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A B S T R A C T

Geo-statistical and multivariate analyses are effective methods to determine the source and influence factors of
potentially toxic elements (PTEs) in the soil. Hainan Island, belonging to tropical marine monsoon climate, is a
typically individual island with slight industrial activities. In order to study the impact factors on PTEs dis-
tribution in the soil at a regional scale, such as impact of lithology, pedogenesis and anthropogenic activities,
Hainan Island is an optimal place. For comparison, the topsoil and the corresponding subsoil were sampled and
eight PTEs were analyzed respectively. The concentrations of PTEs were counted, such as minimum, maximum,
median and mean values. Based on it, the background values and concentration enrichment factors of PTEs were
also calculated or illustrated. Exception to Cd and Hg, the concentration of other PTEs in the topsoil were lower
than those in the subsoil for all lithological areas since the strong leaching under special climate. By using geo-
statistical and multivariate analyses, such as Pearson correlation analysis, principal component analysis, var-
iography and robust biplot analyses, the dominant impact factors are determined for PTEs both in the topsoil and
subsoil. Thus, the spatial distribution of PTEs is well explained at a regional scale. Generally, PTEs in the soil
represent the components of soil parent materials associated with lithological rocks. Nevertheless, Co, Cr, Cu and
Sc elements were dominantly inherited from soil parent materials while Cd, Hg and Pb were greatly superposed
by exogenous inputs. On the other hand, elements of As and Zn might be greatly influenced by pedogenesis and
weathering process. So, geo-statistical and multivariate analyses are effective methods to discuss the sources or
impact factors for PTEs in the soil, and also the comparison between the topsoil and the subsoil provides an
opportunity to illuminate the main impact factors on PTEs at a regional scale, including parent materials,
weathering process and anthropogenic inputs.

1. Introduction

Soil contaminations with potential toxic elements (PTEs) attract a
worldwide environmental attention mainly because these elements can
transfer to the hydrosphere, biosphere and food chain, finally posing a
hazard to human health (Fu et al., 2011; Nannoni et al., 2011; Lu et al.,
2012). The soil can be considered as the ultimate product of different
combined processes including the weathering of parent materials, the
accumulation, the decomposition, the humification of organic matter
and the synergistic action of some influencing factors such as climate,
topography, organisms (soil microbiology, mesofauna and biology),
time and further state variables (Salminen and Gregorauskiene, 2000;
Palumbo et al., 2000; Adot et al., 2006; Qishlaqi et al., 2009; Bini et al.,

2011). Although the evolution rate of this nature is very low, the ori-
ginal mineral components and PTEs in soil parent materials mainly
come from native rocks. To a large extent, the soil parent materials
mainly determine the properties of soils (Rodríguez et al., 2006; Bini
et al., 2011; Lv et al., 2013). Nevertheless, PTEs in soils can be influ-
enced at different extent by biogeochemical process or anthropogenic
sources (Meklit et al., 2009; Lv et al., 2013). Sometimes, soils in a place
far away from human activities might enrich PTEs due to the transport
of anthropogenic sources (Acosta, 2011). Thus, the spatial distribution
of PTEs in soils may be affected by both parent materials and anthro-
pogenic input (Bini et al., 2011; Hanesch et al., 2001; Meklit et al.,
2009). For this reason, it is important to look for the relationships of
PTEs between in the soils and in its parent material. Then, the influence
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degree of human activities on PTEs can be determined.
The concentration of PTEs in the topsoil include the naturally geo-

genic background concentrations and the input of anthropogenic con-
tribution (Facchinelli et al., 2001; Salminen and Gregorauskiene, 2000;
Frattini et al., 2006; Albanese et al., 2007). Traditionally, background
values of PTEs in the subsoil can act as background for evaluating the
pollution extent of PTEs in certain areas (Ansari et al., 2000; Rognerud
et al., 2000). However, due to the long-term weathering and leaching,
the PTEs in topsoil are easily depleted compared to those in the subsoil.
More importantly, such a process is different from the different soil
parent materials. So far, little data about water-leaching risk of PTEs in
different parent materials have been reported. Instead of background
value, the concentration of PTEs in the subsoil can act as a reference
standard to evaluate the enrichment/loss extent of PTEs, which is
tentatively named as Concentration Enrichment Factor (CEF)
(Fergusson, 1990). Although such a method has been less reported, CEF
may be more exactly evaluate the enrichment/loss extent of PTEs in
topsoil, especially for warm and rainy areas. To some extent, the con-
centration of PTEs in subsoil is closely associated with the soil parent
materials.

Geo-statistical and Multivariate analyses (GSMA) are useful tools for
quantifying the spatial characteristics and determining the relationship
of PTEs and their possible sources (Yuan et al., 2013, 2014). By GSMA,
a whole regionalized variable could be split into different components
related to different scales of spatial correlation according to the parent
materials (Alary and Demougeot-Renard, 2010). The analyses of PTEs'
distribution in soil at different observation scales can bring different
insights (Saby et al., 2009).

Hainan Island, the second largest island in southern China, is one
province of China. The soil in Hainan Island was little polluted by
modern industrial since the predominant activities are tourism and
green agriculture, which is different from other places in China (Fu
et al., 2011; Gong et al., 2014). Nevertheless, the recently increasing
human activities, such as travel, also affect the level of PTEs in the soil
of Hainan province (Quinton and Catt, 2007; Wang et al., 2013; Hao
et al., 2009; Li et al., 2009; Gong et al., 2014). On the other hand, the
warm and rainy climate In Hainan Island may accelerate the leaching of
PTEs from the topsoil (Gong et al., 2014). As introduced above, analysis
of PTEs contents in the subsoil is very important for studying them in
the topsoil. So, it is significant to compare and assess the PTEs in the
topsoil and the subsoil with different parent materials at regional scale.

The objectives of this study are: (1) to systematically map their
spatial distributions and patterns of PTEs in topsoils and subsoils; (2) to
identify their background values in subsoils and baseline values in
topsoils; (3) to evaluate CEF and possible hot zones of PTEs in each type
of geological region of Hainan Island; (4) to determine their controlling
sources and the main influence factors on PTEs distribution in soils.

2. Materials and methods

2.1. Study area and sampling

The study area of Hainan Island (108°37′–111°03′E,
18°10′–20°10′N) is located in the southernmost China, occupies
33,920 km2 of land area (Fig. 1) and separated from the mainland by a
narrow strait. The climate is a typical tropical marine monsoon with an
annual temperature of 23–26 °C and average annual precipitation of
1500–2500mm. The major soil type is latosol (pH, 5.0) with a complex
terrain of plains and hills staggered (Gong et al., 2014). In the island
(Fig. 1), granite is the most extensive parent rock, accounting for nearly
50% of outcrops of the total parent rocks; whereas basalt, mainly lo-
cated in the northern sector of the island, accounts for 13.6%; mesozoic
sedimentary rocks are mostly in the central part and metamorphic rocks
are little represented. Around the island, the coastline is mostly char-
acterized by quaternary sediments, generally, derived from the
weathering of the geological material outcropping in the island inner

part.
During April 2004, 8713 topsoil samples, developed on the above

parent materials, (0–20 cm) were collected from the surface using a
regular 1×1 km grid (Fig. 1), including 1829 sample for quaternary
sediments, 1008 for basalt, 802 for sedimentary rocks, 3966 for granite,
1108 for metamorphic rock. To minimize sampling errors, each sample
weighing ca. 1.0 kg was composed of four sub-samples within each
1×1 km sampling cell. At the same time, a total of 2197 subsoil
samples (150–200 cm) were also gathered based on a 2×2 km grid,
basically at the center of a group of 4 topsoil samples (Fig. 1), including
484 samples for quaternary sediments, 255 for basalt, 198 for sedi-
mentary rocks, 987 for granite, 273 for metamorphic rock. Either for
the topsoil or for the subsoil, samples were collected with 5% field-
sampling duplicates.

To avoiding post-contaminants, samples were collected by a stain-
less drill, and stored in a leaned package. All the soils were air-dried
and passed through a 70 mesh sieve. After that, approximately 200 g of
each sample was ground in an agate mortar, sieved through a 100 mesh
sieve, and then stored at 4 °C for chemical analysis.

2.2. Analytic methods and quality control

Chemical analyses were carried out according to National Standard
Soil Environmental Quality Standards in China (GB 15618-2008). The
elements of Cd, Co and Cu were analyzed using inductively coupled
plasma mass spectrometry (ICP-MS, 6020A), while Cr, Pb and Zn were
analyzed using X-ray fluorescence spectrometry (RS-1818, HORNGJ-
AAN). Mercury (Hg) and As were analyzed with anatomic fluorescence
spectrophotometer (XGY-1011A). For quality assurance and quality
control (QA/QC), standard reference materials GSS-1 and GSS-4 were
used as part of the QA/QC procedures, which were obtained from the
Center of National Standard Reference Material of China. Satisfied
agreement was achieved between the data gained from the present
work and the certified values, with recoveries between 92 and 106%.
Analysis of the samples, including soil samples and blanks, were per-
formed in triplicate and the standard deviation was within 5%. Also,
7% blind duplicates were analyzed to check the analysis quality. Also,
the 2% field-sampling duplicates were checked to be satisfied.

2.3. Statistical analysis and geochemical mapping

Descriptive statistics data are shown in Table S1, including the ar-
ithmetic mean, median, maximum, minimum, standard deviation and
coefficient of variation (CV), which was respectively calculated for
topsoil and subsoil samples from the five related parent material area
by means of SPSS 19.0 software. Exploratory data analysis was run to
generate histograms and box-plots to support the statistical description
of data. The Kolmogorov–Smirnov test, including skewness and kurtosis
were applied to assess normality of the distribution of data set.

In correspondence with the location of each subsoil site, the value
reported by the interpolated map of topsoils was assumed as con-
centration for the surface soils. The Pearson's correlation analysis was
performed to determine the strength of a linear relationship between
PTEs in topsoil and in subsoil. Among numerous kriging techniques,
ordinary kriging is one of the most familiar interpolation methods to
map the spatial distributions of PTEs (Zhao et al., 2010b; Li et al.,
2014). MapGis 6.7 software was used to map the distribution of ele-
ments by using ordinary kriging interpolation, and ten intervals were
tentatively assigned to divide the concentration in order to show the
spatial change of the concentration not only in detail but also concisely.

To discriminate the effect on the loss or enrichment of PTEs in
topsoil, the CEF (Ansari et al., 2000; Fergusson, 1990) was applied.
Considering the value of its CV and the differences between the topsoil
and subsoil, the element scandium (Sc) shows the less variable among
the others within the data set and appeared more stable against the
weathering loss (Table S1, Fig. S1). In order to reduce the influence of
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the environmental medium, Sc was used as a normalizing reference
element in accordance with the above results on elemental variability.
CEF was calculated for each element as following Eq. (1) (Fergusson,
1990):

=CEF
(C /C )
(C /C )

i S Topsoil

i S Subsoil

C

C (1)

whereCi is the interpolated map of the i-esim PTE in topsoil and in
subsoil;

CSc is the interpolated map of the reference element (Sc) in topsoil
and subsoil.

To check out potential pollution or loss of each PTEs in the study
area, spatial distribution of CEF for 8 PTEs was estimated by ordinary
kriging and mapped with the MapGis 6.7. Based on above calculation,
CEF values were divided into five levels as following reported method
(Sutherland, 2000): CEF < 2 (No or low pollution); 2 < CEF < 5
(Moderate potential pollution); 5 < CEF < 20 (High potential pollu-
tion); 20 < CEF < 40 (Very high potential pollution); 40 < CEF
(Extreme potential pollution).

2.4. Geostatistical analysis of variography

Geostatistical methods are based on the theory of regionalized
variables (Matheron, 1963), which has been applied to predict the
distribution of geochemical variables across unsampled areas assuming
that closer samples are more correlated than the farer ones (Chen et al.,
2009; Qishlaqi et al., 2009). Kriging has been extensively applied as an
important interpolation method at different scales, especially in geo-
chemical studies (Chen et al., 2008; Zhao et al., 2010a). In our case, the
concentrations (after logarithmic transformation) of the eight PTEs in
the topsoil of Granite area (almost half of the Hainan Island area) were
selected to calculate the autocorrelation value to produce a minimum
unbiased variance estimate (Qishlaqi et al., 2009). The experimental
semivariance was calculated by using the Matheron's classical estimator
by the following Eq. (2):

∑= − +
=

γ(h) 1
2N(h)

[Z(x ) Z(x h)]
i 1

N(h)

i i
2

(2)

where Z(xi) is the value of Z at location xi, and Z(xi+ h) is the value of
Z at a location apart from xi by distance h, and N(h) is the number of
pairs of separated by h. There was no obviously anisotropy in semi-
variograms of PTEs in different directions. Therefore, isotropic models
were tried to fit to the data set of each PTEs, and to auto-fit one of the
models (spherical, exponential, Gaussian, linear), and then select the

best matching one. Each of the model can be depicted based on three
parameters: nugget variance (C0) for the y-intercept of the model, sill
(C0+C) for the asymptote, and range (A0) for the obviously distance
over spatial dependence (Matheron, 1963; Kashem and Singh, 2001).
The model was selected on the basis of the regression coefficient of
determination (R2) and residual sum of squares (RSS) (Li et al., 2014).
The best-fitted theoretical model for an experimental semivariogram
could be chosen by the highest R2 value, and the fitted one was used to
analyze the spatial structure (Li et al., 2014). In this model, the ratio of
nugget to sill (C0/(C0+C)) can be considered as standard to define the
spatial dependence of soil properties. The ratio higher than 75% sug-
gests the variable with only a weak spatial dependence, between 25%
and 75% indicating the variable with moderate spatial dependence,
and< 25% manifesting the variable with strong spatial dependence
(Liu et al., 2004). In all of this case, exponential model was found to be
best-fitted for all 8 PTEs while ordinary kriging was used. All the
geostatistical analyses were performed with GS+ (Version 9).

2.5. Compositional and robust biplot analyses

Geochemical data has long been considered as compositional data
meaning that the ratio between elements carries more important in-
formation than the absolute values (Pawlowsky-Glahn and Bucciani,
2011). Compositional data are vectors of strictly positive real compo-
nents belonging to the D dimensional simplex space (Aitchison, 1986).
Several log-ratio transformations have been elaborated to study the
data structure and treat them in the Euclidean space where classical
multivariate analysis tools can be applied (Egozcue et al., 2003;
Pawlowsky-Glahn and Bucciani, 2011).

One of the most powerful tools to analyze the multivariate com-
positional data structure is the compositional biplot. This is a two-di-
mensional graphical display using 2-rank approximation to show both
samples (observations) and variables represented by their factor scores
and loadings, respectively (Gabriel, 1971). The scores represent the
whole covariance structure of the compositional data set in the Eu-
clidian space. The variables are displayed as rays (vectors) from the
center of the biplot whose length is proportional to their loadings (the
amount of explained variance) in the two-dimensional plane of the first
two principal components (Otero et al., 2005; Filzmoser and Hron,
2008; Filzmoser et al., 2009b; Hron et al., 2010). Links between rays
refer to the compositional correlation of variables; orthogonal axes
indicate uncorrelated variables, rays (vectors) pointing to opposite di-
rection are antithetic elements with respect to each other.

Classical and robust compositional biplot analyses were performed

Fig. 1. Lithological distribution and sampling sites in Hainan Island (A), and land use types in Hainan Island (B).
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both on the untransformed and log-transformed (ilr-transformed and
clr-backtransformed) topsoil and subsoil data sets to reveal the com-
positional structure of the investigated variables (natural groupings,
correlation) and to better understand the underlying governing factors
which explain the compositional variability as much as possible by
using principal components. However, the classical biplot based on the
covariance matrix of raw-data is substantially influenced by outliers
distorting the compositional data matrix and hindering to see the real
relationship between parts (variables) and affect the calculation of
principal components (Aitchison, 1986; Filzmoser et al., 2009a, 2009b).

In multivariate compositional analysis, the robust version of PCA
biplot should be used on log-transformed data with respect to ortho-
normal basis such as ilr transformed data (Egozcue et al., 2003) and
back-transformed to the clr space for the ease of their interpretation.
This back transformation preserves the linear relationship between clr
and ilr coordinates (Egozcue et al., 2003), using the minimum covar-
iance determinant (MCD) estimator (Rousseeuw and Driessen, 1998).
The MCD looks for a subset h out of n observations of the initial data
with the lowest determinant of sample covariance matrix (Filzmoser
and Hron, 2008) and allow obtaining variables into normal distribution
which describe better the correlation or covariance of the data avoiding
the outlier artefacts. Classical and robust biplots were made using R
statistical open source software.

3. Results and discussion

3.1. PTEs concentration in the topsoil

The histogram plots (Fig. S2) and box-plots (Fig. 2) were plotted for
eight PTEs, which can provide a valuable tool for describing various
elements distribution (Lu et al., 2012; Mrvić et al., 2011). The mean
concentrations of As, Co, Cr, Cu, Pb, Zn, Cd and Hg in topsoils were
5.29, 11.95, 60.79, 17.24, 26.18, 51.22, 0.081 and 0.043mg/kg
(Fig. 2), respectively. It could be observed that, after a log-transfor-
mation, As, Pb, Cd and Hg and show a general symmetrical distribution
(almost normal, in some cases) while Co, Cr, Cu and Zn are featured by
a bimodal trend (Fig. S2) suggesting the presence of two sub-popula-
tions. Among the PTEs, Co, Cr, Cu, Pb and Zn have a smaller number of
extreme outlier values compared to As, Cd and Hg exhibiting an upward
bias distribution with much high and extreme outliers (Fig. 2).

The descriptive statistics were performed for the eight PTEs in
topsoil sorted by parent materials. (Table S1). The concentration of Co,
Cr and Zn in basaltic soils were 6.20–12.89, 5.51–10.79 and 2.15–4.55
times greater, respectively than those in other 4 soil parent materials,
which suggests that lithological geochemistry greatly affected the
concentration of PTEs in the soils. Furthermore, concentration of Pb in
granitic soils was 36.76mg/kg, which was much higher than that in
other soil parent materials. The concentrations of As and Cd in soils of
metamorphic area were 19.76mg/kg and 0.10mg/kg, which were 5–8

and 1.5–2.4 times higher than those in other parent material soils, re-
spectively. Although CV values (< 100%) for Co, Cr, Cu, Pb and Zn
concentrations were relatively low, those for As, Cd and Hg in 4 parent
materials were higher than 100% except in the basaltic soil, which
suggests that there exited other impact facts besides of soil parent
materials in some areas.

The classic empirical methods eliminating outliers were used to
respectively calculate the baseline concentrations of PTEs for the 5
individual parent materials. As shown in Table S1, baseline values for
different soil parent materials were significantly different. Generally,
values of PTEs in basaltic area are high but low in Quaternary area. The
values for Co,Cr,Cu, Zn, Cd and Hg in basaltic area were higher than
those in other lithological areas, and times respectively were of
7.30–28.64, 6.70–17.19, 4.22–14.69, 2.30–5.62, 1.27–2.03 and
1.55–1.89. The value of As in the metamorphic soil was of 4.84–7.03
times higher than those in other lithological areas. Pb background value
in the granite topsoil was 1.22–2.32 times larger than those in other
lithological areas. So, it can be concluded that the type of soil parent
material has a great impact on the baseline values of PTEs.

3.2. PTEs concentration in the subsoil

PTEs concentration in the subsoil could be referred to the nature of
the original parent materials, and they are seldom influenced by human
activities (Reimann et al., 2001). Commonly, PTEs concentrations and
distribution in the subsoil represent the lithogenic background.

The box-plots and histograms of PTEs in subsoils are respectively
exhibited in Fig. 3 and Fig. S3. In the study area, Cr (65.24 mg/kg) is
characterized by the highest mean values (Fig. 3), followed by Zn
(58.87 mg/kg), Pb (29.15mg/kg), Cu (19.97 mg/kg), Co (12.89mg/
kg), As (5.53 mg/kg), Cd (0.065mg/kg) and Hg (0.029mg/kg). Except
for Cd and Hg, the concentrations of other PTEs in the subsoil are lower
than those in the topsoil. Similar to that in the topsoil, most of the PTEs
(As, Pb, Zn, Cd, Hg) exhibited a log-normal distribution while Co, Cr
and Cu show a bimodal trend (Fig. S3). As summarized in Table S1, the
mean concentration of Co (52.46 mg/kg), Cr (234.41 mg/kg), Cu
(74.49 mg/kg), Zn (111.25mg/kg) and Hg (0.047mg/kg) in basaltic
soils were 5.55–7.94, 4.23–6.13, 3.47–6.97 1.72–3.47 and 1.68–1.96
times higher respectively than those in other lithological areas. Con-
centration of Pb (36.76mg/kg) in granitic soils was of 1.20–2.32 times
larger than those in other lithological soils. Furthermore, the content of
As (15.7 mg/kg) and Cd (0.107mg/kg) in the metamorphic soils were
of 3.4–6.1 and 1.6–2.7 times respectively higher than those in other
lithological soils.

Usually, the values in the topsoils are higher than those in subsoils
due to the superimposed influence of rock-weathering and human ac-
tivities input on surficial media (Reimann et al., 2001). In this case, as
presented in the Table S1, background values of the selected elements
(except for Cd and Hg) in the subsoil were generally higher than the

Fig. 2. Box-plot of PTEs concentrations in the topsoil (n, 8713). Fig. 3. Box-plot of PTEs concentrations in the subsoil (n, 2197).
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baseline values established from the topsoil. This peculiarity is probably
explained by the fact of the location and climate in Hainan Island
characterized by a typical tropical marine monsoon with rainy climate,
and the weathering in surface is strong enough to leach the topsoil
metals as described in Section 2.1.

3.3. Spatial distribution and CEF of PTEs

Topsoil reflects the complex interactions between atmosphere,
biosphere and lithosphere, while subsoil generally records the sole
contribution of the lithosphere to the surface geochemistry and can be
used to state the geogenic background level for elements (Reimann

et al., 2001). Distribution patterns of PTEs concentrations in topsoils
and subsoils (Fig. 4 & Fig. 5) were mapped. Particularly for Cd and Hg,
the sites of high values in the topsoil were distinctly different from that
in the subsoil. Presumably, some anthropogenic activities may affect
the spatial distribution of Cd and Hg in topsoil, which were obviously
different from others (Fig. S2). Many previous studies reported that Cd
and Hg in the soil of China were significantly related with the rapid
urbanization for decades (Sun et al., 2010). Furthermore, Hg pollution
in urban soil was very universal in China, which usually originated from
the fossil fuel combustion and atmospheric deposition (Wang et al.,
2003; Kuo et al., 2006).

Either in the topsoil or in the subsoil, spatial distribution of As, Co,

Fig. 4. Spatial distribution of As, Co, Cr, Cu, Pb, Zn, Cd and Hg in the topsoil.
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Cr, Cu, Pb and Zn was remarkably similar. Possibly, the spatial varia-
tion of their contents was primarily influenced by the distribution of
soil parent materials in the regional scale (Zhang et al., 2008). In most
of the areas, the mean concentration of As was lower than 50mg/kg
either in the topsoil or in the subsoil, while some higher values was
observed in the area of Mesozoic sedimentary rock. The concentrations
of Co, Cr, Cu and Zn in area of the basalt were distinctly higher than
those in other lithological areas. So, the accumulation of elements in
the soil mainly resulted from the pedogenesis from rocks, while the
later anthropogenic activities may influence the spatial variability of Cd
and Hg in the topsoil.

At the regional scale, the major influence factors on PTEs

distribution in the topsoil were variations in parent material of geology,
weathering and various anthropogenic sources (Reimann et al., 2001).
The majority of CEF values for most of PTEs, such as As, Co, Cr, Cu, Pb
and Zn, are mainly< 2 (Fig. 6). This result indicates that the main
source of them in the topsoil was mainly originated from soil parent
materials without potential pollution in the study area, expecting a few
sites for As. For Cd and Hg, CEF values in some sites is higher than 2
but< 5, suggesting that Cd and Hg posed a moderate potential con-
taminate at some areas. The relative low CEF values for As, Co, Cr, Cu,
Pb and Zn may be due to strongly weathering resulted in leaching a
large number of elements in the topsoil without anthropogenic input
pollution. In contrast, the relatively high CEF values for Cd and Hg

Fig. 5. Spatial distribution of As, Co, Cr, Cu, Pb, Zn, Cd and Hg in the subsoil.
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manifest that topsoils may be contaminated by human activities from
sites to sites (Fig. 1B).

3.4. Pearson correlation analysis

PTEs in the topsoil show a certain inheritance from the subsoil. To
investigate their relationship, Pearson's correlation analysis was con-
ducted and the results of correlation coefficients were listed in Table 1.
A significantly positive correlation was respectively found for As, Co,
Cr, Cu, Pb and Zn at significance level (correlation coefficient between

0.51 and 0.79, P < 0.01), which suggests that these metals in topsoil
mainly inherited from the subsoil (geological background) and were
seldom disturbed by human activities or other input sources. However,
in all kinds of rocks area, either Cd or Hg in the topsoil does not sig-
nificant correlate with that in the subsoil (Table 1), which indicate Cd
and Hg in the topsoil were possibly affected by human activities, such
as vehicle emissions, industrial and agricultural activities at some areas
(Fig. 1B).

Fig. 6. Spatial distribution of CEF values for PTEs in the soil.
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3.5. Multivariate analysis of variography for PTEs in topsoils of granitic
area

In this case, variogram analysis was carried out to further confirm
above discussion. Since granite is the most widely distributed lithology
in Hainan Island (Fig. 1), the features of the semivariograms for As, Co,
Cr, Cu, Pb, Zn, Cd and Hg in topsoils of granitic area were selected
representatively and summarized in Table 2. It appears that the semi-
variograms parameters (the best fit model types, nugget, sill, effective
range and nugget to sill ratio) are different for the 8 PTEs.

Of which, As, Co, Cr, Cu, Pb and Zn were characterized by relatively
low nugget to sill ratio (5.8–24.5%) and long effective range
(75,200m–132,247m). These metals were all best-fitted to the ex-
ponential model (Fig. 7) with relatively high coefficient of determina-
tion (0.752–0.972). As shown in Table 2, the strong spatial dependence
is found for As, Co, Cr, Cu, Pb and Zn in the topsoil. The continuous
variation with a large effective range indicates the continuity of the
spatial distribution of PTEs. It is well known that Cr and Co are typical
lithogenic elements. The mean concentrations of Pb and Zn in the
topsoil was almost completely closed to their corresponding back-
ground value (Table S1), which suggest elements in the topsoil mainly
originated from the lithogenic source without obvious human activities
input (Gilg et al., 2006). Evidently, the spatial variability of As, Co, Cr,
Cu, Pb and Zn were mainly affected by intrinsic factors, in which the
parent material and subsequent pedogenic process were dominant in-
fluence factors on elements (Micó et al., 2006; Rodríguez et al., 2008).

As shown in Fig. 7 and Table 2, Cd and Hg show relatively high ratio
of nugget to sill (75.6%–77.2%) and small effective range
(9100m~14,174m) while fitted to the exponential model. The weak
spatial dependence for the Cd and Hg suggests that the spatial dis-
tribution of the two elements was affected by extrinsic factors, such as
traffic or other human activities. Declaring briefly, there might exit
small scale correlation appeared at intervals less than the distance be-
tween sampling sites, which cannot be detected with the dataset in this
case. Through semivariogram analysis, the spatial variations of PTEs in
the topsoil show two distribution patterns at the regional scale, intrinsic
(As, Co, Cr, Cu, Pb and Zn) and exogenous (Cd and Hg) variability.

These results agree with the distribution patterns and CEF values as
discussed above.

3.6. Multivariate compositional data analysis for the topsoil

Classical compositional and robust compositional biplot analyses
were performed on untransformed and log-transformed (ilr-trans-
formed and clr-backtransformed) subsoil and topsoil data sets to reveal
the compositional structure of the investigated variables (natural
groupings, correlation) and explain the compositional variability as
much as possible by using principal components.

The first two principal axes of the classical biplot based on topsoil
raw-data explain 64.42% cumulative total variability (PC1: 42.28%,
PC2: 22.14%) (Fig. 8A). The direction of parts (variables) and their
coefficients (loadings) are strongly biased toward two distinct associa-
tions of elements which are totally uncorrelated proven by the almost
right angle between the variable axes (Fig. 8A). One group includes Co,
Cr, Cu and Sc and all of them have similar positive loadings
(0.44–0.46). They may be related to the presence of mafic rocks (basalt)
because the scores of samples from soils over basalt parent material are
all distributed around this group. The other association is composed of
As, Pb, Cd and Hg and they all have negative loadings in the PC2 axis.
The highest negative loadings are related to Pb and Cd (−0.54,−0.55),
the smallest one (−0.33) belongs to Hg (Fig. 8A). This group is not
unambiguously associated with one typical lithology but granite and
metamorphic samples with high dispersion are mainly concentrated
around these elemental axes. In general, these elements are more en-
riched in granites and felsic rocks compared to mafic and ultramafic
rocks (Wedepohl, 1978; Fergusson, 1990; Ottensen et al., 2013). Hg and
Cd are deemed to be influenced by anthropogenic contamination in the
study area, but the classical biplot based on the raw-data is unable to
capture it. Zn is located separately and might indicate a transition
character between the two large groups of elements (Fig. 8A). The
classical PCA biplot does not capture the real compositional structure
and relations between the variables due to the presence of outliers and
the strong bias toward the large parent material groups (e.g. granite). In
addition, the data structure is distorted which is indicated by the curve-

Table 1
Pearson correlation coefficients for PTEs between in the topsoil and in the subsoil of 5 lithological areas.

Elements Pearson correlation coefficients

Quaternary soils Basalt soils Sedimentary rocks soils Granite soils Metamorphic rocks soils

As 0.68⁎⁎ 0.77⁎⁎ 0.58⁎⁎ 0.63⁎⁎ 0.64⁎⁎

Co 0.79⁎⁎ 0.58⁎⁎ 0.57⁎⁎ 0.56⁎⁎ 0.55⁎⁎

Cr 0.73⁎⁎ 0.72⁎⁎ 0.70⁎⁎ 0.51⁎⁎ 0.53⁎⁎

Cu 0.75⁎⁎ 0.77⁎⁎ 0.61⁎⁎ 0.58⁎⁎ 0.62⁎⁎

Pb 0.63⁎⁎ 0.55⁎⁎ 0.54⁎⁎ 0.66⁎⁎ 0.52⁎⁎

Zn 0.65⁎⁎ 0.62⁎⁎ 0.53⁎⁎ 0.53⁎⁎ 0.53⁎⁎

Cd 0.38⁎⁎ 0.39⁎⁎ 0.16⁎ 0.34⁎⁎ 0.10⁎

Hg 0.25⁎ 0.17⁎ 0.12⁎ 0.12⁎ 0.05

⁎⁎ Correlation is significant at the 0.01 level.
⁎ Correlation is significant at the 0.05 level.

Table 2
The parameters and the best fitted variogram models for PTEs in granite soils.

Elements Best fit model Nugget (C0) Sill (C0+C) Range (m) C0/(C0+C) R2 RSS

As Exponential 0.251 1.033 75,200 0.243 0.937 9.303E−03
Co Exponential 0.035 0.553 123,112 0.058 0.752 0.0232
Cr Exponential 0.34 1.39 132,247 0.245 0.972 0.0107
Cu Exponential 0.105 0.436 114,074 0.241 0.884 4.556E−03
Pb Exponential 0.048 0.201 132,172 0.239 0.873 1.805E−03
Zn Exponential 0.055 0.252 124,024 0.202 0.964 2.433E−04
Cd Exponential 0.0037 0.0048 9100 0.772 0.886 4.046E−07
Hg Exponential 0.21 0.278 14,174 0.756 0.838 4.532E−03
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shaped configuration of factor scores which hinder to reveal their
compositional behavior.

In contrast, the first two principal axes of the robust PCA biplot
based on the log-transformed (ilr-transformed and clr-backtransformed)
topsoil data set captures 72.38% total cumulative variability (PC1:
44.13%, PC2: 28.25%) which almost 10% higher than the classical
one's (Fig. 8B). The robust biplot is less contaminated by outliers; hence
the real relations between compositional parts can be clearly studied.
The biplot enhances and separates much better the different soil parent
materials and their related elemental associations. The Mesozoic sedi-
ments are the most representative samples and they show the least
element variability because their scores are all located at the intersec-
tion of the two principal axes (Fig. 8B). The highest factor scores
(outliers) belong to samples over granite and basalt parent materials
showing their high compositional variance in terms of the 9 in-
vestigated elements.

The highest compositional variability is related to As element based
on its highest negative loading (−0.75) on the PC1 axis (Fig. 8B). The
CV (Coefficient of Variation) of As exceeded 100% both in case of
subsoil and topsoil samples. Arsenic belonged to the element associa-
tion of Cd, Hg and Pb in the classical biplot, but the robust method

clearly separates it. The highest As concentration was measured in soils
over metamorphic parent material. The factor scores of samples from
soils over metamorphic rocks are concentrated all around the axes of As
which confirms the strong lithological control on As distribution
(Fig. 8B). However, the highest loading of As might be also related to its
changeable mobility in surface environment influenced by pH, Eh, the
presence of organic matter, clay minerals and secondary iron-oxy-
hydroxides (Kabatapendias, 2010; Reimann and Garrett, 2005;
Tarvainen et al., 2013). It can accumulate under alkaline environment
(pH: 7–9) in strongly weathered ‘terra rossa’ soils but low pH and Eh
conditions favors its mobility (Kabatapendias, 2010). However, we
cannot exclude the anthropogenic contamination as a contributor to its
variability especially in the central urbanized area of Hainan Island
(CEF, 2–5).

Cd, Hg and Pb indicate a second group with high positive loadings
on the PC1 and PC2 axes (Fig. 8B). The highest and lowest loadings are
related to Pb (PC1: 0.38, PC2: 0.36) and Hg (PC1: 0.12, PC2: 0.22),
respectively. The variation of these elements is also influenced by li-
thological control, especially in case of Pb whose concentration was the
highest over granite parent material. In case of Cd and Hg distribution,
we demonstrated a superposition of anthropogenic contamination on

Fig. 7. Experimental variogram and the best fitted variogram models for PTEs in topsoils of granitic area.
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lithological control proven by their higher topsoil concentration with
respect to subsoil, different spatial pattern for subsoil and topsoil, large
nugget to sill ratio (> 75%) and their low Pearson correlations
(R < 0.4) between subsoil and topsoil data. The highest topsoil/subsoil
concentration ratios were reported for Cd, Pb and Hg in the Europen
FOREGS (Forum of European Geological Survey) data set (Salminen
et al., 2005). It was explained by the combination of anthropogenic
contamination (e.g. smelting industry, traffic), the higher organic
matter contents (e.g. organic compounds: Cd, Hg) in surface topsoil,
repeated reprecipitation (e.g. Cd) and rainfall control (e.g. Hg). This
group of elements may indicate the anthropogenic contamination factor
(e.g. heavy traffic) which was superimposed on lithological control of
granite and metamorphic parent materials. This might be confirmed by
their similar positive loadings both on the PC1 and PC2 axes (Fig. 8B).
In case of Pb, the lithological control (granite parent material) was
much more enhanced proven by its higher subsoil concentration.

The third group is composed of Co, Cr, Cu and Sc and represented by
strong negative loadings along the PC2 axis (Fig. 8B). They are the
antithetic elements of Cd, Pb and Hg. The highest and smallest loadings
are related to Cr (−0.52) and Sc (−0.2), respectively. The biplot

clearly distinguishes the important lithological control on this group,
because factor scores of samples deriving from basalt parent material
are located all around these elements (Fig. 8B). All of them indicate the
presence of mafic parent materials which are generally enriched in
these elements during early magmatic fractionation due to their high
compatibility (Reimann et al., 2014). This group reflects geogenic
control on spatial distribution of this element association. Zn is a
transitory element between the two main large elemental associations
(Group 2 and 3) (Fig. 8B). They have higher concentration in subsoil
than in topsoil and its CEF values were below 2; hence its spatial
variability is mainly governed by geogenic factors. Zn is not related to a
specific soil parent material and its transition character might be ex-
plained by its less affinity to a particular lithology and its different
mobility with respect to other elemental associations.

3.7. Multivariate compositional data analysis for the subsoil

The classical and robust PCA biplot analyses performed on subsoil
data enhance much better the geogenic factors (e.g. soil parent mate-
rial) governing the spatial variability of the compositional data set.

Fig. 8. The compositional classical biplots of raw topsoil and subsoil data (A, C) and the robust biplots of log-transformed topsoil and subsoil data (B, D).
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Subsoil data are less affected by anthropogenic contamination and
weathering; hence they reflect the geology underneath (Reimann et al.,
2001). The classical PCA biplot for subsoil raw data reveals similar
features to those depicted by topsoil data set. The first two axes explain
62.85% cumulative total variability (PC1: 41.33%, PC2: 21.52%).
However, the classical biplot is strongly biased toward the same two
groups of elements (Group1: Co, Cr, Cu, Sc; Group2: As, Cd, Pb) as was
in the case of topsoil data and the factor scores are heavily distorted and
have curve-shaped configuration preventing us from seeing the real
compositional structure (Fig. 8C). The magnitude of loadings is similar,
the only difference is that Hg has been removed from the Group2 and
placed closer to the Group1 elements (Fig. 8C).

In contrast, the robust PCA biplot based on log-transformed subsoil
data “opened” the real data structure and its two principal axes explain
higher (72.29%) cumulative total variability (PC1: 42.04%, PC2:
30.25%) (Fig. 8D). The same groups of elements with similar magnitude
of loadings can be observed on the robust PCA biplot as we could see in
case of topsoil data (Fig. 8D). This means that the main governing factor
for compositional elemental associations is the soil parent material in
the Hainan Island. Factor scores are also similar to those of topsoil; the
most representative samples with smallest variability derive from soils
over Mesozoic sedimentary rocks. The highest factor scores are related
to samples from basaltic soil because they are the farthest from the
intersection of two main principal axes (Fig. 8D). The highest varia-
bility represented by As with the highest positive loading (0.85) on the
PC1 axis. They are mainly surrounded by samples from soils over me-
tamorphic parent material. The second group contains Cd, Hg and Pb
and they were related to the superposition of lithological and anthro-
pogenic effect (Fig. 8D). However, the similar loadings and natural
grouping on the robust topsoil and subsoil biplots suggest a stronger
lithological impact on their spatial distribution. The third group is re-
presented by the indicator elements of mafic rocks (Co, Cr, Cu and Sc)
which are antithetic with Cd, Hg and Pb. They have positive loadings on
the second principal axes and related to basalt parent material
(Fig. 8D). Zn is displayed as a transitory element, antithetic with As
which has negative loading on the PC1 axes. Its transition character
cannot be explained by its less affinity to a particular lithology and its
different mobility with respect to other elemental associations
(Fig. 8D).

4. Conclusions

In Hainan Island, the element concentrations of As, Co, Cr, Cu, Pb
and Zn in the topsoil were slightly lower than those in the subsoil, while
Cd and Hg were different. Spatial distribution patterns of As, Co, Cr, Cu,
Pb and Zn concentration in the topsoil are remarkably similar to those
in subsoil. The values of CEF for Cd and Hg are between 2 and 5 in soil
profiles, suggesting that superposition of anthropogenic inputs on soil
parent materials. The positive relationship (coefficients, 0.51–0.79) was
found for PTEs between the topsoil and the subsoil in all kinds of li-
thology, indicating the dominant impact of soil parent materials. The
strong spatial dependence for As, Co, Cr, Cu, Pb and Zn by semivario-
grams analysis suggests that their variables were mainly resulted from
intrinsic variability, which refers to soil parent materials associated
with geological rocks. On the other hand, exogenous variability may be
superposed on Cd and Hg which refers to anthropogenic inputs.
Multivariate compositional data analysis was performed for PTEs both
in the topsoil and in the subsoil, which were divided into four groups in
the topsoil: the first of Cd, Hg and Pb, the second of Co, Cr, Cu and Sc,
the third of As and the forth of Zn. All of them were superposed by
lithological or anthropogenic effect.
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Fig. S1, The spatial distribution of Sc in the topsoil and subsoil;
Table S1, summary statistics of PTEs in the topsoil and in subsoil based
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