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Spongy texture in clinopyroxene is found in mantle xenolith suites worldwide while its origin commonly is
unclear. Detailed petrologic observations and major- and trace-element analysis were conducted on peridotite
xenoliths with spongy clinopyroxene, from the central part of the Great Xing'an Range, in the eastern part of
the Central Asian Orogenic Belt, to investigate the origin of the texture. Spongy texture mainly occurs as rims
of variable thickness on clean cores and occasionally extends into the inner parts of clinopyroxene or even totally
covers the whole grain; there is no obvious relationship between the thickness of the rims and their proximity to
the host basalt. The boundaries between spongy-textured clinopyroxenes and surrounding minerals are sharp.
Spongy domains consist of secondary clinopyroxenes, glasses, vugs and traces of olivine. Relative to the primary
ones, clinopyroxenes in spongy domains have low Na2O, Al2O3 and AlVI /AlIV , and high CaO, Mg# and Cr# . The
estimated pressures of spongy domains are 0.34–0.95 Gpa, significantly lower than those of primary peridotite
phases (2.10–2.44 Gpa). Glasses in spongy domains are rich in Na2O and Al2O3 and depleted in MgO and FeO,
containing a small amount of K2O. Some glasses have low Mg# (down to 43.9), and are not in equilibrium
with associated clinopyroxenes and olivines. Based on these observations, we suggest that the spongy texture
in the studied peridotites was recently formed by decompression-induced low-degree partial melting. By com-
paring our petrological and chemical datawith those of previous studies, textural and chemical criteria are devel-
oped to differentiate various possible origins of spongy texture in mantle clinopyroxene.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Peridotite xenoliths are an essential source of information about
physicochemical properties and evolution of the deep lithosphere
from which they were derived (Griffin et al., 1998; Zheng et al., 2007;
Zheng. 2009; Tang et al., 2013a). Spongy texture, also called sieved tex-
ture (Nelson and Montana 1992; Shaw et al., 2006; Shaw and Dingwell
2008), is common in many mantle xenolith suites in the world, such as
theWestern Qinling (Su et al., 2011), NW Syria (Ma et al., 2015), North-
ern Tanzania (Dawson 2002), Hessian Depression (Carpenter et al.
2002), Kenya Rift (Kaeser et al., 2007) and Dariganga lava plateau
(Ionov et al., 1994). The texture is frequently glass-bearing and charac-
terized by porous rims or coronae of variable thickness on hostminerals
in mantle peridotite (mainly on clinopyroxene and spinel, occasionally
on orthopyroxene and olivine; Streck 2008).
uowei@cug.edu.cn (Z. Yin).
During the past decades, the origin of spongy texture in mantle
clinopyroxene has been the subject of some controversy. Some authors
have attributed spongy texture tometasomatismby fluid/melt penetra-
tion before entrainment in the host magma (Bonadiman et al., 2005,
2008; Carpenter et al., 2002; Ionov et al., 1994; Liang and Elthon
1990). In these cases, melt pockets, interstitial glasses ormodalmetaso-
matic minerals were observed with the occurrence of spongy-textured
clinopyroxene (Bonadimanet al., 2005; Ionov et al., 1994, 2005). Glasses
associated with spongy texture have high Na2O + K2O (up 15.5 wt%),
but low Na2O/K2O (b1), CaO (b3 wt%), MgO (b1.63 wt%) and FeO
(b1.44 wt%; Bonadiman et al., 2005). In contrast, other authors have
argued that interaction between primary orthopyroxene in peridotite
xenolith and host magma during transport could produce a Si- and
alkali-rich melt, which causes the incongruent dissolution of
clinopyroxene and finally results in the formation of spongy texture
(Shaw et al., 2006; Shaw and Dingwell 2008). Spongy-textured
clinopyroxene, as well as reacted orthopyroxene, are particularly con-
centrated near contacts with the host magma (Shaw et al., 2006, Shaw
and Dingwell 2008). Spongy clinopyroxenes have higher Ca and Cr
and lower Na and Al contents, compared with the primary ones
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(Shaw et al., 2006, Shaw and Dingwell 2008). Glasses within spongy
domain have high CaO (up to 20 wt%), MgO (up to 15.7 wt%) and
Mg# (78.4–91.4; Shaw et al., 2006, Shaw and Dingwell 2008). Recently,
Su et al., (2011) presented petrographical and chemical data on spongy-
textured clinopyroxene in peridotites from the West Qinling area.
In that study, spongy rims on clinopyroxene are enriched in Ca and
depleted in Na and Al. More importantly, AlIV /AlVI of spongy rims is
higher than that of intact cores. The authors argued that spongy texture
in clinopyroxene developed from decompression-induced partial melt-
ing (Su et al., 2011). However, no chemical composition of associated
glass was reported.

It thus appears that the origin of spongy texture in mantle
clinopyroxene could be related to different processes. Correctly under-
standing the origin of spongy textures in peridotite minerals is impor-
tant to reveal the processes operating in the upper mantle and avoid
misinterpretations of the mineralogy and chemical compositions of
the mantle imposed by post-entrainment lava-xenolith interaction
(Ma et al., 2015; Shaw et al., 2006; Su et al., 2011). Therefore, it is nec-
essary to identify criteria to differentiate the origins of these similar
spongy textures in mantle clinopyroxene.

Cenozoic basalts are widely distributed in NE China (Fig. 1a), and
contain abundant peridotite xenoliths. Previous studies on these xeno-
lithsmainly focused on their formation ages and geochemical character-
istics, and discussed the nature and evolution of the lithospheric mantle
beneath NE China (Pan et al., 2013, 2015; Wu et al., 2003; Xu et al.,
1998; Yu et al., 2009; Zhang et al., 2000, 2011, 2012; Zhou et al., 2007,
Fig. 1. (a) Tectonic framework of eastern China and the location of the studied area (modified
volcanic field (host lava) and the sample locations (modified after Ho et al., 1991). WEK, W
Tanlu translithosperic fault zone.
2009). Spongy-textured clinopyroxenes in peridotites were recognized
in some locations such as Aershan, Shuagliao and Yitong (Fig. 1a;
Yu et al. 2007; Zhou et al., 2009; Liu et al., 2014), but little attention
was paid to them. In this study, we present detailed petrological and
major- and trace-element data on peridotite xenoliths with spongy tex-
tures, from the central part of the Great Xing'an Range, in the eastern
part of the Central Asian Orogenic Belt. These data allow us to investi-
gate the origin of spongy texture and further develop textural and
chemical criteria to differentiate various origins of spongy texture in
mantle clinopyroxene, through comparison of our petrological observa-
tions and chemical data with those in previous studies.

2. Geological background

The Central Asian Orogenic Belt (called the Altaids in some refer-
ences), which links the Siberia Craton to the north and the North
China Craton to the south, is one of the largest Phanerozoic accretionary
orogenic belts on Earth (Sengör and Burtman 1993; Jahn et al., 2000;
Kröner et al., 2007; Windley et al., 2007; Wilhem et al., 2012). Tectoni-
cally, theGreat Xing'an Range is located in the eastern part of the orogen
(Fig. 1a). During the Paleozoic, the region was controlled by the Paleo-
Asian Ocean tectonic regime and characterized by the amalgamation
of several terranes (Wu et al., 2002, 2011; Xiao et al., 2003; Xu et al.,
2013). Subsequently, since early Mesozoic, this region has been
strongly overprinted by subduction of the Paleo-Pacific and Mongol-
Okhotsk Oceans (Wang et al., 2006; Xu et al., 2013; Pan et al., 2014;
after Xu et al. 2004). (b) Sketch map shows distributions of the Wuchagou and Halaha
udalianchi-Erkeshan-Keluo; DTGL, Daxing'anling-Taihangshan gravity lineament; TLFZ,
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Table 1
Microstructure and mineral mode of the Aershan peridotite xenoliths, NE China.

Sample Rock Ol-Mg# Microstructure Modes (wt%)

Ol Opx Cpx Sp Symplectite

AS03 lherzolite 90.3 porphyroclastic 66 25 6 3
AS04 lherzolite 90.4 porphyroclastic 72 18 7 3
AS06 lherzolite 88.9 protogranular 58 26 6 10
HLH10 lherzolite 90.1 porphyroclastic 65 20 11 4
DHG04 harzburgite 90.1 porphyroclastic 69 23 5 3
DHG10 lherzolite 89.9 protogranular 63 22 14 1
DHG13 harzburgite 90.9 porphyroclastic 73 22 4 1

Mineral modes of samples are determined by point counting. Ol, olivine; Opx,
orthopyroxene; Cpx, clinopyroxene; Sp, spinel.
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Tang et al., 2014). The basement of the range is composed of Paleozoic
to Mesozoic strata, including low-grade metamorphosed volcano-sedi-
mentary associations, limestones and clastic rocks, which are
intruded by voluminous volcanic rocks and granitoids (Ge et al., 2005;
Wu et al., 2001, 2011; Zhang et al., 2010). The formation ages of some
previously assumed Precambrianmetamorphic complexes are still con-
troversial (Ge et al., 2011; Miao et al., 2004; Shi et al., 2003; Sun et al.,
2013a). Recently, Paleoproterozoic (1741–1854 Ma) granitic gneisses
and Neoproterozoic (737–851 Ma) granitoids were recognized in the
northern part of the Great Xing'an Range (Sun et al., 2013b; Tang et
al., 2013b).

The Cenozoic volcanic field in the central part of the Great Xing'an
Range can be divided into two domains, defined as the Wuchagou
volcanic field in the south and the Halaha volcanic field in the north
(Fig. 1b). The latter contains abundant peridotite xenoliths, which are
rarely found in the former. The Halaha volcanic rocks are alkali basalts
and accumulated mainly above the valleys of local rivers, forming a
low lava platform. The alkali basalts, with K\\Ar ages of 2.0–0.2 Ma, rep-
resent the melting products of convective mantle (Ho et al., 2013). The
studied peridotites were collected from the valley of the Halaha River,
near the city of Aershan (Fig. 1b).
Fig. 2. Scanned thin section of xenolith (sample AS06). Ol: olivine; Opx: orthopyroxene; Cpx:
clinopyroxene.
3. Petrography

The studied xenoliths are fresh, rounded to sub-angular but small,
predominantly b5 cm in diameter. All the peridotites are anhydrous
and contain no metasomatic phases (e.g. amphibole, mica or apatite).
The modal compositions of these peridotites have been determined by
point-counting with N500 points in each thin section. A summary of
their textures and mineral assemblages is given in Table 1.

Spongy-textured clinopyroxene grains occur widely and are ran-
domly distributed across the thin sections. They do not show preferen-
tial development (i.e. thicker spongy rims) toward the contact between
the peridotite and host basalt (Fig. 2). Most spongy-textured
clinopyroxenes are composed of clean cores and spongy rims with
thickness from 20 to 250 μm (Fig. 3a). Occasionally, spongy domains
extend into the inner part of the host clinopyroxene (Fig. 3b) or even to-
tally cover the whole grain. It appears that the development of spongy
domains is not controlled by cracks across clinopyroxene (Fig. 3c). The
boundaries between spongy-textured clinopyroxenes and surrounding
mineral grains are sharp. Spongy-textured clinopyroxenes also display
well-defined contacts between the spongy rims and the intact cores,
and the latter do not showany zoningpattern in back-scattered electron
images (Fig. 3d and e).

Spongy domains aremainly composed of secondary clinopyroxenes,
glasses and vugs. Clinopyroxene in the spongy part is brighter than the
corresponding intact core in back-scattered electron images (Fig. 3a, d
and e). They share optical continuity under cross-polarized light
(Fig. 3f). Glasses are dark grey. Vugs are always empty and vary from
round to worm-like shapes, or even form net-channels (Fig. 3a, c, d
and e). Traces of olivine (b3 vol% of the spongy domain), are anhedral
to euhedral and accompanied by glasses or vugs (Fig. 3d and e), and
are ubiquitous in spongy domains of most samples. Samples DHG13
and AS04 are spinel-bearing harzburgite and lherzolite, respectively.
Other samples (AS03, AS06, DHG04, DHG10 and HLH10) contain
symplectite (Fig. 4a) which consists of tiny spinels, orthopyroxenes
and quenched glasses (Fig. 4b). The relationship between symplectite
and spongy-textured clinopyroxene is hard to investigate because
clinopyroxene. Numbers in brackets are average thickness (nm) for each spongy rim on

Image of Fig. 2


Fig. 3. BSEmicrographs (a, b, c, d and e) and photomicrograph (f) of spongy-textured clinopyroxene in the Aershan peridotites. (a) Spongy rim of clinopyroxene in AS04 showing variable
thickness. (b) Spongy domain extends into the inner part of host clinopyroxene in DHG04. (c) Cracks crosscut a clinopyroxene grain in DHG04. (d) and (e) Spongy domain consists of
secondary olivines, clinopyroxenes, glasses and variable-shaped vugs. (f) A spongy-textured clinopyroxene grain in DHG04 under cross-polarized light. Ol: olivine; Cpx: clinopyroxene.
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they are not connected with each other. The inner parts of some
symplectites are composed of ultra-fine mineral grains (b1 μm).

4. Analytical methods

Major-element analyses of primary minerals and different materials
in spongy domains were carried out at the State Key Laboratory of
Fig. 4. (a) BSEmicrograph of a symplectite inDHG04. (b) Enlarged image of the rectangle in (a),
spinel.
Geological Processes and Mineral Resources, China University of
Geosciences (Wuhan), with a JEOL JXA-8100 Electron Probe Micro Ana-
lyzer equipped with four wavelength-dispersive spectrometers (WDS).
The samples were coated with a thin conductive carbon film prior to
analysis. The precautions suggested by Zhang and Yang (2016) were
used to minimize the difference of carbon film thickness between sam-
ples and obtain an approximately uniform coating ca. 20 nm thick.
showing the symplectite consists of Opx, Sp and glass. Ol: olivine; Opx: orthopyroxene; Sp:

Image of Fig. 3
Image of Fig. 4


Fig. 5. Plots of Mg# vs (a) CaO and (b) NiO in primary olivines and secondary ones in spongy area. The compositional boundary between mantle olivine and cumulate olivine is from
Thompson and Gibson (2000).
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During the analysis, an accelerating voltage of 15 kV, a beam current of
20 nA and a 5 μm spot size were used to analyze minerals. Data were
corrected on-line using a modified ZAF (atomic number, absorption,
fluorescence) correction procedure. The peak counting time was 10 s
for Na, Mg, Al, Si, K, Ca, Fe, Cr, Ni and 20 s for Ti andMn. The background
counting time was one-half of the peak counting time on the high- and
low-energy background positions. The following standards were used:
Sanidine (K), Pyrope Garnet (Fe, Al), Diopsode (Ca, Mg), Jadeite (Na),
Rhodonite (Mn), Olivine (Si), Rutile (Ti), Chromium oxide (Cr).

Trace-element analyses of primary clinopyroxenes and
orthopyroxenes were obtained by LA-ICP-MS at the State Key Labora-
tory of Geological Processes and Mineral Resources, China University
of Geosciences, Wuhan. Laser sampling was performed using a
GeoLas2005with laser beamdiameter of 44 μm. The ICPMS is anAgilent
7700. Each analysis incorporated a background acquisition of approxi-
mately 20–30 s (gas blank) followed by 50 s data acquisition from the
sample. The NIST 610 glass and the USGS glasses were used as external
standards. No internal standard was applied for correction. Additional
descriptions of instrument operating conditions, calibration values,
Fig. 6. Plots of Mg# vs Na2O (a), Al2O3 (b), CaO (c) and Cr# (d) in primary clinopyroxenes a
clinopyroxene in spongy domain; Cpx in MIs: clinopyroxene in melt inclusions. Data sources:
Bonadiman CPXP and Bonadiman CPXS are from Bonadiman et al. (2005); Su CPXP and Su CPXS
detection limits, and error analysis for the lasermicroprobe are reported
by Liu et al., (2008).

5. Analytical results

5.1. Major-element compositions

5.1.1. Primary minerals
The primary minerals are homogeneous, based on several core and

rim analyses in each sample. Their major-element compositions are
listed in Appendix 1.

The primary olivine in the studied peridotites has high NiO and low
CaO contents (Fig. 5). ItsMg# varies from 88.9 to 90.9 (Fig. 5). The Al2O3

contents of orthopyroxene range from 3.99 to 5.47 wt% and broadly de-
crease with increasing Mg# . Spinel only occurs in samples DHG13 and
AS04, with Cr# of 26.5–41.8 and Mg# of 67.0–69.3. All primary
clinopyroxenes are Cr-diopside with Cr2O3 contents of 0.98–1.60 wt%,
displaying a negative correlation of Mg# vs Al2O3 but a positive correla-
tion of Mg# vs CaO (Fig. 6).
nd secondary ones in spongy domain. CPXP: primary clinopyroxene; CPXS: secondary
Shaw CPXP and Shaw CPXS are from Shaw et al. (2006) and Shaw and Dingwell. (2008);
are from Su et al. (2011); Cpx inMIs are from Ionov et al. (2011) and Bénard et al. (2016).
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Table 2
Electron microprobe analyses (wt%) of materials in spongy domain of clinopyroxene of the Aershan peridotites.

Sample AS03 AS04 AS06 HLH10

Cpx Glass Ol Cpx Glass Cpx Glass Ol Cpx Glass

Number 10 6 3 11 5 10 5 3 10 5

Na2O 0.42 5.02 0.02 0.50 5.46 0.39 6.07 0.03 0.39 5.14
K2O 0.01 0.38 b.d. 0.01 0.52 0.01 0.64 0.00 0.00 0.57
FeO 3.09 0.48 10.20 3.31 0.44 3.58 0.48 11.75 3.33 0.76
MgO 17.60 0.27 46.92 17.25 0.27 16.99 0.21 47.11 17.85 0.60
CaO 20.20 11.05 0.32 19.62 10.01 19.65 9.28 0.35 20.31 10.66
Al2O3 3.20 27.16 0.05 4.25 26.44 4.09 26.41 0.07 3.82 27.30
SiO2 52.59 53.94 40.81 52.05 55.62 51.45 56.71 39.42 51.94 54.48
Cr2O3 1.14 0.06 0.07 1.41 0.05 1.80 0.06 0.19 1.39 0.02
TiO2 0.43 0.10 0.01 0.62 0.19 0.56 0.15 0.03 0.43 0.12
MnO 0.05 0.04 0.31 0.07 0.02 0.07 0.01 0.27 0.09 0.03
NiO 0.06 0.04 0.15 0.10 0.05 0.09 0.00 0.13 0.03 0.01
Total 98.79 98.53 98.84 99.18 99.08 98.69 100.01 99.34 99.58 99.69
Mg# 91.1 50.4 89.2 90.4 52.1 89.5 43.8 87.8 90.6 58.8
Cr# 19.1 18.0 22.6 19.4
IV Al 0.05 0.09 0.10 0.09
VI Al 0.09 0.09 0.08 0.08
VI Al/IV Al 1.62 0.95 0.78 0.84

Sample HLH10 DHG04 DHG10 DHG13

Ol Cpx Glass Ol Cpx Glass Ol Cpx Glass

Number 3 12 7 8 11 6 4 12 3

Na2O 0.02 0.47 5.09 0.03 0.35 4.50 0.03 0.32 4.92
K2O 0.00 0.01 0.22 0.01 0.01 0.17 b.d. 0.01 0.47
FeO 13.44 3.84 0.57 10.81 3.71 0.66 10.92 3.12 0.44
MgO 45.50 19.41 0.42 46.56 18.61 0.52 46.56 18.27 0.19
CaO 0.31 17.79 10.89 0.28 18.14 11.90 0.27 19.62 11.02
Al2O3 0.03 3.88 27.07 0.11 3.96 27.72 0.04 2.98 27.59
SiO2 39.86 51.99 54.91 40.87 52.50 53.95 40.82 52.97 54.27
Cr2O3 0.09 1.32 0.05 0.09 1.29 0.04 0.04 1.64 0.00
TiO2 0.02 0.42 0.09 0.02 0.36 0.09 0.02 0.35 0.16
MnO 0.24 0.09 0.04 0.30 0.08 0.03 0.38 0.08 0.00
NiO 0.16 0.10 0.05 0.18 0.09 0.04 0.16 0.09 0.07
Total 99.67 99.33 99.40 99.26 99.10 99.61 99.22 99.45 99.13
Mg# 85.9 90.1 56.8 88.6 90.0 58.5 88.5 91.3 44.0
Cr# 18.3 17.8 26.7
IV Al 0.11 0.08 0.04
VI Al 0.05 0.09 0.08
VI Al/IV Al 0.47 1.07 1.88

Ol: olivine; Opx: orthopyroxene; Cpx: clinopyroxene; Sp: spinel; b.d.: below detection limit.
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5.1.2. Spongy domains in clinopyroxene
Major-element compositions of different materials (clinopyroxene,

glass and olivine) in the spongy domain of clinopyroxene are given in
Table 2. Relative to the primary one, secondary olivine in spongy do-
mains has apparently lowMg# andNiO but high CaO (Fig. 5). Compared
with the primary one, secondary clinopyroxene in spongy domains has
obviously lowAl2O3 andNa2O but high CaO (Figs. 6 and 7). The SiO2 and
TiO2 concentrations are similar and do not show systematic differences.
Glasses in spongy domains show a narrow range in Al2O3 (26.4–27.7
wt%), CaO (9.3–11.9 wt%) and SiO2 (53.9–56.7 wt%). It is poor in MgO
(0.19–0.52 wt%), FeO (0.44–0.76 wt%) and TiO2 (0.09–0.19 wt%) but
rich in Na2O (4.50–6.07 wt%), with a small amount of K2O (0.17–0.64
wt%). The Mg# of glass is low and varies from 43.9 to 58.8.
5.2. Trace-element compositions

Trace-element compositions of primary clinopyroxene and
orthopyroxene are listed in Appendix 2. Chondrite-normalized REE pat-
terns for primary clinopyroxene are convex-upward, with peaks at Sm,
Nd and Eu (Fig. 8a). The extended trace-element plots show that the
primary clinopyroxene of sample DHG13 has strong negative anomaly
in Ti and low Ti/Eu (856). Other peridotites have high Ti/Eu, N4410. All
clinopyroxenes have low LREE/HREE ((La/Yb)N b 5). REE patterns of
orthopyroxenes, with positive anomalies in HFSE, show flat HREE to
MREE patterns and continuously decreasing normalized abundances
from MREE to LREE (Fig. 8b).

6. Discussion

6.1. Early enrichment processes

Clinopyroxene is the major carrier for most trace elements in anhy-
drous peridotite peridotite, and its trace-element compositions can be
used to reveal mantle processes, such as partial melting andmetasoma-
tism (Zangana et al., 1999). Recent studies suggested that partition co-
efficient of REE between orthopyroxene and clinopyroxene (DREE
Opx/Cpx) is negatively correlated to cation radius but positively corre-
lated to equilibrium temperature of peridotite (Witt-Eickschen and
O'Neill, 2005; Lee et al., 2007). Although the measured partition coeffi-
cient of REE between primary clinopyroxene and orthopyroxene
broadly increase with decreasing radius (from La to Lu), they are highly
variable and do not show positive correlations with equilibrium tem-
peratures (Appendix 2), implying the REE concentrations of primary
clinopyroxene are disturbed and can hardly be used to estimate the de-
gree of melt extraction experienced by the studied peridotites.

As no hydrous phases were identified in the studied xenoliths, mod-
erate enrichment of incompatible elements, such as LREE and Sr, is con-
sistent with a cryptic metasomatism. In particular, the convex-upward
REE patterns of clinopyroxene, with the peak at Sm, Nd or Eu (Fig. 8a),



Fig. 7.Compositionalmapping of spongy-textured clinopyroxene grain in Fig. 3c. Color bar
in the right indicates the relative contents of the selected elements.

Table 3
Estimated temperatures (°C) and pressures (Gpa) for the Aershan peridotites.

Sample Primary phases Spongy domain

TBK-ca TDE TWells P TPutirka-32d PPutirka-32a

AS03 1036 1052 1063 2.10 1075 0.95
AS04 1067 1085 1112 2.16 1105 0.57
AS06 1160 1136 1152 2.35 1095 0.58
HLH10 1073 1119 1061 2.18 1098 0.34
DHG04 1173 1201 1181 2.38 1227 0.50
DHG10 1186 1244 1221 2.40 1219 0.49
DHG13 1201 1198 1204 2.44 1127 0.50

TBK-Ca: Ca in Opx thermometer, Brey and Köhler (1990); TDE: Al in Ol thermometer,
De Hoog et al. (2010).
TWells: Mg-Fe-two-pyroxene thermometer, Wells (1977). P for primary phases are esti-
mated from TBK-Ca,assuming the studied xenoliths shared the same geothermal gradient
with those from Fan et al. (2008).
PPutirka-32a and PPutirka-32d: single clinopyroxene thermobarometer, Eqs 32a and 32d from
Putirka, (2008).
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are diagnostic of equilibrium with LREE-rich melts (Bodinier et al.,
1990; Navon and Stolper 1987). All primary clinopyroxenes, except
for those of sample DHG13, with low (La/Yb)N (b 5) and high Ti/Eu (N
4410), record the signatures of silicate-melt related metasomatism
(Coltorti et al., 1999). Mg# of clinopyroxene in samples AS06 and
DHG10 is b89.0, possibly reflecting the addition of iron after partial
melting. Clinopyroxene of sample DHG13 has low Ti/Eu of 856 and
(La/Yb)N of 0.23. The patterns are similar to those of clinopyroxene in
peridotites fromWest Tianshan,which have been interpreted to be pro-
duced by a metasomatic agent transitional between carbonatitic and
silicate melt, or overprinted by multiple episodes of metasomatism
(Zheng et al., 2006). Fig. 8a shows that themelts in equilibriumwith pri-
mary clinopyroxenes had lower REE abundances than the host basalts.
We therefore consider that the studied xenoliths had experienced en-
richment processes before entrainment.

6.2. Origin of spongy texture in the Aershan peridotites

The origin of spongy texture in mantle clinopyroxene has long been
controversial and attributed to interaction between peridotite and host
magma (Qi et al., 1995; Shaw et al., 2006; Shaw andDingwell 2008), de-
compression-induced melting (Su et al., 2011) and mantle metasoma-
tism by fluid/melt penetration before entrainment (Bonadiman et al.,
2005, 2008; Carpenter et al., 2002; Ionov et al., 1994). Based on petro-
logical observations and chemical analysis, decompression-induced
partial melting is considered as the most possible mechanism for the
formation of spongy texture in the studied peridotites. The evidences
are as below:

1. Most studied xenoliths contain symplectite which consists of tiny
spinels, orthopyroxenes and quenched glasses. Such symplectites are
generally interpreted as the products of breakdown of previous garnet
due to pressure decrease (Godard and Martin 2000; Morishita and
Arai 2003; Obata 2011; Obata and Ozawa 2011; Špaček et al., 2013).
The low CaO content (17.5–20.4 wt%) of the primary clinopyroxene is
also considered as reflecting equilibrium with the garnet phase
(Bonadiman et al., 2005).

2. Secondary clinopyroxene in spongy domain is characterized by
lower Al2O3 and Na2O, but higher CaO, Cr# and Mg# than the primary
one (Fig. 6). The decrease in Al2O3 and increase in Mg# and Cr# of
clinopyroxene are frequently interpreted as effective indicators of de-
gree of partial melting (e.g. Frey and Prinz 1978; Zheng et al., 2001).
Therefore, secondary clinopyroxene in spongy domain could represent
residues after partial melting of primary clinopyroxene. The relative
proportions of AlIV and AlVI in clinopyroxene can provide useful infor-
mation on pressure differences (Wass 1979). Primary clinopyroxene
(for example, the intact core) has systematically higher AlVI , and more
significantly, higher AlVI /AlIV ratios than that of secondary
clinopyroxene in spongy domains (1.35–2.57 vs 0.47–1.88, Table 2
and Appendix 1), implying a decompression process. The lower content
of Na in secondary clinopyroxene in spongy domains also supports the
lower-pressure origin (e.g. Ma et al., 2015).

3. Several thermometers have been adopted to estimate the equilib-
rium temperatures of the studied peridotites. These thermometers give
similar temperatures for each sample (Table 3), with a discrepancy of
3–58 °C, which can generally be reconciled with the uncertainties of
used thermometers (for example, 70 °C for Mg-Fe-two-pyroxene ther-
mometer, Wells 1977). Recently, Fan et al., (2008) reported a fresh gar-
net peridotite xenolith collected near the Chaoer River in the Halaha
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Fig. 8. Chondrite-normalized REE patterns (a) and primitive-mantle-normalized trace-
element diagrams for primary clinopyroxenes in the studied xenoliths (b). Melt in
equilibrium with primary clinopyroxene was calculated using partition coefficients of
Hart and Dunn (1993). Host basalt is from Ho et al. (2013). Normalizing values are from
McDonough and Sun (1995).
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volcanic field (about 35 km away from our sample location; Fig. 1b),
with a temperature-pressure estimate of 1164 °C and 2.36 Gpa. Assum-
ing that the studied xenoliths shared the same geothermal gradient, and
accepting their TBK-Ca (1036–1201 °C) as equilibration temperatures,
the pressures of origin would be 2.10–2.44 Gpa. Temperature and pres-
sure for spongy domains can be estimated using the clinopyroxene-only
thermobarometer (Eqs 32a and 32d in Putirka 2008), which gives
slightly higher temperatures (1175 °C to 1292 °C) but significantly
lower pressures (0.34–0.95 Gpa) than those for primary phases.
Although pressure estimation for peridotites employing the iterative
method of Putirka (2008) carries some uncertainty (Ma et al., 2015)
and the estimated pressures for spongy clinopyroxene show large
errors (up to 0.6 Gpa), we still suggest that the systematically lower
pressures are indicative.

Glasses in spongy domains probably were produced by low-degree
melting of primary clinopyroxene. They are rich in Na2O, SiO2 and
Al2O3, similar to low-degree melts obtained by experiments on anhy-
drous peridotite at pressure of 1.0–1.5 Gpa (Baker et al., 1995; Draper
and Green 1997; Robinson et al., 1998). Low-degreemelts of anhydrous
peridotite at high pressure (e.g. 2.5 Gpa) is characterized by low SiO2

(e.g. b 50 wt%) and alkali contents because the activity of SiO2 decreases
due to more compatibility of alkali oxide in clinopyroxene at greater
depth (Hirschmann et al., 1998; Schiano et al., 2000). Compared with
interstitial glasses, melt inclusions in mantle minerals are considered
to be preserved in closed systems and devoid of post-entrapment mod-
ification. Therefore, homogenizedmelts inclusions can be used to deter-
mine primitive magmas percolating the lithosphere (Bénard et al.,
2016; Ionov et al., 2011; Schiano et al., 1998). Glasses studied here
have extremely low MgO and FeO contents (both b1 wt%), apparently
deviating from the field defined by low-degree melts of anhydrous pe-
ridotite and homogenized melt inclusions from Avacha volcano (LD
melts and GL-MIs in Fig. 9). The low MgO and FeO contents may be
due to crystallization of olivine (presence of olivine traces in spongy do-
main). More importantly, glasses in some studied xenoliths have low
Mg# (down to 43.8), out of equilibrium with coexisting secondary
clinopyroxenes and olivines, assuming the KCpx/lid D Fe/Mg and KOl/
lid D Fe/Mg to be 0.28 and 0.30, respectively (Putirka 2008). The lack
of equilibrium, combined with ubiquitous presence of glasses, implies
that the spongy texture was formed quickly and recently. The decom-
pression event possibly was related to the tectonic extension which re-
sulted in the eruption of the widely distributed Cenozoic alkali basalts
across the NE China (e.g. the host magma). Since Late Cretaceous time,
the NE China has experienced a period of magmatic relaxation until
the eruption of the basalts (Zhang et al., 2000).

6.3. Differentiating various origins of spongy texture in mantle
clinopyroxene

Asmentioned above, three processes have been considered to be re-
sponsible for the formation of spongy texture in mantle clinopyroxene,
including interaction between peridotite and host magma (Shaw et al.,
2006; Shaw and Dingwell 2008); metasomatism by fluid/melt penetra-
tion (Bonadiman et al., 2005); decompression-induced melting (Su et
al., 2011; this study). Here, we have summarized the petrologic and
chemical differences of spongy-textured clinopyroxene formed by the
three processes (Table 4). The comparison allows us to establish tex-
tural and chemical criteria to identify the origins of these similar spongy
textures in mantle clinopyroxene.

1. Petrologic differences: The interaction between orthopyroxene
and host magma during transport could produce a Si- and alkali-rich
melt, which is a necessary precursor to formation of spongy texture in
clinopyroxene (Shaw et al., 2006; Shaw and Dingwell 2008). In
those studies, spongy-textured clinopyroxene, as well as reacted
orthopyroxene, is particularly concentrated near contacts with the
host magma (Shaw et al., 2006; Shaw and Dingwell 2008). In contrast,
orthopyroxenes in peridotites studied here are generally well-pre-
served (Appendix 3). Spongy-textured clinopyroxenes are randomly
distributed in the thin section and do not exhibit preferential develop-
ment toward the contacts between peridotite and host basalts (Fig. 2).
This is consistent with peridotite xenoliths from the Western Qinling
area, in which the spongy texture was interpreted as products of de-
compression-inducedmelting of clinopyroxene (Su et al., 2011). Perido-
tite xenoliths from Sal Island contain spongy-textured clinopyroxenes,
which are accompanied with abundant melt pockets, interstitial glasses
and modal metasomatic minerals (Bonadiman et al., 2005; Ionov
et al. 2005). Kimberlite-like melt infiltration was considered as the
mechanism responsible for the spongy texture (Bonadiman et al.,
2005). All peridotites studied here are anhydrous and contain no
modalmetasomatic phases. Spongy domains do not appear to preferen-
tially develop along cracks cross clinopyroxenes (Fig. 3c). These features
argue against the infiltration of melt/fluid. Although melt pockets were
observed in peridotites from the West Qinling area, the authors
interpreted those melt pockets as formed after spongy clinopyroxene
(Su et al., 2010).

2. Chemical differences: Secondary clinopyroxene in spongy domain
has lower Al2O3 and Na2O, but higher CaO, Cr# and Mg# , than the pri-
mary one, regardless of the interpreted origin (Figs. 6). Their plotted
areas overlapwith each other, and therefore cannot be used to constrain
the origin of spongy clinopyroxene. Glasses are commonly observed as-
sociated with spongy-textured clinopyroxene (Bonadiman et al., 2005;
Carpenter et al., 2002; Ionov et al., 2005; Shaw et al., 2006). They have
different major-oxide contents which can be used to differentiate the
origins of spongy texture in mantle clinopyroxene. Glasses within
spongy domains studied here (decompression-induced melting of
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Fig. 9. Plots (recalculated on an anhydrous basis) of SiO2 vs (a) CaO, (b) Al2O3, (c) Na2O+ K2O (d) Na2O/K2O, (e) MgO, (f) FeO, (g) TiO2 and (h) Mg# in glasses associated with spongy
clinopyroxene of various origins. Shaw and Bonadiman: glass associated with spongy-texture clinopyroxene; GL-MIs: homogenized (heated) glass inclusions from subduction zones; LD
melts: low-degree melts produced by experiments on anhydrous peridotite. Data sources: Shaw are from Shaw et al. (2006) and Shaw and Dingwell (2008); Bonadiman are from
Bonadiman et al. (2005); GL-MIs are from Ionov et al. (2011) and Bénard et al. (2016); LD melts are from Baker et al., (1995), Draper and Green. (1997) and Robinson et al. (1998).
Note K2O contents of LD melts are generally not reported.
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clinopyroxene) show narrow ranges of major-element compositions
(Fig. 9). They have obviously higher Al2O3 (26.4–27.8 wt%) and Na2O/
K2O (up to 26.4), compared with those related to spongy textures of
other origins (Shaw and Bonadiman in Fig. 9). The Al2O3 contents of
the studied glasses are even higher than those of low-degree melts of
anhydrous peridotites and most Al-rich primitive melts percolating
the lithosphere (LD melts and GL-MIs in Fig. 9). Glasses in peridotites
from Sal Island (metasomatism by melt infiltration, Bonadiman in
Fig. 9) contain large amounts of Na2O and K2O (up to 15 wt%) and
have low CaO (b 3 wt%) and Na2O/K2O (b 1), which cannot be produced
bymeltingof clinopyroxeneandexotic alkali-richagentmust beevoked.
Strong penetration of kimberlite-likemelt was considered as themech-
anism responsible for the formationof spongy texture (Bonadimanet al.,
2005). Glasses within spongy-textured clinopyroxene, which were
formed by host magma-peridotite interaction (Shaw in Fig. 9), are
characterized by high MgO and FeO, as well as Mg# . They also have
low Na2O/K2O, due to the involvement of alkali-rich melts released by
dissolution of orthopyroxene (Shaw et al., 2006; Shaw and Dingwell
2008).

7. Concluding remarks

1. The peridotite xenoliths from the eastern Central Asian Orogenic
Belt contain spongy-textured clinopyroxene. The spongy domains are
variable in thickness and consists of clinopyroxenes, glasses, vugs and
traces of olivine.
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Table 4
Petrologic and geochemical differences of spongy texture in mantle clinopyroxene with
various origins.

Origin Petrologic differences Chemical
differences
(associated
glasses)

References

Decompression-induced
partial melting

No melt pocket or modal
metasomatic mineral; no
preferential
development of spongy
texture toward host
magma and along
cracks; orthopyroxene
well preserved

High Al2O3

and
Na2O/K2O;
low MgO,
FeO and Mg#

This study

Host lava-peridotite
interaction

Presence of reacted
orthopyroxene;
preferential
development of spongy
texture toward host
magma

High MgO,
FeO and
Mg# ; low
Na2O/K2O

Shaw et al.
2006; Shaw
and
Dingwell
2008

Metasomatism by melt
infiltration

Presence of melt pockets,
glass patches and modal
metasomatic minerals

High Na2O
+ K2O; low
CaO and
Na2O/K2O

Bonadiman
et al. 2005
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2. Spongy texture in the studied peridotites was formed by decom-
pression-induced melting of clinopyroxene.

3. The differences in petrologic characteristics and major-element
compositions of associated glasses can be used to identify origin of
spongy texture in mantle clinopyroxene.
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