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A B S T R A C T

The European Union recently updated the list of raw materials considered as critical for its industry on the basis
of their high economic importance and their relative supply risk. This list now defines 26 critical raw materials
that include among others, rare earth elements (REE), scandium, vanadium and cobalt. Among the different
primary resources of these critical metals, lateritic deposits are particularly targeted. Recent investigations have
shown that the latter elements can be accumulated during weathering in consequence of residual and secondary
enrichment. These environments are also characterized by significant concentrations of transition metals (e.g.
Mn, Cr, Ni), which are not defined as critical to date but remain of primary economic importance.
In this study, we investigate the potential enrichment of some critical (REE, Sc, V, Co) and base transition

metals (Mn, Cr, Ni) in Ni-lateritic deposits of New Caledonia by combining mineralogical, bulk-rock, and in situ
mineralogical and geochemical approaches. In addition, particular attention was paid to the development of a
new standard compound, labelled StdGoe 1.1, to ensure accurate and reproducible analyzes of iron oxides by LA-
ICP-MS. Based on this new specifically developed standard, the concentrations obtained for most elements
present in iron oxides were shown to be significantly lower, by 20 to 50%, compared to concentrations obtained
from calibration using the NIST SRM 610 standard. Such discrepancy is attributed to strong matrix contrasts
between finely divided iron oxides particules and the silicate glass NIST standard, and highlight that previous
concentrations measured by LA-ICP-MS in iron oxides and available to date in the literature must be considered
with care.
Based on this new development, our results show that critical and transition metals are concentrated in

different horizons of the lateritic profile. Ni mainly concentrates in secondary Ni-bearing phyllosilicates in sa-
proliths, while it is mainly hosted by goethite in limonite levels. Mn and Co both precipitate as Mn-oxides at the
interface between saproliths and limonite facies, while they are sorbed into iron oxides (goethite and hematite)
after dissolution of Mn-oxides in the upper levels of the profile. The main fraction of Cr and V is hosted by
primary chromites, which are weathering-resistant relative to the other minerals. On the other hand, the Cr and
V fraction released after pyroxene dissolution is integrated into goethite. Both elements are thus continuously
enriched with increasing weathering level. Rare earth elements mainly accumulate in Mn-oxides horizons. Only
Ce is concentrated in the uppermost levels of the lateritic profile, likely in the form of cerianite. Sc is mainly
hosted by pyroxenes in the bedrock, and shows a progressive enrichment strongly controlled by goethite in the
other horizons. Highest concentrations of Sc are observed at the transition between yellow and red laterites,
where the highest proportions of goethite are observed. The decrease of Sc concentration in the iron crust
horizon, at the top of the laterite profile, is attributed to the progressive dissolution of goethite and subsequent
hematite crystallization.
If the very low REE content of New Caledonia laterites reported in this study make them hardly valuable, Sc

concentrations are high enough to be potentially exploited as a Ni-Co by-product. Therefore, it could be worth
considering Sc as a new potential resource in New Caledonia laterites in the forthcoming decades.

https://doi.org/10.1016/j.gexplo.2018.11.017
Received 18 April 2018; Received in revised form 6 November 2018; Accepted 26 November 2018

⁎ Corresponding author.
E-mail address: mulrich@unitra.fr (M. Ulrich).

Journal of Geochemical Exploration 197 (2019) 93–113

Available online 29 November 2018
0375-6742/ © 2018 Published by Elsevier B.V.

T

http://www.sciencedirect.com/science/journal/03756742
https://www.elsevier.com/locate/gexplo
https://doi.org/10.1016/j.gexplo.2018.11.017
https://doi.org/10.1016/j.gexplo.2018.11.017
mailto:mulrich@unitra.fr
https://doi.org/10.1016/j.gexplo.2018.11.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gexplo.2018.11.017&domain=pdf


1. Introduction

In June 2011, the European Commission emitted a first report en-
titled Critical Raw Materials for the EU (European Commission, 2011).
This report identified a list of 14 raw materials which were defined
critical on the basis of their high economic importance and their po-
tential risk of supply. Among these raw materials, most of them are of a
primary importance for modern technology, renewable energy and in-
dustry (hybrid and electric car industry, wind turbine technology;
aerospace industry, portable electronics and so on…). An updated re-
port was published three years later in which 6 raw materials were
added to the previous list (European Commission, 2014), and finally
last year, a new version assessed a revised list of 26 critical raw ma-
terials and groups of raw materials (European Commission, 2017). In
this list, rare earth elements (REE) are particularly targeted since China,
which produces about 95% of the REE worldwide and is the main EU
supplier, has announced a restriction of their exportation to secure their
own domestic use. In addition, transition metals like scandium and
vanadium, which were not on the 2014 list, are now considered as
critical due to an increasing demand in the market (Emsley, 2014;
Gambogi, 2018; Polyak, 2018).
Among the different possible sources of critical metals, weathering

horizons are particularly investigated. In such environments, REE and
other rare metals show limited mobility and thus may be locally en-
riched through successive processes of leaching and concentration in
neoformed silicates, oxides or phosphates (Aiglsperger et al., 2016;
Castor and Hendrick, 2006; Chakhmouradian and Wall, 2012;
Eliopoulos and Economou-Eliopoulos, 2000). As a consequence, several
investigations of the potential occurrence of critical metals (including
REE and Sc) have been done recently in Ni-Co laterite deposits devel-
oped on ultrabasic basements worldwide, e.g. Cuba, Dominican Re-
public (Aiglsperger et al., 2016; Villanova-de-Benavent et al., 2014),
Indonesia (Maulana et al., 2016), Australia (Chassé et al., 2017; Jaireth
et al., 2014), New Caledonia (Audet, 2009). The New Caledonia
ophiolite is of major economic importance since it hosts 10% of the
world Ni reserves (McRae, 2018). The country is the third main pro-
ducer of nickel and is also one of the main producers of cobalt (~3% of
the world production and reserves; Shedd, 2018). Recent investigations
of Sc contents in New Caledonia laterites have shown that significant
concentrations occur mainly at the top of the lateritic profile (up to
80 ppm Sc; Audet, 2009). Although these preliminary data show a clear
relation between Sc and Fe enrichments, suggesting that Sc is residually
enriched at least during the first steps of weathering, little is known
about the variation of concentrations in the parent rocks, the con-
centration factors, and Sc-bearing mineral phases along the weathering.
This study aims at presenting a complete overview of the distribu-

tion and concentration of various critical elements (including REE, Sc,
Co and V) along the weathering profile of the New Caledonia ophiolite
and their relation with the mineralogy. In addition, other transition
metals such as Mn, Cr and Ni, not considered as critical but still re-
maining of major economic importance for EU (European Commission,
2017), are also studied.

2. Geological settings

New Caledonia lies 2000 km east of Australia and corresponds to an
emerged part of the Norfolk Ridge micro-continent (Fig. 1). The island
consists of a patchwork of two sets of terranes: (i) an Upper Carboni-
ferous to Lower Cretaceous assemblage of metamorphic and volcano-
sedimentary terranes, which are related to the formation of an accre-
tionary complex formed during the Jurassic period along the East-
Gondwana active margin (Cluzel and Meffre, 2002). These terranes
form the present-day autochtonous basement of the island; and (ii) a
Campanian to Paleocene allochthonous assemblage of terranes of which
origin is related to the opening and subsequent closure of the South
Loyalty Basin (e.g. Cluzel et al., 2001; Cluzel et al., 2012; Ulrich et al.,

2010; Whattam et al., 2008). Among these terranes, the New Caledonia
ophiolite, so-called the Peridotite nappe, is most prominent since it
covers about one-third of the island. It consists of a main unit located on
the south of the island (i.e. the “Massif du Sud”) and a number of iso-
lated tectonic klippes spread along the West coast (Fig. 1). The ophiolite
is dominantly composed by upper mantle rocks (harzburgite and rare
lherzolite) with widespread ultramafic (pyroxenite, wherlite, dunite)
and mafic (gabbro) cumulates (Allègre and Prinzhofer, 1985; Marchesi
et al., 2009; Pirard et al., 2013; Prinzhofer et al., 1980; Secchiari et al.,
2016; Ulrich et al., 2010).
Due to the tropical climate at these latitudes, the ophiolite has un-

dergone a strong weathering that probably started during or soon after
obduction (Oligocene times, c. 25 ± 5Ma; Sevin et al., 2012). This
weathering has led to the development of a thick lateritic regolith
(Fig. 2) that typically comprises five horizons which are in ascending
order (i) saprock, (ii) saprolite, (iii) yellow laterite, (iv) red laterite and
(v) ferricrete. In saprolite, the primary silicates (olivine/serpentine and
pyroxene) are progressively dissolved, resulting in the formation of iron
oxyhydroxides, quartz and series of various Mg(Ni) phyllosilicates
(serpentine, kerolite, pimelite; Cathelineau et al., 2015b, 2016;
Manceau and Calas, 1985). Laterite and ferricrete are dominated by
iron oxides (goethite and hematite; Fig. 3) while silicates, are almost
completely dissolved (e.g. Trescases, 1973, 1997).
In 2017, Ni-deposits of New Caledonia represented 10% of the

nickel production (210 ktons∙yr−1) and ~9% of the world reserves
(McRae, 2018). Ni-ore is mainly recovered from the saprolite horizons
(~4.5 wt% NiO), where Ni accumulates into secondary serpentines (up
to 3 wt% NiO) and kerolite (talc-like, up to 30wt% NiO; Cathelineau
et al., 2016; Dublet et al., 2012; Manceau and Calas, 1985). Nickel is
the only transition metal to be exploited so far in New Caledonia. The
only exception is in the southernmost mining company, namely Goro
Nickel (Vale) where Ni-ore occurs in oxide deposits dominated by iron
oxyhydroxides such as goethite, with an average Ni grade of 1.6% (e.g.
Wells et al., 2009) and where Co is a co-product mainly hosted by Mn
hydrous oxides (Manceau et al., 1987, 1992).

3. ANALYTICAL methods

3.1. Sampling strategy

In this study, 65 samples were collected from the Koniambo massif
and the Bien Sûr mine, near the Pirogues river in the Massif du Sud
(Fig. 1, Table 2). Part of these samples have been collected in four
drilled cores (CT, Mia OPB4, Mia OPB7, U0240) and five vertical pro-
files picked-up on field outcrops. Among these profiles, five are foca-
lized on the uppermost parts of the regolith (i.e. laterite horizons and
pisoliths/ferricrete). Others samples correspond to isolated saprolite,
laterite or pisolith samples collected randomly in the different horizons
of the weathering profile. In addition, two lherzolites and ~15 pisoliths
(Fig. 3) have been used to determine the chemical composition of main
primary minerals and iron oxides, respectively (Tables 2 and 3).

3.2. X-ray diffraction

Analyses were performed at ISTerre (Grenoble, France) on sample
powders. X-ray diffraction (XRD) patterns were recorded with a Bruker
D8 powder diffractometer equipped with a SolX Si(Li) solid state de-
tector using CuKα1-Kα2 radiation and a Göbel mirror. Intensities were
recorded at 0.02° 2θ step intervals from 5 to 80°, with a 6 s counting
time per step. Size of the divergence slit was 0.298°. Quantitative mi-
neralogical compositions were determined by Rietveld refinement using
Profex-BGMN programs (Doebelin and Kleeberg, 2015). JCPDS/ICDD
and AMCD references used for the identification of the mineral phases
are given in Table 1, and an example of Rietveld refinement made on
XRD pattern of ore sample CT89 (red limonite) is shown in Fig. 4.
Diffraction pattern and their repetitive fits are displayed in
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Fig. 1. Simplified geological maps of New Caledonia with the locations of the three massifs that were sampled during this study (data from DIMENC https://dimenc.
gouv.nc/ressources/géologie). Yellow points indicate sampling locations, and satellite maps are located by yellow squares (Satellite maps are from Apple Maps® app).
P: PIT207, T: Trazy, D: Doline, CT: Centre Trazy (in red, see Table 2, other samples and profiles are available in supplementary materials). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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supplementary materials. Since primary serpentines (mainly lizardite
and chrysotile; Ulrich et al., 2014) can hardly be distinguished from
secondary serpentines (lizardite, polygonal and Ni-serpentine;
Cathelineau et al., 2016; Dublet et al., 2012) on the basis of XRD pat-
terns and we therefore only refer to serpentine in Table 1 and XRD
figures. In addition, the presence of Ni-Mg-talc-like belonging to the
kerolite-pimelite series has been reported recently in the New Cale-
donia regolith (Cathelineau et al., 2015a, 2016; Fritsch et al., 2016;
Muñoz et al., 2019). To date, the structure of this complex mineral
phase is not yet fully determined. A Ni-Mg talc structure was therefore
used for the structure refinement, with best fits obtained for 50% Mg
substitution for Ni.

3.3. Raman spectroscopy

Raman spectra were acquired at Laboratoire GeoRessources
(Vandoeuvre-lès-Nancy, France) using a Horiba Jobin-Yvon LabRam
HR800 spectrometer and a visible ionized argon laser source with a
wavelength of 659.43 nm. Output laser power of 100mW was reduced

to 0.8mW using filter, and measurements were performed using an
Olympus lens of 100× to focus the laser beam onto an area that was
1 μm in diameter. Analyses were carried out on 30 μm thick polished
thin sections. Spectra result from the average of 4 acquisitions of 30 s to
optimize the signal/noise ratio. Oxide species were determined by in-
vestigating the 200–900 cm−1 region of the Raman spectra.

3.4. Bulk rock chemistry

Major and trace element concentrations were determined at Service
d'Analyses de Roches et Minéraux (SARM, Vandoeuvre-lès-Nancy,
France) following the analytical procedure developed by Carignan et al.
(2001). The complete procedure and detection limits are at the fol-
lowing address: http://helium.crpg.cnrs-nancy.fr/SARM/pages/roches.
html.

3.5. In situ major and trace element analysis

Major elements analyses were performed using an electron

mine dump
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(Serpentinized 
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Fig. 2. Schematic representation of the typical weathering profile of New Caledonia Ni-laterites deposits and field photograph of Tiebaghi mine dump were the
different weathering horizons can be observed.
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Fig. 3. a) Photograph of analyzed pisoliths
from sample PIT207 (Koniambo Massif). b)
Microphotograph of pisolith PIT207A. Numbers
indicate in situ LA-ICP-MS analyzes reported in
Table 4. The purple area corresponds to the
chemical mapping area shown in Fig. 9 and in
supplementary materials. (For interpretation of
the references to colour in this figure legend,
the reader is referred to the web version of this
article.)
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microprobe analyser (EMPA) CAMECA SX100 at Service Commun de
Microscopie Electronique et de Microanalyses (SCMEM, Vandoeuvre-
lès-Nancy, France). Na, Mg, Al, Si, K, Ca, Ti, Cr, Mn, Fe, Ni were cali-
brated using natural and synthetic oxides as albite (Si, Na), corundum
(Al), andradite (Ca), forsterite (Mg), hematite (Fe), MnTiO3 (Mn, Ti),
NiO (Ni), orthose (K). The operating conditions were: a current of
12 nA, an accelerating voltage of 15 kV, and a counting time of 10s. The
beam diameter was focused to 1 μm. The total Fe is presented as Fe2O3.
Chemical maps were obtained using the following operating conditions:
15 kV, 100 nA, dwell time of 100ms and a step size of 2 μm (see sup-
plementary materials). Phase maps were calculated using the approach
developed in Muñoz et al. (2008) and adapted in Ulrich et al. (2014).
Trace element analyses were carried out using Laser Ablation

Inductively Coupled-Plasma Mass Spectrometer (LA-ICP-MS) at
Laboratoire GeoRessources composed of a 193 nm MicroLas ArF

Excimer coupled with the Agilent 7500c quadrupole ICP-MS. Laser
ablations were performed with a constant 5 Hz pulse rate, with an ab-
lation crater of 44 to 90 μm in diameter. The number of pulses was fixed
to 200, sufficient to form a long and stable signal for integration. The
ablated material is transported using a He flow and mixed with Ar in a
cyclone coaxial mixer prior to entering the ICP torch and being ionized.
The following isotopes were measured: 45Sc, 47Ti, 51V, 53Cr, 55Mn, 57Fe,
59Co, 60Ni, 63Cu, 66Zn, 85Rb, 88Sr, 89Y, 90Zr, 93Nb, 139La, 140Ce, 141Pr,
146Nd, 147Sm, 153Eu, 157Gd, 159Tb, 163Dy, 165Ho, 166Er, 169Tm, 172Yb,
175Lu, 181Ta, 232Th, 238U. Internal standard were 29Si and 57Fe contents
- previously determined by electron microprobe - respectively for the
measurements of silicates and iron oxides. Concentrations were cali-
brated against the NIST SRM 610 rhyolitic glass using reference values
from Jochum et al. (2011) for silicates and an in-house goethite stan-
dard especially developed during this study for iron oxides. Indeed,

Table 1
Results of XRD-based mineral identification and quantification obtained by Rietveld refinement. Minerals with proportion < 1% have to be considered with caution,
although the results of refinement were systematically better by taking these phases into account.

Minerals (%) References Bedrock Saprock Saprolite Red limonite Pisoliths

CT31 CT21 CT19 CT15 CT41 CT89 CT90

Forsterite JCPDS #01-077-1029 22.16 6.04 8.48 4.95 – – –
Enstatite JCPDS #00-019-0768 5.90 4.30 1.58 – – – –
Diopside AMCSD 0000811 1.85 – – – – – –
Serpentine JCPDS #01-073-1336 59.29 65.70 42.67 23.40 – – –
Quartz JCPDS #01-085-0798 – 10.91 12.99 14.25 35.95 0.12 0.87
Tremolite/actinolite AMCSD 0001835/0001995 7.48 – 9.86 8.44 – – –
Talc-Ni JCPDS #00-022-0711 – 1.26 6.10 29.94 20.08 2.54 0.82
Smectite JCPDS #00-029-1491 1.77 0.94 0.86 6.59 – – 1.30
Goethite JCPDS #04-015-2898 – 8.61 16.35 12.43 39.39 76.15 34.67
Hematite JCPDS #04-003-2900 – – – – 2.72 4.90 51.36
Chromite AMCSD 0006041 1.55 2.23 1.10 – 0.72 15.39 9.00
Lithiophorite AMCSD 0001641 – – – – 1.14 0.90 0.56
Gibbsite JCPDS #00-029-0041 – – – – – – 1.41
Total 100.00 99.99 99.99 100.00 100.00 100.00 99.99

CT89

10 20 30 40 50 60 70 80

23451015

10 20

Fig. 4. XRD pattern of sample CT89 (red limonite,
2.5 m) and corresponding mineral phase identifica-
tion and quantification based on Reitveld refinement
(see also Table 1). Purple arrows show the presence
of minor lithiophorite, highlighted by a small
shoulder at the base of a chromite peak in the region
near 19° (2Θ). Other XRD patterns are given in
supplementary materials. (For interpretation of the
references to colour in this figure legend, the reader
is referred to the web version of this article.)
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previous studies performing in situ trace element quantification on iron
oxides used 57Fe as internal standard and the silicate standard glass
NIST SRM 610 for signal calibration (e.g. Aiglsperger et al., 2016; Green
and Watling, 2007; Huelin et al., 2006). Same parameters were applied
in this study during first in situ measurements of iron oxides, but pre-
liminary results showed that for elements measured by both EMPA and
LA-ICP-MS, concentrations determined by the latter were systematically
greater (in the order of ~20–50%). This encouraged to prepare a spe-
cific standard (StdGoe 1.1) for iron oxides to limit matrix effects
(standard preparation procedures and tests are developed in Appendix
A at the end of this paper). Data reduction was carried out by using
SILLS software (Guillong et al., 2008) and following the standard
methods of Longerich et al. (1996).

4. Results

4.1. Mineralogy of the lateritic profile

Table 1 and Fig. 5 shows the results of mineral identification and
quantification obtained for each horizon of the weathering profile by
XRD and Rietveld refinements.
The mineralogy is typical of a lateritic profile development at the

expense of an ultrabasic protolith (Butt and Cluzel, 2013 and references
therein), and is consistent with previous results from Dublet et al.
(2012, 2015) on the mineral proportions along the New Caledonia la-
teritic regolith: saprock is dominated by relicts of primary silicates
(serpentine, olivine, enstatite, tremolite/actinolite) that are progres-
sively replaced by secondary Mg-Ni-bearing silicates (which include

serpentine, talc-like and smectite) and quartz. Iron oxides mainly con-
sist of goethite and does not exceed 20%. However, goethite becomes
the dominant mineral phase in saprolite (~41% in sample CT41), which
also contains small amounts of hematite (< 3%) and Mn-oxides (as-
bolane and/or lithiophorite, ~1%). In this horizon, silicates are mainly
quartz (~37%) and Ni-kerolite (~18%). The red limonite sample CT89
is almost exclusively composed of iron oxides (> 95%) of which>75%
are goethite. Other oxides are hematite (~5%), chromite (~16%) and
Mn-oxides (< 1%). The same mineralogy is observed in pisoliths
(sample CT90) with nevertheless a higher amount of hematite (~52%)
compared to goethite (< 35%). Chromite represents ~10% of the
sample and low amount of gibbsite (Al(OH)3,< 2%) may occur. Relics
of silicates, mainly quartz and talc-like, are systematically preserved
even in the limonite horizons and ferricrete, although they re-
present< 5% of the mineralogy in these horizons.

4.2. Raman spectroscopic analysis of iron oxides in pisoliths

The discrimination between goethite and hematite is not obvious
simply on the basis of optical microscopy. Therefore, Raman spectro-
scopy was systematically used to identify iron oxides in pisoliths prior
further in situ geochemical investigations. Reference spectra used for
comparison are from de Faria et al. (1997). Despite small differences in
peak positions (< 5 cm−1), there is good agreement between our re-
sults and reference spectra for all iron oxides (Fig. 6): goethite displays
typical bands at 247, 299, 483, 559 and 680 cm−1, the main peak being
positioned at 393 cm−1. Hematite is characterized by bands at 225,
293, 411, 502 and 613 cm−1. An additional peak of a high intensity is
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observed at 665 cm−1. Such a high intensity, higher than the usual
intensity observed for hematite at 293 cm−1, may reflect important Fe-
Al substitution (Zoppi et al., 2007). In addition, some oxides exhibit
spectra with an intermediate signal between that of goethite and he-
matite, with a major peak ranging from 394 cm−1 (goethite) to
411 cm−1 (hematite), and additional bands centered around 225, 245,
297, 494, 560, 613 and 666 cm−1 (Fig. 6). The last iron oxide identified
in pisoliths was the chromite inherited from magmatic assemblages,
with a Raman spectra characterized by a broad band at 577 cm−1, the
main peak at 697 cm−1 with a shoulder at 656 cm−1.

4.3. Geochemical evolution along the lateritic regolith

Fig. 5 and Table 2 show the geochemical evolution along the la-
teritic profile of Centre Trazy site (CT) sampled in the Koniambo massif.
Other profiles are given in supplementary Table S1 and show com-
parable results to the CT profile. From bedrock to top, the profile is
characterized by a progressive enrichment in Fe2O3 (7.13 to 79.2 wt%)
and a depletion in MgO (40.6 to 0.34 wt%). SiO2 remains relatively
constant in bedrock and saprock (~43wt%). It decreases from 38wt%
in saprolite down to 2.3 wt% in yellow and red limonites and pisoliths.
A general observation is that SiO2 is never completely depleted in the

most weathered parts of the profile (i.e. red limonite and pisoliths/
ferricrete) and has an average concentration of 2.62wt% (0.57–8.57 wt
%). Al2O3 and Cr2O3 show a typical enrichment of about 10 times from
bedrock to pisoliths (0.54 to 5.29 and 0.36 to 3.21 wt%, respectively).
Manganese and cobalt behave very similarly all along the profile:
lowest concentrations are observed in the bedrock and the saprock
(0.1–0.2 wt% MnO and 500–700 ppm Co), while their concentrations
increase in the range of 0.5–1.2 wt% MnO (up to 3.65wt%) and
1300–2300 ppm Co (up to 5600 ppm) in saprolite and yellow limonite.
Both elements display lower concentrations in red limonite and piso-
liths (< 0.7 wt% MnO and<1000 ppm Co). Nickel concentration in
the bedrock is low (~0.4 wt% NiO) but strongly increases in saprock,
reaching 3–4wt% NiO. In upper horizons, nickel behaves similarly to
manganese and cobalt, with NiO concentrations between 1 and 1.5 wt%
in limonites that decrease to ~0.5 wt% NiO in pisoliths. Vanadium
behavior matches well those of aluminium and chromium: in the la-
teritic profile shown in Fig. 5, concentration in bedrock and saprock is
~50 ppmV, increasing from 140 ppm in saprolite to 241 ppm in piso-
liths. Concentrations can be locally higher, reaching up to 360 ppm.
Interestingly, this sample also contains the highest concentrations of
Al2O3 and Cr2O3. Sc concentration progressively increases from bed-
rock (~10 ppm Sc in harzburgite) to limonites (usually ~80 ppm Sc)
and correlates with Fe2O3. Highest Sc concentrations (up to 100 ppm
Sc) are observed in samples with Fe2O3 ~70 ± 2wt%, typically close
to the transition between yellow and red limonites. At Fe2O3 > 75wt
%, corresponding to red limonite and/or pisoliths, Sc concentration
almost systematically drops down (20–60 ppm Sc). Rare earth elements
(REE) are extremely depleted in harzburgitic protolith (usually in the
order of ppb) which exhibits a characteristic U-shaped pattern (Fig. 7;
Allègre and Prinzhofer, 1985; Secchiari et al., 2016; Ulrich et al., 2011,
2010). As a consequence, total REE concentrations remain very low
even in the limonite horizons where the highest concentrations are
observed (∑REE=16–77 ppm). Only exceptions are from the two small
profiles from the Bien-sûr mine where total REE concentrations can
reach hundreds of ppm, which may reflect the proximity of weathered
magmatic dikes. Elsewhere, saprock exhibits REE patterns similar to
that of the bedrock, nevertheless with more enriched concentrations,
although total REE do not exceed 1 ppm. Saprolite shows highly frac-
tionated REE chondrite-normalized patterns, characterized by an en-
richment in light REE (LREE) over heavy REE (HREE), and a strong Ce
negative anomaly (CeN/Ce* down to 0.067; Fig. 7 and supplementary
Table S1). In this horizon, total REE concentrations vary from 1 to
10 ppm, with a low contribution of cerium. From yellow limonite to
pisoliths, REE are increasingly depleted, with a slight depletion of LREE
compared to saprolite and a positive Ce anomaly (CeN/Ce* up to 5.64;
Fig. 7 and supplementary Table S1). Total REE concentrations can reach
several tens of ppm in these horizons, particularly in yellow limonite
where the highest concentrations are generally observed, mainly due to
strong contribution of cerium (up to 16 ppm Ce in sample MIA OPB7
4.0). Finally, a general observation is that REE accumulate in lateritic
horizons where Mn, Co, and to a lesser extend Ni, are also significantly
enriched (Fig. 5).

4.4. Mineral chemical compositions

Fig. 8 presents the concentrations of some transition metals (Sc, V,
Cr, Mn, Co, Ni) in the different minerals that compose the bedrock
(olivine, pyroxenes, serpentine, plagioclase, Table 3) on one hand and
limonite and pisolith (goethite, hematite and chromite, which is re-
sidual from the bedrock; Table 4) on the other hand. Mn-oxides and
relicts of silicates identified by XRD and EMPA measurements were too
small to be analyzed by LA-ICP-MS, and their concentration in trace
element were too low to be determined by EPMA. In the bedrock,
highest Sc concentrations are measured in clinopyroxene (~60 ppm). Sc
concentrations in orthopyroxene are lower (~31 ppm), and very low in
other minerals composing the bedrock (5 ppm or less). Cr and V are
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mainly concentrated in chromite, but significant concentrations are also
observed in pyroxenes (in average, 7474 ppm Cr and 241 ppmV in Cpx;
5331 ppm Cr and 126 ppmV in Opx). In olivine, serpentine and plagi-
oclase, Cr and V contents are low (<100 ppm Cr and < 5 ppmV).
Highest Mn concentrations are measured in plagioclase
(3563–6660 ppm Mn). In other minerals, Mn concentrations are highly
variable, ranging from 77.4 to 1394 ppm in clinopyroxene, 542 to

1432 ppm in orthopyroxene, 310 to 1626 ppm in olivine and 271 to
426 ppm in serpentine. Main Co and Ni carriers are olivine and ser-
pentine (~150 ppm Co and ~3500 ppm Ni), while concentrations in
pyroxenes are lower (66.1 ppm Co, 957 ppm Ni in average in Opx;
27.6 ppm Co, 471 ppm Ni in average in Cpx).
In pisoliths, results of in situ measurements show that iron oxides

contain relatively high amount of transition metals compared to initial

Table 2
Chemical composition of the Koniambo lateritic profile (site Centre Trazy, CT). Other profiles and samples are available in supplementary materials. n.d.: not
determined; b.d.l.: below the limit of detection. UMIA is the ultramafic index of alteration, calculated as follow: UMIA=100× (Al2O3+Fe2O3)/
(SiO2+MgO+Al2O3+Fe2O3), and expressed in mol% (Aiglsperger et al. 2016). Major and trace element concentrations are in wt% and in ppm, respectively.

CT90 CT89 CT87 CT88 CT41 CT18 CT15 CT19 CT21 CT31

Depth (m) 0.3 2.5 7.2 9.0 11.5 14.0 17.3 19.0 22.5 30.0
Location Centre Trazy Centre Trazy Centre Trazy Centre Trazy Centre Trazy Centre Trazy Centre Trazy Centre Trazy Centre Trazy Centre Trazy
Massif Koniambo Koniambo Koniambo Koniambo Koniambo Koniambo Koniambo Koniambo Koniambo Koniambo
Nature Pisoliths Red Laterite Yellow

Laterite
Yellow
Laterite

Earthy
Saprolite

Earthy
Saprolite

Rocky
Saprolite

Rocky
Saprolite

Rocky
Saprolite

Harzburgite

SiO2 2.3 2.04 4.03 13.95 38.39 31.06 47.25 43.12 46.44 40.81
TiO2 0.26 0.13 0.11 0.11 0.07 0.1 0.05 0.03 0.03 b.d.l.
Al2O3 5.29 5.69 3.55 4.09 2.58 3.32 1.44 1.38 0.9 0.54
Fe2O3 79.2 65.92 72.85 64.41 41.76 44.32 16.25 14.82 9.71 7.13
MnO 0.4 0.46 0.55 0.84 0.76 0.86 0.22 0.18 0.12 0.1
MgO 0.34 1.79 0.72 1.52 2.77 5.84 18.37 22.8 26.28 40.63
CaO b.d.l. 0.05 b.d.l. b.d.l. b.d.l. b.d.l. 0.22 0.54 b.d.l. 0.356
Na2O b.d.l. 0.02 0.01 0.01 0.07 0.08 0.03 0.05 0.01 b.d.l.
K2O b.d.l. 0.19 b.d.l. b.d.l. 0.09 0.05 0.13 0.11 0.09 b.d.l.
P2O5 0.05 0.03 0.03 0.03 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.
Cr2O3 3.21 10.18 3.15 2.87 2.37 2.14 0.93 0.9 1.52 0.36
NiO 0.67 2.04 1.48 1.43 1.52 1.61 3.34 2.85 3.76 0.31
LOI 7.91 11.14 13.45 11.01 10.28 11.12 12.3 12.83 11.62 9.78
Total 99.64 99.67 99.93 100.26 100.64 100.49 100.53 99.62 100.49 99.99
UMIA 91.10 87.4 83.6 58.3 25.1 29.6 8.5 8.01 4.95 3.38
Sc 54.5 59.7 66.9 51.1 37.7 41.1 17.5 15.8 12.6 10.3
V 241 358 153 182 140 156 77.1 48.1 49.3 50.6
Cr 21,993 69,683 21,570 19,646 16,197 14,650 6375 6190 10,431 2442
Co 574 1852 185 1710 1318 2329 734 626 515 98.5
Ni 5256 14,675 11,610 11,235 11,935 12,690 26,210 22,415 29,570 2406
Cu 34.4 77.2 36.5 29.6 22.7 39.8 22 6.29 864 1.08
Zn 251 995 277 400 212 358 226 143 797 35.9
Ga 7.98 5.22 3.23 3.54 2.16 2.63 2.03 1.06 0.259 n.d.
Ge 4.23 3.30 2.83 2.31 4.32 6.52 4.73 2.20 4.49 n.d.
As 8.98 1.54 4.61 8.71 b.d.l. b.d.l. b.d.l. b.d.l. 1.5 b.d.l.
Rb b.d.l. 0.392 b.d.l. b.d.l. 0.495 b.d.l. 0.303 b.d.l. b.d.l. 0.185
Sr b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 5.69 2.71 2.49 0.752
Y 1.29 2.22 0.848 0.811 2.07 2.08 0.267 0.15 b.d.l. 0.053
Zr 22.7 2.11 1.6 1.47 1.2 1.01 3.23 b.d.l. b.d.l. 0.113
Nb 0.728 0.113 b.d.l. b.d.l. b.d.l. b.d.l. 0.092 b.d.l. b.d.l. 0.023
Mo 2.34 0.67 0.557 b.d.l. b.d.l. b.d.l. 0.843 0.669 0.756 b.d.l.
Cd b.d.l. 0.32 b.d.l. b.d.l. b.d.l. 0.205 0.43 0.397 0.302 b.d.l.
In 0.273 b.d.l. 0.228 0.113 0.102 0.11 0.204 b.d.l. b.d.l. b.d.l.
Sn 0.719 0.453 0.467 b.d.l. b.d.l. 0.739 b.d.l. 0.641 2.05 b.d.l.
Sb b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 0.31 b.d.l. b.d.l. b.d.l.
Cs b.d.l. b.d.l. b.d.l. b.d.l. 0.116 b.d.l. b.d.l. 0.138 b.d.l. 0.006
Ba 11.1 49.2 10.0 3.44 4.75 7.12 5.88 9.00 14.9 0.24
La 0.459 1.27 0.35 0.254 1.43 2.03 0.115 b.d.l. 0.14 0.024
Ce 5.70 11.6 4.07 0.335 1.01 0.356 b.d.l. 0.202 0.175 0.056
Pr 0.128 0.275 0.181 0.06 0.933 0.807 0.016 0.017 0.015 0.007
Nd 0.472 1.21 0.86 0.25 4.04 3.03 0.064 0.063 b.d.l. 0.029
Sm 0.119 0.35 0.286 0.066 0.493 0.126 0.018 0.02 b.d.l. 0.006
Eu 0.031 0.083 0.069 0.021 0.119 0.041 0.008 b.d.l. b.d.l. 0.001
Gd 0.133 0.407 0.198 0.08 0.606 0.495 0.02 0.018 b.d.l. 0.006
Tb 0.024 0.055 0.036 0.015 0.069 0.03 0.005 b.d.l. b.d.l. 0.001
Dy 0.132 0.286 0.19 0.093 0.437 0.228 0.014 0.017 0.014 0.007
Ho 0.027 0.065 0.032 0.02 0.1 0.075 0.002 0.005 0.003 0.001
Er 0.08 0.191 0.086 0.068 0.338 0.276 0.011 0.013 0.013 0.007
Tm 0.017 0.038 0.016 0.014 0.05 0.037 0.004 0.004 0.001 0.235
Yb 0.105 0.241 0.122 0.122 0.428 0.334 0.028 0.036 0.023 0.009
Lu 0.02 0.043 0.015 0.022 0.096 0.111 0.008 0.008 b.d.l. 0.002
Hf 0.687 0.043 0.03 0.035 0.03 b.d.l. 0.071 b.d.l. b.d.l. 0.003
Ta 0.063 b.d.l. b.d.l. b.d.l. 0.01 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.
Pb 6.67 8.65 4.97 2.32 1.60 1.78 3.96 2.41 16.3 0.063
Bi 0.329 0.133 b.d.l. b.d.l. b.d.l. 0.118 0.142 0.121 0.466 n.d.
Th 0.918 0.071 0.078 0.03 0.086 b.d.l. b.d.l. 0.09 0.062 0.008
U 0.324 0.235 0.059 0.084 0.114 0.076 b.d.l. 0.057 0.042 0.005
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concentrations in silicates. Highest Sc concentrations are observed in
goethite (82.7 ppm Sc in average, up to 136 ppm). Hematite contains
substantially lower amount of scandium (47.5 ppm Sc in average, up to
76.6 ppm). Vanadium and chromium are mainly hosted by chromite
(~980 ppmV and > 46wt% Cr2O3), but also redistributed in goethite
and hematite (~250 ppmV and ~3.50 wt% Cr2O3). Sc concentration is
rather low in chromite (< 2 ppm Sc), as other transition metals (Mn,
Co, Ni, Cu) compared to concentrations in goethite and hematite, with
exception of Zn (1463 ppm in chromite vs. 320 ppm in goethite and
287 ppm in hematite, in average). The highest concentrations in man-
ganese, nickel and cobalt are mainly observed in relicts of Mn-oxides,
with concentrations up to 38.79 wt%, 23.35wt% and 10.83 wt%, re-
spectively (Figs. 8 and 9). However, goethite and hematite display
significant concentrations in these metals, which can reach several
thousand of ppm (661–4652 ppm Mn, 34.8–1860 ppm Co,
1776–7082 ppm Ni in goethite, 468–6479 ppm Mn, 61.4–1784 ppm Co,
1752–6242 ppm Ni in hematite).

5. Discussion

5.1. Relation between mineralogy and enrichments in transition and critical
metals along the weathering profile

First order calculations have been performed in order to identify the
main bearing phases for a set of transition metals (i.e. Sc, V, Cr, Mn, Co
and Ni) along the CT weathering profile. The approach for such cal-
culations is based on the combination of, i) the modal abundance of
minerals obtained from Rietveld refinements of XRD patterns (see
Table 1 and Fig. 5), and ii) the chemical compositions of minerals
identified in the bedrock and in the pisolith (i.e. determined by EPMA
and LA-ICP-MS; see Tables 3 and 4), assuming the fact that minor/trace
element composition for each of these minerals remains constant along
the regolith. On this basis, it is possible to calculate the bulk con-
centration in the latter elements for each weathered horizon (Fig. 10).
The close match observed between “calculated bulk analyses” and
“measured bulk analyses” (i.e. Table 2 and Fig. 5) demonstrate the
relevance of the approach. On the left side of bulk rock curves, the
percentage of specific element-bearing minerals required to reach bulk
concentration is displayed. Results obtained for each element are dis-
cussed hereafter. It is worth noting that even if this modeling is limited
to a single profile, we consider it as representative of the NC regolith
since geochemical and mineralogical evolutions with depth are very

similar to those that can be found in the literature (e.g. Dublet et al.,
2015)

5.1.1. Nickel
Our calculations show that the main contribution to Ni in the bed

rock are serpentine (~75%) and olivine (~25%), while in the rocky
saprolite horizon is mainly hosted by serpentine (up to 90%). At the top
of rocky saprolite, the proportion of Ni hosted by serpentine decreases
down to 20%, while more and more Ni is hosted by Ni-talc-like, as
characterized by Muñoz et al. (submitted), which is the main Ni carrier
up to the top of the earthy saprolite horizon with ~85% of total Ni
(Fig. 10). It is worth noting that our calculated Ni concentrations are
too high compared to the bulk concentrations in the rocky-to-earthy
saprolite domain. This misfit may be related to an overestimation of the
Ni content in Ni-talc-like: a concentration of ~10,000 ppm Ni was used
for Ni-talc-like in our calculation, corresponding to ~20wt% NiO in
agreement with a value reported by Cathelineau et al. (2016), but Ni-
kerolite may contain highly variable amount of nickel in its structure
since it likely corresponds to a Mg-Ni solid solution that is about to
strongly evolve in composition in regard with the degree of weathering
(Muñoz et al., submitted). In the lateritic units, nickel that is likely
released by the dissolution of Ni-bearing phyllosilicates is incorporated
into iron oxides. Consistently with results previously published by
Dublet et al. (2015, 2012), nickel is mainly hosted by goethite which
contains ~40% of the bulk Ni content in laterite, likely by substituting
Fe3+ in the mineral structure (Singh et al., 2002) and/or by being
adsorbed at the oxide surface (e.g. Beukes et al., 2000). Even so, the
relicts of silicates may still contribute significantly to the total Ni
budget of laterites (up to 38% in sample CT89, Fig. 10). Mn-oxides only
contribute to< 18% of the total Ni budget in laterites, which is in
agreement with previous estimations based on X-ray absorption spec-
troscopy (< 20%; Dublet et al., 2012). At the very top of the profile (i.e.
in the ferricrete), Ni appears to be mainly hosted by hematite (35%)
and goethite (28%), as well as some residual silicates (~3%).

5.1.2. Manganese and cobalt
Manganese and cobalt display very similar behavior along the

weathering profile. Both are mainly hosted by olivine and serpentine
minerals in the peridotite. In a less extent, pyroxenes can contain sev-
eral hundreds of ppm of Mn. Since chromite contains ~1000 ppm Mn
and occurs all along the weathering profile, it contributes to± 5% of
the total Mn budget in the different units. In saproliths, Mn and Co
released after the dissolution of the primary silicates are integrated into
newly formed, and likely poorly crystallized goethite, by a combination
of adsorption and replacement of iron in the oxide structure (Gerth,
1990; Singh et al., 2002). At the transition between saprolite and yellow
limonite, manganese and cobalt are mainly concentrated in Mn-oxides
(mainly asbolane and lithiophorite with minor birnessite; Butt and
Cluzel, 2013; Fandeur et al., 2009b; Llorca and Monchoux, 1991;
Manceau et al., 1987; Nahon and Parc, 1990). Based on the study of
Marker et al. (1991, and references therein), the formation of Mn-
oxides in such context derives from the leaching of Mn and Co from the
near-surface parts of the weathering profile, forming Mn colloidal
complexes that precipitate due to pH rising and supersaturation of the
solution. At the upper levels, with decreasing pH and relative humidity,
the combination of CO2 and bacterial activities leads to the dissolution
of Mn-oxides and reduction of Mn (Quantin et al., 2002). Fractions of
Mn and Co released from dissolving Mn-oxides may be incorporated in
iron oxides, although most of them are leached downwards. As a con-
sequence, Mn and Co are depleted in the upper horizons where they are
mainly hosted by goethite and hematite (Fig. 10).

5.1.3. Chromium and vanadium
Among minerals that compose the bedrock, chromite contains by far

the highest concentrations of chromium and vanadium. Chromite is
highly resistant to weathering, although it may suffer from slight
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supergene dissolution at the uppermost parts of the profile (Traore
et al., 2008). Therefore, we observe an excellent correlation between
the concentration in Cr and V and the amount of chromite along the
lateritic profile. Our calculations show that Cr and V released from the
progressive dissolution of pyroxenes in the bedrock and saprock are
trapped by goethite. Both elements being likely in their reduced form,
i.e. trivalent, they easily substitute Fe(III) in the structure of goethite
and hematite although fractions of Cr may be also adsorbed at mineral
surface (Fandeur et al., 2009a, 2009b; Oze et al., 2004; Schwertmann
and Latham, 1986; Schwertmann and Pfab, 1996). Locally, in the pre-
sence of Mn-oxides, Cr is oxidized to Cr6+(Fandeur et al., 2009b; Oze
et al., 2004). In this form, Cr is assumed to be highly mobile, but ac-
cording to Fandeur et al. (2009b), Cr6+ is immediately re-adsorbed
onto surrounding goethite after oxidation by Mn-oxides. As a con-
sequence, Cr and V concentrations increase along the lateritic profile

towards the surface and can be considered as immobile and mainly
controlled by primary chromite and secondary iron oxides (Fig. 10).

5.1.4. Scandium
Although they represent< 20% of the mineralogy in the bedrock,

we show that pyroxenes host the almost total amount of scandium
(Figs. 8 and 10). The dissolution of these pyroxenes leads to the release
of Sc that subsequently concentrates into newly formed goethite: in
saprock, our calculations show that> 60% of Sc is hosted by goethite,
which represents< 15% of the paragenesis in this horizon. In overlying
limonites, the amount of Sc associated to goethite increases up to
~95%, before decreasing to 50% in the pisolith horizon in which Sc is
hosted for a half by hematite. In this case, bulk Sc concentrations are
systematically lower, reflecting that fractions of Sc may be mobilized
during the development of hematite at the expense of goethite (see
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Section 5.2 below). In other mineral phases such as chromite or silicate
relics, Sc concentration is too low to contribute significantly to the bulk
rock Sc budget. Although we were not able to determine Sc content of
Mn-oxides during this study, it may be assumed to be very low by
considering the evolution of bulk rock concentrations along with depth
in the regolith (Fig. 5 and supplementary materials): Indeed, the pre-
sence of Mn-oxides in samples is highlighted by an increase of Mn, Co
and REE concentrations, but no significant Sc anomaly was detected. To
date, only a few of studies have investigated the Sc speciation in la-
teritic deposits. First data were provided by Chassé et al. (2017) who
proposed a study of the lateritic profile of the Syerston–Flemington
deposit (Australia), which developed on an ultramafic-mafic intrusive
complex. They concluded that Sc is adsorbed on goethite and in-
corporated in the crystal structure of hematite by substituting Fe3+. In
parallel, a communication by Muñoz et al. (2017) providing a further
study of Sc speciation in New Caledonia laterites by coupling X-ray
absorption spectroscopy and sequential chemical extraction, demon-
strate that Sc is actually mainly integrated in the structure of goethite
rather being adsorbed.

5.1.5. Rare-earth elements
The linear enrichment in lanthanides observed during the saproli-

tization stage of weathering indicates a residual enrichment (Fig. 7).
However, the high REE concentrations characterizing the top of

saprolite are not consistent with a linear, residual enrichment but rather
highlight an external contribution (Fig. 5). This enrichment coincides
with LREE fractionation, strong negative Ce anomaly (CeN/Ce* < <
1) and high Mn-Co concentrations (Figs. 5 and 7). At the opposite,
upper levels show lower REE concentrations with a positive Ce anomaly
(CeN/Ce* > 1). All these observations illustrate the mobilization of
REE at the interface between saprolite and limonite. Such mobility has
been previously described in other lateritic profiles worldwide (e.g.
Aiglsperger et al., 2016; Braun et al., 1990; Dequincey et al., 2002;
Dequincey et al., 2006; Janots et al., 2015; Marker et al., 1991; Marsh,
1991). REE released by the weathering of primary silicates (mostly
pyroxenes) are mainly adsorbed by secondary amorphous or poorly
crystallized Fe-hydroxides (Ohta and Kawabe, 2001). The progressive
ordering of the crystal structure of goethite from these amorphous
precursors occurs via successive ageing and dissolution-reprecipitation
reactions that decreases the sorption capacity of the mineral (Dublet
et al., 2015; Koeppenkastrop and De Carlo, 1992; Schwertmann and
Murad, 1983). Such decreases of sorption capacity may lead to the
progressive release of REE by goethite with increasing weathering. The
close link between REE and Mn-Co enrichments is consistent with the
scavenging of REE by Mn-oxides (Aiglsperger et al., 2016; Braun et al.,
1990; Janots et al., 2015; Koeppenkastrop and De Carlo, 1992; Ohta
and Kawabe, 2001; Pourret and Davranche, 2013). In addition, REE
sorption on Mn-oxides may be the cause of Ce-oxidation (Bau et al.,

Table 3
Chemical composition of bedrock minerals. b.d.l.: below the limit of detection; n.d.: not determined. Major and trace element concentrations are in wt% and in ppm,
respectively. Trace element in italic are calculated from major element concentrations.

Clinopyroxene Std dev. Orthopyroxene Std dev Olivine Std dev Serpentine Std dev Plagioclase Std dev

Average (n= 11) Average (n= 8) Average (n= 5) Average (n= 3) Average (n=3)

SiO2 53.00 0.67 56.09 0.70 41.28 0.14 42.15 1.19 36.67 0.22
TiO2 0.13 0.02 0.05 0.02 b.d.l. 0.01 0.01 0.05 0.02
Al2O3 3.13 0.98 3.37 0.82 b.d.l. 0.17 0.17 21.95 0.19
FeO 2.18 0.18 4.72 0.24 7.43 0.34 3.97 1.78 1.06 0.86
MnO 0.09 0.06 0.12 0.04 0.14 0.07 0.05 0.01 0.6 0.22
MgO 18.2 0.67 33.62 1.48 51.82 0.26 40.35 1.9 0.83 0.47
CaO 22.83 0.74 1.86 1.68 0.03 0.02 0.01 0.01 35.99 1.68
Na2O 0.23 0.10 0.09 0.13 0.04 0.03 0.02 0.02 0.03 0.03
K2O 0.02 0.01 0.09 0.14 0.02 0.01 0.01 0.01 b.d.l.
Total 99.81 3.42 100.01 5.25 100.74 0.4 86.73 1.53 97.17 0.51

Trace elements
Sc 59.9 2.34 31.1 3.3 6.71 0.556 5.74 0.517 5.53 0.036
Ti 777 146 276 130 69.9 45.8 270
V 241 12.6 126 9.77 1.73 0.241 4.21 3.58 1.91 0.025
Cr 7474 1643 5331 423 41.1 21.6 29.6 14.2 92.3 63.3
Mn 725 488 957 327 1100 529 349 77.4 4673 1725
Co 27.6 1.98 66.1 10.5 167 29.4 142 99.7 92.2 62.6
Ni 471 23.6 922 293 3556 719 3022 1827 23.4 0.653
Rb b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.
Sr 0.416 0.394 0.282 0.245 b.d.l. b.d.l. b.d.l.
Y 10.8 3.05 1.18 0.274 b.d.l. b.d.l. b.d.l.
Zr 0.498 0.239 0.135 0.020 b.d.l. b.d.l. b.d.l.
Nb 0.079 0.016 b.d.l. b.d.l. b.d.l. b.d.l.
La b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.
Ce b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.
Pr b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.
Nd 0.069 0.022 b.d.l. b.d.l. b.d.l. b.d.l.
Sm 0.241 0.059 b.d.l. b.d.l. b.d.l. b.d.l.
Eu 0.131 0.036 0.021 0.022 b.d.l. b.d.l. b.d.l.
Gd 0.726 0.177 0.019 0.016 b.d.l. b.d.l. b.d.l.
Tb 0.207 0.046 0.015 0.002 b.d.l. b.d.l. b.d.l.
Dy 1.82 0.426 0.155 0.071 b.d.l. b.d.l. b.d.l.
Ho 0.432 0.107 0.046 0.018 b.d.l. b.d.l. b.d.l.
Er 1.32 0.317 0.177 0.066 b.d.l. b.d.l. b.d.l.
Tm 0.201 0.055 0.041 0.021 b.d.l. b.d.l. b.d.l.
Yb 1.62 0.322 0.21 0.081 b.d.l. b.d.l. b.d.l.
Lu 0.209 0.043 0.055 0.018 b.d.l. b.d.l. b.d.l.
Ta b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.
Th b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.
U b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.

M. Ulrich et al. Journal of Geochemical Exploration 197 (2019) 93–113

103



Ta
bl
e
4

Co
m
po
si
tio
n
of
m
aj
or
el
em
en
ts
an
d
tr
an
si
tio
n
m
et
al
si
ro
n
ox
id
es
in
Pi
so
lit
hs
of
PI
RA
an
d
PI
T2
07
sa
m
pl
es
.F
or
M
n-
ox
id
es
an
d
si
lic
at
es
,t
ra
ce
el
em
en
tc
on
ce
nt
ra
tio
ns
co
rr
es
po
nd
to
co
nc
en
tr
at
io
ns
of
m
aj
or
el
em
en
ts
in
w
t%

co
nv
er
te
d
in
to
pp
m
.b
.d
.l.
:b
el
ow
th
e
lim
it
of
de
te
ct
io
n;
n.
d.
:n
ot
de
te
rm
in
ed
.

G
oe
th
ite

PI
RA
-B
4

PI
RA
-C
1

PI
RA
-C
2

PI
RA
-C
3

PI
RA
-C
4

PI
RA
-D
1-
1

PI
T2
07
A
1-
4

PI
T2
07
B1
0-
14

PI
T2
07
C5
-8

PI
T2
07
C9
-1
0

PI
T2
07
C1
5

PI
T2
07
E5
-8

A
ve
ra
ge
(n
=
12
)

St
d
de
v.

Si
O
2

4.
22

3.
55

3.
82

3.
58

3.
56

5.
72

1.
66

1.
27

2.
86

1.
74

1.
67

3.
43

3.
09

1.
31

Ti
O
2

0.
14

0.
48

0.
26

0.
49

0.
35

0.
10

0.
20

0.
16

0.
07

0.
09

0.
17

0.
11

0.
22

0.
15

A
l 2
O
3

5.
52

10
.7
3

10
.5
2

3.
43

11
.5
0

5.
30

6.
82

7.
21

7.
13

4.
20

4.
53

3.
95

6.
74

2.
81

Fe
2O
3

73
.8
8

66
.4
9

70
.1
1

75
.7
6

70
.5
8

74
.7
5

76
.7
9

76
.1
9

75
.1
5

72
.7
4

76
.0
0

76
.5
8

73
.7
5

3.
19

M
nO

0.
12

0.
09

0.
09

0.
09

0.
09

0.
14

0.
29

b.
d.
l.

b.
d.
l.

b.
d.
l.

b.
d.
l.

b.
d.
l.

0.
13

0.
07

M
gO

0.
48

0.
54

0.
62

0.
49

0.
44

0.
74

0.
07

b.
d.
l.

b.
d.
l.

b.
d.
l.

b.
d.
l.

b.
d.
l.

0.
48

0.
21

Ca
O

0.
11

0.
12

0.
12

0.
11

0.
07

0.
09

b.
d.
l.

b.
d.
l.

b.
d.
l.

b.
d.
l.

b.
d.
l.

b.
d.
l.

0.
10

0.
02

Cr
2O
3

2.
38

3.
24

2.
31

3.
00

2.
21

1.
62

3.
60

3.
89

3.
43

8.
68

5.
53

4.
44

3.
69

1.
90

N
iO

0.
46

0.
22

0.
23

0.
24

0.
24

0.
58

0.
69

0.
70

1.
33

0.
63

b.
d.
l.

b.
d.
l.

0.
53

0.
34

To
ta
l

87
.3
1

85
.4
6

88
.0
9

87
.2
0

89
.0
4

89
.0
3

90
.1
2

89
.4
1

89
.9
7

88
.0
8

87
.9
1

88
.5
1

88
.4
4

1.
31

Tr
ac
e
el
em
en
ts

Sc
66
.0

74
.4

73
.4

77
.8

73
.0

66
.8

77
.6

76
.4

13
6

72
.5

11
6

81
.7

82
.7

21
.3

Ti
83
0

28
69

15
77

29
18

21
12

57
6

12
09

96
0

41
5

52
5

10
44

65
3

13
07

88
2

V
20
0

27
3

30
7

32
8

29
3

21
6

24
9

21
4

20
1

27
4

26
0

19
6

25
1

45
.4

Cr
16
,2
76

22
,1
69

15
,8
22

20
,5
01

15
,1
47

11
,0
56

36
,4
15

29
,6
61

26
,0
59

34
,0
57

42
,8
52

24
,5
73

24
,5
49

96
85

M
n

90
0

67
1

69
5

73
2

66
1

11
05

27
00

22
95

38
53

46
52

42
64

30
13

21
28

15
34

Co
22
2

41
.1

34
.8

42
.4

39
.9

14
9

14
80

80
5

64
0

10
22

18
59

95
5

60
7

62
6

N
i

36
45

17
56

18
17

19
05

19
18

45
26

53
63

36
02

70
83

64
73

66
88

40
17

40
66

19
94

Cu
24
.8

35
.6

36
.0

40
.3

42
.4

14
.3

33
.7

21
.5

20
.4

23
.8

21
.5

20
.6

27
.9

9.
18

Zn
50
7

24
5

25
6

26
6

27
7

26
1

41
2

39
6

22
5

30
4

42
2

27
1

32
0

90
.2

H
em
at
ite

Ch
ro
m
ite

PI
RA
-A
1
PI
RA
-A
2a

PI
RA
-A
3
PI
RA
-A
4b

PI
RA
-B
1
PI
T2
07
A2
-3

PI
T2
07
B6
-7

PI
T2
07
C1
-4

PI
T2
07
C1
2-
13

PI
T2
07
E2
-4

PI
T2
07
E9
-1
1
A
ve
ra
ge

(n
=
11
)
St
d
de
v.

PI
T2
07
A
5
PI
T2
07
A
6
PI
T2
07
C1
6-
17

PI
T2
07
E1

Av
er
ag
e

(n
=
4)

St
d
de
v.

Si
O
2

3.
51

2.
71

3.
82

2.
44

3.
36

1.
98

0.
99

1.
52

0.
86

1.
18

1.
43

2.
16

1.
07

0.
14

0.
36

0.
52

0.
12

0.
28

0.
19

Ti
O
2

0.
43

0.
37

0.
29

0.
38

0.
21

0.
11

0.
36

0.
24

0.
20

0.
24

0.
21

0.
28

0.
10

0.
02

b.
d.
l.

0.
02

b.
d.
l.

0.
02

A
l 2
O
3

13
.4
1

12
.7
0

13
.3
4

12
.9
3

5.
23

3.
96

3.
02

4.
69

2.
10

3.
79

2.
76

7.
08

4.
84

24
.6
0

23
.7
0

24
.2
5

24
.1
8

24
.1
8

0.
37

Fe
2O
3

78
.5
9

79
.1
0

80
.4
8

78
.9
5

87
.8
5

91
.2
0

88
.2
5

86
.6
2

87
.9
0

88
.6
2

91
.9
5

85
.4
1

5.
10

14
.5
1

14
.6
7

13
.4
7

15
.3
0

14
.4
9

0.
76

M
nO

0.
17

0.
07

0.
55

0.
11

0.
16

0.
35

0.
22

0.
06

1.
08

0.
11

0.
30

0.
29

0.
30

0.
12

0.
17

0.
13

0.
17

0.
15

0.
03

M
gO

0.
51

0.
29

1.
09

0.
50

0.
57

0.
23

0.
34

0.
03

0.
19

0.
43

0.
15

0.
39

0.
29

13
.3
3

14
.1
0

13
.5
3

13
.9
5

13
.7
3

0.
36

Ca
O

0.
08

0.
09

0.
09

0.
12

0.
04

b.
d.
l.

b.
d.
l.

b.
d.
l.

b.
d.
l.

b.
d.
l.

b.
d.
l.

0.
08

0.
03

b.
d.
l.

b.
d.
l.

b.
d.
l.

b.
d.
l.

b.
d.
l.

Cr
2O
3

2.
28

3.
62

0.
95

3.
77

1.
64

1.
47

6.
07

6.
45

7.
25

5.
19

3.
29

3.
82

2.
17

46
.7
6

47
.5
3

48
.4
2

46
.9
9

47
.4
3

0.
74

N
iO

0.
25

0.
22

0.
32

0.
24

0.
51

0.
64

0.
73

0.
76

0.
25

0.
61

0.
44

0.
45

0.
21

0.
07

0.
09

0.
03

0.
06

0.
06

0.
03

To
ta
l

99
.2
3

99
.1
6

10
0.
94

99
.4
3

99
.5
6

99
.9
3

99
.9
8

10
0.
37

99
.8
2

10
0.
16

10
0.
54

99
.9
2

0.
56

99
.5
5

10
0.
62

10
0.
36

10
0.
77

10
0.
32

0.
54

Tr
ac
e
el
em
en
ts

Sc
39
.7

41
51
.6

33
.2

47
.8

32
.4

40
.3

57
.3

54
.9

76
.6

47
.9

47
.5

12
.7

1.
59

1.
5

1.
64

b.
d.
l.

1.
57

0.
07
1

Ti
22
61

20
21

17
44

19
69

98
7

65
8

26
46

14
20

11
81

14
46

12
33

15
97

59
1

23
.8

25
.7

12
.9

5.
61

17
9.
45

V
19
3

20
2

20
6

18
6

14
6

22
9

30
2

28
4

21
1

25
3

21
3

22
1

44
.8

97
1

98
5

93
9

10
24

98
0

35
.2

Cr
13
,8
33

22
,5
97

64
67

22
,1
23

89
55

88
99

39
,7
52

48
,7
86

49
,7
52

30
,8
20

18
,5
89

24
,5
97

15
,7
10

32
3,
57
1

32
5,
21
3

33
3,
56
1

32
1,
51
9
32
5,
96
6

52
84

M
n

11
98

46
8

42
35

72
9

97
1

20
88

40
82

80
0

64
79

19
96

18
27

22
61

18
92

90
8

10
33

10
18

10
38

99
9

61
.2

Co
13
6

61
.4

35
7

80
.5

20
0

55
9

62
2

37
3

17
84

68
1

63
6

49
9

48
4

28
2

28
5

31
6

29
8

29
5

15
.3

N
i

17
10

15
72

25
18

16
01

32
02

32
38

36
83

53
83

62
42

29
99

46
81

33
48

15
54

53
5

42
7

23
8

45
6

41
4

12
6

Cu
24
.3

20
.3

36
.3

24
.0

20
.3

5.
23

6.
36

b.
d.
l.

27
.2

5.
52

b.
d.
l.

18
.8

10
.9
3

3.
37

3.
21

b.
d.
l.

b.
d.
l.

3.
29

0.
11
5

Zn
36
7

33
9

50
1

39
0

39
5

13
1

18
0

10
6

38
4

18
8

17
7

28
7

13
3

15
73

12
69

15
07

15
03

14
63

13
3

(c
on

tin
ue
d
on

ne
xt

pa
ge
)

M. Ulrich et al. Journal of Geochemical Exploration 197 (2019) 93–113

104



1996; Koeppenkastrop and De Carlo, 1992; Ohta and Kawabe, 2001)
and subsequent precipitation of Ce4+ into highly immobile and in-
soluble cerianite (CeO2) and/or rhabdophane (Ce-phosphate;
Aiglsperger et al., 2016; Janots et al., 2015). The progressive dissolu-
tion of secondary Mn-oxides as the weathering proceeds will contribute
to fractionate REE by leaching out all trivalent REE, leaving the most
weathered horizons enriched in Ce.

5.2. Sc concentration at the goethite-to-hematite transition

The goethite-hematite transition has been widely investigated in the
past years (e.g. Cornell and Schwertmann, 2003; Cudennec and Lecerf,
2006; Gialanella et al., 2010; Goss, 1987; Gualtieri and Venturelli,
1999; Langmuir, 1971; Schwertmann, 1985; Schwertmann and Murad,
1983; Tardy and Nahon, 1985). The thermally induced transformation
of goethite to hematite occurs at about 250 °C, this temperature being
by far above to those occurring in laterites. (e.g. Gialanella et al., 2010;
Gualtieri and Venturelli, 1999). Therefore, the direct formation of he-
matite from the dehydration of crystalline goethite is unlikely in this
environment. Most likely, this transition occurs after goethite dissolu-
tion followed by the precipitation of hematite after a ferrihydrite pre-
cursor (Goss, 1987; Schwertmann, 1985; Tardy and Nahon, 1985). Near
neutral pH (6–8; Gleeson et al., 2003; Marsh et al., 2013), relatively
high temperature (up to ~45 °C) and a decrease of water activity at the
top of the lateritic profile are much more in favor of hematite formation
compared to more acidic pH conditions (4–6; Fandeur et al., 2009b),
high water activity and high moisture that favor the precipitation of
goethite deeper in the profile (Cornell and Schwertmann, 2003;
Schwertmann, 1985; Schwertmann and Murad, 1983; Tardy and
Nahon, 1985).
Teitler et al. (2019) suggest that the decrease of bulk Sc con-

centrations observed from yellow limonite to red limonite and ferricrete
is related to the Sc content in goethite itself. However, given that Sc is
exclusively controlled by goethite and hematite at the uppermost hor-
izons (Fig. 10) and that Sc contents in goethite is greater than in he-
matite (Fig. 9; Table 4), the characteristic decrease of bulk Sc con-
centrations in the uppermost horizons of the regolith may be also
controlled by the increasing amount of hematite with respect to goe-
thite. To illustrate this postulate, the Raman spectra of five iron oxides
(3 goethites and 2 hematites) from the PIT207C pisolith sample are
plotted in relation with their Sc concentrations (Fig. 11a and b). In this
example, the samples PIT207C5-8, C9-10 and C14 display intermediate,
transitional spectra between the two goethite (PIT207C15) and hema-
tite (PIT207C12-13) end-members (Fig. 11a). This progressive transi-
tion is well highlighted by the increasing intensity of the peak at
225 cm−1, which is very low in intensity in goethite and is the third
most intense in hematite. Therefore, the 225 cm−1 peak can be con-
sidered as a good proxy for characterizing the mixture between goethite
and hematite. Related to Sc concentrations, Fig. 11b shows that for an
increasing intensity I(225), Sc content is decreasing in iron oxides from
PIT207C sample. Similar results were obtained on other pisolith sam-
ples (Fig. 11c), thus demonstrating that the progressive dissolution of
goethite and subsequent crystallization of hematite leads to the mobi-
lization of Sc. Assuming that Sc is adsorbed on goethite as proposed by
Chassé et al. (2017) implies that only a small fraction of Sc (± 50%) is
retained and integrated in the structure of hematite. However, con-
sidering Sc as integrated in the crystal structure of goethite, as postu-
lated by Muñoz et al. (2017), suggests that the capacity of Sc sub-
stitution in hematite is lower than in goethite. Although further
investigations are needed to discriminate between both hypotheses, the
latter would make Sc behavior very similar to that of Al, since it was
demonstrated that the natural goethite is able to integrate in its struc-
ture twice the amount of Al (up to 33% Al) compared to hematite
(< 15% Al; Cornell and Schwertmann, 2003; Schwertmann and
Carlson, 1994; Schwertmann et al., 2000; Trolard et al., 1995).
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5.3. Sc in New Caledonia: a new (by-product) resource?

To date the global supply and consumption of scandium is estimated
to be about 10 to 15 tons per year, mainly in the use of Al-Sc alloys and
solid oxide fuel cells. Sc is almost exclusively recovered as a by-product
from residues, tailings and waste liquors in the production of other
metals (Gambogi, 2018; Wang et al., 2011), but recent discoveries of
unusual high-grade lateritic Sc ores in Eastern Australia (up to
1000 ppm Sc) would make it potentially mined as a primary product

(Chassé et al., 2017; Jaireth et al., 2014). In New Caledonia, such
concentrations are not observed. With a maximum of>100 ppm and
an average of 80 ppm of Sc, New Caledonia Ni-laterites are much more
comparable to those located in Cuba, Dominican Republic or Indonesia
(Aiglsperger et al., 2016; Maulana et al., 2016). To these grades, Sc may
only be valuable as a by-product of Ni(Co) production. The main lim-
itation regarding Sc exploitation in New Caledonia is that currently
most of Ni is recovered from saprolith ore by pyrometallurgical ex-
traction, while Sc is mainly concentrated in overlying laterite ore and is
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Fig. 9. Mineral phases and chemical maps calculated on the basis of EPMA mapping. Phase maps show the distribution and quantification (in %) for each pixel of
goethite, hematite and relicts of Mn-oxides. Chemical maps show the concentrations of MnO, NiO and Co3O4 and highlight that highest concentrations of these
elements are measured in Mn-oxides.
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most commonly recovered by using hydrometallurgical processes
(Wang et al., 2011). Presently, such processes are exclusively used in
the south of the island, i.e. the Goro mine (Vale), for the recovering of
Ni and Co from oxide deposits (Flett, 2004; Wells et al., 2009). The
potential of Sc production in New Caledonia is thus limited to date.
However, considering increasing market interest, low production at the
world scale and recent improvements on recovering methods (up to
~85%; SIMN, 2018), it could be worth considering Sc as a future (by-
product) resource of Ni-laterites in New Caledonia.
Given the very low REE content of New Caledonia peridotites

compared to more conventional REE deposits (Chakhmouradian and
Wall, 2012), it is clear that New Caledonia laterites can hardly be
considered as a potential source of REE, even as a by-product. In ad-
dition, although concentrations in the order of 200 ppm were measured
in laterites developed on mafic intrusives, these occurrences are too
scarce at the ophiolite scale to be of an economic interest.

6. Conclusions

By using complementary mineralogical and geochemical data, this
study shows that some critical and transition metals may be sig-
nificantly enriched in the different horizons that compose the New
Caledonia lateritic profile:

(1) After dissolution of primary mineral, nickel is likely to be integrated
into secondary Ni-bearing phyllosilicates in saprolitic horizons. In
agreement to that was concluded by previous studies, Ni budget is
chiefly controlled by goethite in upper horizons (i.e. laterites and
ferricrete), even if Mn-oxides and relicts of silicate can also in-
tegrate substantial amount of Ni.

(2) Highest manganese and cobalt concentrations are observed at the
transition between saprolite and limonites, where both elements
precipitate in Mn-oxides. In limonites, Mn-oxides are not stable due
to changing pH-Eh conditions, increasing dryness and bacterial
activities. They are readily dissolved and only a small fraction of
Mn and Co is integrated to iron oxides. The remaining fraction is
solubilized and transferred downwards.

(3) Chromium and vanadium are essentially concentrated in primary
chromites, which are highly resistant to weathering. Bulk rock
concentrations in each horizon are thus directly dependent on the
amount of residual chromite embedded in samples. Cr and V re-
leased during the weathering of primary silicates (mainly pyrox-
enes) are incorporated into iron oxides by adsorption or Fe-sub-
stitution. Their concentrations increase with increasing weathering
to reach their highest concentrations at the top of the lateritic
profile.

(4) Although absolute REE concentrations are very low, our results
show that REE are mobilized and enriched during the weathering of
peridotite. Highest concentrations are observed at the transition
between saprolites and limonites, showing that REE are mainly
controlled by Mn-oxides. Only tetravalent Ce remains concentrated
in limonites and ferricrete, likely in the form of cerianite (CeO2).
Given the overall very low REE grade, New Caledonia can hardly be
considered as a potential valuable source of REE.

(5) Contrarily to REE, scandium enrichment is of about 10 times
greater in laterites regarding its initial concentration in parent rocks
(8 to 80 ppm Sc in average,> 100 ppm locally at the top of yellow
limonite). Sc is mainly released from the dissolution of pyroxenes
and integrated in goethite. Our study shows that Sc may be mobi-
lized at the top of the profile, and that this mobilization is likely
related to the dissolution of goethite and subsequent crystallization
of hematite. As a consequence, released Sc is transferred downward
in the profile and accumulates in yellow limonite, where the
amount of goethite is the highest. Although Sc concentrations in
New Caledonia laterites are far below those of world class Sc de-
posits recently found in Australia, Sc could become an interesting
potential (by-product) resource of Ni-laterites in New Caledonia in
the next few decades.
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Appendix A. Development of a new iron oxide standard: StdGoe 1.1

In literature, previous studies performing in situ trace element quantification on iron oxides used 57Fe as internal standard and the silicate
standard glass NIST SRM 610 for signal calibration (e.g. Aiglsperger et al., 2016; Green and Watling, 2007; Huelin et al., 2006). Same parameters
were applied in this study during first in situ measurements of iron oxides. For elements measured by both EMPA and LA-ICP-MS, concentrations
measured by the latter were systematically greater (up to 300%, typically 20–50%; Fig. A1). Two main reasons may explain these discrepancies: (i)
the difference of spot size between EMPA (~1 μm) and LA-ICP-MS (44 to 90 μm), and/or (ii) the difference of matrix between iron oxides and the
silicate standard NIST SRM 610 used for signal calibration. The difference of spot size is unlikely to explain these overestimations since no similar
discrepancies were observed during the measurements of silicate minerals. On the contrary the significant difference in Fe content between NIST
SRM 610 standard (458 ± 9 ppm Fe; Jochum et al., 2011) and iron oxides (up to 92wt% Fe2O3) may account for such misfit between EMPA and LA-
ICP-MS data. Therefore, a new in-house iron oxide standard was developed to ensure a better accuracy of LA-ICP-MS measurements.

A.1. Preparation procedure

About four kilograms of pisoliths sampled in various parts of the Koniambo massif were chosen as starting material. Pisoliths were first crushed in
a disc crusher to obtain a 250 μm grain sized powder. Chromite grains were then separated from other iron oxides using a Frantz isodynamic
magnetic separator. The powder was then subjected to several steps of crushing, sieving and gravity separation in a distilled water column to ensure
the recovering of powder of a grain size< 10 μm for a particule specific gravity of 4.27 g∙cm−3, corresponding to the gravity of goethite. The upper
threshold of 10 μm was chosen for the particule size to ensure the homogeneity of the standard and optimize the reproducibility of LA-ICP-MS
measurements even at small spot size (down to 44 μm, see Sections 2 and 3 below). The chemical composition of the powder was then determined at
SARM by ten independent analyses, and ~500mg was pressed to form a 2mm thick pellet for LA-ICP-MS measurements.

A.2. Mineralogy of the StdGoe 1.1 standard

The standard homogeneity in term of mineralogy was tested by Raman spectroscopy (Fig. A2). About 50 spectra were acquired randomly on the
pellet surface and confirm that the standard mainly consists of goethite, with typical peaks at 247, 299, 393, 483 and 559 cm−1. Nevertheless, small
peaks at 225, 293, 612 and 668 cm−1, corresponding to peaks with the highest standard deviation, may indicate the presence of minute nanograins
of hematite or, alternatively, grains with a transitional structure between goethite and hematite.

A.3. Chemical homogeneity and reproducibility of StdGoe 1.1 measurements by LA-ICP-MS at 44 and 90 μm spot size

The reproducibility of standard measurements by LA-ICP-MS was checked by performing 60 analyses at spot sizes of 44 and 90 μm, randomly on

Table A1
Comparison between average number of counts and concentrations based on 60 measurements using two spot sizes of 90 µm and 44 µm (30 measurements each). The
conversion from count to concentration is calculated using Fe as internal standard.

Elements ICP-MS LA-ICP-MS 90 μm (n=30) LA-ICP-MS 44 μm (n=30)

StdGoe1.1 Counts RSD (%) [C] ppm RSD (%) Counts RSD (%) [C] ppm RSD (%)

Mg 1025 35,549 9.6 1020 8.14 6109 9.84 1028 9.19
Al 31,595 648,258 12.6 31,619 2.31 183,924 7.6 31,860 2.3
Si 7806 82,223 9.78 7713 6.6 21,073 15.6 7690 13.3
Sc 54.7 10,483 12.9 54.5 3.1 3091 8.33 55 3.73
Ti 1019 1497 13.7 1022 3.57 439 10.2 1015 8.2
V 234 8206 20.3 242 6.56 1737 7.61 234 2.94
Cr 17,721 136,961 12 17,470 3.6 39,633 9.09 18,539 5.05
Mn 1.51 1,083,970 12.5 1.54 4.65 311,409 7.83 1.48 3.73
Fe 530,041 474,863 12.2 530,041 – 138,378 5.44 530,041 –
Co 638 55,572 12.4 642 4.23 12,326 14 660 10
Ni 4397 80,267 12.7 4253 2.34 20,561 14.3 4144 10.4
Cu 46.9 780 12.9 45.7 3.13 226 9.89 47.4 4.45
Zn 187 916 9.87 193 2.62 262 11.1 194 6.44
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the pellet surface. Table A1 shows the average counts and the relative standard deviation (RSD) for each element at each spot size. These results are
converted into concentrations (using 57Fe as internal standard) and compared to the concentration measured by ICP-MS (Fig. A3). RSD obtained on
the signal (in counts) is< 13% for most elements with a spot size of 90 μm and<10% with a spot size of 44 μm. Very similar RSD were obtained
during NIST SRM 610 measurements, demonstrating the good homogeneity of the StdGoe 1.1 standard. This assumption is confirmed when the
signal is converted to concentrations: the deviations between LA-ICP-MS and ICP-MS results are low, typically< 5% for all elements. The very good
reproducibility is shown by RSD values which are usually< 5% at 90 μm and below 10% at 44 μm.

A.4. Application of the new StdGoe 1.1 standard during in situ analyses of iron oxides

Fig. A1 shows the result of a single analyse of a hematite grain (PIT207 A 1-4) calibrated against the NIST SRM 610 on one hand and our newly
developed in-house StdGoe 1.1 standard on the other hand. In this example, concentrations determined by LA-ICP-MS and calibrated using the NIST
SRM 610 is ~50% greater than those measured by EMPA for most elements, including transition metals. This misfit is clearly corrected by using the
goethite standard for calibration. Concentrations measured by LA-ICP-MS fit well with those determined by EMPA. This demonstrates that the
analyses of iron oxides are significantly improved using the StdGoe 1.1 for signal calibration. A consequence is that [Sc]StdGoe 1.1 is systematically
lower than [Sc]NIST 610 of ~20 to 50% and that this discrepancy is also observed for most transition metals. Therefore, previous concentrations
measured by LA-ICP-MS in iron oxides and available to date in the literature must be considered with care.
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Fig. A1. Comparison between concentrations determined by EPMA and those measured LA-ICP-MS and calibrated against NIST SRM 610 standard (empty symbols)
or against our new goethite standard Std Goe 1.1 (filled symbols).

Fig. A2. Average of 50 Raman spectra measured on the pellet surface of StdGoe 1.1 standard showing that the standard is almost exclusively compose by goethite.
However the presence of minute grains of hematite cannot be excluded since peaks where the standard deviation is the highest (i.e. at 225, 293, 612 and 668 cm−1)
are typical of hematite. This may also reflect the presence of goethite with intermediate Raman signature between that of goethite and that of hematite, similarly to
that was described in Figs. 5 and 11. The 2σ standard deviation is indicated by the grey area.
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Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gexplo.2018.11.017.
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