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A B S T R A C T

The 1:1, 000, 000 geochemical mapping across the boundary area of China and Mongolia has acquired high-
quality basic geochemical data, yielding more than 9000 stream sediment samples and over 400 rock samples.
Each stream sediment and rock sample site was assigned to the regional tectonic unit, geological background and
geomorphic landscape maps, respectively, resulting in spatial data for three categorical variables. The contents
and spatial distributions of Cu in stream sediment and rock samples across the boundary area of China and
Mongolia were studied. The stream sediment geochemical data set was centered logratio transformed (clr) to
avoid the closure effect. Random forest regression (RFR) was applied to predict Cu geochemical background for
each sample with tectonic unit, geological background, and geomorphic landscape as characteristic variables,
then the residuals were used to map geochemical anomalies. The study shows that Cu contents in stream se-
diments and rocks are high in the west and low in the east of the study area, and the median Cu varies with
different tectonic units, geological backgrounds, and geomorphic landscapes. The background values of Cu are
strongly spatial heterogeneous. The distributions of predicted Cu background values by random forest regression
algorithm are similar to the distribution characteristics of Cu in stream sediments and rocks. The influence of
tectonic units on the spatial variations of Cu geochemical background was greatest, followed by geological
background, the influence of geomorphic landscape was smallest. The geochemical anomalies drawn by the
residuals produced in random forest regression are in good agreement with the known deposits, indicating that
the predicted geochemical background of Cu is reasonable and accurate, and has certain theoretical and practical
significance.

1. Introduction

The area across the boundary of China and Mongolia has excellent
geological conditions for mineralization. There are Oyu Tolgoi ultra-
large porphyry copper‑gold deposits, Tsagaan Suvarga large porphyry
copper‑molybdenum deposits, Asgarte large silver deposits, Talimetz
large gold deposits, Chabou and bayanur large lead-zinc-silver deposits
and other small-medium sized deposits (Kirwin et al., 2005;
Wainwright et al., 2017; Hou et al., 2010). Copper is one of the most
widely used metals. At present, more than 600 million tons of copper
have been proved in the world, and copper is widely used in the fields
of electricity, light industry, machinery manufacturing, construction
industry and national defense industry. As one of the most important
metallogenic belts of porphyry copper in the world, the study area has
huge resource potential, making it one of the hot spots in international

geoscientific research and exploration (Li et al., 2015; Nie et al., 2004).
The 1:1, 000, 000 geochemical mapping project across the boundary

area of China and Mongolia began in 2008, and was implemented by
China Geological Survey, Mongolia Ministry of Geology and Mineral
Resources and Mongolia Geological Survey Center. By 2017, more than
9000 stream sediment samples and 400 rock samples from about
1.3 million km2 have been collected, and the high quality geochemical
data of 68 elements, organic carbon and total carbon have been ob-
tained (Nie et al., 2013). The geochemical data processing and the
identification of ore-related geochemical anomalies of Cu are helpful to
delineate the metallogenic target area of Cu in the study area to guide
further prospecting work.

The decoupling of anomalies from background is an important step
in geochemical data processing. Traditionally, a geochemical anomaly
can be defined as a concentration of an element that is greater than a
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threshold value. The threshold value was usually identified by various
statistical methods, such as the probability plots method, 85% cumu-
lative frequency method, median+2mad method, mean+ nSDEV, QQ
graph method and fractal method (Hawkes and Webb, 1962; Tukey,
1977; Cheng et al., 1994, Cheng, 2007; Zhang et al., 2008; Zuo et al.,
2009; Daya, 2015). However, the applications of these methods were
based on the assumption that the geochemical data are normally, log-
normally or fractal distributed and moreover the data are homo-
geneous, obviously these methods were unsuitable for most areas. The
lithological units and geographic landscapes of most study area are
often complex and thus the geochemical data are obviously hetero-
geneous. It is demonstrated that backgrounds may change from area to
area within a region and between regions (Reimann and Garrett, 2005).

The boundary area of China and Mongolia is such a very typical
area, with multiple tectonic units and complex geological backgrounds,
moreover, the geomorphic landscapes are diverse, which results in
significant elemental natural spatial variations (Tomurtogoo and
Badarch, 1998; Tomurtogoo, 2005). Therefore, geochemical data are
strongly heterogeneous and most traditional methods are no longer
applicable. Researchers proposed that geochemical background values
can be fitted through the relationships of metallogenic element and
some rock-forming elements. For example, Hao et al. (2014) applied
linear regression method to calculate the background values of me-
tallogenic element based on the relationships between metal element
concentrations and oxide concentrations (in particular SiO2). The re-
sidual errors, namely the differences between the measured and the
predicted values, were used to map the geochemical anomalies. Al-
though this approach takes into account the spatial variations of the
geochemical backgrounds, the relationships of elements are generally
complex and non-linear in geological events (Lark, 1999).

Random forest (Breiman, 2001) is a highly accurate, adaptable and
interpretable machine learning method, which uses an ensemble of
decision trees, and is capable of both classification and regression.
Based on the non-linear relationships between the dependent variable
and the independent variables, it can give the predicted values of the
dependent variable and relative importance of each independent vari-
able. It is gaining popularity for use in various fields: for example
geological mapping (Cracknell et al., 2014), digital soil mapping (e.g.
Henderson et al., 2005; Wiesmeier et al., 2009) and mineral pro-
spectivity mapping (e.g. Carranza and Laborte, 2015; Harris and
Grunsky, 2015).

In this paper, the contents and overall distributions of Cu in stream
sediment and rock samples across the boundary area of China and
Mongolia were studied. The concentrations and spatial distributions of
Cu in different geological units, geological backgrounds and geo-
morphic landscapes were discussed. And then the random forest re-
gression was applied to predict the geochemical background values of
Cu for every sample sites, with the abovementioned three factors as
characteristic variables, considering about the natural spatial variations

of elements. The residual errors were used to identify geochemical
anomalies related to mineralization, and then the impacts of these
factors on the Cu natural spatial variations were given. The study of the
influence factors of elemental natural spatial variations is essential for
accurately determining the elemental geochemical backgrounds, then
identifying Cu geochemical anomalies related to mineralization across
the boundary area of China and Mongolia.

2. The study area

The study area is located at the boundary areas of China and
Mongolia, covering the Altai Mountains, south of the Mongolia Plateau
and west of the Great Khingan, extending about 50–100 km from each
side of the border. The length of borderline between China and
Mongolia is up to 4673 km. Geographical coordinates of the study area
are between East longitude 86°–120° and North latitude 41°–50°, with a
total area of about 1.3million km2 (Nie et al., 2013).

The study area is made of two primary tectonic units, the Altai-
Xingmeng orogenic system of the central Asian tectonic belt with a
large area (areas including A–J, Fig. 1) and Tarim-North China block
with a small area (K and L, Fig. 1). The Altai-Xingmeng orogenic system
are subdivided into 10 secondary tectonic units, including Altai Tec-
tonic Belt (A), Altai Southern Arc Basin System (B), East and west
Junggar Arc Basin System (C), Junggar Block (D), Gobi Altai Arc Basin
System (E), Beishan-Gobi Tianshan Arc Basin System (F), Bayinmaodao-
Yagan-Baruun Tsohio Tectonic Belt (G), Ereen Davaa- Erguna Micro-
block (H), Baruun Urt-Hutag Uul-Dongwuqi- Aershan Arc Basin (I) and
Sulinheer- Mandula-Horingolor Arc Basin System (J). Tarim-north
China block are subdivided into 2 secondary tectonic units, including
Tarim Block (K) and North China Block (L) (Liu et al., 2018; Li et al.,
2015).

The geological background is complex in the boundary area of
China and Mongolia, distributed from Proterozoic to Quaternary (A-N,
Fig. 2). Proterozoic, Cambrian, Silurian, Devonian and Andesite (A, B,
D, E, L, Fig. 2) are mainly located in the north-western part with a small
area. Permian, Jurassic and Tertiary (G, H, J, Fig. 2) are mainly dis-
tributed in the eastern part of the area and that is sporadically dis-
tributed in the west. Cretaceous (I, Fig. 2) is distributed in the middle-
east of the study area with a large area. Carboniferous (F, Fig. 2) is
distributed sporadically in the study area with a small area. Ordovician
and Granite (C, M, Fig. 2) are distributed evenly in the study area.
Quaternary (K, Fig. 2) is distributed over a large range across the area.
In addition, basalt (N, Fig. 2) is distributed in the north-eastern part of
the study area with a small area (Fu et al., 2016; Tang et al., 2016).

The geomorphic landscapes here are mainly grassland (B, E, F, G, I,
K, Fig. 3), forest-grass (C, D, Fig. 3) and semi-desert area (A, H, J,
Fig. 3), where the northwest of the study area is dominated by forest
grass area, the eastern part is the grassland area, and the middle and
southwest regions are occupied by large semi-desert regions.

Fig. 1. Geological units across the boundary
area of China and Mongolia (Modified according
to Li et al., 2015).
A - Altai Tectonic Belt; B - Altai Southern Arc
Basin System; C - East and West Junggar Arc
Basin System; D - Junggar Block; E - Gobi Altai
Arc Basin System; F - Beishan-Gobi Tianshan Arc
Basin System; G - Bayinmaodao-Yagan-Baruun
Tsohio Tectonic Belt; H - Ereen Davaa - Erguna
Microblock; I - Baruun Urt-Hutag Uul-Dong-
wuqi-Aershan Arc Basin; J - Sulinheer- Mandula-
Horingolor Arc Basin System; K - Tarim Block; L
- North China Block; M - Fault.
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3. Materials and methods

3.1. Sampling and sample preparation

The samples were collected by China and Mongolia cooperation
team. The stream sediment sampling density was one sample per
100 km2. Sampling sites distributed as evenly as possible throughout
the survey area and each sample site was at a position, which can
control the maximum area of a sampling cell. Active stream sediment
samples were collected at the mouths of the streams inside each sam-
pling cell. The sample site was at the lowermost point of the largest
drainage catchment in each sampling cell. Composite samples were
collected in a range of 50m (generally 3–4 sites). Rock samples were
collected in the area where bedrocks outcrop. GPS units were used to
record the coordinates. A total of 9045 stream sediment and 469 rock
sampling sites were evenly distributed in the region (Fig. 4). The
sampling weight was about 500–1000 g. Duplicate samples were dis-
tributed at the same site but different locations (at least 2 m apart), and
their quantity was 5% of the total samples (Wang et al., 2007; Tian
et al., 2018).

Stream sediment samples were prepared before sending to labora-
tory for analysis. The procedures were as follows: drying (not directly
under the sun)—crushing (to prevent the grains clustering into
lumps)—sieving (discarding the portion over or lower the×mesh)—-
grinding (Grind samples to 200mesh in agate or pure-aluminium-por-
celain mill)—splitting and weighing (depending on the requirement of
analysis)—bottling (polypropylene or plastic bottle)—storing (Store the
rest of samples in storage room) (Wang et al., 2007, 2011, 2016). The

rock samples were coarsely crushed to about 1 cm in the jaw crusher,
and then finely grinded to 200 mesh in the agate or pure-aluminium-
porcelain mill, and the following steps were the same as stream sedi-
ment samples.

3.2. Analysis and quality control

Sample pretreatment method was as follows: 0.25 g sample was
dissolved by HF+HNO3+HClO4+ aqua regia, then put 25ml solu-
tion in 5% aqua regia, pipette 1ml clear solution, and then dilute to
10ml with 2% HNO3. The samples were analyzed in the laboratory of
Institute of Geophysical and Geochemical Exploration (IGGE), Chinese
Academy of Geological Sciences. 68 elements (Ag, As, Au, B, Ba, Be, Bi,
Br, Cd, Cl, Co, Cr, Cs, Cu, F, Ga, Ge, Hf, Hg, I, In, Li, Mn, Mo, N, Nb, Ni,
P, Pb, Rb, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Zn, Zr, Y, La,
Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, SiO2, Al2O3, Fe2O3,
MgO, CaO, Na2O, K2O), OrgC (organic carbon) and TC (total carbon)
were analyzed. Concentrations of Cu were analyzed by ICP-MS, the
detection limit was 1mg/kg. Certificate samples were used, and the
accuracy of analyses was better than 5% for major elements and better
than 10% for trace elements. Duplicate samples with random sampling
5% of total number of samples in secret code were analyzed, and the
relative errors of repeated sample analyses were less than 10%.

3.3. Centered logratio transformation

Since a stream sediment geochemical data set is a closed number
system, with regard to the closure effect, centered logratio

Fig. 2. Geological backgrounds across the boundary area of China and Mongolia
A - Proterozoic; B - Cambrian; C - Ordovician; D - Silurian; E - Devonian; F - Carboniferous; G - Permian; H - Jurassic; I - Cretaceous; J - Tertiary; K - Quaternary; L -
Andesite; M - Granite; N - Basalt.

Fig. 3. Geomorphic landscapes across the
boundary area of China and Mongolia.
A - Altai alpine meadow and tundra; B - Altai
montane forest and forest steppe; C - Altai
steppe and semi-desert; D - Daurian forest
steppe; E - Eastern Gobi desert steppe; F - Gobi
lakes valley desert steppe; G - Great lakes basin
desert steppe; H - Junggar basin semi-desert; I -
Mongolian-Manchurian grassland; J -
Taklimakan desert; K - Tian Shan montane
steppe and meadows.
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transformation (clr) was proposed to open compositional data and
transform the data from simplex space to Euclidean space (Aitchison,
1986; Egozcue et al., 2003; Tolosana-Delgado, 2008).

Suppose there are p dimension random vectors of compositional
data x= (x1,x2,⋯xp). The steps of centered logratio transformations
are as follows: calculate the geometric means of all variables, and then
the variable is divided by geometric mean and log-transformed, as the
following equation shows:
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where x is the compositional variable, p is the number of compo-
sitional variables, and the denominator is the geometric mean.
Correspondingly the random vectors x are transformed into
Y=(y1,y2,⋯yp), which can be assigned in p dimension real space Rp.

Hence clr is one-to-one correspondence of Xp and Rp. In consequence,
data treated with clr got rid of the constraint of compositional data and
came into the degree of freedom of Rp, in which the negative skewness
of covariance matrix disappeared.

3.4. Random forest regression

Random forest regression (RFR) was proposed by Leo Breiman and
Adele Cutler in 2001, which was an integrated learning algorithm based
on decision tree. This algorithm is capable of dealing with continuous
and discrete attributes simultaneously. RFR has many advantages, such
as high efficiency and anti-noise (Meng et al., 2016; Liu et al., 2015).
This method can prevent overfitting without checking the interaction
and nonlinearity of variables. The random forest algorithm is in-
sensitive to the outliers, and thus is stable in the case of much random
disturbance (Zhang et al., 2017; Sreenivas et al., 2014; Hao et al.,

Fig. 4. Locations of samples.

Table 1
Statistical parameters of Cu analytical results (mg/kg) in stream sediment and rock samples.⁎

Sample type N DL Min 25% 75% 85% Max GM GSD MAD

Stream sediment 9045 1 1.00 15.29 26.10 29.90 675.75 20.20 13.29 5.30
Rock 469 1 3.88 15.51 25.90 29.51 108.00 20.50 9.98 5.20

⁎ N=number of samples; DL= detection limit; GM=geometric mean; GSD= geometric standard deviation; MAD=median absolute deviaiton.

Fig. 5. Histograms and box plots of Cu in stream sediments and rocks.
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Fig. 6. Geochemical map of Cu in stream sediments.

Fig. 7. Geochemical map of Cu in rocks.

Fig. 8. Boxplots for Cu concentrations (mg/kg) in stream se-
diment (blue) and rock (green) samples per tectonic unit
(Fig. 1). The crustal abundance in China (26mg/kg, Chi,
2007) is denoted by the red dashed line. (For interpretation of
the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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2016).

3.4.1. Algorithm principle
The random forest algorithm is composed of a set of regression

decision trees{h(x,θt), t=1,2,⋯T}. Where, θt is a random variable that
obeys independent distribution, x is independent variable, T represents
the number of decision trees. The mean of each decision tree {h(x,θt)}
is taken as the result of regression prediction according to the idea of
integrated learning:

∑=
=

h x
T

h x θ( ) 1 { ( , )}
t

T

t
1 (2)

where h(x,θt) are the outputs based on x and θ.
RFR introduces the idea of bagging (Breiman, 1996) and random

subspace (Ho, 1998) in order to overcome the problem of low accuracy
and overfitting of the decision tree model.

3.4.1.1. Bagging. Take multiple training samples from the original
samples with replacement randomly, and the size of a set of training
samples is equal to the original sample size. Then construct regression
decision subtree T for each set of training samples. Finally, the average
value of each tree is taken as the final prediction result.

Suppose S is the original sample, N is the sample size of S, the

probability of each sample in S being not extracted is −( )1 N

N1 .
When N→∞:
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Eq. (3) indicates that about 36.8% samples were not extracted at

Table 2
Statistical parameters for Cu concentrations (mg/kg) in stream sediment and rock samples per tectonic unit (Fig. 1).

Tectonic unit Sample type N Min 25% 75% 85% Max GM GSD MAD

A Stream sediment 617 0.95 21.43 35.43 39.91 180.52 27.64 14.15 6.61
Rock 13 16.02 19.08 24.56 24.66 37.74 22.45 5.92 2.35

B Stream sediment 408 7.56 20.50 33.01 36.47 93.40 26.87 10.90 6.17
Rock 15 8.72 16.45 35.70 35.70 108.00 25.64 24.18 9.19

C Stream sediment 1074 1.62 23.58 33.93 37.94 103.80 28.60 9.76 5.24
Rock 63 3.88 24.30 33.97 37.30 65.14 29.39 9.68 4.84

D Stream sediment 87 10.29 24.62 34.24 39.66 54.07 28.55 8.24 4.16
Rock 5 23.35 23.72 34.72 25.70 43.73 24.53 9.64 1.17

E Stream sediment 472 8.90 20.10 31.68 34.70 71.00 25.50 9.25 5.75
Rock 29 11.80 19.75 30.85 32.30 80.90 27.40 12.48 6.10

F Stream sediment 1268 6.57 19.40 26.69 29.73 675.75 22.60 24.58 3.60
Rock 75 8.24 20.30 27.97 30.20 63.26 22.50 8.32 3.07

G Stream sediment 757 4.05 16.57 22.30 24.80 43.78 18.90 5.73 2.90
Rock 37 10.90 16.85 22.26 23.19 41.60 20.00 5.98 2.50

H Stream sediment 612 3.73 10.91 20.05 22.90 103.08 14.89 7.56 4.32
Rock 30 4.37 10.42 21.41 23.84 33.46 14.06 8.07 4.97

I Stream sediment 2551 4.00 12.30 20.00 22.40 259.30 15.80 7.51 3.80
Rock 135 4.60 12.90 20.54 22.40 40.40 16.58 6.43 3.92

J Stream sediment 1019 5.20 14.00 21.40 23.90 54.40 17.80 6.08 3.70
Rock 54 5.90 12.93 21.15 23.80 36.70 16.95 5.78 4.00

K Stream sediment 31 9.08 15.60 24.65 28.44 56.55 20.33 9.62 4.62
Rock 2 15.81 ** ** ** 23.66 19.74 ** **

L Stream sediment 149 8.50 14.45 20.15 22.10 74.60 17.60 6.53 2.90
Rock 11 11.50 13.10 22.90 22.90 26.10 18.90 5.05 4.40

Asterisks represent there are no parameters.

Fig. 9. Boxplots for Cu concentrations (mg/kg) in stream se-
diment (blue) and rock (green) samples per geological back-
ground (Fig. 2). The crustal abundance in China (26mg/kg,
Chi and Yan, 2007) is denoted by the red dashed line. (For
interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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each time, called OOB (out of bag). The bagging idea can not only use
randomization to build more regression decision subtrees, but also
guarantee the independence between subtrees.

3.4.1.2. Random subspace. In the process of constructing the regression
decision subtrees, each split node randomly selects the feature subspace
from the total feature space. The subspace is taken as the candidate
feature set of nodes, and the optimal feature is selected to be divided.
This method ensures that the nodes between trees or in the same tree
are different from each other, and it also guarantees the independence
and diversity of the tree, and thus enhancing the randomness of RFR
node splitting.

3.4.2. Algorithm steps

(1) Generate a subset of samples randomly using bagging idea.
(2) Select f features to carry out node split using the idea of random

subspace, and construct a single regression decision subtree.
(3) Repeat step 1 and 2, build T regression decision trees. Each tree

grows freely without pruning, then form a forest.
(4) The average of predicted values of T decision subtrees is taken as

the final result.

Random forest analysis was implemented in R3.4.2 (R Development
Core Team, 2007).

Table 3
Statistical parameters for Cu concentrations (mg/kg) in stream sediment and rock samples per geological background (Fig. 2).

Geological background Sample type N Min 25% 75% 85% Max GM GSD MAD

A Stream sediment 320 6.33 18.60 32.89 33.96 67.50 25.65 15.81 7.09
Rock 11 13.00 17.40 27.90 29.78 37.30 20.60 7.28 4.15

B Stream sediment 254 4.32 18.66 31.19 25.35 163.47 24.67 9.03 7.21
Rock 8 15.23 16.72 32.40 82.70 108.00 20.74 33.60 3.30

C Stream sediment 198 6.38 16.80 30.60 26.25 180.52 22.19 12.53 5.19
Rock 4 8.72 8.81 37.17 ** 40.69 17.85 15.90 8.95

D Stream sediment 201 5.10 18.91 28.99 30.42 49.20 23.26 10.24 6.46
Rock 8 15.20 19.00 29.21 32.37 33.97 26.23 6.42 4.29

E Stream sediment 861 0.95 16.78 28.24 24.83 74.63 21.85 9.60 4.96
Rock 47 3.88 16.02 26.68 32.68 44.74 20.90 9.59 5.48

F Stream sediment 602 7.02 18.00 28.76 35.52 675.75 22.16 11.50 5.94
Rock 30 8.10 21.50 34.25 37.05 65.14 26.80 10.64 5.70

G Stream sediment 304 5.90 14.52 21.82 31.98 103.08 18.14 11.30 5.90
Rock 13 11.50 12.75 19.60 20.50 24.90 16.80 4.12 3.20

H Stream sediment 180 4.44 12.20 24.20 37.19 43.13 16.50 16.41 8.41
Rock 14 4.37 11.51 27.38 29.87 32.90 19.46 8.99 7.36

I Stream sediment 2079 4.05 13.90 22.60 32.62 62.85 18.10 10.63 5.91
Rock 106 7.47 14.06 24.51 29.18 45.51 20.15 7.52 5.64

J Stream sediment 785 4.32 14.77 23.60 32.50 259.30 18.90 35.10 5.13
Rock 40 9.24 14.80 22.73 27.43 41.60 18.15 7.59 3.48

K Stream sediment 1918 1.62 14.87 26.30 38.38 110.90 19.90 13.51 7.45
Rock 95 6.20 14.70 24.50 28.72 80.90 19.73 11.25 4.77

L Stream sediment 203 6.62 21.60 30.90 33.57 85.20 26.10 8.53 6.34
Rock 18 6.01 19.68 29.75 32.85 35.70 23.22 7.74 4.79

M Stream sediment 863 4.00 16.80 27.88 24.80 85.88 22.00 7.58 5.83
Rock 60 4.60 16.50 26.48 30.60 44.50 21.63 8.42 5.13

N Stream sediment 277 3.73 12.77 21.95 28.50 35.30 17.62 8.35 5.96
Rock 15 10.14 10.94 22.00 23.20 26.82 19.40 5.85 3.62

Fig. 10. Boxplots for Cu concentrations (mg/kg) in stream
sediment (blue) and rock (green) samples per geomorphic
landscape (Fig. 3). The crustal abundance in China (26mg/kg,
Chi, 2007) is denoted by the red dashed line. (For inter-
pretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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4. Results

The concentration of Cu in rock samples varies from 3.88mg/kg to
108.00mg/kg, with a median value of 20.50mg/kg (Table 1), and with
its log-transformed values showing a fairly symmetrical bell-shaped
distribution (Fig. 5b). The concentration of Cu in stream sediment
samples varies from 1.00mg/kg to 675.75mg/kg, with a median value
of 20.20mg/kg, thus a very similar value to that observed for the rock
samples (Table 1), and with its log-transformed values also showing a
fairly symmetrical bell-shaped distribution (Fig. 5a). The geometric
standard deviation of Cu in stream sediment and rock samples are
13.29mg/kg and 9.98mg/kg, respectively, and median absolute de-
viation of Cu is 5.30mg/kg and 5.20mg/kg, respectively, which in-
dicates that the spatial variations of Cu in stream sediment are more
significant than that in rocks.

The spatial distributions of Cu across the boundary area of China
and Mongolia are shown on the geochemical maps (Figs. 6 and 7). The
maps were produced from gridded data with the interpolation method
of inverse distance weighting (IDW), which were processed by Arcgis

10.2. The geochemical patterns of Cu concentrations in the stream se-
diment samples and in rock samples are fairly similar (Figs. 6 and 7),
both showing a general trend of increasing concentrations westwards.

4.1. Cu concentrations per tectonic unit

The median value for stream sediment samples of the western part
of the study area are above the Earth crustal abundance in China
(26mg/kg, Chi, 2007, red line in Fig. 8), namely for the tectonic units
(Fig. 1) A, B, C, D (Table 2). The highest median concentrations are
observed for the East and West Junggar Arc Basin System (C, 28.60mg/
kg, Table 2) and for the Junggar Block (D, 28.55mg/kg, Table 2). The
lowest median concentrations are observed for the Ereen Davaa- Erguna
Microblock (H, 14.89mg/kg, Table 2). In each tectonic unit, the con-
centrations of Cu observed for stream sediment samples closely follow
the concentrations for rock samples (Fig. 8).

4.2. Cu distributions per geological background

The median value for stream sediment samples in most stratums of
the study area are lower than the Earth crustal abundance in China
(26mg/kg, Chi, 2007, red line in Fig. 9), namely for the geological
backgrounds (Fig. 2) C, D, E, F, G, H, I, J, K, M, N (Table 3). The highest
median concentrations are observed for the Andesite (L, 26.10mg/kg,
Table 3). The lowest median concentrations are observed for the Jur-
assic (H, 16.50mg/kg, Table 3). In each geological background, the
concentrations of Cu observed for stream sediment samples closely
follow the concentrations for rock samples (Fig. 9).

4.3. Cu concentrations per geomorphic landscape

Cu contents of stream sediment samples per geomorphic landscape
are significantly different. The median value for stream sediment
samples of the western part of the study area are above the Earth crustal
abundance in China (26mg/kg, Chi, 2007, red line in Fig. 10), namely
for the geomorphic landscapes (Fig. 3) B, C, F, G, H, K (Table 4). The
highest median concentrations are observed for the Gobi lakes valley
desert steppe (F, 39.40mg/kg, Table 4). The lowest median con-
centrations are observed for the Daurian forest steppe (D, 15.51mg/kg,
Table 4) and Mongolian-Manchurian grassland (I, 15.47mg/kg,
Table 4). In each geomorphic landscape, the concentrations of Cu

Table 4
Statistical parameters for Cu concentrations (mg/kg) in stream sediment and rock samples per geomorphic landscape (Fig. 3).

Geomorphic landscape Sample type N Min 25% 75% 85% Max GM GSD MAD

A Stream sediment 2945 4.05 17.40 25.81 29.10 675.75 21.00 17.28 4.04
Rock 165 5.90 18.00 27.94 30.16 80.90 22.00 8.65 4.50

B Stream sediment 230 7.82 20.08 31.12 36.94 77.59 25.70 10.06 5.60
Rock 9 15.23 17.21 22.67 29.23 35.72 22.06 6.07 3.32

C Stream sediment 628 0.95 22.35 34.57 39.36 180.52 28.37 13.30 6.14
Rock 18 16.05 18.95 34.83 38.45 108.00 25.88 21.48 7.77

D Stream sediment 80 6.15 11.44 19.10 23.19 46.11 15.51 6.71 3.68
Rock 8 6.01 9.15 23.47 27.17 28.88 15.68 8.20 7.13

E Stream sediment 1292 4.20 13.90 22.28 25.00 74.60 18.10 6.87 4.20
Rock 69 4.60 13.00 23.25 26.70 39.30 18.50 7.87 5.10

F Stream sediment 21 15.70 28.35 46.95 52.12 67.50 39.40 12.68 7.80
Rock ** ** ** ** ** ** ** ** **

G Stream sediment 78 11.95 20.16 37.67 42.26 110.90 28.16 15.21 8.52
Rock ** ** ** ** ** ** ** ** **

H Stream sediment 1112 1.62 22.59 33.96 38.45 103.80 28.10 10.05 5.70
Rock 60 3.88 22.22 33.35 35.87 65.14 26.65 10.66 5.15

I Stream sediment 2609 3.73 12.00 19.75 22.30 259.30 15.47 7.69 3.83
Rock 137 4.37 12.34 20.45 22.00 40.40 16.30 6.07 3.40

J Stream sediment 32 16.09 20.98 27.98 33.80 57.70 24.18 9.97 3.14
Rock 2 19.09 ** ** ** 63.26 41.18 ** **

K Stream sediment 18 10.60 32.81 41.82 44.66 63.19 36.85 10.66 4.70
Rock ** ** ** ** ** ** ** ** **

Asterisks represent there are no parameters.

Table 5
Statistical parameters for clrCu in stream sediments.

Min 25% 75% 85% Max GM GSD MAD

ClrCu −2.94 −0.65 −0.23 −0.12 3.82 1.31 0.18 0.12

Fig. 11. Scatterplot of clrCu and logCu.
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Fig. 12. Cu predicted background values by RFR.

Fig. 13. Anomalies identified by RFR (blue dots
represent the known deposits, blue dashed lines
show the obvious discrepancies of the two
methods, and red dashed lines show the strong
anomalies which may be potential prospecting
targets). (For interpretation of the references to
colour in this figure legend, the reader is re-
ferred to the web version of this article.)

Fig. 14. Anomalies identified by linear regression (blue dots represent the known deposits, and blue dashed lines show the obvious discrepancies of the two
methods). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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observed for stream sediment samples closely follow the concentrations
for rock samples (Fig. 10).

4.4. The result of RFR

The tectonic unit, geological background and geomorphic landscape
are set as three characteristic variables, and the contents of Cu in stream
sediments are taken as dependent variable to conduct random forest
regression analysis. The non-numerical characteristic variables are
converted into discrete numerical features. These are attributed such
that each subarea is represented by the Cu median concentration ob-
served for the respective stream sediment samples.

All the analyzed element data were centered logratio transformed to
open the data and avoid the influence of closure effect. And in order to
be more intuitive, the data were converted back to the original unit in
geochemical maps.

The statistics of the clrCu are shown in Table 5 and the XY scat-
terplot of clrCu and logCu is shown in Fig. 11. The background values
predicted by RFR (Fig. 12) are similar to that of stream sediments and
rocks, with high values in the west and relatively low in the east.

The residuals of RFR and linear regression were used to represent
the geochemical anomalies. The geochemical anomalies identified by
RFR (Fig. 13) are more evenly distributed in the study area and coincide
better with known deposits (blue circled areas in Fig. 13) than the
anomalies estimated by linear regression (blue circled areas in Fig. 14).
There were no corresponding anomalies in many known mineral de-
posits by traditional linear regression method.

5. Discussion

The efficiency of geochemical survey can be expressed as EI=TP/
(TP+FN) according to Yilmaz et al. (2017), where TP represents the
samples containing known mineralization are identified as anomalies,
and FN represents that there is no anomalies identified despite the
presence of known mineralization. The EI of linear regression method
was 50%, and EI of random forest regression was about 66.7%. The
efficiency of geochemical survey had been greatly improved by using
RFR method, which indicates that the RFR method could identify the
anomalies related to mineralization more accurately.

The random forest algorithm can provide the degree of importance
of the characteristic variables. As shown in the Fig. 15, the tectonic
units influence greatly on the natural spatial variations of the Cu geo-
chemical backgrounds, followed by the geological backgrounds, and
the influence of the geomorphic landscapes is the lowest.

Traditionally, raw or logratio geochemical data were used to iden-
tify geochemical anomalies, just as Fig. 6 shows, large-area anomalies
(orange and red areas) are identified in the western part but nearly no
obvious anomalies in the east. Actually, the result of RFR indicates that
Cu background values show a general trend of increasing

concentrations westward with strong spatial variations. Therefore, most
of the anomalies in the western part are false anomalies which resulted
from the high background values of this area, and some true anomalies
in low background value area are ignored mistakenly. Thus the natural
background discrepancies should be eliminated in order to identify ore-
related anomalies.

Although linear regression method can eliminate the influence of
elemental natural spatial variation by comparison (Fig. 14), this
method considers the linear relations between elements and is highly
susceptible to outliers that are unavoidable in geochemical data set, and
thus the result is unsatisfactory. The random forest regression method
takes into account the natural spatial variations of elements and the
non-linear relationships between variables, gives the predicted values
of element contents by random sampling, and eliminates the influence
of natural spatial variations of elements to identify ore-related
anomalies (Fig. 13), which improves the efficiency of geochemical
survey greatly. The RFR method also delineates some strong continuous
anomalies (red circled areas in Fig. 13), which may be potential pro-
specting targets and worthy of further study.

6. Conclusions

(1) The spatial distributions of Cu in the stream sediment and rock
samples across the boundary area of China and Mongolia are fairly
similar, both showing a general trend of increasing concentrations
westwards. The median Cu varies with different tectonic units,
geological backgrounds and geomorphic landscapes.

(2) Geochemical data set is a closed number system, which should be
transformed to open the data and avoid the influence of closure
effect.

(3) The geochemical data consist of outliers, the relationships between
geochemical variables are non-linear, moreover, the geochemical
backgrounds are natural spatial variation, and thus traditional
geochemical data processing methods are inapplicable.

(4) The geochemical anomalies identified by random forest regression
(RFR) coincide better with the known deposits, the RFR is a suitable
method to process geochemical data to produce the elemental
geochemical backgrounds and identify ore-related anomalies.

(5) Tectonic unit influences the natural spatial variations of stream
sediment geochemical backgrounds of Cu most, followed by the
geological background and then the geomorphic landscape.
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