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A B S T R A C T

The Nanling belt (South China) is one of the most important metallogenic region in the world in regard to
tungsten polymetallic resources. In this belt and surrounding area, the most important elements accompanying
tungsten deposits are Sn, Bi, and Mo. Modelling the spatial variability and uncertainty of W, Sn, Bi, and Mo
anomalies is critical for tungsten polymetallic exploration risk assessment. However, traditional interpolation
methods (e.g., kriging, polynomial trend surface and inverse distance weighted method) for modelling con-
tinuous geochemical fields based on sparse sampling data provide smoothed representations of element con-
centrations, which often result in unreliable decisions. Here, uncertainty analysis of geochemical anomaly for
tungsten polymetallic exploration targeting was investigated through combined sequential indicator simulation
and local singularity analysis. Anomalous thresholds of E-type singularity indices for the selected elements (W,
Sn, Mo and Bi) were determined by singularity-quantile plot analysis. The distribution pattern of probability of
not exceeding a threshold singularity index was obtained from a series of equally probable representations of
singularity indices of individual elements (W, Sn, Mo and Bi) based on local and spatial uncertainty algorithms.
Based on the four probabilistic models, one per element, a synthetic probability map was produced for un-
certainty assessment of geochemical anomaly for exploration targeting. The results indicate that zones with very
high probabilities are significantly correlated with known tungsten polymetallic deposits and are closely asso-
ciated with lithostratigraphic contacts. These results provide for important decision-making for risk evaluation of
tungsten polymetallic exploration targeting based on spare stream sediment geochemical data in the Nanling
belt.

1. Introduction

In the initial stages of mineral resources investigations, surface
geochemical sampling data (e.g., from sediments, soils, water) are
commonly employed to distinguish geochemical anomaly from back-
ground (Zhao et al., 2012; Yuan et al., 2015; Carranza, 2017a, 2017b;
Agterberg, 2014; Chen and Wu, 2017; Chen and Cheng, 2016; Zhang
et al., 2016; Liu et al., 2013, 2014a, 2016, 2017; Yousefi, 2017; Tan
et al., 2018; Zuo, 2017; Wang et al., 2017; Parsa et al., 2017; Cracknell
and de Caritat, 2017; Xiao et al., 2018). However, limited or sparse
surface geochemical samples can lead to a certain degree of uncertainty

(e.g., bias and inconsistent spatial estimation) in spatial prediction re-
sults when traditional interpolated methods (e.g., kriging and inverse
distance weighting) are applied to model continuous geochemical fields
from such sparse point geochemical data. Although spatial prediction
accuracy can be efficiently improved by means of increasing sampling
density (Goovaerts, 2001), it generally takes significant amounts of
time and money to conduct geochemical sampling surveys with high
sampling density. Therefore, mapping of geochemical anomaly for
identifying potential mineralized areas inevitably involves spatial un-
certainties, which propagate into subsequent geochemical field mod-
elling and fundamentally impact the ultimate results and the decision-
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making analysis (Goovaerts, 1997; Zhao et al., 2005; Liu et al., 2018a).
Practically, spatial uncertainties in estimates from sparse data can be
addressed with reasonable methods; for example, a method of weighted
drainage catchment basin (WDCB), which is independent of sampling
sites and density, and thus avoids the influence of data interpolation,
has been developed to map stream sediment geochemical anomalies
(Yousefi et al., 2013). Theoretically, the application of geostatistical
simulation techniques provides for modelling spatial uncertainty of
estimates at unsampled locations.

Geostatistical simulation algorithms are increasingly being used for
uncertainty modelling mainly because traditional interpolation
methods only produce a unique result – the so-called interpolated map –
in which local details (e.g., extreme values) in spatial variability of the
target attribute being mapped are commonly smoothed out. In contrast,
geostatistical simulation results in a more realistic model of the spatial
variation of the target attribute and provides a basis for analysis of
spatial uncertainty associated with spatial predictions (Goovaerts,
1997; Deutsch and Journel, 1998). Several equiprobable realizations of
element concentrations characterized by similar spatial distribution
patterns can be obtained by means of geostatistical simulation techni-
ques, and spatial variations among such realizations provide a measure
of spatial uncertainty (Goovaerts, 2001; Deutsch and Journel, 1998;
Emery and Ortiz, 2012). In recent years, geostatistical simulation
techniques have been widely applied for quantification of uncertainties
in geochemical systems (Afzal et al., 2015; Sadeghi et al., 2015; Mery
et al., 2017; Paithankar and Chatterjee, 2018; Hosseini and Asghari,
2018; Rahimi et al., 2018; Qu and Deutsch, 2018). For geochemical
anomaly uncertainty analysis, a method by integrating sequential
Gaussian simulation (SGS) with singularity analysis has been proposed

Fig. 1. Simplified geological map of the Nanling belt, South China.
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Fig. 2. Flow chart illustrating the procedure of sequential indicator simulation.
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to model gold anomaly uncertainty in the west Tianshan region, China
(Liu et al., 2018a).

The goals of this study are (a) to integrate sequential indicator si-
mulation (SIS) and local singularity analysis for geochemical anomaly

uncertainty analysis, (b) to quantify spatial uncertainty of estimated
element concentrations (W, Sn, Mo and Bi) related to tungsten poly-
metallic mineralization, (c) map the probability of geochemical
anomaly occurrence related to tungsten polymetallic mineralization

Fig. 3. Histograms with relevant statistical parameters of (a) W, (b) Sn, (c) Mo, and (d) Bi.

Table 1
Experimental indicator variogram models of four elements based on quantile thresholds.

Threshold Cutoff value (ppm) C0 C C0+C C0/(C0+C) R2 RSS Range (m)

20% (W) 2.413 0.062 0.079 0.141 43.97% 0.951 3.20E-03 71,600
40% (W) 3.080 0.096 0.130 0.226 42.48% 0.975 3.90E-04 78,900
60% (W) 4.177 0.093 0.146 0.239 38.91% 0.977 3.50E-04 84,300
80% (W) 7.807 0.074 0.095 0.169 43.79% 0.964 2.40E-04 65,600
20% (Sn) 3.490 0.068 0.089 0.157 43.31% 0.984 1.40E-04 60,300
40% (Sn) 4.493 0.078 0.155 0.233 33.48% 0.980 3.10E-04 71,600
60% (Sn) 6.328 0.076 0.160 0.236 32.20% 0.963 9.30E-04 67,900
80% (Sn) 10.817 0.059 0.115 0.174 33.91% 0.961 4.10E-04 69,300
20% (Mo) 0.621 0.074 0.078 0.152 48.68% 0.874 1.70E-04 67,200
40% (Mo) 0.818 0.097 0.114 0.211 45.97% 0.894 1.10E-03 86,500
60% (Mo) 1.104 0.095 0.123 0.218 43.58% 0.834 1.30E-03 94,000
80% (Mo) 1.630 0.065 0.098 0.163 39.88% 0.994 8.00E-05 75,400
20% (Bi) 0.395 0.062 0.076 0.138 44.93% 0.972 9.00E-05 61,800
40% (Bi) 0.501 0.083 0.143 0.226 36.73% 0.989 1.50E-04 71,700
60% (Bi) 0.693 0.082 0.160 0.242 33.88% 0.945 1.30E-03 76,300
80% (Bi) 1.811 0.064 0.109 0.173 36.99% 0.852 7.60E-04 69,400

Note: C0: nugget variance; C: Sill variance; C0+C: total variance; C0/(C0+C): coefficient of variation; R2: squared correlation coefficient; RSS: residual sum of
squares; Range: lag distance.
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based on the critical thresholds determined by singularity-quantile poly
analysis, and (d) assess risks associated with exploration targeting for
tungsten polymetallic deposits posed by geochemical anomalies of four
individual elements, namely W, Sn, Mo and Bi. These research goals
pertain to the study area - the Nanling metallogenic belt - but the re-
sults/findings can be applied to similar geological and geomorpholo-
gical settings.

2. Geological background

The Nanling belt is the most important part of the South China
granitic province because of its tectonic and metallogenic significance.
The strata exposed in the study area are mainly composed of intensely
folded Late Proterozoic basement and Late Paleozoic-Mesozoic sedi-
mentary cover (Fig. 1) (Xu et al., 2005; Peng et al., 2006; Mao et al.,
2007). The basement mainly consists of Neoproterozoic metamorphic
argillaceous sandstones interbedded with volcanic rocks, metamorphic
sedimentary flysch, pyroclastic rocks and siliceous rocks. The sedi-
mentary cover is mainly composed of Late Devonian to Early Triassic
sandstone, mudstone and carbonate rocks, developing littoral facies,
neritic facies, and interactive marine and terrestrial deposits with total
thickness of about 7000–8000m (Mao et al., 2007). The Triassic-Pa-
leogene lithological units consist of discontinuous sedimentary se-
quences characterized by volcanoclastic rocks, detrital rocks and red
beds that were formed in rifted-basins (Shu et al., 2006; Mao et al.,
2007; Wang et al., 2012).

Since the Early Paleozoic, the Nanling belt has experienced ex-
tensive magmatic activities and multi-phased orogenies that mainly
occurred in three periods, namely Cambrian-Silurian, Late Permian-

Triassic and Jurassic (Chen et al., 1989; Mao et al., 2007), which re-
sulted in abundant granite intrusions, which intruded into the Proter-
ozoic and Paleozoic sedimentary rocks (Zhou et al., 2006; Mao et al.,
2007; Hu and Zhou, 2012; Chen et al., 2013) and covering a total area
of roughly 41×103 km2 (Fig. 1). The basement and sedimentary cover
of the belt have undergone intense intra-continental deformation due to
the effect of the Indosinian orogeny, which resulted in the extensive
magmatic activities and the emplacement of numerous Indosinian
granites (Shu et al., 2006; Zhou et al., 2006). The regional structural
regime in the Nanling belt changed from compressional to extensional
tectonism, which led to the generation of numerous granite intrusions
during the Yanshanian orogeny (Zhou, 2003; Mao et al., 2007; Hua
et al., 2005). Spatially, lattice faults with different trends, namely E-W,
N-S, NW and NE, controlled the emplacement of granites.

The complex geological processes associated with the magmatic
activities resulted in the formation of various types of tungsten poly-
metallic mineralization including quartz-vein-, skarn-, altered granite-,
and greisen-types (Hu and Zhou, 2012; Zhao et al., 2017). Studies in-
dicate that the Caledonian granites mainly belong to peraluminous S-
type and parts of them are related to the formation of tungsten poly-
metallic deposits (Zhang et al., 2011); the Indosinian granites were
formed in a post-collision extensional tectonic environment, showing
weak relationship with tungsten polymetallic deposits in space (Fig. 1;
Sun et al., 2003); and the Yanshanian was the most important epoch for
magmatism and metallogenesis in the south China, when a large
number of tungsten polymetallic deposits were formed such as the
Shizhuyuan, Xintianling, Dajishan, Xihuashan, Piaotang, and Xian-
ghualing deposits (Zhou et al., 2006; Xu and Zhu, 1988; Liu et al.,
2014b; Chen et al., 2015; Zhao et al., 2017). Ore-forming ages of the

Fig. 4. Experimental (black points) and fitted (red lines) indicator semivariograms for the (a) 20th, (b) 40th, (b) 60th, and (c) 80th percentiles of W data. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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majority of large-size deposits range mainly from the Middle Jurassic to
the Early Cretaceous, whereas Triassic tungsten polymetallic deposits
are relatively small and sparse (Chen et al., 2008, 2013; Mao et al.,
2013; Hu and Zhou, 2012). It has been found that anomalous W-Sn
accumulations that have taken place in the South China continent are
closely associated with the metallogenic system of Mesozoic granite
province (Wang et al., 2013). Alkalic feldspar granite, slate, phyllite
and schist are usually characterized by high background contents of
tungsten and tin, and are generally considered as the sources of the
main ore-forming materials for the tungsten polymetallic deposits (Li,
1991; Chi et al., 2012; Wei et al., 2006).

Mineralization in the Nanling belt, being one of the most important
metallogenic belts in the world, is attributed to large-scale tungsten
polymetallic metallogenesis during the Mesozoic period that resulted in
the formation of abundant tungsten and tin resources, which are esti-
mated to be 1.7 and 1.2 million tons, respectively (Zhao et al., 2017).
Previous studies indicate that tungsten deposits in South China are
usually accompanied with Ag, Sb, Sn, Mo, Cu, Bi, Hg and rare earth
element (Hu and Zhou, 2012; Mao et al., 2013; Li et al., 2017; Hu et al.,
2017; Zhao et al., 2017), in which Sn, Bi and Mo are most commonly
accompanying elements (Hua et al., 2008).

3. Methods and data

3.1. Sequential indicator simulation

The SIS considers the spatial variation of observed data at sampled
locations and the spatial variation of estimates at unsampled locations
(Deutsch and Journel, 1998; de Souza and Costa, 2013). The

advantages of SIS over Gaussian simulation techniques are that it pro-
vides greater flexibility in accounting for different variation models at
different thresholds by using binary data and that it does not require
data to satisfy normal/lognormal distribution. In SIS, indicator kriging
is applied to determine the prior conditional cumulative distribution
function (CCDF) at each unsampled location by coding each observed
concentration value into K indicator values. For geochemical data, SIS
generates a set of equiprobable concentration realizations of an element
and use the variations in concentration realizations as a measure of
uncertainty.

Following Deutsch and Journel (1998), Deutsch (2006), Goovaerts
(2001) and Emery (2004), a general flow chart for SIS procedure in-
cludes several sequential steps, summarized in Fig. 2, which implement
just the first realization. Therefore, the sequential steps are repeated
with different random paths by passing through all nodes to produce
the remaining realizations.

3.2. Singularity analysis

Singularity theory describes extreme geo-processes that result in
significant amounts of energy release or material accumulation to occur
within a narrow space-time interval (Cheng, 2007; Cheng and
Agterberg, 2018). In exploration geochemistry, singularity analysis al-
lows for characterization of the fractal/multifractal properties of ele-
ment concentration distribution in the Earth's crust. The singularity
index, α, is commonly calculated by a window-based method in 2-di-
mensional space. The average spatial density of metal concentrations,
ρ[A(ε)] can be obtained based on the following power-law relationship:

Fig. 5. Experimental (black points) and fitted (red lines) indicator semivariograms for the (a) 20th, (b) 40th, (b) 60th, and (c) 80th percentiles of Sn data. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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A µ A c[ ( )] [ ( )]
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where A is the study area, ε is window size, c is the fractal density
(Cheng, 2016; Chen and Cheng, 2017; Liu et al., 2018a). On a log-log
plot of ρ[A(ε)] versus ε, the slope (α-2) can be estimated by least
squares method. From a statistical point of view, values of α≈2 obey a
normal or lognormal distribution whereas values of α≠2 may follow
fractal/multifractal distributions (Cheng, 2007; Cheng and Agterberg,
2009). In the application of singularity analysis to geochemical
anomaly identification, positive singularity indices of α < 2 are in-
terpreted to correspond to element enrichment, whereas negative sin-
gularity indices of α > 2 are interpreted to correspond to element
depletion (Cheng, 2007). Recently, a singularity-quantile (S-Q) method,
developed by Liu et al. (2017, 2018b) based on singularity analysis and
quantile-quantile plot analysis, can be employed to partition hybrid
geochemical populations in frequency domain through the plot of
standard normal quantiles versus singularity index quantiles. The S-Q
method is efficient in determining critical thresholds of singularity in-
dices and allows for classification of geochemical patterns into three
groups, namely element depletion, element average and element en-
richment. Detailed introduction to the S-Q method is described below in
Section 4.5.

3.3. Uncertainty assessment

3.3.1. Local uncertainty analysis
The local uncertainty of an estimate at location x can be expressed

as the probability that an unknown value z(x) at location x is smaller
(or greater) than a given threshold. In this study, we focus on assessing
uncertainty of tungsten polymetallic geochemical anomaly derived by
local singularity analysis. According to the concept of singularity ana-
lysis described above, the local uncertainty of a α-value can be ex-
pressed by quantifying the geochemical anomaly probability that its α-
value does not exceed a threshold of low singularity index (i.e.,
αc < 2). The local uncertainty can be defined as (Goovaerts, 2001):

x n x
L

i NProb [ ( ) ] ( ) 1, 2, ,SIS i c
i< = = (2)

where αc is the threshold of low singularity index and it is< 2, n(x) is
the number of singularity index realizations (SIRs) that are smaller than
αc at location xi, and L is the total number of simulated SIRs. It should
be noted that the SIRs can be calculated by a complied SIRs batch al-
gorithm designed in Matlab R2013 software, in which the SIRs batch
algorithm is performed on a series of equally probable realizations of
element concentrations to generate a series of corresponding SIRs.

3.3.2. Spatial uncertainty analysis
Spatial uncertainty is expressed by the joint uncertainty of estimates

across the whole study area (Goovaerts, 2001; Qu et al., 2015; Liu et al.,
2018a). For singularity indices at location xi, suppose that there are N
locations, x1, x2, …, xN across the area A; the probability of all singu-
larity indices at the N locations being smaller than the low threshold
singularity index is expressed by the joint probability of L SIRs across
each node, thus:

Fig. 6. Experimental (black points) and fitted (red lines) indicator semivariograms for the (a) 20th, (b) 40th, (b) 60th, and (c) 80th percentiles of Mo data. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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where αc is the threshold of low singularity index and it is< 2, L is the
number of simulation SIRs, N is the number of grid nodes, and n(x1, x2,
…, xN) is the number of SIRs that have all simulation values at location
xi being smaller than a low threshold (αc) in the L SIRs.

3.4. Data

Regional geochemical surveys at a scale of 1:200,000 have been
carried out since 1979 as part of the Chinese National Geochemical
Mapping Project (CNGMP), which has covered>7 million square
kilometers in China including the Nanling belt (South China) (Xie et al.,
1997). This study pertains to part of the Nanling belt, which is covered
by 1617 stream sediment samples that are evenly distributed across the
study area, and the sampling density is about one sample per 144 km2.
The samples have been analyzed for 39 elements (Bi, Cu, P, La, Li, Ag,
Sn, Au, Mo, Th, U, W, Sb, Hg, Mn, Cr, Sr, Nb, Pb, Ni, Ti, Y, Cd, Co, Ba,
Be, V, Zn, B, As, Zr, F, Fe2O3, K2O, CaO, MgO, Na2O, Al2O3 and SiO2),
including trace, minor and major elements by means of multi-instru-
ment and multi-method approaches, namely inductively coupled
plasma-atomic emission spectrometry (ICP-AES), X-ray fluorescence
(XRF), and inductively coupled plasma-mass spectrometry (ICP-MS) in
combination with other methods (Wang et al., 2007; Xie et al., 1997;
Liu et al., 2016, 2018c). For this study, only data for W, Sn, Mo and Bi

were used for geochemical anomaly uncertainty analysis because they
are closely associated with tungsten polymetallic mineralization (Hua
et al., 2008; Mao et al., 2013; Hu and Zhou, 2012; Hu et al., 2017; Li
et al., 2017).

4. Results and discussion

The simulation results (e.g., realizations and SIRs) were calculated
using software version 2.1 of SGeMS (Remy et al., 2009). The SIRs
batch algorithm was designed in Matlab R2013 software to perform on
a set of realizations of element concentrations so as to obtain a set of
corresponding geochemical anomaly maps (realizations). Map visuali-
zation and representation in space were processed using ArcGIS 10.3
software. The singularity analysis and SIS method were performed on
ASCII data that were transformed from rasterized image with grid size
of 2 km×2 km.

4.1. Preliminary data statistics

Histograms and statistical parameters such as maximum (Max),
minimum (Min), standard deviation, skewness and kurtosis provide a
powerful tool for rapid examination of geochemical distribution pat-
terns, among which kurtosis and skewness are important indicators for
estimating whether or not data follow normal distribution (Liu et al.,
2018b). Fig. 3 shows histograms of W, Sn, Mo and Bi data with related
statistical parameters. The skewness and kurtosis indicate that con-
centrations of W, Sn, Mo and Bi deviate from normal distribution

Fig. 7. Experimental (black points) and fitted (red lines) indicator semivariograms for the (a) 20th, (b) 40th, (b) 60th, and (c) 80th percentiles of Bi data. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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significantly, especially the Mo distribution. As a result, the SIS tech-
nique was adapted to model element distribution patterns since these
data do not meet the requirement of multi-Gaussian assumption.

4.2. Indicator variogram analysis

The concentrations of each element were transformed into indicator
codes by means of indicator kriging method. The indicator codes are
usually defined by 1 and 0. The cutoff values of concentrations per
element were set to be four percentiles, namely 20%, 40%, 60%, and
80% (Table 1). Then, the indicator variograms of W, Sn, Mo and Bi were
obtained based on variogram analysis (Figs. 4, 5, 6, 7). The well-fitted
exponential indicator variogram models were determined using coef-
ficient of variation (R2) and residual sum of squares (RSS). Here, only
four cutoff values of element concentrations were used to build the
prior CCDF because extreme threshold values used in indicator vario-
gram analysis are not well defined when too many cutoff values are

used (Goovaerts, 1997; Juang et al., 2004). Figs. 4, 5, 6, 7 and Table 1
show that the indicator variograms and fitted variogram models have
clear differences and spatial structures, indicating that application of
the four cutoffs for indicator variogram analysis is sufficient to char-
acterize the global spatial variability characteristics.

The coefficient of variation (CV), expressed as C0/(C0+ C), was
used to measure spatial heterogeneity (Cambardella et al., 1994), where
C0 is nugget variance and C is still variance. The strong spatial de-
pendence of a target attribute across the study area is indicated by CV
values close to 0, while a CV value close to 1 shows weak spatial de-
pendence or randomness in terms of spatial heterogeneity of a target
attribute. According to Cambardella et al. (1994), CV values larger than
75% shows weak spatial dependence, CV values between 25% and 75%
show moderate spatial dependence, and CV values less than25% show
strong spatial dependence. From Table 1 and Figs. 4, 5, 6, 7, the C0/
(C0+ C) ratios of the indicator variogram models for each of the four
indicator variables (W, Sn, Mo and Bi) range from 32.2% to 48.68%,

Fig. 8. Maps of simulated concentrations for realization #149: (a) W, (b) Sn, (c) Mo and (d) Bi.
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exhibiting moderate spatial dependence. According to Cambardella
et al. (1994), moderate spatial dependence may be caused by intrinsic
geologic factors (e.g., sediments properties, weathering of parent rocks)
and extrinsic anthropogenic factors (e.g., mining, urban development
and land use).

4.3. Spatial distribution of mineralization-related element concentrations

Two hundred equiprobable concentration realizations of the in-
dividual elements (W, Sn, Mo and Bi) were generated by SIS based on
simple kriging and indicator variogram models, and each of them re-
presents a probable realistic spatial distribution of concentrations per
element. The 200 concentration realizations are visually similar not
only in terms of element concentration values but also in terms of their
spatial distribution patterns, because they honor original conditional
data and reproduce the key statistical characteristics of target element
distribution, such as global spatial correlation and histogram
(Goovaerts, 2001). Randomly selected realizations depicted by #149
for each of the four elements (W, Sn, Mo and Bi) are shown in Fig. 8.
The maximum and minimum concentrations of individual elements are
approximately equal to their original measured values as shown in
Fig. 3, implying that these equiprobable concentration realizations do

not change the data structures under the constraint of CCDF. However,
the maps interpolated by inverse distance weighting (IDW) (Fig. 9)
show that the maximum values for W, Sn, Mo and Bi are 328.48,
404.51, 115.38 and 105.42, respectively, less than the measured max-
imum values (Fig. 8) because of smoothing effect. More importantly,
IDW interpolation is a deterministic method while geostatistical simu-
lation techniques allow for quantification of spatial uncertainty of a
target attribute.

The maps show that W, Sn and Bi have more similar spatial dis-
tribution trends compared to the spatial distribution of Mo (Fig. 8).
Zones with high concentrations of W, Sn and Bi are mainly present in
the southern and central parts of the Nanling belt, while zones with
high concentrations of Mo mostly appear in the western parts of the
study area. As demonstrated in Liu et al. (2014b, 2018d), the multi-
element association of W-Sn-Mo-Bi-Ag-Cd-Be represents important
controls because it indicates that basement rocks provided sources of
major ore-forming materials for the formation of tungsten polymetallic
deposits. Thus, the results here indicate that the zones with high con-
centrations of W, Sn and Bi (Fig. 8a, b and d) are mainly located in both
Mesozoic granites and Devonian-Triassic sedimentary cover, which
have been proven to be endowed with high geochemical background of
W (Hu and Zhou, 2012; Hu et al., 2017; Li et al., 2017; Mao et al.,

Fig. 9. IDW interpolation maps for: (a) W, (b) Sn, (c) Mo and (d) Bi.
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2013). Fig. 8c shows that the zones with high Mo concentrations are
mainly distributed in the western parts of the study area where Devo-
nian-Triassic strata are well developed. In addition, high background
concentrations of individual elements spatially coincided with known
tungsten polymetallic deposits.

4.4. Identification of tungsten polymetallic geochemical anomaly

Two hundred concentration realizations of individual elements
were generated by means of SIS. Each of these realizations was pro-
cessed further by a complied SIRs batch algorithm to generate a cor-
responding SIR. As a result, 200 SIRs were obtained. The variations
among the SIRs provide a measure of geochemical anomaly uncertainty
for targeting tungsten polymetallic mineralization and exhibit similar
spatial distribution patterns across the study area. Fig. 10 shows the
spatial distributions of the four SIRs that were generated from the four
corresponding concentration realizations (#149) shown in Fig. 8. It can
be seen that a single SIR does not clearly express continuous distribu-
tion pattern for the singularity indices due to the influence of local high
and low α-values. However, the results show that the E-type α map of
individual elements (W, Sn, Mo and Bi) exhibits more continuous spa-
tial distribution pattern compared to a single SIR (Fig. 11). The results

also indicate that the degree of element enrichment is inversely pro-
portional to the singularity indices (Cheng, 2007).

Geochemical anomaly patterns characterized by smaller α-values
indicate much greater spatial correlation with known tungsten poly-
metallic deposits (Fig. 11a, b, c, d). These patterns are mainly present at
or near the Caledonian, Indosinian and Yanshanian granites and are
partly located in the Devonian-Triassic sedimentary cover, which are
considered to be genetically associated with tungsten polymetallic mi-
neralization in the study area (Hua et al., 2005; Chi et al., 2012).
Comparison of the distributions of original concentration data for W,
Sn, Mo and Bi (Fig. 8a, b, c, and d) with those Fig. 11a, b, c and d,
respectively, indicates that zones with high anomaly are further loca-
lized whereas zones with weak anomaly were enhanced greatly as de-
picted by singularity indices with α < 2. For example, the weak W
anomalous zones based on the original geochemical data in Fig. 8a are
highlighted in the northeast parts of the study area in Fig. 11a.

4.5. Uncertainty assessment of tungsten polymetallic geochemical anomaly

Assessment of uncertainty of estimates for a target attribute involves
creating a probability map of (not) exceeding a certain threshold
(Goovaerts, 1997). In this paper, the S-Q method was adopted to

Fig. 10. Maps of simulated SIRs for #149: (a) W, (b) Sn, (c) Mo and (d) Bi.
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determine geochemical anomaly thresholds based on inherent fractal/
multifractal properties (Liu et al., 2017). A frequency domain plot of
standard normal quantiles (x-axis) versus quantiles of E-type singularity
indices (y-axis) was used to distinguish distribution patterns of E-type
α-values of individual elements (W, Sn, Mo, and Bi) (Fig. 12). We set a
99% confidence interval of E-type α-values and chose a suitable per-
centile interval within the 15th to 85th percentile range to set the
normal reference line and residual fitting curves as indicated by the red
lines and blue lines, respectively, in Fig. 12a, b, c, d. Another poly-
nomial curve with green colour was produced by fitting all the α-values
(Fig. 12). Based on the two residual fitting curves and the polynomial
curve, two thresholds (α1 and α2) of E-type α-values of each element
were determined (Fig. 12a, b, c, d), showing that normal distributed E-
type α-values plot near or close to the normal reference line. However,
the α-values depicted by lower-truncated tail distribution plot below
the fitting normal reference lines, following fractal/multifractal dis-
tribution (Liu et al., 2018b). The S-Q method provides for estimation of
critical thresholds for separating E-type α-values into three different
populations that may correspond to unusual physicochemical attributes
caused by drastically changing geological phenomena such as lithos-
tratigraphic contact, local mineralization, weathering product and mi-
neral alteration phase. In practice, these critical thresholds are of great

significance for geochemical anomaly separation and mapping (Liu
et al., 2017).

Based on the threshold of low singularity index, such as αW=1.945
(Fig. 12a), the SIRs were used to model geochemical anomaly un-
certainty for targeting tungsten polymetallic mineralization by gen-
erating a probability map of not exceeding this threshold (Fig. 13a). The
other three probability maps (Fig. 13b, c, and d) were obtained based
on the thresholds of αSn=1.911, αMo=1.946 and αBi=1.932, re-
spectively (Fig. 12b, c, and d). According to Fig. 13a, b, c, and d, the
zones with little uncertainty are those related to very high probability
for the occurrence of geochemical anomaly, implying that the risk for
finding tungsten polymetallic deposits is very low, such as the zones
indicated by red. The zones with large uncertainty are those related to
very low probability for the occurrence of geochemical anomaly, im-
plying that the risk for finding tungsten polymetallic deposits is very
high, such as the zones indicated by the blue colour. In contrast, a
medium probability for the occurrence of geochemical anomaly in-
dicates moderate uncertainty, implying moderate risk for finding
tungsten polymetallic deposits, such as the zones indicated by yellow
and green.

Fig. 13a, b, c, d shows the probability maps of individual elements
but they do not provide comprehensive and straightforward

Fig. 11. Maps of the E-type α-values of elements: (a) W, (b) Sn, (c) Bi and (d) Mo.
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information for risk assessment for tungsten polymetallic exploration
targeting. Therefore, a synthetic probability map was produced by in-
tegrating the four probability maps of W, Sn, Mo, and Bi into a single
one (i.e., by adding the maps and taking the average per location).
Fig. 14a shows this synthetic probability map overlaid with the known
tungsten polymetallic deposits, indicating that there is significant cor-
relation between the very high probability values and tungsten poly-
metallic deposits. Fig. 14b shows the synthetic probability map overlaid
lithostratigraphic contacts. Previous studies indicate that lithostrati-
graphic contact is one of the most important controls on the formation
of tungsten polymetallic deposit (Liu et al., 2014b, 2018d). According
to Peng et al. (2006) and Liu et al. (2014b), tungsten polymetallic
mineralization commonly formed at the contacts between strata and
granites with significant differences in physical–chemical properties. It
can be observed that the high probability zones are frequently located
near lithostratigraphic contacts (Fig. 14b), implying that granites in-
truding the sedimentary strata are the favorable places for tungsten
polymetallic mineralization, where uncertainty of tungsten poly-
metallic exploration targeting is very low. During the emplacement of

granites, interactive geochemical reactions facilitated the occurrence of
metal mineralization between country rocks due to passage of hydro-
thermal fluids along the lithostratigraphic contacts, which is conductive
to the enrichment of metal elements (Pei et al., 2009; Wang et al.,
2015). Therefore, the zones with high probability of the presence
tungsten polymetallic geochemical anomaly and lithostratigraphic
contacts are favorable for finding tungsten polymetallic deposits with
low uncertainty. It can also be seen that very high probabilities of the
presence of tungsten polymetallic geochemical anomaly are well spa-
tially coincident with small Indosinian granite intrusions in the
northern parts of the study area. Likewise, very high probabilities of the
presence of tungsten polymetallic geochemical anomaly are well spa-
tially coincident with Yanshanian granite intrusions in the southern and
central parts of the study area. In contrast, very high probabilities of the
presence of tungsten polymetallic geochemical anomaly are not
strongly spatially coincident with Caledonian granite intrusions across
the study area. Xu et al. (1982) believed that Caledonian granite in-
trusions in south China had nothing to do with the formation of tung-
sten, tin and rare metal deposits. However, recently studies indicate

(a)    W

(d)    Bi(c)   Mo

(b)   Sn

Fig. 12. Singularity index quantiles versus standard normal quantiles of (a) W, (b) Sn, (c) Mo, (d) Bi.
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that some parts of the Caledonian granites are associated with tungsten
mineralization (Zhang et al., 2011; Chen et al., 2014; Yang et al., 2014).

High probability values imply high possibility of the presence of the
tungsten polymetallic deposits indicated by Fig. 14. In order to examine
the performance of the synthetic probability map, first, the prediction-
area (P-A) plot analysis (Yousefi and Carranza, 2015) was used to de-
termine reasonable threshold. Then, favorable exploration targets were
demarcated from the synthetic probability map based on the threshold.
As shown in the Fig. 15a, the intersection point shown in Fig. 15a in-
dicates that 18.5% of the study area can be predicted as prospective, in
which 81.5% of the known deposits are contained. High favorability
zones reflect strong spatial coincidence with known tungsten poly-
metallic deposits (Fig. 15b).

5. Conclusions

1) Quantification of geochemical anomaly uncertainty is crucial for
risk assessment in exploration geochemistry. In this study, we pre-
sented a method based on combining singularity analysis and

sequential indicator simulation to assist in the modelling of spatial
variability and quantification of uncertainty associated with geo-
chemical anomaly mapping for tungsten polymetallic exploration
targeting in the Nanling belt, South China. The integrated method
overcomes the smoothing effect of point-data interpolation and thus
ensures that extreme values of geochemical data (here for W, Sn, Mo
and Bi) are not eliminated, making them significantly favorable for
geochemical anomaly recognition.

2) A series of equally probable realizations of element concentrations
were further processed by using a compiled SIR singularity analysis.
The results allow for assessing geochemical anomaly uncertainty for
tungsten polymetallic exploration targeting. Thresholds of anom-
alous singularity indices for the selected elements were determined
by the S-Q method, which is proposed, because it considers the in-
herent multifractal property of element distribution patterns in the
Earth's Crust, and thus the post-processing SIRs are more reliable for
characterizing geochemical anomaly.

3) The probabilistic models of the SIRs of the four elements W, Sn, Mo
and Bi were obtained for not exceeding a threshold singularity index

Fig. 13. Probability distribution of α-values under the condition of (a) αW < 1.945, (b) αSn < 1.911, (c) αMo < 1.946 and (d) αBi < 1.932.
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per element. According to the synthetic probability map, high
probability zones are commonly coincident with lithostratigraphic
contacts and have significant correlation with the known deposits.
Therefore, the resulting map would be invaluable for decision-

making, especially for mineral exploration risk assessment, such as
determining zones that are more favorable for exploration of tung-
sten polymetallic mineralization.

Fig. 14. Synthetic probability map calculated from average probability based on the probability of αW < 1.945, αSn < 1.911, αMo < 1.946 and αBi < 1.932,
superimposed by (a) tungsten polymetallic deposits (stars) and (b) granites (polylines with colors).
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Fig. 15. (a) Prediction-area (P-A) curves for the synthetic probability map based on arithmetic mean function, (b) Binary map showing high and low favorable zones
based on the P-A plot analysis.
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