC and
placed on the user chain. When the RELEASE block is executed, something
will happen to cause the link indicator to turn off again. This is where the
UNLINK block is used. The general form of the UNLINK block is

5 ,-LINK m, B , C, D, E , F

Operand A is the name or number of the user chain. This is the same name or
number as the one used in the corresponding LINK block. Operand B specifies
the label of the block where the unlinked transactions are to be routed. In the
case of the example lines of code given here, it would be NEXT. When a trans-
action enters the UNLINK block, it checks to see if the user chain's link indica-
tor is off. If so, it turns it on. If there is at least 1 transaction to be removed
from the user chain, the link indicator will be on.

346 The GPSS/H Simulation Language

Consider the case of a barbershop with one barber. Customers anive at a rate
of 18 f 6 minutes, and the barber works at a rate of 16 f 8 minutes. The pro-
gram to simulate this is as follows:

?SIMULATE
BENERATE ol8,6
MUEUE D A I T
$INK [SIYFIRST,FIFO,NEXT
OSEIZE m C H 1
D E P A R T m A I T
@ADVANCE 016,8
D E L E A S E m C H 1
W L I N K m F I R S T , N E X T , 1
BERMINATE
[GENERATE 0480
mERMINATE 31
USTART 01
I D J D

The C operand specifies the number of transactions to be removed from the
user chain. The C operand can be the word ALL, which means that aZZ transac-
tions are to be removed from the user chain. Transactions are normally
removed from the front of the user chain, which is to be expected. The D oper-
and can be the word BACK. In this case, uansactions are removed from the
back of the user chain, i.e., in reverse order to the way one would expect them
to be removed. The D operand could also be a Boolean variable. In this case,
all the transactions are evaluated. Any transaction for which the Boolean vari-
able is true is removed from the user chain. In the case where the BACK or
Boolean variable option is used, the E operand must be omitted. The D oper-
and can spec* the name or number of a parameter to be evaluated by using
the E operand in the test. In this case, an auxiliary operator is used: G, GE, LE,
L, E, or NE. In case the auxiliary operator is omitted, it is taken as E by
default. For example,

0 (a) WINK WCHN,AWAY, , P H 3 , 2
O (b) MINK@ m F I R S T , N E X T , , P H 3 , 0
/I(c)

The F operand specifies the name and number of a block used if the user
chain is empty or if a conditional form of unlinking has been used and no
transaction has been unlinked.

M I N K Q E W C D , EFGH, , P H 1 , O

PREEMPT A N D RETURN BLOCKS

The PREEMPT block is used for when a transaction is to take the place of
another that is using a facility. In its simplest form, it is

> OPREEMPT LA

where operand A is the name or number of a facility. If a facility is being used by
another transaction when a transaction enters the PREEMPT block, it replaces
the one that has control of the facility. The preempted transaction is placed on a
chain known as the interrupt chain until the preempting transaction is removed

from the CEC. It will then continue to use the facility until it, too, is removed
from the CEC. For example, a truck repair shop with one service bay will stop
work on normal vehicles and fix an emergency vehicle. When the emergency
vehicle is repaired, the repair shop will continue with the regular vehicles.
When a transaction is finished preempting, the R E T ” block is used to return
control of the facility. In this simple form, the PREEMPT and RETURN blocks
are similar to the SEIZE and RELEASE blocks. For example, consider the pro-
gram

0 OSIMULATE
0 B E N E M T E 0, , ,1
0 USEIZE D O E B
0 WVANCE 020
0 @LEASE D O E B
0 D P U T P I C D C 1

0 DEWINATE 01
0 BENEMTE O , , , l

A: TIME IS NOW ***.**

0 WVANCE 015
0 UPREEMPT D O E B
0 WVANCE 020
0 mETURN D O E B

B: TIME IS NOW *** . **
0 @PUTPIC D C l

0 UTEWINATE

0 m
The first GENERATE block creates a transaction at time t = 0. This is placed on
the FEC until time t = 20. The second GENERATE block preempts this transac-
tion at time t = 15 and controls the facility J O B until time t = 35. The first
transaction is then placed on the FEC at this time for another 5 time units.
The output from this program is

0 OSTART 01

B : TIME IS NOW 35.00
A: TIME IS NOW 4 0 . 0 0

The general form of the PREEMPT block is

0 DPREEMPT @A, B , C, D, E

The A operand has been discussed. If the B operand is omitted, the PREEMPT
block allows preemption on only “one level.” This means that, if a transaction
enters the PREEMPT block and another is using the facility, preemption will
take place. However, if the transaction using the facility did so by preempting
the facility and not by seizing it, no preemption will take place. If the B oper-
and is PR, then preemption will take place providing the transaction using the
facility has a lower priority than the one preempting, no matter how the one
using the facility came to use the facility. The C operand will direct the pre-
empted transaction to the block with this label. However, the transaction will
still be in control of the facility so must either release or return the facility
through the use of the RELEASE or RETURN blocks. The program shown next
illustrates this procedure:

348 The GPSS/H Simulation language

0 USIMULATE
0 BENERATE I,, ,I. 5
0 @ADVANCE 010
0 OSEIZE D O E B
0 @ADVANCE 020
0 @LEASE D O E B
0 rJ3PuTPIC OACl

A: TIME IS * * * . * *
0 [ITEMINATE 01
0 CGENERATE 1, I I 1, 1 0
0 W V A N C E 015
0 OPREEMPT W O E B , PR , AWAY
0 W V A N C E 020
,3 [3RETURN D O E B

B: TIME IS NOW * * * . * *

OAWAY @PUTPIC @ACl

0 ORELEASE D O E B

0 rJ3PuTPIC @ACl

0 DERMINATE 01

C: TIME I S NOW * * *

0 ~ E R M I N A T E 01
0 OSTART 01
0 aEND

The preempting transaction takes control of the facility JOEB at time t = 15,
so the transaction using it is directed to the block with the label AWAY. The
only output from the program is the line

c: TIME rs NOW 15

The D operand specifies the name or number of the parameter into which the
preempted transaction’s remaining time on the FEC is placed when it is pre-
empted. This parameter should be in floating-point mode or a warning mes-
sage is sent to the screen. The E operand can be RE or left blank. If it is used,
the preempted transaction is removed from competing for the preempted
facility and sent to the block indicated by the operand C.

SAVAIL AND SUNAVAIL BLOCKS

The SAVAIL and SUNAVAIL blocks are used to make a storage available and
unavailable, respectively, similar to the FAVAIL and FUNAVAIL blocks. When a
transaction enters a SUNAVAIL block, the transactions currently using the stor-
age will continue to use it. Only the transactions waiting to use the storage are
denied access to the storage until the SAVAIL block is executed. The only oper-
and allowed is the A operand, which is the name of the storage. For example,

0 EENERATE 0, I I 1
OBACK @ADVANCE DVNORM (1 ,200 ,30)
0 ISUNAVAIL W G S
9 W V A N C E mVNORM(1 , 2 0 , 3)
0 USAVAIL W G S
0 mRANSFER 0, BACK

would make the storage TUGS unavailable for a time given by the normal dis-
tribution with a mean of 20 and a standard deviation of 3.

About the Author

John R. Sturgul is recognized as the world's leading authority on mine
design using computer simulation models. He has designed more mines
worldwide using simulation techniques than any other person. His
model of the Lihir mine, located on an island northeast of Papua, New
Guinea, is the first mine to be totally designed using a computer simu-
lation model.

Sturgul received a bachelor of science degree in mining engineering
from Michigan Technological University; a masters of science in mathe-
matics from the University of Arizona, and a doctorate degree in min-
ing engineering from the University of Illinois. Currently, he is
professor of mining engineering at the University of Idaho where he
was named 1999 Distinguished Professor.

In addition to his teaching duties, Sturgul organized and co-hosted the
First International Symposium on Mine Simulation via the Internet-the
first symposium of this type in any field. He is also co-editor of The
International Journal of Surface Mining, Environment, and Reclamation.
He has published extensively on mine system simulation and presented
short courses on this subject throughout the world.

Sturgul established and maintains a website that will eventually link
every university mining department in the world. The URL for the site
is: http://www.uidaho.edu/mining-school. Additional information on
mine system simulation can be found at:
http://www.udiaho.edu/"sturgul
His email address is: sturgul@uidaho.edu.

367

P¦qúù
o¤`ïá;&−â

. Acknowledgments

The examples chosen here come from several sources. Some are from classical
queueing theoIy or from early papers that concerned a mining problem that
may have been solved by simulation but not by using GPSS. A few examples
were done with former students who brought interesting problems back after
summer work in mines. Some of the examples in Part I1 on the GPSS/H lan-
guage are modifications of ones found in Schriber‘s classic 1974 textbook (with
his kind permission), but the majority represent actual mining operations.

Many of the mining examples are from mines in Australia where I have spent
quite a few years both in an academic situation and as a mining consultant.
Other examples come from different mining operations in places as diverse
as Chile and China. The responsibility of the choice of examples lies solely
with me. I hope that the reader will benefit from the variety of examples pre-
sented here.

Thanks go to Bob Crain and James 0. Henriksen of Wolverine Software for
their continued support and comments. James Henriksen is the developer of
GPSS/H (which explains the H in GPSS/H). Special thanks to him for not only
providing me with the limited version of GPSS/H to be included with this
book but also for making GPSS/H into the powerful tool that it is today. Wol-
verine Software also wrote the README.DOC file that is included on the CD.
This file should be read first before attempting to use GPSS/H.

Dr. Thomas J. Schriber, the author of Simulation with GPSS and Introduction
to Simulation Using GPSS/H, deserves special thanks. Few people program-
ming with GPSS have been trained without using his textbooks (the first has
been so well received that it is simply known as the “Red Book or “Big Red”).
Many of the examples from this textbook are excellent not only for learning
the GPSS/H language but also for learning how to construct simulation mod-
els. Discussions with Tom have been highly productive. Some of the examples
presented here were inspired by ones from his textbook and are so noted. In

ix

one case, the exact example is used. Many of the animations were painstak-
ingly done by visiting scholars to the University of Idaho from the Otto-von-
Guencke-Technological-University, Magdeburg, Germany. These include
Thomas Fliess, Chris Ritter, Ingolf Geist, Sebastian Bayer, and Frank Seibt.
Prof.-Dr. Peter Lorenz of Otto-von-Gueriche-University also made practical
suggestions for part of the book.

My wife, Alison, showed her editing skills by reading the manuscript and
making numerous suggestions and changes.

X

To install the software from the Mine Design CD, simply insert the CD into your
CD-ROM drive. If you have disabled automatic recognition of software
installation CDs, or if the installation procedure fails to start automatically,
you should manually run setup.exe, contained in the root directory of the CD.
To do so, click Start, Run, Browse; locate setup.exe on the CD; double click on
it; and click OK in the Run dialog box.

The installation procedure will prompt you for the name of a directory to be
used as the base directory for the software and examples contained on this CD

The software will be installed in the base directory

In addition, the following subdirectories will be created:

Subdirectory Contents
_._______... _-.-....

GPSSH Source files (.GPS) for GPSS/H mining examples

ANIMATION Layout (.LAY1 and trace (.PTF) files for sample animations

HTML Problem statements, solutions, and discussion

P4DEMO A demonstration of Wolverine's Proof Animation ltml software

Note that installation of the Proof demonstration can be suppressed by
performing a "custom' installation when you are given the opportunity during
execution of the installation procedure.

The installation procedure will add a 'Mining Examples' entry to the Start
Menu. Clicking on this entry will reveal lower-level entries for viewing the
hTML files and animations, an entry for establishing a command prompt window in
which the sample GPSSlH programs can be run, and an entry for invoking the
Proof demo, if installed.

Running GPSSlH Examples
. _

To run a GPSS/H program named progl, open the GPSS/H command prompt window and
type the following command:

GPSSH PROGl

By default, the program will be run writing its interactive output to the
screen. Noninteractive output, e.g., program listings and standard statistical
output, will be placed in PROG1.LIS. Models can also be run under the control
of the GPSSiH debugger, e.g.,

GPSSH PROGl TVTNW

Note that successful execution of most of the GPSS/H examples contained on the
CD requires reasonable values for model parameters. Failure to specify
reasonable values will frequently result in GPSS/H execution error 4 0 1 . This
error occurs when the memory limits of Student GPSS/H are exceeded. For
example, if you specify model parameters such that arrivals into a system occur
more rapidly than they can be processed by the system, the contents of the
system will become larger and larger the longer the model runs. As the
contents of the system increase, more memory will be required. The model may
run out of memory before a simulation run is completed. If so, error 4 0 1 will
occur.

TO r u n Proof, your system must satisfy two requirements: (11 it must support
Microsoft DirectDraw 3 . 0 or later, and (2 1 it must have reasonably up-to-date
video drivers.

DirectDraw is built into Windows 9 8 , Windows 2000, and Windows NT4 (Service
Pack 4 or later required). DirectDraw is not built into Windows 95 For
Windows 95, DirectDraw can be downloaded free of charge from Microsoft.
Currently, downloads can be obtained from

www.microsoft.comldirectxldownload.asp

Download the 'home user' version. (You are not a software developer.)

I f you already have DirectDraw installed on your machine, you needn't download
a later version. NT4 supports only DirectDraw 3 , and Proof is written using
DirectDraw 3 as a least common denominator.

Your video drivers must be "reasonably' up-to-date. If your video drivers are
dated prior to 1 9 9 8 , you may encounter problems. Video drivers are generally
available from two sources: the manufacturer o f your machine's video hardware
or the company from which you bought your computer. Video drivers are almost
always available for download from a website. Generally, although not always,
drivers that have been certified by Microsoft are preferable to uncertified
drivers; however, probably less than half of the video drivers available are
certified at present. You should not be afraid of running an uncertified
driver.

Wolverine Software cannot provide you with DirectDraw, nor can we provide you
with video drivers.

The installation procedure for Proof will perform tests to ascertain whether
your system has adequate DirectDraw support. Proof will give you a step-by-
step explanation of what it's doing. When the test procedure first comes up,
i t will be in a low resolution, usually 640 X 480. Before exiting the test
procedure, you can use its Setup menu to try higher resolutions.

If at some later time you change video hardware or for some other reason need
to retest your system's DirectDraw capabilities, you can do so by clicking o n
the 'Test DirectDraw' entry under "Mine Design Examples" in the Start Menu.

If you experience problems with the cursor leaving trails of pixels as you move
your mouse, try enabling Advanced Cursor Handling in Proof's Setup menu. If
you have changed your default cursor to something other than the standard
Windows arrow cursor, and the cursor you have chosen is implemented via
software emulation, you may experience problems. If so, try changing back to
the Windows standard cursor.

If you are running under Windows 9 5 o r Windows 9 8 , and Proof does not work
properly, you may have to change the Hardware Acceleration settings for your
video hardware. To do so, click Start, Settings, Control Panel, System,
Performance, Graphics. You will see a 4-position switch. If this switch is
set to the lowest position. no hardware acceleration is used, and DirectDraw
will not work. If this switch is set to the highest position, you may
experience problems with cursor motion on some machines.

The resolutions at which Proof can run are determined by available video memory
and video driver policies for allocation of video memory. For example, your
video hardware may have 2MB of video memory, but your video driver may make
only 1MB available for DirectDraw applications. Some video drivers make
assumptions based on the color depth you use for your desktop. If you have
problems running Proof, it's worth quickly testing whether changing your
desktop's color depth helps. For example, changing from 16-bit depth (65536
colors) t o 8-bit (256 colors] may help. We have also seen instances in which
increasing desktop color depth helps.

If you have difficulties with installation of Proof, send e-mail to
mail@wolverinesoftware.com.

PART 111

EkampZes on the CD

349

. Appendix A: Running the
Programs and Animations

THE SIMULATION PROGRAMS

When the CD-ROM that is included with this book is used to install the vari-
ous files, two subdirectories are created on the hard disk These are
C:\GPSSH and C:\PROOF. In the event that some other subdirectory was
selected when the CD-ROM is installed, then the appropriate subdirectories
will apply.

The subdirectory GPSSH contains the files to run the examples. These files are

EXlA-GPS
M1B.GPS
M1C.GPS
EX2.GPS
EX3.GPS
EX4.GPS
EX5.GPS
EX6A.GPS
EX6B.GPS
EX7A.GPS
M7B. GPS
EX8.GPS
EX9A.GPS
EX9B.GPS
M9C.GPS

EX9D.GPS
EX1OA.GPS
m1 OB . GPS
EX1OC.GPS
EX11A.GPS
EXl1B.GPS
EXl1C.GPS
M12A.GPS
M12B.GPS
EX12C.GPS
EX12D.GPS
M12E.GPS
EX13A.GPS
FX13B.GPS
M13C.GPS

EX13D.GPS
M14.GPS
EX15.GPS
EX1 6A.GPS
EXl6B.GPS
EXl6C.GPS
EX17.GPS
M18.GPS
EX1 9A.GPS
EX19B.GPS
EX19C.GPS
M19D. GPS
EXl9E.GPS
EX20.GPS
EX21.GPS

EX22.GPS
EX23AGPS

FX24A.GPS
EX24B.GPS
EX25.GPS
M26.GPS
EX27A.GPS
EX27B.GPS
EX27C.GPS
EX27D.GPS
EX28.GPS
M29.GPS
EX30.GPS

m m . e P s

The files, EXlA.GPS, EXlB.GPS, and EX1C.GPS correspond to Example 1.
Example 2 has the single file EX2.GPS, etc.

To run any of the programs from the DOS prompt, key in the following:

C : \ G P S S > GPSSH filename NODICT NOXREF <cr>

351

Click here to download CD-ROM Installer

352 Examples on the CD

The filename is any file given above without the extension. If the .GPS file
extension is included, the program will also run. NODICT and NOXFEF are
compiler directives and are optional. They stand for “no dictionary” and “no
cross-reference.”

The program will run and the screen will show the input prompts as given in
each example. In the event that erroneous data are typed in, such as a letter
for a number, an error message will appear on the screen and the program
will have to be rerun.

Whenever a GPSS/H program is run, a .US file (filename.LIS) is created in
the subdirectory where the GPSS/H programs are stored. This file is not
needed for the examples as output is always sent to the screen and can be
deleted. The effect of having NODICT and NOXREF is to cut down on the size
of the .US file that is always created when the GPSS/H program is run. This
.US file is created whenever the program is run and can be deleted. It is most
useful for debugging purposes. Thus,

C:\GPSSH> GPSSH EX21 NODICT NOXREF <cr>

will run the program that goes with Example 21. The user will be prompted
for input data as shown in the narrative for the example. If the compiler direc-
tives are omitted, the program will still run as before but the .US file is con-
siderably longer.

One option for running the programs that is quite useful in debugging pro-
gram is the ‘W option. This is

GPSSH filename TV

The screen will be split into several parts. The top shows the program and
location of the transaction being moved. The middle shows the current status
of the transaction and the bottom is known as the dialog window. When this
option is used, there will be the following on the bottom of the screen:

Ready !

Keying in s 1 (for “step 1”) will show the movement of the first transaction
after 1 step. The lines of code above and below the transaction will also be
shown as well as the position of the transaction. Repeated keying of this (or s
n to advance n steps) will show where the transaction being moved by the
processor is. For example, there might be a message such as

XACT 1 POISED AT BLOCK 10.
RELATIVE CLOCK: 2.5000

This shows that transaction 1 is poised at the 10th block at time 2.5000.

This mode can be very useful in debugging programs. This option will not be
needed for running any of the examples here.

Appendix A Running the Programs and Animations 353

RUNNING THE ANIMATIONS

The following animation files are created and are found in the subdirectory
C:\PROOF>.

Each of them will have the extensions .LAY and .PTF.

AlANIM
A2ANIM
A3ANIM
A4ANIM
A5ANIM
A6ANIM
A7AANIM
A7BANIM
A8ANIM
A9AANIM
A9BANIM
A9CANIM

A9DANIM
AlOAANIM
AlOBANIM
A1 lAANIM
A1 1 BANIM
AllCANIM
A12AANIM
A13AANIM
Al3BANIM
Al3CANIM
A13DANIM
Al4ANlM

A15ANIM
A16AANIM
A16BANIM
A16CANIM
A17ANIM
A18ANIM
A19AANIM
A19BANIM
A20ANIM
A21ANIM
A22ANIM
A23ANIM

A24AANIM
A24BANIM
A25ANIM
A26ANIM
A27AANIM
A27BANIM
A27CANIM
A27DANIM
A28ANIM
A29ANIM
A30ANIM

To run any of the animations, key in

C:\PROOF> PP/DEMO filename <cr>

Only the name of the animation file need be used, not the extension. For
example, keying in

PPfDEMO AlANIM <cr>

will cause the animation associated with Example 1 to be run.

The animations are run in what is known as “demo” mode. This gives the user
the full power of PROOF but any changes that are made to the animation will
not be saved. When an animation is run, the layout will be shown. A menu
bar appears on the top of the screen. Using the mouse to click on GO starts the
animation. By using the menu bar options, the animations can be changed.
The menu bar has the following options:

TIME 0.0 SPEED 6.00 FASTER SLOWER PAUSE GO VIEW FILE MODE

These options can all be used when viewing the animations.

TIME This allows the animation to go forward or back in time. When
this is used, a bar is shown in the bottom center of the screen to
prompt the user to input a time jump.

By default, the animations have an initial viewing “speed” of
6.00. This corresponds to having 6 time units of the animation
take 1 second of viewing time. Thus, an animation that uses 100
simulated time units will be shown on the screen in 16.67 sec-
onds. If this option is used, the animations can be speeded up or
slowed down by keying in a new viewing speed.

SPEED

354 Examples on the CD

FASTER This causes the animations to run faster. This will have the same
effect as the SPEED option, but now the speed increases by about
10% per click of the mouse.

This has the same effect as FASTER but in reverse.

This will pause the animation until GO is clicked on.

There are many options with this, and a pull-down menu will
appear when this is clicked. Some of these options cannot be
used in demo mode.

Select View

SLOWER

PAUSE

VIEW

This allows you to select any previously
defined views (but no previously defined
views are included with the animations).

Define View It is not possible to define new views in
demo mode.

Update Existing View This option will not work in demo mode.

Delete Existing View This option will not work in demo mode.

Capture New View This option will not work in demo mode.

/Split View This lets you split the current view into 2
or more independent windows. Each win-
dow can be manipulated independently
by using other View menu options. The
options are to split the screen horizontally
or vertically.

Unsplit Deletes a window.

Resize

Undo Undoes the previous Split,

Changes the size of a window.

Unsplit, or Resize.

Zoom

This allows one to pan the animation.

Left 25% Shift the window 25% left.

Right 25% Shift the window 25% right.

Up 25% Shift the window 25% up.

Down 25% Shift the window 25% down.

Zoom in or out of the animation. This
goes from 0 . 9 ~ to 3 . 0 ~ .

Appendlx A Running the Programs and Animatlons 355

Zoom Box This allows one to zoom by using a zoom
box. When this option is selected, a zoom
box appears on the screen. The boundaries
can be clicked on to increase or decrease
the box. There is a cross hair in the center
to move the zoom box to a new location.

Rotate This rotates the animation 10 degrees at
a time.

Grid, Inspect,
and Refresh

These are not used in demo mode.

FILE This has the following options.

Open Layout & Trace Select from the stored files of .LAY and
.PTF files.

Open Layout Only

Change Directory

Select from the stored .LAY files.

Not needed for the examples unless they
are stored in a directory different from
C : \ PROOF.

Change Disk Not needed for the examples unless they
are stored in a directory different from
C:\PROOF.

MODE This has several options but the only ones that are used in demo
mode are the following.

Run Starts the animation. The line menu
appears on the top of the screen, if it is
not there already.

Exits the animation. Exit

. Appendix B:
SNAs Used in Book

Some of the SNAs given below have ‘y after them. This is either a positive
integer or an opening parenthesis followed by a legal GPSS/H name followed
by a closing parenthesis. For example, Qaj could be QA5 or QAWAIT) if the
queue was referred to by a 5 for its operand or had the operand WAIT. Alter-
natively, one could write this as QA(5) or QA$WAIT. The use of the dollar
sign is considered obsolete but is still supported in GPSS/H.

When an SNA is “me,” this means that the value is 1, otherwise the value is 0.

AC1 Absolute clock in simulation.

BVj

c1
FNj Value of function.

FRNj

v Integer constant (obsolete).

M 1

The value of the Boolean variable (either 0 or 1).

Relative clock of the simulation.

Random number in the interval 0 < random number < 1.

Transit time of transaction. This is the difference between
the absolute clock and the mark time of the transaction. The
mark time is when the transaction left th GENERATE block.

MPjPL This is computed as the difference between the current value
of the absolute clock and what is stored in the floating-point
parameter j. This is normally the absolute clock time that the
transaction entered a MARK block. One can also have
MPjPB, MlpF, and MPjPH, but their use is rare since the
absolute clock is stored as a floating-point value.

Nj

PR

The total number of transactions to have entered the block.

Transaction priority. This can be in the interval
-2,147,483,632 to +2,147,483,632.

357

358 Examples on the CD

Wi Random number. This returns a random number. If it is used
with a function, the random number is in the interval 0 I
random number < 1. If it is used in any other context, the
number is in the interval 0 I random number I 999.

TG1

FACILITIES

Current value of terminate counter. This is originally speci-
fied by the START statement.

Value of variable (or Fvariable). This is a floating-point value
for both types.

The current block count.

The number of the current transaction. Each transaction has
a unique number.

True if captured.

Number of times facility has been captured.

True if not seizeable.

True if not in use.

Utilization in parts per thousand.

True if seizeable.

Average time per transaction when in facility.

True when in use.

LOGIC SWITCHES

LRj

LSj

True when logic switch is reset.

True when logic switch is set.

MATRICES

MBj(row, col) The value of the (row, column) of the byte-word matrix
savevalue.

The value of the (row, column) of the halfword matrix
savevalue.

MHj(row, col)

MLj(row, col) The value of the (row, column) of the floating-point matrix
savevalue.

The value of the (row, column) of the fullword matrix
savevalue.

mj(row, col)

Caution: Do not use MFj(row, col) for the value of the fullword matrix savevalue.

Appendlx B SNAs Used In Book 359

PARAMETERS

Pi The value of a parameter where the mode is determined at run
time. This is not a recommended use of parameters.

The value of the transaction’s byte-word parameter. This is
restricted to values between -128 and + 127.

The value of the transaction’s fullword parameter. This is
restricted to values between -2,147,483,648 and +2,147,483,647.

The value of the transaction’s floating-point parameter. This
value depends on the computer.

PBj

PFj

PLj

QUEUES

Qi Current content.

QtL Average contents.

Qcj Total entry count.

QMj Maximum entry count.

QV Average time in queue for every transaction, even those that
have a zero residence time.

Qxi

QZj

Average time in queue for only those transactions that were held
up in the queue.

Number of transactions that passed through the queue in zero
residence time.

STORAGES

StL

SCj

SEj

SFj

SMj

SNEj

SNFj

sgi

STj

Remaining storage capacity.

Units of storage currently in use. Note that if the original storage
was m, then Rj + Sj = m. The original storage, m, is not an SNA.

Average contents.

Total number of enmes.

True if storage is empty.

True if storage is full.

Maximum contents.

True if storage is not empty.

True if storage is not full.

Utilization of storage expressed in parts per thousand.

Average time per unit in storage.

360 Examples on the CD

TABLES

TW The mean value.

TCj The number of entries.

TQ! The standard deviation.

xi Value of fullword savevalue. The use of this form is not recom-
mended.

Dj Value of byte-word savevalue. These values are in the range -128
to +127.

W Value of fullword savevalue. These values are in the range
-2,147,483,648 to +2,147,483,647.

W Value of halfword savevalue. These values are in the range
-32,768 to +32,767.

W Value of floating-point (real) value of savevalue. Maximum and
minimum values depend on the size of the computer.

. Appendix C: Historical
GPSS/H Format

GENERAL FORM OF A GPSS/H PROGRAM LINE

The format for coding a line of GPSS/H code has evolved over the years. The
general form of a line will look as follows:

label operation operand(s) comment

Since GPSS was introduced when communication with the computer was
done by using 80-column punch cards, at one time the coding was very strict.
This is known as “fixed” format and the rules were as follows: . Position 1 is blank. . The label is in positions 2 through 6 so must be 5 or less characters in

Position 7 is blank.
The operation is in position 8 through 17. . Position 18 is blank. . The operands start in position 19 or further (but not beyond position 25). . Comments begin anywhere after the operands as long as there is a single

Today, GPSS/H supports a free format as well as the older fixed format. The
main differences between free format and fixed format are that the labels and
operands can be up to 8 characters in length and the operands can begin in an
arbitrary position. In general, the form is as follows: . Labels begin in either position 1 or 2 (in this book, they begin in position 2).

They can be from 1 to 8 characters in length. Because GPSS/H has many
reserved words that are normally from 1 to 3 characters in length with a
few as long as 4 characters in length, it is good programming practice to
have labels 5 or more characters in length.

length.

space between them.

361

362 Examples on the CD

. Operations normally start in position 8 but may begin in a position up to
OPERCOL -1. OPERCOL is 25 by default. In this book, operations begin in
position 11.

Comments begin separated from operands by one space. However, there is
one case-when specifylng a MACRO-in which comments must begin after
two spaces, so the practice in this book is to always have two spaces
between operands and comments.

. Operands begin in position OPERCOL or less.

The OPERCOL statement comes at the start of the program and has the form

OPERCOL n

where n is an integer greater than 25. This statement tells the compiler that
the operands will begin in column n or before. Thus,

OPERCOL 30

tells the compiler that the operands will begin in position 30 or before. Some-
times this statement is useful to align code, as in complicated DO loops.

This page has been reformatted by Knovel to provide easier navigation.

INDEX
Note: f indicates figure, t indicates table.

Index Terms Links

A

ADVANCE block 87

 caution in using functions with 137

 exercises 91

Ampervariables 241

 and DO loop 243

 and ELSE statement 249

 and ENDIF statement 249

 exercises 251

 and GETUST statement 247 250

 and GOTO statement 249 250

 and HERE statement 250

 and IF statement 248 250

Animations (on CD-ROM) 353

Arithmetic expressions 153 284

 exercises 155

Arithmetic operations 47 283

Art exhibit example 90

ASSEMBLE block 321

Assembly line example 49 308 331

Assembly sets 321

 exercises 333

ASSIGN block 182

 decrement mode 182

 general form 186

 increment mode 182

Attributete-valued functions 141

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

B

Barbershop example 21 35 38 47

 49 54 56 67

 97 113 154 159

BGETLIST block 341

Blodcs 51

Boolean expressions (rules for evaluation) 293

Boolean operators 290

Boolean variables 289

 and Boolean operators 290

 exercises 297

 and logical operators 292

 referencing 293

 and relational operators 290

BPUTPIC block 83

 See also PUTPIC statement

 exercise 85

BPUTSTRING block 341

Brand loyalty example 275

BUFFER blodc 301

BVARlABLE statements 289

Byte-word savevalues 207

C

Car inspection example 116

Car repair example 102

Cars-and-junction example 81

CD-ROM

 animations 353

 simulation programs 351

CLEAR statement 129

 exercises 131

 and savevalues 211

Coding format 361

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Comparison operators. See also Relational

 operators

Conditional TRANSFER block 66

Continuous functions 139

Control statements 51

COUNT block 258

 with facilities and storages 261

 with logic switches 259

Cyclic queues 23

D

DEPART block 96

 exercises 98

Discrete functions 133

Discrete systems 7 19

Distributions

 built-in functions 167

 exercises 171

 exponential and normal ones other than

 built-in ones 169

 nonsymmetrical 27

 normal 168

 Poisson 167

 symmemcal 27

 triangular 168

DO loop 243

Drilled boxes example 322

E

ELSE statement 249

END statement 48

ENDIF statement 249

ENTER block 111

 exercises 120

Entities 255

Entity class 255

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

EQU statement 188

Examples (on CD-ROM) 351

F

Facilities 260

 SNAS 358

Factory parts example 229 257 309

FAVAIL block 342

FILEDEF statement 82

filename 351

FIX mode conversion 209

Fixed format 42 361

Floating-point savevalues 207

FLT mode conversion 209

Fortran 10

Free format 46 361

Fullword savevalues 207

FUNAVAIL block 342

Functions

 attribute-valued 141

 built-in 167

 caution in using with ADVANCE and

 GENERATE blocks 137

 continuous 139

 discrete 133

 exercises 142 171

 list 141

 normal distribution 168

 Poisson distribution 167

 referencing 135

 triangular dismbution 168

 use with SNAS 140

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

G

GATE block 219 289

 in conditional transfer mode 220

 exercises 224

GATHER block 330

Gaussian disttibution. See also Normal distribution

GENERATE block 51 55

 caution in using functions with 137

 creating transactions 52

 exercises 59

GETLIST statement 247 250

GOTO statement 249 250

GPSS 3

 benefits 3

 nonprocedural language 4

 origins 4

GPSS/H 3

 arithmetic operations 47

 coding format 361

 defined 7

 END statement 48

 fixed format 42 361

 and Fortran 10

 free format 46 361

 input format 36

 internal clock 51

 learning 9

 modern versions 8

 origins 8

 output 39

 reasons for using 7 10

 SIMULATE statement 48

 and traditional languages 10

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

H

Halfword savevalues 207

Hand simulation 49

Harbor example 189

Hardware store example 115 117 184

HERE statement 250

I

IA mode table 202

IF statement 248 250

INITIAL statement 211

Input format 36

L

LEAVE block 116

 exercises 120

LINK block 344

 conditional mode 345

Link indicator 345

List functions 141

LOGIC block 217

Logic switches. See also GATE block, LOGIC block

 SNAs 358

 with SELECT or COUNT block 259

Logical expressions 289

Logical operators 292

LOOP block 187

M

M1 and tables 200

Machine production example 271

Macro definition statements 335

Macros 335

MARK block 201

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

MATCH block 332

Mathematical functions 152

 exercises 155

Matrices 267

 defining 267

 exercises 278

 initial values 268

 savevalue block 270

 SNAs 358

 transition 275

 types of 267

Military time 312

 example 312

MSAVEVALUE block 270

Multiple servers. See also ENTER block, LEAVE

 block, STORAGE statement

Multiple START statements 127

N

Negative times 53

Newspaper boy’s problem example 212

Nonprocedural language 4 9

Nonsymmemcal distributions 27

Normal distribution 168

O

Operands 284

 exercises 287

Other simulation languages 10

Output 39

P

Parameters 179

 ASSIGN block 182

 EQU statement 188

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Parameters (Cont.)

 exercises 193

 giving names 183

 LOOP block 187

 SNAs 359

PERT diagrams 324 325f 327f

Poisson distribution 167

PREEMPT block 346

PRINT block 286

PUTPIC statement 79

 See also BPUTPIC block

 exercise 85

PUTSTFUNC statement 77

 exercises 83

Q

QTABLE mode 203

QUEUE block 93

 exercises 98

Queueing theory 13 19 23

Queues

 cyclic 23

 SNAs 359

Quickline example 261

R

Random numbers 53

Referencing functions 135

Relational operators 290

RELEASE block 102 347

 exercises 105

Repair shop example 302

RESET statement 130

 and savevalues 211

 exercises 131

RETURN block 347

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

RMULT statement 130

 exercises 131

RT mode table 202

S

SAVAIL block 348

SAWVALUE block 208

Savevalues 207

 byte-word 207

 and CLEAR 211

 exercises 214

 floating-point 207

 FIX mode conversion 209

 FLT mode conversion 209

 fullword 207

 halfword 207

 INITIAL statement 211

 and RESET 211

 SAVEVALUE block 208

 SNAs 360

 types 207

SEIZE block 99

 exercises 105

SELECT block 255

 exercises 264

 with facilities and storages 260

 with logic switches 259

 in MIN or MAX mode 259

Sequential times 90

Shopping example 136 138

Shovel-loading truck example 29 60 103 119

 221 337

SIMULATE statement 48

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Simulation

 applications 19

 barbershop example 21 35 38 47

 49 54 56 67

 97 113 154 159

 information needed and provided 20

 vs. mathematical solution 24

 mining operations 14

 nonsymmetrical and symmetrical

 distributions 27

 other languages 10

 and personal computers 15

 programs (on CD-ROM) 351

 queueing theory 13 19 23

 shovel-loading truck example 29 60 103 119

 221 337

 tool crib example 22

SNAs. See also Standard numerical attributes

Soft drink brand loyalty example 275

Spare truck problem 119

SPLIT block 307

 exercises 317

 general form 316

Standard numerical attributes 79 151

 See also Parameters

 and arithmetic expressions 153

 associated with STORAGE statement 114

 exercises 155

 facilities 358

 list of mathematical functions 152

 logic switches 358

 M1 and tables 200

 matrices 358

 parameters 359

 partial list of 152

 queues 359

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Standard numerical attributes (Cont.)

 savevalues 360

 storages 359

 and tables 197 200 360

 used in this book 357

 using functions with 140

START statement 57 127

 exercises 131

 multiple 128

Statements 51

STORAGE statement 112

 exercises 120

 SNAs 359

Student example 88

SUNAVAIL block 348

symmetrical distributions 27

T

TABLE statement 197

Tables

 exercises 203

 IA mode table 202

 and M1 200

 MARK block 201

 QTABLE mode 203

 RT mode table 202

 and SNAs 197 200 360

 TABLE statement 197

 TABULATE block 198

TABULATE block 198

TERMINATE block 57

 exercise 59

TEST block 157 217 289

 exercises 162

 normal mode 161

 refusal mode 158

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Time caution 90

Timer example 83

Tire supply example 244 248

Transactions 51

 assembly sets 321

 cloning 307

 creating 52

 parameters attached to each 179

TRANSFER block 65

 in ALL mode 228

 conditional 66

 exercises 68 235

 in function mode 230

 in parameter mode 232

 in pick mode 227

 in simultaneous mode 234

 in subroutine mode 233

 unconditional 65

TRANSFER BOTH block 67

TRANSFER SIM block 234

Triangular distribution 168

Truck inspection and refueling example 268

Truck repair example 231 293 332

24-hour time 312

 example 312

U

Unconditional TRANSFER block 65

UNLINK block 344

W

Writing to a file 82

	š�9?á��??²�îç?<??]“Fñ?÷%s
	�â˚å�?ßpx?æ���iA
	Lz˛?L˝ú�X�˘_Ùe1²¡»îÕÜ¨ÝlúÍ×3¦¾?kgêF
	32«ê?�Ð?LBø7×5�?XÚôûÊ³?|9l,?»?˜]÷?@ê³cõÊZJ?X�Ï??VM˛Ç˙§ñ?Á˛SÊ‘Õ´lä-ü˛Úˆ�9�´�h˝¯lY
	¡?.?q ?¦2mý?m¦æHÞ?8X`ÛY²ôÔ¤°�7¨ñ
	?uóÚ¾Ú ¾’=UB?j]�25²ýC�ºøüõÚ�˜’ÌY~'XÆXcú�<4ZÊ
	˚j?Ì^?zÍ©ÿs�ö‘S[�Ä�Ö7ê�õ¿®sš
Û�ëëòê‘g�ný�V˙kÎ÷%3¬fîcHÿg?ê,å=x]
E
s
	reÝ^Ò�1�ô}é@?ï˙Jdì ßs°o"š�] %U�6fÊ?æ�?Ú²
	Û‘?¶eE¹·uòøï´31þÎ˚+·û?}d\5&µ?t�˙°¥?
\Ñcá=’ˇ+¶Êþ?ØºC?<??÷¸{\xyw
	Íˇ���½Ä;ªÛÜ
�÷?{ù"�kÃt5Ö?¥¥Úh©ÿV¡	ÌõM��?ª?¾©?�Ö Ëìd�˜2´¸ï��Ó÷�
	«Ì�/6ñÍ.ÁW*X²�-Å?8stñYÓ?° ?�?UÕ7×uRÿ&XJs‘+¯À?Ù&¸
?iü#È«ò-¤î’@e-Ç�ÿ»m3ÿ´˙m?=Vá6Z
	ó|¦ì°V.g¿ÀC~O��Á5alªÄëàl?8	�Í��?S]úÎïÃÚ!Á�ñ�?µïà?ùN9�i°	��ÝGá?HQn˚v÷�fu?�˜
	��áêÙ¼ìW�ZL¿2ZÌÌ8#�çÆ¿Ü�0d,ªÍÎZÉ_#?‘?Y?§??á?Y!	ù»9'[MT®ýÜ�
	�á£??¨?<âÀ8�x²®ÖeE�W7ÿ�.u?˛F�V?7PWùÜª�ç?|Çú?Ù<.“�\ ?“+�yì7u??�?l0ÏwÚ�Â¬ýÖ~a®c³Z˙R?i?ø?l*??s?c=½Ó
û?�?n��vdå£é
v?˙?Á
ÄYíR2?â
	Æ�?˛ym?.8X±�©§
GÅ?5µ©¬?¼?ñ!´³ðl"·WÜ�O?X?�ÓL«Á½|W¬ª¶\Kø??#¿Ü?¾¿?u\´ÜÈåS?#É�bóø¿ÒÜ“’´kñ�ï=�4Ö,yhØ.»
	³«Àú�£!xvê"]g�9�Ü?kº|ðÈÕ5?˚¸=�ê??º?|ÛGÁâ�éyï˜æj?
	&?�	˛�ê!?fKÐ�B#óÛ˙?�¥²F[ì+Õ¬,¸ Õ‘,e;_m?��òI«+?ä«P÷��?ˆˇ±R¸'j�û�`³.� èk5
xË[?·CN�?FJ6Eb�øh�?�î�ÎâåC<6��'?f?:â?�la|p`T'�Ó�?N�Ëú?Y
	?�S«ä??9CÆ�Üè??¾�N˜�p?yý«M@�¶&�ì?Îù´u?�ÂHD�°5Ç"i˛w?¦?�Cª.oÒ
íßékf�æú_å�îusz�½A�÷üqˆ�1�|�²ú?wÊ�¾?�i¡G~�á}?ì�qõ3
	åN\“4?u‘˙|ÝøzÇ¨}� á�Y?Lù?ÏgR3ÿë¼·ù×Y²{³eÅ?aI‘?êÓ?S|4»æ©ék?ý�ªÊ8Q&F\�?ýõoT~Ç?ò
?Ùì:Ç�¾ïh˚C!Öx�3??
	}Åz·�l
N¼ˇ]?á¤ á'
DúÆ¿ô?Ñ�?Òb˚V�?V�³G?�J?n˘lª��?��{ýv¿?V��Kqt?ÜO¥t�5`˚G,_}Hè�Ù~`5G°`B?�Dp¸s-¸ÿ?�md
	 |?bùU¾×Qc?Cc]Ï¡Ê˚½i?µ� ñ?k?˙Nl=DÕ?°<9·?3Ç0¼ïº}Í¹iÈ�kÏÓ¡��¾^¯¦½äç�fî\Ù��ÂZ
âØ`ªC�	‘�[³V�
iW³?f˛+6$�@ÉkìG¯
	DØ?02¯ªÕ¿á3ôi¡ÎÉ�:��Èý

	Lra?.�T ó}�üLpv?Ù"Pc÷�{�ÉØÜ��¢µº�§f‘ñ9±Ò? }yÞ±îèû�1b¥N??ÜÖè-COÖ_«8
	ôVuê©K��;í×«¾»?n¹;éAc.˙
	G6Ô|?
ÝhWGòÕJ�ä?¸���çç?!Dþ$? �õ*�Ä=:??C1û;·KÁäìM˚Wç§§�ÏYn=¸Tš²!ø?æ7n?Ôå?ˇ�%?eäBY%×;?4
	Eª�:2§??Í5p-äÖ+"ý!V
'Ï÷ùãëväÁV?í�"æk??@?aÇßL¦�/ Å�ö_?ØvÿpKSG\ÖV¢ª[À�˙0ZU?#5˛�þ�·aÈ©õË
	,$˜?;LP{*M˘ÖîJ�ìÄA¬�Â ‘Oˇ|¦�W*�{�Ä[R½èæxÆ?8éÒâ¿?!˚?�+F¹Dj??F˚š˜Á&P?9ØÊ%Í\˛nºZ/’ÿØ@¤ÿøó·|áÎš
	 ®5?1˛�n5Ø?õ??òÙp�r�IN

	?÷y?V2"è&q@r?�Ý_£¸ Ï‘Ñ�¡�õF¿?e´¶??H\4Üñ�š??¨®A ?&É¸bÖÁ??7?š?×
]?²�?ÀÀ]Â=í½ª/&ó˘ÐðtÍhmÁ5�êþ57?fËMûbL?»<Èê��
	Ì¶?û�ÓÜÇÄ¼?‘	?˜Ü¨âì÷¡¤¢’m?Hnìf.e�?]i?³�+�Õµb5h��
	*?ê˚Ù´ïú¤�áP?Ù?e²éÑè½Î»šç{Åã�1¾x?ÂDIúÌw±�ìl??lÙiw«]	$³�¥*â:æp��\??<ræ?ÒÎØ??àê

	»]Ï�N?¸kCãsy©�]¼ª�×¹?·¥
�gÔ8÷1=eá�?í?É'Ä˙“åzÎ�ÐùR«?5ÑW¹5T;?
	@Âþ?˙Ä?öcÅHVzß?Ú;Îˆ+ªÔ·ö?¯?“Ru

	·�J·2ÍüdB‘¥d^˘�×údgï«#k×vjMÕ,oRH;û�?ëég�|üÎÍ��V¶*0�?ÿã×?àY?
	ûäðÅ0Ê�nd//ý??ç#?ývâ%´˝uødR?�»*!ËàkÌÞ�»;?`ÍÚ|EWåÅR?D˜?äj9]Tü·¶"IÉU6�?ìFmW®�µ��ôÆ?
	¶ÜNå?»ÌÓ7Öø\?U¿§U1�®<8ÂÔKù?Iè¶

	0ÌÊ�x_Àæ�9?cé°ß¢Ö;ðèÅÕPß .;?m˘ÿú¤ðÆ2±
´�?Ýc]HôU»Ëià�úã.�K�·bK¥§?T¸=?~òòk¦%ºûí8Í®EÀà¡	?X¹úH??“Ïþþ??	|Íl¼šá��[§FÄ®$®zò½;é%dˇzÊºJ}
	?gÅÀ˝µ“5vkq{×?ß??Jm¥o0Â?5ß�Ýô??:p?Zs3?�}¯�/üømêØuî
	Ø?"àñhÜÔ¢��{~?˝�¿®NÅ²ë-�ûµ��Gq�ÿK¬}?�¡ä�©¥
ˆQ5˙�í:�!r×g?5��Êßº-
Ú|í/?é�yâ"	÷Qã˜äf
<êr£Äá?˝m.G³ÅÕ�h¤<bçßÍ?FÐ?Ëé?�û˘
	Þ={¤{ç���ä[I?CÅs²;¬?t�HßZ9�Ýó‘¬ê�C©Àgo%V¬äØ¹
Ä{?ˆ^âè?Ê:¢?Þödö¥DA`M�_ˆ0¸�µ? ?gq2Ræ�Á
	’“÷ò�çT?§É /?;Æ ¹Ô=G�%9UP?#??Ñ�Y�X� Öp¡‘ÝLÇ,
x�JVÁÚtÃ‘;ªc
	ošÐZ®© ¥ý�
Þ��ÖÓ
<Oç�

	?ÌÐÝ?£Kø?æìÉKÞ?c¢ÅÆ4�`8Ö�Â|?~·+=Re˝?6³kbY?�?/á�©kºY6?Q_?�ÑÒO×!šª$˝?ˇøã£ïÞÔWy	�
ì
	˜Ùis·˙d#?aÕâKÚ�ïiã S÷¶í‘ªtìoÀê?i?‘ÂÐØ¢Z?°8èò��]àÄº˜ñ
	Öv
;Wj'�?MÄ]f1}?Ú6�wÞ´?îÛìX37¨fÅ˛I¯½?f?¥û2Aê?³dk˙˝¦wN�ìÿ#x
	¡�ÿêÂ˘×êöÝ�??ð?hézakª˛��lö+�êú˛<�¹g¯�ë�aÑ?µ?õB
	?²Iš?|j{;�Ìqñ¯¢�ô�¸÷4@ç?hˇg½?Ù�?’Î�0·©lùt×V¦�üÁv?�!
?ª8q
	,²+�*?4 �~4t¶?A?x["Ú˚ÐA'�¢��ÕÆ’â¿¥lA¶_Æ? �%#�@3Ý@�?�6�O?’½#;C?f�È6ôý!¿Ã<ü?
	õSñ=�¾*�¡˛˜¬è?2ê°5+éQÚÚ˘�_?ðßJmFÊÌkcÿ_×Ôd¿~ÿ| �[y«Îh�è
	i˙?¸Û¸é§ý§�?|æ¬?	ÔìÐ�u�¶?7±à`�?�²?¨òlF*h��óÎ’.ßLf?

	?	?§õª¢¢�ªíaÜ¸?ï×�Í°ùs@Æ¼±?š°??+K�� �wç$?¼=úC@Å�Û?ý?Í ½�pÅÓ¶Þ�ª¨?{�PX«hü�
	?Ù
�@ÈÆ�BMMH?hAµÛnK¢ü�0!uçw�˝Ð±MB~;?$%?<#cÊ.ñ$/Ú÷É¾�˙=â½åÓT ˇ¡&ñ	
	¹˘¾?F¼?G:�ûà\Q³KR@?��¾?¦2�v1¯@üñÑ`6
	ˇH?GÏÏïÂÇ½æ??ÍZ[6Kño$ˇOuIˇ�ˆ#Ö^½?¡~+XwÙt�Ä?1lL]
°{ºÉ��m4Þ

	?LL<vpË?�Êl˝??þÃ??�?˛	QD&A$}¬F�³˚??.4ý%$%&ÕßMUÁ??J@3�
	??6MF˜·×ÌO±?îµ??�ïË�?èê»?V¹<R¹�»’2ôb£ä?ónAù?
	¢þû¢
Aª�F¦yá?j×qBp³ z�^î7��Í E,î�“Ô_»UðOó’

	ˇªìš�?�§?¯àÝ�˜Ð¿’?Ñ
wi1µ:O?Ã- ?��?Íðä�m�YJ4Ò?É�“#ÿÿ˝¢úAýFpð5?q‘à¯?�ÊöIô'Ús=æ�ìyF
B Öù?I×<:Ä¨ìË�ˇ£Ñmg!è˝r¢ ?Ù±X?��§��?CÓ×
	�i=*�\�zÕuú�Äª˙?÷½’h�£Ú�p??�?kpˇ+�÷¹àü??
I·Éê]0ç�dÂf
	?Á\8�1¨Ãô˚j#îG??Ôv�¿Y�Á÷�Öû5�à�J?�=òºøZ&ÑÑ¬]Û
	ÎPàj0¡I·�??ûC;B¢Db7?6¿ëæa?Àµ²ÈLt:Ý¤�Å¼š�w�?ÃÆï7é‘�wë��mqåõ¤bx˛

	?q¼û?ª#ñÏÚ¯ [n˛!�®@<˝¨J¸!ÜüÿˆñÒëÚH*?¸£��Ò9?S·:Ðñ?Ü
	&RL?�j©À˚?¥è�[¸©CGbO§å?˜?�˙¬G˚û�SÌ®ë5c×;j�# �ÞÐ¼bE
d×�d+2�c à³Qt?�mö¸# -¾É�?µÏf
	C3;F¡¯.î“¡?’�x ¢‘Éé��k?È�:b¢á*Ë6ÑÙÞ˛2ßÀ��óÔÛèVÎç«/«¯M¢��CûÙ#·Ì@§˘[û0º?ä

	?¥Éâ0çˇèâ+‘p�?y¿Æ×¶µäH�?uDn!-k
®YÚ?èT?«ê�;YÉù]Ðé�?Lo?áË? ?hû?Û?þeT¹N¤C?×WA *ó�cÈsšào£tí^
	?Ý�GzI�ùý9êör�??ñMxtHjÕÝ»?R¸Ç¡o?mpÅD,?iÃ“¾?¹�??
	Ü�äI�8©@¿?ME?�±˚~�ÃË£�/P?Ê9-UÝ˚;BJ??˛4,.¢[LT?Ø??
	ú?~:ZZA??ÉÃ6æìÆå��ôéÌaÓˇ?ô�šý±hOx×¨è©¼ª?
	cM×I&?�3þî£˛G?mi?ò/fÅ?�X“IA¡Û�Gö/?g°ô˛�¼ûp

	ò&jfkH:÷g?ßìÿ¹F¦Ckó��,�æÅ-:|?ª*©?š-ëc?š¿É¡és
	íìt×?Ð�’£qTÛI2·�¬=ü-?;ü?á}»Y?˜¾RWÅcç�È	²R?&Î?¤ü?ˇbºnt“V¦|´¹¡h`Kvgh
	¦{ß�gÇ<ó?^êOdxÉ³ ?’ka'?ð�Âå²Ì»sYôßÎX+�ˆë1åEÓÂ³˝Á	ÿ$[2"ðm±oÔz˙á
	´??@Ufˆdz�’�Xˇ¯˝?Ð1`ÑÅùô˛HÛ?}¶sr~=±É
	
�[�0maúk?SLøíÐ ?�O]?�Ãçñ«.Õ×�?æ«ñ^�ÿ?sÝÆÿ
	?S¯Óî?�ð�Ì_?�['g¦ML‘@gã3°Ü]ÐÇB¥ùEÇa!õSôNÓ
	o?�?\×ÞpM???w?�KæOV

	%ª�?ð"y�EG××ÂC?"_Mss�Uxc|Êˆa?~{KS�?R??6�7ìRÌX©v¯é¿?Øø0|«�Þq·è�¯þ˜¨ç*k˘Lm�r¯í`�S?p�F??˛ã�bW¹�tÒu’¦5[¥vcÆZÝÕþÞa˙$~Ç32 ÿC²
	yô�ü˘ý
ÒÌ?"NM,I“Q_i Áš'¼aÔÖH\9ø²y/µMËà ˜šâ?gò´?Ö˜
á³N?5
	å��=�âÀÞx?hx?˜¤ÇÓ/ˇ1Ò6��8ÌÇqnq:?�¹UO5j9,?�£ò��Ù˚É
	ê�/p��@cIl?©«³ÖV;?,^??VÑI?Æ�þüS«Âò’rçã¨ù6˚?
¡Á$'�ûÙéê¦â}4?LE£$ÆÙTE{ÊM}¼?L�¢ÍVcÜ?‘��å¼�u?�e¤hØ˝˜wn±íÊFôò$
	âä?ÿ�˙ºyæ�ìÊs˜3äU©ÐÀ �¸üú?©í?�²´ï?��{ìkæß2ü�B�� ³?!˙�š˚w½��d�÷ßÐ`EmšÍð¼+�

	&³Q��?xñöAdjtÂa?~Lìm|�b=¾�?[ó÷<�d¦�	? æÆØ˛
	!?H�ÈOõq�»|ÿÜ¿4}KXd¦Åˇ�j�àºk4÷�îÌR5?õ��41�ýÕ
	&xZV§�˜?aÔÝÔ³,<«ÌJ»/ç˛Îìt¦�µ îK`C�
�¢ÜÝI?
	=%Àš@Äx]}‘9»ñÿ?$EÚ�ö�$Ös¯’�Óh·ˇ¡Ei¿I¨¿Ö-ûÕ

	?¯Ñ\£Õ??Ýï??��åé??øvÛ.v?fC¶ÚÉUÖ�9ü¤ê¿JRí��
	Â?ñÚ¿Ù�?
úMdý§Ú'dD¹}z�æÍz˜.Wgò~ÑæË3$¥ìGÒÊ?Ô
	|*’¿�}r?¼?±aø-C‘F,ñ�²?\Ü¾tä»öQò®�OL³Jâ?uF~ä�?Õº��{"9˙KØ£�·5î{˝é«]àð?
	m¬H»?þX¾Õ�áÈVèh�+j?PÄ?���·&;«r{?¦Ý�UOV³Øy½
	µÖäBµº¬ÈÜð?$<�?I ZÕ×˘î�A¢l¾Cª�ôÑµÝVÓ#
]û˛

	,´ÔEAÕÚêN?�`Uõš?ÿp?v?5tÛH2:í²q²w
z:Ö9�&
�+h$I˛ZÇÛ?D¹zK$?
	é?�¶d°£�ê4{©ˆ&Óð?IæDRc0Ç˜!?ú?Ï#³ÐOÍfÃ�»?�É
	YÈ˝ÝGÈ
3˜díÜ¥˛sÅÃIS�ßíË¿î˚�
?[Ü
c˙þà�+T´K¦%�
	C&¢¹Ó˘]�fg?*àPM1{§_÷�oõ§·Úà�iˆmÉ»mfD[÷�æ?z¨
	Ze*ª7?q6¦âßs�ð?�÷¥zT¥�KÏ3’ej?¥LdMÜpF]ÇÊe

	°H`?ÞÜÍ!D?ìßðCW�/æ"XW?¤¸Ýô»ùph³<¿_{ÒÀoç??ÇIëˆ\D�=´Î{hGÚ??
	¥Xò§_Kð�áòØ˙���<�“%?�®}�U‘?�ùè[�Q�gü?äxIAÊ
	áuy?Q�|D?îš�¯v�ëà�dh�2	Ïó?Q*Â$ez:?¦ß?š�?‘¸yËÒ
	ßäæ�,|\�?Ü�þ}v�AC·¢�ÿq?Ù{Ç�]þ£jØ¦�vÉmZíï�í
	?iÕ0r‘ÝväýÕ?
d6�à7Üe??©ÈïSA¸rˆ?¶_¡.m?z
	?$

	1�uÈC à¯�¾�x³/Ct�¶4õàj&±çÅ�Â*?x?þj³çÝ¦%XKÿù8?Ã??uï?àå
	Î×[’2?Y�NÅâÎ�?^Ý�-Øù9T}¾Î?�¦?`�ˇ¯??®e�»¥ý�à�Ô<R?óÓáÒ�*ºý{�Û��´÷Z�á¨,MÉLê½Ý#‘N¢"
	�©½��´??qdôSÜlÍÛLGºrFU˝:’²Xþˇeú¨?ý-��5È\?~rÃ�yz?+"?#ÛW^ÜIé�{."?ÀB6É,\è?b0%ßJvÞzÞ ?˝×q?îI?�?ø�Ój�ÿ¸h¯÷?*�»@äãó?æ×È�dn??¦¼`}ô{¤é4?k�U?¾�õ
	hz Ä�¡ÿÐ?�íûš�j????Ä¢êˇ?;?aÚ�ÔPBûjÂ¸÷�$JSùd�-�'|l	$ß?R®²ü]Ý??	;?!ÁâùQs?{Ð�

	¡6}õ#"k³t¶áø¾öû˜?;‘Iþ¬fÄêîf1Ê¿l«¯iM??�Öäá¿
	áÛ��|?}Lßc?�ÿ^âlâ�Èw�xpõY6çúÌÒ;¡CÍ�Ía	#À?ÛsCçò£{'c¼?��

	?h?¬c|ºÔ¾]š#zšOMÞQeä?øÜò??�û!˜æ_Ö-v¿Õ˚t}bO?
	´í
?u÷¢qÆÓ?i"3§`�á?X/º?˝ñ83?øÃâ�dG?¤�åË_?©G¼

	5Å˘»ñ|¥h r}±?ò¢§µ9¢ù}A;§�eÀl0Ge¨f�&ÅPAÑè�?×W�m¶?,jåp�§?’w¹j�7Y?�èäzÇ?�µV'=+˙’Ë��IÙ?0
	SRˇ?¬�ý?.Ì?a?�¤?Î�?¿´W´
[�0jW�:??Ý'^ù
?³s¥'É£ßGÍªÎ?XÙ?3?z9��
	T?^?^�7,��ß[Gä+�nX�A9;?½‘éØ-ÅZjöýåFdm��½�Ë4ü·?]&#
	l?âðhF?-Í©&säOk?÷ÊT-ôµ2*ÏÑn?�=Á \Bó�èºo	Þáàé?'v�DS
	B�zP?¢¿è�0i?ÚÓB�/OÒÖd
'k«?¦ÉE³ý�¡©p�??ÑW6	A�@5]wh
	1�}R?^2Oí?�K-TªÅ??ßïÉ0Zòq.Bo_ ½���Ë?,�	¿?íU
	w.C´äkÀ�¬¹5?gÛÙE??A°Ó¢½g�£‘}`ÅÍjÀ:~�?Y˚X[É�×

	�®?ÐË.?Ï;·v�3pÈÆ ?.èÃDßê�ìß
	�Å?3�l¾h±¸Ï-¼Eï�r?ù �ÍD��?ubTeç�`�¬?�®?¹À·ñ�#0YäL?
	¦úõöç{o LpÛ¶³ØÏ?þ?�?h?f·�M?záeï�ï¦~Ý?ÌÖðRû?ð#·?
	~÷?üDu¨Ãe��fì¯ý?í˚|ã«8??7�°Áá�ÑB²?¼Þ h?WÂšzæ?ýÇTÇ?äN:q"ÄÖ“µ,�?U�ø`©W1�kÚ�Á’?õ¬u;Í+
	¼Ï??õe?˛?õu�?vÖ¤ä°�?G??¾ÜU?¼ â?ml_+æ y?ûff�´$OR�È@??ä,FQ¿è�g³e�˙4????!�Ï,ˆ

	Nõgç?f÷?Ë�ni??»|?���&ÆXoç4Ñ?Ùz�PÙÞ�d¶K?úq1Ø¥:Ão‘i/nÝ?®�=0???gy�\p2x¥]�È�©
	X4h�Ë7A÷?þú=�?ÕòOõ?õ´ÜLÀeÚ¡ßìû0äzãp8‘?‘ä���?ëw@^½x¢þª§?�ø;öþyì±ÏÊ??<Éy?³S£|ÂW??�½*×¨;¬˛%Xï�¾MYÎ¼�ˇyÜd¹�©õ`¡©|¸è.?Bß\“��ò¨??ÐxÿQØ�
	
??˚|%�v?AcØ˘9ìÉ?1U?±˚*{}??+	�ÓP?àwºªU¿Õéð?�aÁ��:US×
	�¢t*$ï˜R˜Ê�?Cä?±?À7½qÎW?]�?Å¹´å�my§ó,Ý�?Ä�kËÍ?˚?BlL “!’?´k�ðmT??²Üà
	§%~@?ÈaÐ&-;¶ßú¡??V��`à¾å&ÕÆÝ\ý�õÂp?ý�S+FíC�í~Sß/¿� Û??¸?�
	îÿ�n8Aúðã?¢?Ê.ö<Å@º#âCTFð³ÏÒO*pÓ?¢�“J¥Q�2c<�
	s?F¬�á�$cÞ+�6Â˝Î?�úÑ�V�±0?^´½&7^�˚~v�èí¸?{�Wã?õ%ÚZ‘¨÷f?Ñ??írqo/˘��?�

	øY¬��‘?¾ôdÖX*˛#u?|E�?˝ çj�`d˜W,�T?E[Ó¶?«[%Ìb
	®?ÈÃ*˘º�¶G³VóÖ#�?ÿvúÁX$I?�§ç�/¨?PO�N³ÆU»<yÇ

	?˘óÅò:d;�|R?bü¦’ë�'�n¶%?À�+-~Q?ç˝uBq	�d4ÈÓ®z[gw,ä?êâ°�0?EˇºÇ:?Òô
?	Õ?nÏ?l^Kg4¥?�'âî'ïâ´����==?Qà��Ú&¯àc?à˛jðÊCš_I˝rù? ¤c??§À¹}�
	S=x?õe<òK+.[�ÕH�«?Çrt¤‘Þ}
�!dÁÍ?¡ÌõÂ7?	ÏPsÙ=
	�èc°´AÕ_ûI‘�ˆË?�FN?±¤ó;¢ò�‘e??ï�ªÄ§?ýÞsØN�{�?3ætÛÂNmÎ¿ÓÌ
	LøQqv÷p 	éÃÊ�·Ý3-í¾¹å¢=šÜ{êl5H5«åéy}Âfx�å??ÑCLu±���“�K?�?�?cæÖÂ·?÷}i�uÈÖ�Â}
	B�²õš˙b!a/Æ??^Ýñ!I�yH+
6ù.�˜hÏªn,˙\|¼
áIL¤ÖK
	Ta�˘�Y�¦˛V@DW¿�?or0?*Ð
Ð�?t=x¡�˚ao?i�ˆÏT-×

	Vä
�%G~ˇ‘&�"í±e2{·´ª�ˆ]�U¬3W¥âï¸Û»ÿÛÀÔ
	qšïm¥×?âp�lè?%?�lÿýó?ðÜêlá?¯"/?;Ç
O�h$Ì×0gâ~?ð6Ë×6?g?,º|?�}ºö4��D�<’e±�'
	ûÈ`j�t¯6äÔ!µ`ÿèññ�Ì¬Tk�#s˛�eéÙÎ·É\øðþù²?óA�7��?Eˆü u±Ñ6<��¯±
]�õQàcÝ�à¼Éo5dé?YÛÎõB]?�FßkQÅ<ì®?6Mø�´;.©�ë’
	’ô` gÚ?°?
ZXû\ðÄV_9Rwì?å&¿Ôø3xÐ°Yc3r².?âSê¸,

	ÚXSQ:�zw?gM?Ó?�Ä��ØÈ?�ú	?]Aä?u0ISÎ���˛¤?à_¡?`ˆávz*pQ�d?ÇÐ"�
	y?�?6¶Û£È˝%˝��'
ö±÷“˚\¬´??ÓLÚÇ˛Sçù¸�g’�;¬DÍ�ešÑk"Éù}Ö��åf;ñ‘
	R�K
9ïr??�?×?É¯uú??êtçÙ?�t�
k!-ý?Z®˛þ?²?Nö˙ê÷PË7�À˚§bKbá�
	I�¸k’?3?Ú¡á«ùbYÏ×s?]2ûÅ�8¥Û˙M??á¡1?xB4C{6ÝÀ˜¡TÖÐú?ÇYjD�	?Ç?ëåg#	k{
	ÝpA�CWå£=?·ô;??g§v�ì?¢?L?Âi“É?´¶?X·šÞéS¶�Z�¾_±?åh!ôHbJô?wQ’°
	"!±?$˙øQ%x�ÒÝrÈsªç�7��r?�#vøÞt;´|9� ��?7?æ?�Cÿþf"e¬Õ¾ØMç�´Ø^�??¥??%š�G
nà±P�hQ<?c÷˚ˆ?�Bwª»FÂëXzÀ�¯�˘s	5ÃõÕBy#g‘¦ñÕC�=�©ë¢ñÆ?Ï7±?0??$\¯:!c�üüÃ¦»o??,}Á?9?q
	,ïc?«lQCÀfÒ[¿æ“©˛rfÿ¥ô�˚+g²ÿ�?O8þ?_ä�S?±�Ìé
	Ô:§Wr@�ö�ˆ?
õ c$'9Cd°Uã3SðËÅ9ÄL�?X¿o?�êÎ0ôG%

	Ñ�?én8Fp»²'M·TX???M?0<¹ÑÁe³

UÐ?ö+9Ë?JJ�uÊÅchÍV“$UÁº 7ð?g?è
ïcIz¡Öô�?!+�£m?Ãê�?W©2GnDþVS¶Ñ7ê¯µ�?¦x?Æü?Gt¯z
	’Oî?4�5ðT??£¾"?¬të?éˆ.�{?Ó�l8üsÐaü¼$e«?�w7?˘˚?»ÖuU:á˛MîL*êRsO}Ü$jÑ}²�kD?vZËÈèguõ¯Á�˛�
	/Ô?�ß,á_N??´�Mj,?r¸Å?[Aèl|Û¹?.ÁKk¶Ùß˙w�3�;�
	Cv/³^~£�?ò?Å?Ã?õ 4#Ò�6Æ5?��˘�µÉ±Vdš÷ã?�ø�
;Ü??´ÉI°ý¥Të¶K!��b6
	ÖF?Ñ½ªõ7êÞ¡q�š˝l$?�e
ÿÃ ˛¡oj�9âÅt?G÷?¬l¢¦
¿�Ä²
˙¨?Ä?�b&ùæ? &E?6õZºhÝ/þeÿqò£�?ñ9�Ó?¹Bn??ã�?/?mÒ?¯åáˇ˝d
Ä,ÆW?üP
	ì?¸'¬Ó�Æ?C��AÊ6�9ã«]!~?�ÚýÅò˘L³¤»
ß�Å�???æ&«÷æ˚�tz�?ù?öH��©òóÂ4©c� }ËÉQ7ú<x'õr�

	?µó«Þ¾˚˚cxÆ3OE`CÐf7?´héwiéI�?»§˝«pB?£sø
	±ð˘|$Ã¢ò9�’??Sóm?s×?ý�r°6¢ˇ:Ú÷éø.8âšÌ�¿?W
]°?Ò�?l3Â^ÈTÄÙ²Ø1+¼#�u£[â’?ødÕÑGÞHØyC¡0é®ò’Ñ
¾
	??Oí"éú�.å3QÆðü�Á¾,]ÔtÌ?N¤Já~´�ï%õðÖ·½˝?»
	É?	ˆ¯Û¹y^î‘ß?Ï?˜iÛIû3
Xb¡.¤Ñ¼-AZE˛v�@aÙùì|¹

	z!?¶B˝Ñ¹-²bý@ùÖ�`¶�«˚�sO¤/Úb±- �|x??öÕÇo÷

	�Lm7¿µ��¦-û?`û	'¨çæ�‘¿Ã�FCëV˝�?�?Á Oüèã\!ðýb¾3`e&
	÷ÜE¬ôÖç÷ÛÂ9? {¯Úê,‘.�è2ÂÖ]Ï|Ã7ˆÆ�í?�ËùOúMDñ:?Ë?£
	˜?Æ¥?Ð˛¨?0_šúO8{ˇ'�?åG¬«=æ�Õ
�<ú|þ?rÄ �˜‘9¢©ÕD×Xß?ªI ½ð£{?�?�Áç°dš
	õ�D‘ÑöSçx�??#�ÜeÔZÍ?˙¤˙*'âWZ˚$x¾
	ñ?� ¬Dó˛íäçðm?øö�\[D?7iA±ù�Uà�0�¾^R° ?H
	?Þ&;å�®ø.?�Í®¡×yÄ?�¥ANÙ¡Ü0}1?¥?ˆè¥?�?�?Þç�?æ°t
	ßbck?Ý°?Z,Á|³�1R.<��z˘Ú:Tª9óL¥¤~‘?a'[¸��?
	?÷}?fìp+óì&V¸w �SÔ³î?r?ÜÈ1<çÂÐ%u¤Ë?¾?ûš

	ý?b+Ë?8í¹xß�*àd±�÷�Z\�x?6?X®ëP?�¿üÍ?J?

	˙nQ�?˜2-m^Xô6M?�_Á$X?�?ùO/˜~épÎâU«ò˘x'“´˘°¯i
	×r©½Åˇ3Ýûg	É¼ó³b?ô�Û<?è²�KðT¼àÅN'°?W?M�÷5Ä©¢

	�X/7W=1ë?<ÿ�¼$HÛ??XÞ·&�?]$��³�
	s5‘óê‘�®]bª.¥`\Ë¨ÜâšüA áˇ�Iˆ´?fÖn iÃ7L�CÓTkH?RÂØÏ/
	E¬ß´äC�9Ã�Åàýz² %?ÙDÃàóe~jßÌB?'SÓ:G<5hEì$À~üeT�1 t"�ê°5?q?oº˙%#l³?61?'ûêÎ?
	æ j"‘_’${:'�&Óé0&?LÚÉt?ÛXí\�qlxY3˛“·s!˙³�d�˝?W˜?Î?ê�˜
	�k_GP{�¿�âv
ˆ�Ýz°?T«�3õÊi²¦¤�_NÝ�±/ZJ±?`@�XbÄ./Ï9=,�?<¤bJ��ZmZ$u˝êøà	<��//s??�Z´§rT?ï¼O
	L�?�Ðµ¢©¹»µº&ìâ àY��Õ�NáËz;TB�®��?N?£?®çÀ?8r
	‘t�˙˙?®�»ÚþxAÝã???�ä1n
?»ñ{?ßh»˘..???¹uê±µ5�

	�]Loû{h¾b˝?�4Â˜ ¨®T?±??�ÿTz?úô¨u˚?‘Í?îšÌÊe@1ð?
pÕÙôàfj?ì[
	Úˇ“ì�ˆ? #s9?Ö�n;úíòÐ;êÙh¶�RR»öþ??y[?¹	rC
	K?Â×??ô
ò?t®¾?�Ý99È˜ZfB“àÆ�?ºâ¢§É??Í?Pf$fÞ
	ðÔl�,˚h?NmT!îà?ìæ°o�??Kçâj?L¢o^˝ñnÆ	c˜S
	¿ó;\^Å¢7_‘�üg9Úê£?‘ ²Èæ]«?Ø?ê?!¯¥ß3?á˙îvYÍ?'Í�?:¢þ?op{dhÜe¦á’ºð˚?
ÊÇX?ÄÏü¨ÔÔÛ	?˚$P<?˛š;Ä˜¥�¿‘�Õ<�
	?7F�mYs{£¢?ÚmÅ{Î_4b�|4¢ 	4�6@˚Bü|©ù¾ öàÏcÃùS
	6Ù3¨�¦®ªÿ.Ì
“[?Æ???À?8ãoÅ?YÚ;^šÇÞ’"5J¥§
V¨OÜ

	�GØ?!dcòò?fê�º?P˚?¬z�R?k�a¼T�\7?ÁÃ’ù:˘²??¬�ïþ Äº´ˇ¯ófD<ÆÀ¿jB,Ï?ëóìgYcF~ïH7
	ÐÆ?f!1,:ÚMóÈ?�jÛ?S¶Ëãô‘V#ëæ?CÍ	«ßfdõA�?ò��WÊ³ó?�`�ÀSÓÞÜh??TÿÑËArÑy?ËYÕ¹aù
	Ë,fÄè?�´@Ê??¾˝�W�:õÊl°]OÑQ“??¯¦ö¥ÛëA?&?˝Hã4Çr?¬?oöÔ÷ø˛tÊÔ� ·ˆ^rïy%ßÐ‘?
	|Þ«ö]i‘??ÈòRD^'Ì%A?NÄní’�˝1ÑÕ@·�G?[ˆLä?+?~ˆ“Å�0+QÒÕì�C˛�?˙'�?Ë??¯¸4@S?$·�¤;q{?C
	jwÎ�?\,Jv¹P?P??ËµX?;|ËOg]??²ßkÉÄßß§ÆSl*?�öó¬ˆ�?�¾±dæ�î��¨á÷<à˝8?ug"6ì�¦�+ÃÖü rÁ?§.Y°
	?Ò?E F?
{�g¸Ý
W˜WlÁGCG-ð?Õú?t¦í?PH~Q Òx˘Lu??¯??�Ý�?Ó®+ë?šAê|Ò‘Ó?�/iÄêÁ¹e˙ˆÄy?Ýí��Ë?ñ
	Hzn3r&vWùðãlKuÁT?ùÁç	<¾Ôp�7?MïnÔmÍÏfMNN¬+�zB˛ù_?;S?Å.?aõâø?Ï
âÌùSûu!aAéhÆ_3ösw˙l_“§ÈtN,mÞ
	,ä¸EšÍÕÜ¶�??ÄKYîÂ[¾’ã?ÔZÚtçkGõ·G}SZs?G*T«Q.Õ
	Ô?ã�k?r?Õ�ÿáYD?%TÝc; ´CQõ�?k*Ö "îmFpN?¦8’?

	t_è¡QZª?ð³�ü|?àtd�?J""ÜÃÑ63~3?^ãO?ÆÔ�?»í<“Ñ³�3vØ?¶�ù£�¾?^³"ÒÙé??É??ÉÔ1'?ßv»u	Kð¤Å¸$˛B?ñÔ˙X8ÂÎšBõxô[·îè?“ÝhÀK?XÂ§]¥T®�?õJ]íˆ¤ÕzY�ˇí
1z/B77zÎ·D?Õk?mt?§�ˇTô^I¸??d:?˜öáå9¢
	¿�HXQÄÓè��Ô`?°�ÿå6Î»ey�˛è3÷�¢˜?àX4Ú�ÓìGü
	�uì?;³Ê“Iª¹|�ÆÅ<YçD"¢ÃÄv%�?�³J˚Æ�ÈØpÇÔçL?U%@?
	,@xùYg±�ñ§?¨tSšËæîìì$]˝"ç,Í{¥�w°�ä4¬�m½eÁ˜P	/p?��Oºïš]³J?Ú?å?
??e?0·|P²âZ7Gr˚@2�7
	ÑÖ×qÇÁóiY¡q²@zÜ˝?«�y?�üˆÖ¦�þÍ%\+ÙM?âh�ù3¸Ã�?/hfyG½
	B©�hµý]�/ì˚ÂÜ¿ÂÉâX#˘³¬.�¿˚�!RÂ?9&ÝÙ�U�d�?T�÷KÔY˝?��òÁ¿?¢Ï²{3ä�¥_?õ|�uyÇ&
?§±º%ft �ÑHbU��ëúý?�ˆ?È�w
	}ÏÛå\Zšã?!�T?Ã;iüÉÿÐ??§¢�xn?£˚H´Ácui!ˆ¥��˝æ¼
	?�Ò|#fúòÝ?�N*CÁNJ<a?�á?qG�RæõÖW¢˝¦UBÈøì?l:o|
	$±û\7á˚ÄzÉ.Ä¤�äq2?of

	?
ª@8JoD˙´�‘!¸À��ó£¢?5ó?ò×JÖ/&¡Æ��b]tšGfÁ�ðÑÌiY˙m˘`þ}/�GDæ?�3å
	f`i«qRp’
iTÀÙo˝æ=.ùÚã·�?èv¼^Ns�˙x;èÎš�2?«N
5
	Ø£e�Ïe“�§R˝Ú}�EäÏ`B?êZ?KTu%|Þq÷«D?Ú“ýèþ�¡R
	!ò�3?^?.s�µ	Õ�¡Ê¯^©ÎñF%«<´?
?P§�Y�Ü:$Ah�v�??Ö¤-˜?³çìˆ1E|Û¨ðj´˚:?Øº?çMj�ù˛à¬NÂqü^šþ={Ó®?ùõ4?·�t
	;’£DÛ˛
�¿5.eK®îxÕëˇ<[×9æc¼��èu"d{¾Ç�W?àð¦¾×Âª¬þ�¶Ò�£�§ï±˛‘¤?ãÈ?Uûí#U¢G˚¶l_¡çDÙôãÔpî¨æ·
	D�o'uä?sÝÈ?Íò=ä§jpzx×ó�Ïê?W´�¿'ga³fý,àÙ:ÈðuÖˆ÷fç´�£§núRô�×6`Ý.
	?3�S3ÌMÎ�?r�ˆ¢�ò?l~�²÷ÝšS“�ä%¶?èïÊÚ?ßB;š©ÙnH?	P?¬ª?�h
:˝!·�X�Õæ=ÍÕF�%Ñ�4JêÝÃ˘ËO?

	<	˚G#òÙà�,§¿X¡yú=°Ê:Ì˚É@¼?é?kš�?°C?4?3Ãè»?ü¢
	�j�à-˝Pto?¶g{ábüíB®?["à�Ð�.,?�Ê?¼�Â»ò`]sÒ

	+’;^?¹ÞX��{1@j‘	Ô?;í?ô×iÈ®
	É.�Ø/£Kçk�õû?M~Ì·eˇqÿòÍ-T:?ë¿Ã�V½[*²ªÆ'¦Oˇ?�Ö¤è?˘˙RË??â]tPRò³�y?]�°µ\.O6*{×C¬
	×?¹ø;�«Ð£×:7¸Æ?D1N ä4:¢\[��T??ôä�d:?˛î -˘Ú0�½?Å?³èä*6wH9?˝k{¥?OÃ
	??“ÒÐÂ½�ËÞ?àÛº�ôs×��GÔZ*Dã;Û�6�ø’ò¬?H?�Ä
U
	PÖä\Å’˜n%�?YQ?8‘7zi�¸�`�&Á˛?Ú,��çæ5ÐB?=MÎ
?H

	�¯H"áÎ=Ð½�uD�Z£Â?.??ËR`~´¼??y�|ã@Õ¬©GI¤˛¹�¸ëØ©Î�àšÏ©�å?·Ã?Ò]#,	°˛¨
?ÁÛÄþ�Bx�äÙ�?˝?à�NÀX?ìÊÎ]Ðôtw
	7«}zµf?A“éFò±Ä�á&7|oÂ¸�’|u7Ó"‘s�Î?cá¥r%¿˜?¤{þ»˜×M?'
	˝ÈäÿuÒ/Q²z-¦,¹?�½"?K¦Õ"¤WxG£?£�ï�×FÖ˛šëV+º
	˛ÖOhÒ?Öy×Î�Blk¹?© ×CÏô‘ZðH¹??½dèë¤!Ü?¼Ás?õ?�
	¸ãö�wDsÎ%µ?¦¦Ç?ï¨4�j?L|,¤�‘�v¼ˇ÷��<1ÿNzY*Yÿ

	ÿ;Ð+iÁj?ð’â?Èy;�£Î��®��¸¦Üý‘áí0?àÓ?´���«�
	¾Ê?Ã¿$_e$õçÔ'ñ{43=??Û�µl,RÏY.í
	��¿O
ëf?ˆ2Å??r]só?Ê®á�?	-Ú�¤É�?l¾˙ÞXEwkBÅ5˙ÉËÒ�+?mnÈâI.¸À°|?[9x�n¬{µj¯˛+�BÜg%9:?
	�@D?2¡5P}�¿
˙¨àì�ñ�2diñ§&WÍº×í˙êñ|ô ô���ì?ZÎ<?ýþ$k
	Ðý6¬�¦ j?�]Cq}A¯æ�§?/
ã"ß�©�É%�ï¹d@�^ò�x= ã?�ÆåwÕ=

	¸�‘»?²r?˘“ñt�®?ü�Ôõ!»??¯îÕY:l¼�¢��XºX\?·“ó?u a�pw �È®îµSQ5¯¢ó�P�¾¥«˜6ñ
	?8_wì�]’?�¾°m¡Ñ1`?³s�ZØzÃ�?“äVF?Ôøø��Ì??IÏ�@K� ²Ôçhi.9-S?T˜eÄã?ÃÓØ7?Ò?sÝBÆ5?7¤r3¾·Ëîáka �Ê<�3º
	VEÕ<¨?ÎrxKy?Ôl¥?Þw�×T°7Â¦ó±._g??ñ+�0¡ÁÊX¦?
	ˆr˜1ðÝýÜ�ïçˇ?îù{oÖC?üä:ñ?C
¸�ð�Þx�éÓ�<��?w?

	¿ú˚§J�?��øtZÕ";'m?�¯SÙ�˘ÉuÜjBÖ�=8Ì¡Nñ4
}¿
	´KõâÜ¼r?'u�Þ?¤±�É
rÖÈ7p�p m,O�/í�î˘4q0ò¤<?;8

	�í¯Î?9
?§î���#@½;˛?ËµRèL`?hQ?d]¯�uˆi�?
	S-È�¢´�NN??ì£èGà?ÞBµ÷µ·?MW�ë¼«ï,%I2�3m3Aé?kQwÝ+÷�Ø˛v?-O
	@h·�e�È˝YÍùZ¼ }øˆi4mu?˘®?¥@[:4¤a?Ñ1ˇ?�]�I��ñtªLu�?ùá£Çíá?ÌiG�ÆºÁ¨t²?Uó¾§ó?óëK£ñ&\?ÙÓEî'¬
	ˇ®Rî¼°nV�²??Ö$ø˝�v?Áb???=R?\ºRl*û,%%óÿX´?ñëùtÇÒ�Ô?NQù?ð�Á[�÷ÚÌ;áQ	l;MÃÇp0?
	
#îzA¹õ
ü»?�öNˆ˚G/-??H
?L˘+�e?'Êô±q¶øÍOïá«�q
	û´ÄÎ;ïFÀêÆµúdËÈt ?¶Â:1Üßw±¹WýYøOîP�]9?ºÔÅšöÞ

	4¿aþ³˝õ�ý??¹ö!˙Í»ÊYîÌI£Æa|Ý£` Þ��î°6ˆ�£#Ó˝
Ýr²�˘îèÖIÛÇ¡rÏLv/u˜|Y¿%;Àl˙Pì��?ÜzJ?æRð\ú
z�Ð˝ä¨?ç?�îhCî¹q%#Á³Ö�.E?e??´�¾¦ÙM
	0P+h¥ÁS2»�?Àâ?É½'Ý¶¡c?ÚN]GÆ+?7Pü?põt¶4JÂ��9Ï0CºZ
	Ñp¶E¬tud=Ýß�ˇµë��z_òek�LN7’?åBÏ2Q�ÊâªÝM˝¾"�â
	ð�,â|��°ùt?¸ßˇÇ?snýCIã’Ô§#�Ú¥YÞ?eòG»¬üêªëå
	s@H67[ùbæ˚??Oáy8Xr/$A<q¿?��0òwÚ?,	©tˇ?,?Ô5Ú
	˛�ª*MoÚw9'GÝ4_Ü�£i"xÚåUz5���=Ï«ÆØô%X˛T÷kÝ©?8

	7´FÇ’û??8bj�©�?Ö'?V8?
	Ýê?àã�J‘±úÖÂyÀ�âS	?ÿó-¬J

	¶H�ÍYVÂîº±˛$þ,ÏN?Pä2²|ÏË?ò��Ñ ÇÀ·½èý??¸ò2?tPÚé
	l÷F1h^©õ���Ô°9Dn�4»ä�^?½wýñô�ü8?`Ì·èÆÑjZ?^Wr:b,vb:èãä2E?ïˆVíß�Ô?©Ï9?aeK#
	�l Ð˙�ªª?Z¹?�|°+Ü�¯<%Ý 8Õe�Þy¶?�ð°#òp?å?xfÁôOÖÿD�¯
J}˘ÞXR^˘I’ð?Æ
	fWXÀoß;+?g%ˇ?ç±õ�õ
Ó¹ÐÐ?�‘	ß“`àÒÎ7c
Eù?!_ñk?½[Bp�{wU?à"
	_©÷ ¥ôìy|ÔaoµJÑ;Õ#VþXÖ?¦&Â¨gIy¾íÕÝBbövLYû?Y�c0û�±ÈãÏ1?f?Æî\
	àËíl¼ äÖ÷+?0Ek�õ?÷õjoìà,ö?gÅ?¢°'�R_?Ô?3?ª¯,Ø?à�¨°ê�^¯é«ò�
Õ¸D?K

	!¹Mo˚~C»Z�~Û¼U?~îúúØ=@lí2½??+�?ñ¼
	XÂÁ§*?|�*??øâ?,¬ÃšÅ]eõQ]“�?j� ly
	ÏäJÐÉ�ÚdJ??÷O»Ñ0Ì¼eh????��Jp
qóòCºÀº?¶��±�0?âˆ7˝?ÒÃ4??u°+Weø’3§Ç¼êÁQÊÜ�.?	�¼
	#?Ü²N6˚. ø?ÔF¡D
}�?“f¦ËÁ? ?á?5±¤È
??ñ+�?äæ?Ó¶?`Î?�W
?ÜÃ?
	�ÑÂ¡MÙµÝ~@Ú=�ÖÀÖ÷_Ü+öa
	d å�Ë	ëF˘2Å£M?C�ây��J?¼å?voJÊåïrt4s˚8á»æ"ÐÊY»Æ<Ð¤±Iá?%ÓW?"Fy˚p�î�8XÇ¿˘·_9µ?=e��éL?�˝ß�¤å?7?7?˜A
	�?2?¤Éý?¸èaˆW	3ÊlãdFÃ}çå�Z�’Jÿ�ÐÒ½?°Àþ�,�Æ3?ØÒëˇï?âLÈÜQ!
	îF¯£O·ðè!�¦]!ì¼°Aô
62aÜØn˙?��˜£?ÚöÓvFHP³MZx�VÊæ�vá¿?¦f

	&Ä?1¤?ÿ?j[ÓêÏ?{Ù��fèÂJmh|Xy/åá�Ì
LC%ã Hæe¸,éÆÞ°?�'_?¯?ô91Cü
	�?q�X1??Ó¶«·˝=�ª?á�o?hÍ“õ[ª1ju
	�?ÁÑëÏ?¹�K_è??ˇ÷*+$éý?�OëX~÷TH�ò5[ñ¾]
	#?Ù˙\ä¨C˝U�ú©
í0ì]?^ü§�0�K
	xzcá=[I$ÒQ%·Ì˚Â8¼^%ì}È÷±¼r?ø��
	Ol×jÔ¯�P®	ô$]ª?Þì�ÃÞÂø
	ª6ÓÄ0�a?É¦^¯�éxÖÜ40?8vö'=ˇ
		JàicóRÕ?¡·ú¯v˘�Hì@åø
	f�B?H¬íMie£hÉæÚ�É:?ÔÕ?Ç�_?K·§ý

	?Å.ˇn[FU?�?Søn�`1=?ÅˆI‘½-�ILcè¡�ÕþW?`¸¬r
?§wð˜»¦��©òÐPGHÖ �’?Ñ[?ÄÖ}ÃM¹ªZ˚ÿ
	V¹¸£àRcÚî'¼\í-Ã\áû�wç}ç³?Þ??[{Å�ß?e³Aÿû?-ýÎ�!¯Êûú×Íàf¹�20¢6«˜�?»³sð\6�;<¤£“?ú¸?@ÊÃ^

	%[²µ²?\p?˜»?
	Ú�¨ˇ
	˙1ö?
	üå£ô
	?ÁwÖ
	�ü�?
	©‘O2
	?@à�
	ä±ço
	?Ë{Ê
	È??®
	??×é
	I˜.ð
	?è?v
	l˛¼˛
	Îšây
	?kgq
	Ò˝ª
	’:ýÑ
	Ê˘:_
	ˆ�?v

