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A B S T R A C T

In this study, pedotransfer functions were developed using magnetic measures and soil properties to evaluate the
concentrations of some heavy metals (Cr, Co, Fe, Cu, Ni, Mn, and Zn) in soils developed on some igneous rocks
(gabbro, diorite-gabbro, gabbro-diorite, monzodiorite, spilite basalt, granite, and porphyritic-granite) in
Kurdistan province, western Iran. A total number of 105 samples from both rocks and the associated surface soils
were taken; magnetic susceptibility at two frequencies, concentrations of selected metals, and physcio-chemical
properties of soils were then measured. The highest concentrations of metals were obtained for Co, Ni, Fe, Mn,
and Cu in soils developed on gabbro and for Zn and Cr in soils developed on porphyritic-granite and spilite
basalt, respectively. Magnetic measurements in soils and associated rocks could explain 78, 74, 77, 72, 75, 68,
and 69% of the total variability of Zn, Cu, Ni, Fe, Mn, Co, and Cr concentrations in the studied soils. Inclusion of
soil physcio-chemical properties did not significantly improve the prediction. Therefore, it seems that magnetic
measurements, as fast, non-destructive, and cost-effective tools, could solely be used to successfully predict
heavy metals in natural ecosystems, especially in reconnaissance scale studies.

1. Introduction

As harmful contaminants, heavy metals detected in soils and sedi-
ment of natural ecosystems, transported by soil loss and water dis-
charge into reservoirs, account for potential human health risks
(Erenturk et al., 2014; Szarlowicz et al., 2013; Acosta et al., 2015;
Trujillo-González et al., 2016). Heavy metals, as non-biodegradable
contaminants, are adsorbed by particulate materials or are precipitated
and accumulated in sediments and may affect environment during the
next few decades (Doichinova et al., 2014; Peng et al., 2017).

Two major sources have been identified for enrichment of heavy
metals in soils and sediments, including lithogenic and anthropogenic
sources (Lu, 2000; Li et al., 2014; Karimi et al., 2017). Human activities
cause obvious enrichment of heavy metals in the sediments mainly
through the vehicle traffic, industrial and agricultural activities, and
mining activities (Jordanova et al., 2013; Dankoub et al., 2012;
Taghipour et al., 2011). In arid and semiarid regions covered by ig-
neous rocks, lithology has a significant contribution to enrichment of
heavy metals in soils and sediments (Ayoubi et al., 2014).

Geochemical techniques are commonly employed to monitor the
occurrence of heavy metals in soils and sediments (Jordanova et al.,
2013). Considering the sampling procedures before analysis, the whole
process is commonly destructive, laborious, time-consuming, and

expensive. Therefore, in recent years, finding fast and cost-effective
approaches for the determination of metals in soils have impressively
attracted the attention of researchers. Geophysical techniques have
been identified to determine the occurrence of these heavy metals to-
gether with their sources, and estimate their potential risks in soils and
sediments (Hay et al., 1997; Lu et al., 2008; Karimi et al., 2011, Naimi
and Ayoubi, 2013, Lu et al., 2016; Ayoubi et al., 2018b). Among the
geophysical techniques, magnetic susceptibility has widely been em-
ployed for approximation of heavy metal contamination because it is an
easily measurable and concentration-dependent geophysical para-
meters.

One of the most important geophysical attributes of soils and sedi-
ments is magnetic susceptibility, which is influenced by the parent
material. Accordingly, various parent rocks show significant variability
in magnetic susceptibility depending on the existence of ferrimagnetic
minerals (Mullins, 1977; Magiera et al., 2006). Therefore, it is specu-
lated that in various parent rocks with various potential of magnetic
susceptibility, there will be different magnetic susceptibility values.
Magnetic susceptibility has widely and successfully been used in in-
vestigating the lithological influences as well as the effects of parent
material (Lu, 2000; Karimi et al., 2017), in explaining sedimentation
processes (Caitcheon, 1993), and in examining soil pollution by hy-
drocarbon and heavy metals (Morris et al., 1994; Zhang et al., 2012;
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Dankoub et al., 2012; Karimi et al., 2011; Bourliva et al., 2018).
Several studies have been conducted throughout the world as well

as in Iran regarding the use of magnetic measures for predicting heavy
metals in urbanized and industrial sites (Ayoubi et al., 2014; Naimi and
Ayoubi, 2013; Ayoubi et al., 2018a). However, few studies have been
conducted to explore the variability of heavy metals in natural eco-
systems in Iran and to examine their associations with magnetic sus-
ceptibility. Also, few attempts have been made to develop pedotransfer
functions to estimate heavy metals concentration using magnetic sus-
ceptibility and soil properties as covariates, especially in natural eco-
systems. Therefore, we selected a natural ecosystem that had not been
affected by human activities or natural circumstances in western Iran.
Thus, the main objectives of this research were i) to characterize var-
iations of heavy metals, magnetic susceptibility, and some heavy metals
(Fe, Zn, Cu, Mn, Ni, Cr, and Co) in soils developed on various igneous
rocks and ii) to develop pedotransfer functions for predicting heavy
metals concentration using magnetic susceptibly and soil characteristics
in a semiarid region, west of Iran.

2. Methods and materials

2.1. Description of the study area and sampling

The study area is located in south of Ghorveh district, Kurdistan
province, west of Iran (Fig. 1). The average elevation of this mountai-
nous area is 2200m a.s.l. The average annual rainfall and temperature
are 480mm and 14.5 °C, respectively. The dominant geological for-
mations of the studied region included igneous and metamorphic rocks
of Tertiary and Jurassic epochs. To examine the hypothesis of this in-
vestigation, seven dominant bedrocks, including Gabbro, Diorite-
gabbro, Gabbro-diorite, Monzodiorite; Spilite basalt, Granite, and Por-
phyritic granite were selected. In each rock, 15 sites were selected,
which were similar in terms of slope gradient, aspect and vegetation
among the studied rocks. Soil samples were gathered from the upper-
most horizon (0–10 cm) and intact rocks of each site; totally 105 soil
samples and 105 rock samples were collected.

2.2. Laboratory analyses

Collected soil samples were air-dried, crushed, and passed through a
2-mm sieve for laboratory analyses. Soil pH and electrical conductivity
(EC) were measured by a pH-meter and EC-meter in saturated soil
paste, respectively (Rhoades, 1982). Particle size distribution analysis
was done using the Pipette method (Gee and Bauder, 1986). Wet-oxi-
dation method was used for measuring soil organic carbon (SOC)
(Nelson and Sommers, 1982). Calcium carbonate equivalent (CCE) was
determined using the back titration method (Black, 1965). For magnetic
measurements in all soil and rock samples, after crushing, a Bartington
MS2 dual frequency sensor was employed to measure magnetic sus-
ceptibility (χ) at low (0.47 kHz; χ lf) and high frequencies (4.7 kHz, χhf)
using roughly 10 g of the soil or crushed rock held in a four-dram clear
plastic vial (2.3 cm diameter) (Dearing et al., 1996). The dependent
frequency (χfd) was computed as follows:

= ×(%) [( )/ ] 100fd lf hf lf (1)

According to the method proposed by Ajayi and Kamson (1983), a
subsample (0.2 g) of each collected soil was exploited for the heavy
metal analysis, and then the sample was digested in a 5mol L−1 HNO3
solution. An atomic absorption spectrophotometer (AAS) was used to
measure the total content of nickel (Ni), chromium (Cr), cobalt (Co),
zinc (Zn), copper (Cu), manganese (Mn), and iron (Fe). San Joaquin
#2709, a certified reference material, was analyzed to evaluate the
precision of the procedure. The detection limits of AAS for Zn, Cu, Ni,
Co, Cr, Fe, and Mn were 0.016, 0.015, 0.05, 0.05, 0.015, 0.042, 0.10,
and 0.0.035mg L−1, respectively.

2.3. Statistical analysis

Descriptive statistics were obtained using SPSS software (V. 19.0).
Also, SPSS was used to calculate the correlation coefficients among
magnetic measurements, heavy metals, and soil properties (Swan and
Sandilands, 1995).

Multiple-linear regression (MLR) in SPSS Ver. 19 was employed to
predict the concentrations of heavy metals using two groups of input
variables: i) magnetic measurements, including χlf and χfd of soils and
their associated parent rocks (symbolized as MS dataset, i.e. scenario I)
and ii) inclusion of previous data set and some soil properties (sym-
bolized as MSS dataset, i.e. scenario II). Soil organic matter (SOM),
calcium carbonate equivalent (CCE), and electrical conductivity (EC)
were the soil properties which were considered as predictors in MLR
analysis. MLR modeling was done employing the initial variables (x)
and transformed variables [x, x−1, x2, log(x), ln(x), exp(x) and x0.5] as
predictors. The factors included in the qualified model were selected
based on probability≤ 0.05 according to Freund and Littell (2000).
The dataset was divided into two parts: i) 80 samples for MLR modeling
and ii) 25 samples to validate the data set for evaluation of models.

Primarily, Kolmogorov−Smirnov test using SPSS was employed to
evaluate the normality conditions for input and target variables. Then,
logarithmic transformations were performed for non-normal variables
before further statistical analyses. Derived pedotransfer functions
(PTFs) were evaluated by the coefficient of determination (R2), and the
root mean square errors (RMSE) were computed as follows:

= =RMSE
Y Y
N

( )i
N

i i1
2

(2)

where Yi and Ŷi were the observed and predicted values of heavy
metals concentration, respectively, and N is the number of observations
(=25). Model validation was done using a dataset of 25 samples which
were stratified randomly selected. The Akaike Information Criterion
(AIC) was also employed to judge the efficacy of the developed func-
tions in two datasets (Akaike, 1974) as follows:

= +AIC K N2 ln SSE
N (3)

where K is the number of regression coefficients in the PTFs, N is the
number of observations and SSE is the sum squares of errors. Corrected
AIC (AICc) was computed as a version of Eq. (3), due to the relatively
small number of N in our investigation as follows:

= + +
+

AIC AIC K K
N K
2 ( 1)

1c (4)

Since the absolute AICc values were subject to the sample size and
units of model variables and subsequently not interpretable, the dif-
ference (Δ) between AICc values of two models was considered in-
dependent of the sample size and units. The model rendered more ac-
curate when the lower values were achieved forAIC or AICc (Burnham
and Anderson, 2004).

3. Results and discussion

3.1. Variability of soil properties

Soil pH varied from 7.03 to 7.80 and electrical conductivity (EC)
varied from 0.11 to 0.59 dSm−1. According to these results, soils of the
studied area were slightly alkaline and non-saline. pH and EC showed
2.30 and 38.8% of coefficient of variability (CV), respectively. The
lowest CV was found for pH, similar to the results reported by Nourozi
et al. (2009), Ayoubi and Sahrawat (2011) and Ayoubi et al. (2009) in
arid and semiarid regions. Calcium carbonate equivalent (CCE) varied
from 1.0 to 36% with a mean of 8.74%. This average was relatively
lower than that in other soils of Iran (Shahriari et al., 2011; Jafari et al.,
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2013), mainly attributed to the composition of parent materials forming
the igneous rocks. Soil organic matter (SOM) ranged from 0.42 to
4.33% with a high CV (85.1%), which might be attributed to i) high
variability in the soil texture (see CV value of clay in Table 1), ii) great
variability in the vegetation species and the organic particulates re-
turned to soils and iii) soil erosion and redistribution influences. Among
the studied soil properties, CCE and EC showed non-normal distribution
according to K-S test and Skewness values (> +1, Table 1); therefore,
in the MLR modeling, transformed values of these variables were in-
cluded.

3.2. Variability of heavy metals and magnetic susceptibility

A summary of statistics of heavy metals and magnetic susceptibility
are given in Table 2. According to this table, the highest (834
×10−8m3 kg−1) and lowest (206×10−8m3 kg−1) χlf in the studied
rocks were observed for Gabbro and Granite, respectively. The results of
magnetic susceptibility of soils developed on studied rocks, also showed
that the highest susceptibility was observed in Gabbro and the lowest in
Granite (Table 2). These results were in line with those revealed by
Adman (2014) who reported that basalt and ultrabasic rocks had the

Fig. 1. Location of the studied area in Kurdistan province, western Iran.
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highest concentrations of the total iron in western Iran because of the
presence of higher ferrimagnetic minerals. Comparing some igneous
rocks, Mooney and Bleifuss (1953) also showed that the basalt
(1260×10−8m3 kg−1) and granite (220×10−8m3 kg−1) had the
highest and the lowest magnetic susceptibility, respectively.

Comparison of magnetic susceptibility observed in soils with the
associated parent rocks showed that χlf decreased in all soils compared
to the parent rocks. Negative changes seen in χlf in soils developed on
the studied rocks compared to the parent materials confirmed dilution
effects of pedogenic processes for ferrimagnetic minerals (Lu et al.,
2008). It was speculated that during soil-forming processes, formation
of some diamagnetic minerals, such as calcite, and transformation of
ferrimagnetic minerals to other forms (i.e. paramagnetic minerals)
could be the major causes of χlf reduction in soils.

The mean magnetic susceptibility of the dependent frequency (χfd)
was lower than 4% (see Table 2). It was predominantly attributed to
higher existence of ferrimagnetic minerals in the parent materials. The
fact that no significant correlations were found between χlf and χfd
(r=−0.10, Not significant, P < 0.05, Table 3) confirmed that a
dominant portion of ferrimagnetic minerals in studied soils originated

from the parent rocks. Because of dilution effects as a consequence of
soil development, χlf, however, declined compared to the parent ma-
terials.

3.3. Variability of heavy metals

A summary of descriptive statistics of studied heavy metals are
given Table 2. According to the results presented in this table, the
highest concentration of Fe was observed in soils developed on Gabbro
rocks, while the least was observed in Granite as an acidic rock. Similar
trends were obtained for Mn, Cu, Ni, and Co. These results were in line
with findings obtained by Alloway (1990), Fergusson (1990), Galan
et al. (2008), and Mico et al. (2006) who reported that, compared to
acidic rocks, basic rocks contributed more in releasing these elements to
soils. The highest value of Zn was observed in porphyritic granite and
the greatest Cr value was seen in spilite basaltic soils.

The Netherland permissible values indicate the concentrations of
heavy metals that should be attained to fully recover the functional
properties of the soil for plants, animals, and humans (Swartjes, 1999).
Frequency distributions of the contents of the measured heavy metals
showed that some of the observations surpassed the Netherland permis-
sible values (Fig. 2). Ni had the highest number of observations which
exceeded the Netherlands permissible value by 96.8%. Similarly, the
concentrations of Mn, Cu, Zn, Co, and Cr in the studied sites, i.e. 90, 23.1,
4.6, 95.4 and 12.5, surpassed the Netherlands permissible values, re-
spectively (Fig. 2). Refereed to the Netherlands permissible values, none of
the sites indicated the potential public health risk due to Fe in the studied
area. As the studied area was located far away from the urban and in-
dustrial sites, lithology had almost the chief contribution to the existence
of heavy metals in soils. Using multivariate analysis, Mico et al. (2006),
and Facchinelli et al. (2001) showed that Co, Cr, Ni were mainly con-
trolled by lithology in Alicante province (Spain) and Piemonte (Italy),
respectively. The concentration of metals for the test data set predicted by
MLR models compared with measured values are given in Fig. 3.

Table 1
Summary statistics of selected soil physical and chemical properties, heavy
metals, and magnetic parameters in the study area (N=105).

Variable Unit Min Max Mean CV Skewness Kurtosis

pH −log [H+] 7.03 7.8 7.46 2.30 −0.33 1.34
EC dS/m 0.11 0.59 0.20 38.80 2.20 2.89
CCE % 1.0 36.0 8.74 45.90 2.38 1.89
Sand % 30.0 90.0 56.4 25.43 0.21 1.43
Clay % 1.0 24.0 9.85 61.6 0.41 1.01
SOM % 0.42 4.33 1.91 85.1 0.87 2.12

Min: Minimum, Max: Maximum, CV: Coefficient of Variation, EC: Electrical
conductivity, CCE: calcium carbonate equivalent, SOM: Soil organic matter.

Table 2
Statistics of heavy metals in soils and magnetic measures in studied rocks and associated soils in the study area.

Variable Unit Gab-Di Di-Gab Monz Spl-Ba Grant Por-Gran Gab

Cu mg kg−1 31.2ab 33.4ab 27.8ab 32.1ab 24.1b 25.8b 37.6a

Zn mg kg−1 65.0b 65.6b 79.2b 83.0b 61.1b 119.5a 86.7b

Ni mg kg−1 78.7abc 69.0c 78.9abc 91.2ab 73.2bc 78.0abc 98.0a

Co mg kg−1 25.9ab 31.2ab 30.0ab 33.8ab 22.6b 27.1ab 38.86a

Cr mg kg−1 67.8b 65.4b 75.9b 114.1a 57.5b 76.4b 78.3b

Fe mg kg−1 16300ab 17500ab 19000ab 21800a 12000ab 15000ab 22500a

Mn mg kg−1 493.7d 732.3bc 678.1bc 836.0b 621.8cd 716.1bc 1019.8a

χlf (r) ×10−8m3 kg−1 456c 366d 314d 546b 206d 305d 834a

χfd(r) % 1.22c 1.34c 1.44c 2.33b 2.43a 1.98b 2.30b

χlf(s) ×10−8m3 kg−1 291.7b 165.4c 185.9c 264.1b 105.2c 165.4c 372.6a

χfd(s) % 1.6c 1.57c 1.6c 1.57c 2.4b 0.86d 3.02a

Gab: Gabbro, Di-Gab: Diorite-gabbro, Gab-Di: Gabbro-diorite, Mon: Monzodiorite; Spl-Ba: Spilite Basalt, Gran: Granite; Por-Gran: Porphyritic Granite.
a, b, c … different letters in a specified row has different significant at P < 0.05.

Table 3
Correlation coefficients among heavy metals, magnetic measures, and soil properties in studied soils (N=105).

Fe Mn Zn Cu Co Cr Ni χlf χfd

χlf 0.81⁎⁎ 0.80⁎⁎ 0.67⁎⁎ 0.76⁎⁎ 0.78⁎⁎ 0.79⁎⁎ 0.75⁎⁎ 1 −0.10
χfd −0.45⁎⁎ −0.57⁎⁎ −0.67⁎⁎ −0.39⁎⁎ −0.45⁎⁎ −0.65⁎⁎ −0.28⁎ −0.10 1
Clay 0.17 0.05 −0.03 0.12 0.12 0.03 −0.01 0.18 0.01
Silt 0.14 0.03 −0.01 0.15 0.15 0.13 0.02 −0.02 0.01
Sand 0.56⁎⁎ 0.58⁎⁎ 0.47⁎⁎ 0.14 0.67⁎⁎ 0.71⁎⁎ 0.59⁎⁎ 0.44⁎⁎ 0.13
SOM 0.34⁎⁎ 0.30⁎⁎ 0.27⁎ 0.45⁎⁎ 0.34⁎⁎ 0.38⁎⁎ 0.28⁎ 0.36⁎⁎ 0.12
EC −0.27⁎ 0.03 −0.34⁎⁎ 0.19 0.17 −0.29⁎ −0.13 −0.66⁎⁎ 0.09
CCE −0.29⁎⁎ −0.29⁎⁎ 0.12 −0.21⁎ −0.27⁎ 0.12 0.21 −0.49⁎⁎ 0.12

⁎ Significant at the 5% probability level.
⁎⁎ Significant at the 1% probability level.
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3.4. Correlation analysis

Correlation coefficients among magnetic susceptibility measure-
ments, heavy metals, and the selected soil properties were computed to
understand the impacts of the soil properties on the variability of heavy
metals and magnetic susceptibility (Table 3). Soil organic matter (SOM)
was positively correlated with the concentrations of Fe (r=0.34,
P < 0.01), Mn (r=0.30, P < 0.01), Cu (r=0.45, P < 0:01), Zn
(r=0.27, P < 0.01), Co (r=0.34, P < 0.01), and Cr (r=0.38,
P < 0.01). Rodriguez Martin et al. (2006) stated that soil organic
matter was also found to influence absorption of heavy metals in soils;
this effect was presumably because of the existence of cation exchange
capacity in organic material. These correlations confirmed the tendency

of organic matter to adsorb heavy metals in order to fabricate stable
organic complexes (Rustullet, 1996; Qishlaqi and Moore, 2007).

Correlation analysis between χlf and soil properties showed that χlf
had a positive and significant correlation with sand content (r=0.44,
P < 0.01). This positive relationship confirmed that ferrimagnetic
minerals remained in sand fractions (especially in igneous rocks), and
semiarid conditions of the studied area were not sufficient to release Fe-
bearing minerals to clay fractions. Negative and significant correlations
were obtained between χlf and SOM (r=−0.36, P < 0.01), electrical
conductivity (EC) (r=−0.66, P < 0.01), and calcium carbonate
equivalent (CCE) (r=−0.49, P < 0.01). These negative correlations
confirmed the presence of diamagnetic minerals, decreasing χlf forming
organic particles, halite and calcium carbonates, respectively. These

Fig. 2. Plot frequency distributions of metal concentrations (mg kg−1) measured for the whole data as compared to the Netherlands soil guideline values.
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results were in line with the findings revealed by Naimi and Ayoubi
(2013), Dankoub et al. (2012), and Marwick (2005).

The results showed that significant coefficients were found between
χlf and Fe (r=0.89, P < 0.01), Mn (r=0.80, P < 0.01), Zn
(r=0.67, P < 0.01), Ni (r=0.75, P < 0.01), Co (r=0.78,
P < 0.01), and Cr (r=0.79, P < 0.01). Association of selected metals
with magnetic minerals led to enhancing the magnetic susceptibility
together with an increase in heavy metals.

3.5. Pedotrnasfer functions (PTFs)

Many studies have successfully found significant relationships be-
tween heavy metals and magnetic susceptibility in urban and industrial
sites (i.e. Marwick (2005), Rodriguez Martin et al., 2006; Canbay et al.,
2010; Ayoubi et al., 2018a), while there have been few reports re-
garding natural ecosystems similar to our study area.

The PTFs for predicting the concentrations of heavy metals were
derived from two scenarios (I) using magnetic susceptibility measure-
ments of soils and rock samples and (II) using magnetic measures and
some soil physico-chemical properties. The results of multiple linear
regression, using two datasets, are presented in Table 4. Stepwise re-
gression analysis was used to discover the priority of the heavy metals
in the models. In the first dataset (only magnetic measures), for pre-
dicting the Fe content in soils, χlf in soils, χlf in rocks, and the ratio of

lf

fd
in soils were included; these parameters could explain 78% of the

total variability of Fe in the studied soils. Likewise, for the prediction of
Mn, Zn, Cu, Ni, Co, and Cr, the above-mentioned variables were in-
cluded in the MLR models together with various standardized coeffi-
cients. These parameters accounted for 74, 77, 72, 75, 68, and 69% of
the variability of Mn, Zn, Ni, Cu, Co, and Cr, respectively, in the studied
area (Table 4).

In the second dataset (MSS), some soil properties, including SOM,
EC, CCE, Clay, and Sand were included in the MLR models. The results
showed that inclusion of Sand (with positive contribution) and CCE

(with negative contribution) improved the perdition of Fe concentra-
tions in soils, while R2 improved from 0.88 in the MS dataset to 0.91 in
the MSS dataset, and RMSE reduced from 21.34 to 19.32 correspond-
ingly. Moreover, the inclusion of these two soil properties as well as
other features (SOM, EC) improved the perdition of Mn, Zn, Ni, Cu, Co,
and Cr based on an increase in R2 and a decrease in RMSE (Table 4).
The inserted variables were in line with the results of correlation ana-
lysis (Table 3) in that they had the high and significant correlation
coefficients. In overall, the scenario (II), for all given metals, led to
better prediction (higher R2, lower AICc value, and smaller RMSE).

The models developed by two datasets were compared using ΔR2.
For all selected heavy metals, the results of ΔR2 (Table 4) showed that
R2 values could only be improved by 0.01, 0.04, 0.01, 0.05, 0.04, 0.05,
and 0.02 in Fe, Mn, Zn, Ni, Cu, Co, and Cr, respectively. ΔR2 test in-
dicated that these differences were not significant at P < 0.05 prob-
ability level. Moreover, the calculated AICc were used to compare the
results of two scenarios. The differences between AICc (ΔAICc) of two
scenarios (MS and MSS) were calculated to evaluate the degree of
support between two models as follows: ΔAICc < 2, substantial sup-
port; ΔAICc between 2 and 4, less support; ΔAICc between 4 and 7,
considerably less support; ΔAICc > 7, no support (Burnham and
Anderson, 2004). It was revealed that, for predicting Fe, Zn, Cu, and Cr,
scenario (I) had substantial support with ∆AICc values of 0.4, 2, 1.9, and
0.9 compared to the best models (i.e. MSS, scenario II). Moreover, for
predicting Mn, Ni, and Co, MS scenario had less support with ∆AICc
values of 2.2, 3.9, and 2.3 compared to the best models (i.e. MSS,
scenario II). In conclusion, it seems that readily available auxiliary
variables, such as magnetic measurements in soils and rocks, could be
used as powerful predictors of heavy metals in the studied soils de-
veloped on igneous rocks.

Although the use of soil characteristic data as the auxiliary pre-
dictors led to improvement in the prediction of the concentrations of
heavy metals, this enhancement was not significant according to the
statistics (ΔR2 and ΔAICc). On the other hand, measuring the soil

Table 4
Developed Pedotrnasfer functions (PTFs) for estimation of heavy metals (mg kg−1) in the studies soils.

Metal Dataset PTFs R2 Adj. R2 RMSE ΔR2 AICc

Fe MS = + + +Y 8600 19.80 0.12 0.04lf s
lf s
fd s lf r( )

( )
( ) ( )

0.78 0.79 21.34 0.01ns 381.2

MSS Y=7500+17.50χlf(s) + 0.12 χlf(s) + 0.01χlf(r)+ 0.13 Sand−0.013LogCCE 0.79 0.82 19.32 380.8
Mn MS = + +Y 670 23.30 0.05 1.21lf s

lf s
fd s fd s( )

( )
( ) ( )

0.74 0.78 1.23 0.04ns −421.6

MSS = + + +Y Sand LnCCE630 19.80 0.07 0.12 0.58 0.031lf s
lf s
fd s fd s( )

( )
( ) ( )

0.78 0.80 1.19 −423.8

Zn MS = + +Y 77 1.2 0.34 2.133lf s
lf s
fd s fd s( )

( )
( ) ( )

0.77 0.76 0.124 0.01ns −220.8

MSS = + + +Y Sand LnEC65 2.3 0.67 1.45 0.12 0.011lf s
lf s
fd s fd s( )

( )
( ) ( )

0.78 0.77 0.099 −222.8

Ni MS = + + +Y 72 0.66 1.10 1.90lf s
lf s
fd s lf r( )

( )
( ) ( )

0.72 0.73 0.021 0.05ns −44.4

MSS = + + + +Y Sand CCE69 0.89 1.89 2.1 1.89 0.03lf s
lf s
fd s lf r( )

( )
( ) ( )

0.77 0.79 0.019 −48.3

Cu MS = + + +Y 33 1.29 1.32 2.19lf s
lf s
fd s lf r( )

( )
( ) ( )

0.75 0.76 0.09 0.04ns 457.6

MSS = + + + +Y Log SOM LnCCE30 1.09 1.77 1.02 2.98 0.7lf s
lf s
fd s lf r( )

( )
( ) ( )

0.79 0.81 0.08 459.5

Co MS = + + +Y 32 1.43 0.22 0.22 0.21lf s
lf s
fd s fd s lf r( )

( )
( ) ( ) ( )

0.68 0.69 0.001 0.05ns −434.2

MSS = + + +Y Log SOM LnCCE85 1.43 0.17 0.33 2.10 1.12lf s
lf s
fd s fd s( )

( )
( ) ( )

0.73 0.74 0.001 −436.5

Cr MS = + + +Y 81 0.17 0.08 1.09lf s
lf s
fd s lf r( )

( )
( ) ( )

0.69 0.71 0.09 0.02ns −492.6

MSS = + + + +Y SOM LOgEC79 0.23 0.23 1.11 2.13 0.89lf s
lf s
fd s lf r( )

( )
( ) ( )

0.71 0.72 0.08 −493.5

PTF: Pedotrnasfer function, R2: Coefficient of determination; Adj. R2: Adjusted coefficient of determination; RMSE: Root mean square error; ΔR2: Difference in
coefficient of determination; MS; magnetic susceptibility data; MSS: magnetic susceptibility and soil properties data. χlf(s): Magnetic susceptibility of soil; χlf(r):
Magnetic susceptibility of rocks; χfd(s): Dependent magnetic susceptibility of soils. CCE: Calcium carbonate equivalent; EC: Electrical conductivity; SOM: soil organic
matter.
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physical and chemical properties was time-consuming and costly, and
the use of them as the auxiliary variables was not logically and rea-
sonably suggested. Therefore, the use of auxiliary magnetic data could
solely justify a large part of the variations observed in the heavy ele-
ments in our study area. The accuracy and reliability of these PTFs were
sufficient for the prediction of heavy metals in soils developed on
various parent rocks in reconnaissance surveys, where preliminary in-
formation is required at a large scale. It seems that soil clustering in the
region based on the parent materials could improve the coefficients of
determination for developed linear models.

4. Conclusion

Pedotrnasfer functions were developed for estimating some heavy
metals (Fe, Mn, Cu, Zn, Ni, Co and Cr) concentration using two sce-
narios (magnetic measures, and combination of magnetic measures and
soil physical and chemical properties) in soils developed on a range of
igneous rocks in western Iran. Association of metals with ferrimagnetic
metals enabled us to predict the concentrations of heavy metals in soils
using magnetic susceptibility as a geophysical approach. Comparing
two scenarios in this study showed that magnetic susceptibility could
solely explain a comprehensive variability of metals in the studied area.
Our results showed that magnetic susceptibility measurements in soils
and their associated rocks could successfully develop multiple linear
models to predict some heavy metals concentration in these soils. The
developed models were statistically reliable and reasonable (con-
sidering that magnetic measures are cost-effective and fast) for esti-
mating the concentrations of heavy metals in reconnaissance studies,
where general information about the pollution as a result of heavy
metals is required in natural ecosystems.
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