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A B S T R A C T

A fast and accurate source location estimation is the foundation for passive seismic processing and interpreta-
tion. Waveform-based location methods become more and more popular for analysis of both natural and induced
seismicity. We utilize stochastic optimization algorithms to speed up microseismic location. Two waveform-
based location methods (i.e. diffraction stacking and cross correlation stacking) are adopted to test the perfor-
mance of three algorithms (i.e. particle swarm optimization, differential evolution, and neighbourhood algo-
rithm). In order to enhance the algorithmic performance, we propose a parameter tuning workflow which
consists of two types of repeated tests. One type is multiple independent tests for a single event and the other
involves tests of multiple events. The success rate, speedup, location uncertainty and bias are investigated to
assess the algorithmic performances. We apply the workflow to a field dataset of mining induced seismicity and
obtain preferential algorithm(s) with optimized ranges of control parameters. Synthetic tests are also conducted
to demonstrated the feasibility of the proposed parameter tuning workflow. Given the two imaging operators,
differential evolution is demonstrated to be the preferential one accounting for both algorithmic robustness and
efficiency. Meanwhile, the workflow also examines the characteristics of different imaging operators. Cross
correlation stacking proves to be simpler and more robust than its counterpart. Though the workflow is de-
veloped for microseismic location, it can also be adapted for other seismic inversion problems (e.g., source
mechanism inversion) and ensure the algorithmic robustness and efficiency.

1. Introduction

Seismic location problem is a classic inverse problem in geophysics
and seismology. A fast and accurate source location estimation is fun-
damental for analysis of both natural and induced seismicity. Take
shale gas production as an example, both field and laboratory studies
have shown hydraulic fracturing could induce a large amount of mi-
croseismic/acoustic emission events (Maxwell, 2014; Shapiro, 2015;
Lyu et al., 2018a, 2018b). Microseismic monitoring is now a basic tool
for reservoir monitoring and characterization (Maxwell, 2014; Grechka

and Heigel, 2017; Li et al., 2019). The temporal and spatial distribution
of microseismic events is used to delineate the geometry and evolution
of subsurface fractures, thus source location is the most fundamental
procedure of microseismic monitoring. Due to the low signal-to-noise
ratio (SNR) and large amounts of microseismic data, waveform- or
migration-based location methods have been proposed and applied in
different scales of seismology, such as tectonic tremor and earthquake
(Kao and Shan, 2004; Drew et al., 2013; Grigoli et al., 2016; Poiata
et al., 2016), mining induced seismicity (Grigoli et al., 2014; Hassanil
et al., 2018), and microseismic monitoring in reservoirs (Duncan and
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Eisner, 2010; Zeng et al., 2014). Waveform-based methods are modified
from migration techniques in exploration seismology, they locate the
source by focusing or back-projecting the waveforms into discrete grid
points with a certain imaging or migration operator, which comprises
related traveltime information. Moreover, waveform-based methods do
not require phase picking and can detect more weak events due to the
advantage of waveform stacking (e.g. Gajewski and Tessmer, 2005;
Gajewski et al., 2007; Grigoli et al., 2018).

However, a potential disadvantage of waveform stacking is the re-
latively large computational effort, especially for surface monitoring
with large arrays and large target zones (Pesicek et al., 2014; Xue et al.,
2015; Li et al., 2017). Actually, seismic location is a classical optimi-
zation problem. For waveform-based methods, the imaging function is
complex and its smoothness depends on many factors, such as the
imaging operator, velocity model, SNR, and receiver geometry, etc. In
general, the imaging function has local extrema and a decent initial
model cannot be provided, thus conventional gradient-based optimi-
zation algorithms are not very suitable. Fortunately, stochastic opti-
mization algorithms are found to be feasible for the non-linear location
problem (e.g. Ružek and Kvasnička, 2001), and improve the con-
vergence rate to the global maximum and accuracy.

Stochastic algorithms can be classified as global optimization al-
gorithms due to the ability to search the extremum over all the search
space, though they are not guaranteed to converge to the global op-
timum consistently. Some of stochastic algorithms are inspired by
natural laws and empirical principles. These algorithms can be cate-
gorized into evolutionary algorithms (e.g. genetic algorithm (GA)),
swarm intelligence (e.g. particle swarm optimization (PSO)), simulated
annealing (SA), and artificial neural network (ANN), etc. (e.g. Yang,
2010). Several stochastic algorithms have been proven to be effective
for solving complicated geophysical problems. For example, Kennett
et al. (2000) utilized the neighbourhood algorithm (NA) for both hy-
pocenter and source mechanism inversion, and obtained rapid and ef-
fective results of a field event. Shaw and Srivastava (2007) reported the
effectiveness of PSO in multiparameter inversion of geophysical data.
Walda and Gajewski (2017), Xie and Gajewski (2017) utilized differ-
ential evolution (DE) to determine common-reflection surface (CRS)
attributes. Pei et al. (2009), Zhang et al. (2014), and Tan et al. (2018a)
applied SA, DE, and NA to invert microseismic velocity models, re-
spectively. Maity et al. (2014), Maity and Salehi (2016) proposed and
applied a hybrid ANN based workflow for first arrival picking of mi-
croseismic data. Luu et al. (2018) proposed a competitive PSO to escape

from local extrema, and applied it in traveltime tomography associated
with induced seismicity. Recently, several studies have successfully
incorporated stochastic algorithms into microseismic location. Oye and
Roth (2003) applied NA in 3D seismic location using P- and S-wave
travel times for hydrocarbon reservoirs. Song et al. (2013) studied the
DE algorithm along with Bayesian theory to improve the location ac-
curacy and stability. Sheng et al. (2014) presented a combined algo-
rithm of PSO and DE to overcome the side effects of inaccurate first
arrival time. Lagos et al. (2014), Lagos and Velis (2018) implemented
very fast simulated annealing (VFSA) and PSO in picking-based mi-
croseismic location, while Brunini et al. (2017) demonstrated the su-
periority of DE regarding location uncertainty and accuracy compared
with VFSA and PSO. Wuestefeld et al. (2018) evaluated the perfor-
mance of full grid search (FGS), OcTree, SA, and DE in locating syn-
thetic microseismic events and found, that DE generally worked better
and only FGS could provide the correct location in most cases. Besides,
stochastic algorithms are also incorporated into waveform-based loca-
tion method. Gharti et al. (2010) successfully incorporated DE into an
envelope stacking-based method. Zimmer and Jin (2011) compared
three stochastic algorithms (i.e. ABC, SA, and DE) in locating hydraulic
fracturing-induced microseismicity and demonstrated that DE had the
best overall performance when considering different datasets. Pesicek
et al. (2014) and Verdon et al. (2017) utilized covariance matrix
adaptation evolution strategy (CMA-ES) and NA in microseismic loca-
tion, respectively. Li et al. (2017) analyzed the performances of PSO
with two stacking operators and showed that it could largely improve
the computational efficiency of waveform-based location methods.

Due to the stochastic nature of these algorithms, there is no guar-
antee that they will eventually converge to the global extremum. A
common practice to alleviate this issue is parameter tuning for in-
dividual methods and datasets. This process helps to provide good va-
lues of parameters before running the algorithm. In fact, an extensive
study of parameter tuning of stochastic algorithms for microseismic
location is still missing. In this work, we aim to select an optimal sto-
chastic algorithm along with optimized tuning parameters, which have
the best comprehensive performance, in waveform-based location
methods. Parameter tuning of three algorithms, namely PSO (Kennedy
and Eberhart, 1995), DE (Storn and Price, 1997), and NA (Sambridge,
1999), for diffraction stacking (DS) and cross correlation stacking (CCS)
are conducted. Then, the performance of different algorithms with
different parameters for a certain location method are compared and
analyzed. Meanwhile, the characteristics and performances of different

Nomenclature

GA Genetic algorithm
PSO Particle swarm optimization
SA Simulated annealing
VFSA Very fast simulated annealing
ANN Artificial neural network
NA Neighbourhood algorithm
DE Differential evolution
FGS Full grid search
CMA-ES Covariance matrix adaptation evolution strategy
SNR Signal-to-noise ratio
CRS Common-reflection surface
DS Diffraction stacking
CCS Cross correlation stacking
STA/LTA Short-term-average to long-term-average
NASD Normalized average standard deviation
NAF Normalized average fitness
MW Moment magnitude
ML Local magnitude

SDS Diffraction stacking value
SCCS Cross correlation stacking value
u Origin time
C Input waveform
t T,max max Length of time samples
N Number of receivers

Dirac delta function
x Source position vector x y z( , , )
Vp P-wave velocity
w Inertia weight
c c,1 2 Acceleration constants
CR Crossover parameter
F Differential weight
nr Number of resampled Voronoi cells
NP Size of population/candidates
NG Number of generations/iterations
SR Success rate
TF Computation time of full grid search
TO Computation time of the optimization algorithm
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imaging operators are revealed through the parameter tuning process as
well. Our tests show that the proposed parameter tuning workflow can
provide preferential algorithm(s) with optimized control parameters.
Among the three algorithms, DE is demonstrated to be the preferential
one, accounting for both algorithmic robustness and efficiency.

2. Theory and method

2.1. Waveform-based location methods

Waveform-based methods locate the source by focusing or back-
projecting the waveforms with a certain imaging operator, which re-
quires traveltime information. We study diffraction stacking (DS) and
cross correlation stacking (CCS) in this work. DS makes use of the one-
way traveltime, while CCS stacks the cross correlation waveforms along
differential traveltime curves (e.g. Gajewski et al., 2007; Li et al.,
2018a). The imaging functions of DS and CCS are shown in eq. (1),
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where SDS and SCCS are DS and CCS values, t0 is the origin time, u C, are
the input waveforms and the corresponding cross correlation wave-
forms, t T,max max are the length of their time samples, N is the number
of receivers, is the Dirac delta function and i x, is the traveltime for the
considered velocity model from source position x to receiver i. It is
worth noting that the imaging function of CCS is independent on the
origin time t0, while four variables x y z t( , , , )0 are involved in DS.
Therefore, CCS is supposed to have better convergence ability than DS.

2.2. Stochastic optimization algorithms

Particle swarm optimization (PSO) was firstly proposed by Kennedy
and Eberhart (1995). It is a global optimization algorithm based on

Fig. 1. Parameter tuning workflow of optimization algorithm for microseismic location.
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swarm intelligence. PSO was originally inspired by the social behavior
in a flock or swarm of birds and fishes searching for food. The cognitive
knowledge and social behavior provide an evolutionary advantage by
guiding the movement of the entire swarm from disorder to order, and
finally to an optimal solution. There are four control parameters of
standard PSO (Shi and Eberhart, 1998): inertia weight w, two accel-
eration constants c1 and c2, and the number of particles NP.

Differential evolution (DE) was proposed by Storn and Price (1997)
and can be classified as an evolutionary algorithm. DE consists of four
major operations: initialization, mutation, crossover, and selection, and
three control parameters: crossover parameter CR, differential weight
F , and size of population NP. Different from other evolutionary algo-
rithms, DE adopts a simple difference-based mutation operation and a
one-to-one competing strategy, which reduce the complexity of genetic
operations, but retain the global search capability and have better
convergence and stability.

Neighbourhood algorithm (NA) was proposed by Sambridge (1999)
as a distinct stochastic algorithm for geophysical inversion. The main
idea of NA is the self-adaptive sampling of parameter space with Vor-
onoi cells, which is defined as the nearest region of one sample by a
particular distance measurement. In NA, the fitness value of a sample is
to the corresponding Voronoi cell, and an approximation of the misfit
function is yielded. There are only two control parameters of NA:
number of samples generated in each iteration NP, and number of re-
sampled Voronoi cells nr .

In general, stochastic optimization algorithms involve two iterative
procedures: exploration (diversification) and exploitation (intensifica-
tion), which are directly influenced by related control parameters
(Trelea, 2003; Yang, 2010). Exploration is the ability to diversify the
search globally within the problem space to find an optimum. Ex-
ploitation is the ability to intensify the search locally around a pro-
mising candidate solution to locate the optimum precisely.

Detailed descriptions and the pseudo-codes of the three stochastic
optimization algorithms for microseismic location are shown in
Appendix A.

2.3. Algorithm implementation

The waveform-based location problem can be stated as the fol-
lowing global optimization problem,

=
< <

S x y z t
subject to

x x
x x x

max{ ( )}, ( , , , ) ,
,

T
0

min max (2)

where S x( ) is the imaging function, x are the source parameters, in-
cluding spatial coordinates x y z( , , ) and origin time t0, x x,min max are the

lower and upper limits of x . When combined with microseismic loca-
tion, candidates in stochastic algorithms represent the potential
sources, the parameter vectors of candidates are the source parameters,
the fitness/objective function is the corresponding imaging function
S x( ), e.g. SDS or SCCS described in equation (1). More implementation
details can be found in Appendix A.

The control parameters influence the performance of the algorithm
(e.g. computational effort) dramatically. Although there are various
empirical guidelines on how to set these parameters, stochastic algo-
rithms are problem- and dataset-dependent. In general, two major ap-
proaches are utilized to set control parameters: parameter tuning and
parameter control. The former approach involves finding good values of
the parameters first and then running the algorithm using fixed values,
while the latter is to adapt the control parameters during the process of
optimization (Eiben et al., 1999). Though parameter control is more
flexible and self-adaptive, which is also close to the nature of optimi-
zation algorithms, it will introduce new parameters and more com-
plexity. Thus, we argue that fixed parameters obtained from parameter
tuning are effective for the low-dimensional location problem. Through
the tuning process, we can not only obtain an optimal algorithm along
with related parameters for the respective location method, but also
reveal the performances of different location methods.

In this work, we conduct the parameter tuning process as follows:
(1) obtaining the ranges of parameter values based on existing refer-
ences (e.g. Storn and Price, 1997; Sambridge, 1999; Das and Suganthan,
2011; Eiben and Smit, 2011) and preliminary tests; (2) parameter
tuning of the three algorithms (i.e. PSO, DE, and NA) for cross corre-
lation stacking (CCS) and diffraction stacking (DS), analyzing the per-
formance of each algorithm with different parameters; (3) comparing
the performance of DS and CCS with a common algorithm. Fig. 1 out-
lines the main processes of the parameter tuning workflow. In order to
fairly evaluate the performances (including robustness and efficiency)
of stochastic optimization algorithms, repeated tests are usually ne-
cessary to mitigate the stochastic nature. Here we conduct two types of
repeated tests. The first involves performing 100 independent tests for a
single sample event (as shown in Fig. 2c). The second involves locating
all the 100 events selected from the dataset. We investigate the success
rate (SR), computational efficiency, location uncertainty and bias in
order to assess the algorithmic performances. SR is defined as the
percentage of tests which find the true global extremum, and it denotes
the robustness or reliability of the algorithm. Computational efficiency
is denoted by speedup, which is defined by T T/F O, where T T,F O are the
computation time of FGS and the optimization algorithm, respectively.
A Jackknife test is used to estimate the location uncertainty of a sample
event. The event is located 100 times by removing two random stations

Fig. 2. (a) Monitoring geometry and top view of the 100 selected events, yellow reverse triangles are stations and red dots are events; (b) East-depth plane; (c) Band-
pass filtered vertical component of a sample event. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this
article.)
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at each time, and the standard deviation of Euclidean distance among
the 100 locations is taken as the location uncertainty. We can always
find ‘the true global extremum’ with full grid search (FGS). However, in
field application it does not necessarily corresponds to the true source
location. In this work, the location result of FGS is set as the reference to
investigate the location bias.

To simplify and clarify the analysis, a fixed number of generations/
iterations (NG) is selected as the convergence condition for all algo-
rithms. Thus, NG also needs tuning and the number of cost function
evaluations is also fixed when considering a certain population size.
Table 1 lists the control parameters of three algorithms studied in this
work. For PSO and DE, the computation time is proportional to NG
since computation time for each generation remains the same. Our
previous study has already shown that [0.4, 0.6] and [0.8, 1] are good
reference ranges of F and CR for both DS and CCS, and higher CR can
generally produce higher SR (Li et al., 2018b). Here we only study two
groups of F CR[ ] combinations, [0.5 0.5] and [0.5 0.9]. For NA, the
convergence speed is quite fast and the computation time for each
generation increases as the optimization process advances (see
Figs. 3–6). A large number of generations will lead to a large amount of
computation time and very low speedup. Moreover, NP in NA should be
proportional to nr(Sambridge, 1999). According to above considera-
tions, NA tests using =NG 100 and =NP 30 are omitted.

3. Field data example

In this section, we test above algorithms on a field dataset associated
with mining induced seismicity monitored by the HAMNET network
(Bischoff et al., 2010). The HAMNET network consists of 15 surface
stations. We select 100 weak events (ML magnitude=−0.8) from the
dataset for our study. Only P-waves in vertical components are con-
sidered in the location process. Fig. 2a and b shows the distribution of
surface stations and the 100 selected events, which are located by
traveltime inversion with a manual phase picking. Fig. 2c shows the
band-pass filtered vertical component of a sample event. Here we use
the short-term average to long-term average (STA/LTA) (Allen, 1978)
traces as the input waveforms to eliminate the side effects of polarity
changes. The calculation of STA/LTA traces is consistent with that in Li
et al. (2018a). The target imaging volume is 5 km×5 km×5 km with
a grid spacing of 50m. For diffraction stacking, we search the origin
time within a time window [0, 6]s with the interval of 0.02 s, which is
four times the sampling rate. A homogeneous velocity model of

=V 3.88P km/s is used to calculate the traveltime table, and this model
has been demonstrated to be a reasonable model for source location
(e.g. Li et al., 2018a). Complete results of SR, speedup and location
uncertainty are summarized in Appendix B.

3.1. Cross correlation stacking (CCS)

We first perform parameter tuning of three algorithms for CCS.
Tables 2 and 3 summarize partial results of the repeated tests of a single
event and 100 different events, respectively. Two types of repeated tests
show nearly consistent results, which imply the repeated test of a single
event can largely reflect the SR for events from the same dataset. For
CCS, all the three algorithms have very high success rate (SR) and can
locate the event(s) robustly. Here ‘robustly’ means the high consistency

of location results between full grid search (FGS) and the optimization
algorithm. The control parameters studied here (see Table 1 and Tables
B.6-B.7 in Appendix B) make little difference on SR, though small va-
lues of number of generation NG and size of population NP in particle

Table 1
Control parameters of the studied stochastic optimization algorithms.

PSO DE NA

NP [30 50 100 250 550 1000] [30 50 100 250 550 1000] [50 100 250 550 1000]
NG [30 50 100] [30 50 100] [30 50]
Other parameters

= =c c1 2 2 =w NG
0.7

1: (1 0.3)/ : 0.3
=F 0.5 =CR [0.5 0.9] =n [25 50]r

Fig. 3. SR and speedup correspond to =NG 30 of the single sample event. The
solid lines are the SRs and the histogram are the speedup.

Fig. 4. Convergence speed corresponds to = =NP NG( 50, 30) of the single
sample event. The solid lines are NASD and dashed lines are NAF.

Fig. 5. SR and speedup correspond to =NG 100 of the 100 events. The solid
lines are the SRs and the histogram are the speedup.
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swarm optimization (PSO) and differential evolution (DE) result in
some relatively low success rates.

Control parameters also affect the computational efficiency. We use
serial codes on a computer with six cores of Intel i7-8700 3.20 GHz and
8 GB RAM to evaluate the computation time, where the FGS is the re-
ference. It takes about 2.6 s for CCS to locate a single event with FGS.
The highest speedup of particle swarm optimization (PSO), differential
evolution (DE), and neighbourhood algorithm (NA) are 260, 260, and
13, respectively. Fig. 3 shows the SRs of =NG 30 for the 100 events
(solid lines), along with corresponding speedup (histogram). The
average speedup of PSO and DE for CCS is much higher than that of NA.
We also investigate their convergence speed through the 100 in-
dependent tests of the single sample event. Normalized average stan-
dard deviation (NASD) and normalized average fitness (NAF) of all the
candidates ( =NP 50) over 100 independent tests versus NG are plotted
in Fig. 4. All the three algorithms have close and good convergence
speed. It takes less than 20 generations to converge to the global ex-
tremum. This implies that the imaging function of CCS has good con-
vergence ability.

3.2. Diffraction stacking (DS)

Then we perform parameter tuning of the three algorithms for DS.
Tables 4 and 5 show partial results of the repeated test of a single event
and 100 different events, respectively. Similar to results of cross cor-
relation stacking (CCS), nearly consistent results from two types of re-
peated tests indicate the repeated test of a single event can largely re-
flect the SR for events from the same dataset. However, the three
algorithms have much lower SR than that of CCS, which is mainly
caused by the complexity of imaging function of DS. The SR of PSO
increases gradually with both NP and NG reaches 91% for the 100 field
events, while SR of NA is limited to about 20–30% for both types of
repeated tests. The low SR of NA suggests its weak exploration ability,
and there is no escaping strategy of NA when it gets trapped in local
extrema. Fortunately, DE (with = =F CR0.5, 0.9) still has SR of nearly
100% when =NG 100.

It takes about 88.9 s for DS to locate a single event with FGS. The
highest speedup of PSO, DE, and NA are about 20, 2000, and 20, re-
spectively. The average speedup of DE for is much higher than that of
PSO and NA. Similar to Figs. 3 and 4, SR, speedup, and convergence
speed of the three optimization algorithms for DS are depicted in Figs. 5
and 6. The three algorithms show distinct SRs and convergence speed.
Compared with CCS, the convergence speed of DS is slower due to the
additional variable, origin time t0. Though much more candidates

=NP( 550) are used here, it still needs about 40 generations for PSO
and DE to converge to the global extremum. NA has the highest con-
vergence speed, while it holds the lowest SR.

3.3. Comprehensive analysis

To further confirm the feasibility of these algorithms, a synthetic
event generated with the station layout in Fig. 2a and a layered velocity
model is relocated using the parameter ranges in Table 1. Detailed
descriptions of the synthetic event and the velocity model can be found
in Figs. 5 and 6 in Li et al. (2018a). Only strong S-waves in horizontal
components are utilized to locate this event. The results of synthetic
tests are basically consistent with those of field data examples (See
Tables B.6, B.8, B.10, B.11). Actually, field and synthetic examples in

Fig. 6. Convergence speed corresponds to = =NP NG( 550, 50) of the single
sample event. The solid lines are NASD and dashed lines are NAF.

Table 2
Results of SR (%) for CCS of a single event.

NP PSO DE NA

NG (w=0.7) NG (F= 0.5 CR=0.9) NG (nr= 50)

30 50 100 30 50 100 30 50

30 76 100 100 91 100 100 \ \
50 98 100 100 99 100 100 93 100
100 100 100 100 100 100 100 100 100
250 100 100 100 100 100 100 100 100
550 100 100 100 100 100 100 100 100
1000 100 100 100 100 100 100 100 100

Table 3
Results of SR (%) for CCS of 100 events.

NP PSO DE NA

NG (w=0.7) NG (F= 0.5 CR=0.9) NG (nr= 50)

30 50 100 30 50 100 30 50

30 81 100 100 93 100 100 \ \
50 98 100 100 98 100 100 97 100
100 99 100 100 100 100 100 100 100
250 99 100 100 100 100 100 100 100
550 100 100 100 100 100 100 100 100
1000 100 100 100 100 100 100 100 100

Table 4
Results of SR (%) for DS of a single event.

NP PSO DE NA

NG (w=0.7) NG (F= 0.5 CR=0.9) NG (nr= 50)

30 50 100 30 50 100 30 50

30 1 1 16 0 10 94 \ \
50 0 7 15 0 8 100 1 9
100 0 16 46 0 8 100 15 15
250 12 43 59 1 10 100 21 16
550 25 65 73 1 27 100 20 18
1000 47 70 72 1 42 100 25 23

Table 5
Results of SR (%) for DS of 100 events.

NP PSO DE NA

NG (w=0.7) NG (F= 0.5 CR=0.9) NG (nr= 50)

30 50 100 30 50 100 30 50

30 0 2 14 0 4 92 \ \
50 0 10 21 0 5 97 0 19
100 4 35 49 0 9 98 20 15
250 19 59 74 0 17 99 13 22
550 36 79 81 0 33 99 25 30
1000 65 83 91 0 35 100 29 21
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this work can be regarded as independent tests. The performance of
optimization algorithms for source location problem is dependent on
the complexity of the search space, but independent on that source
location is true/known or not.

The convergence performance is determined by the tradeoff be-
tween the two iterative procedures of the algorithm (i.e. exploration
and exploitation). This is illustrated in Figs. 5 and 6, where a large NG
promises the high SR (orange solid line in Fig. 5) of DE through a re-
latively slow convergence speed (i.e. an extensive exploration process,
orange solid line in Fig. 6), while the high computational efficiency of
DE (blue histogram in Fig. 5) is still guaranteed. The results also in-
dicate, that NG has a larger impact on the performance of DE than NP
(Li et al., 2018b). For PSO, the SR is improved significantly as the NP
(blue solid line in Fig. 5) and NG increase, while its speedup retains
steady. According to Table B.12 in Appendix B, the computation time is
influenced by both NP and NG of PSO for CCS, while it is only de-
pendent on NG for DS. This indicates that the additional computation
time from additional NP of PSO is important for cheap objective
functions as CCS (∼2.6 s), while it can be ignored for expensive ob-
jective functions like DS (∼88.9 s). For NA, the resampling strategy
results in high convergence speed but low SR for DS, which indicates
that the strong exploitation ability in NA deviates the solution to local
extremum.

Following above parameter tuning tests, we can select good control
parameters for these algorithms. According to results shown in
Appendix B, =w( 0.7) , = =F CR( 0.5, 0.9), and =n( 50)r are selected
for PSO, DE, and NA, respectively. = =NP NG( 50, 30),

= =NP NG( 550, 50) are used for CCS and DS, respectively. These
parameters are utilized to locate the sample event in Fig. 2c. The
imaging results of CCS and DS are shown in Figs. 7 and 8. The opti-
mization algorithm can improve the efficiency of waveform-based lo-
cation methods by approaching the source area quickly, while skipping
or abandoning most trivial imaging grids. The location uncertainty of
the sample event for CCS and DS are 83.57m and 378.59m, respec-
tively. The DS method has higher location uncertainty due to its extra
variable (origin time t0) compared with CCS. The uncertainties are ac-
ceptable when considering the dominant frequency (about 20 Hz) and
the spacing grid (50m). The three optimization algorithms along with
selected parameters are also tested for estimating the location un-
certainty. Comparing the results shown in Tables B.6, B. 8, B.13, a good
correlation can be found between SR and accuracy of location un-
certainty. High success rates of CCS correspond to consistent and stable
location uncertainty (about 80m), while relatively low success rates of
DS relate to inaccurate and disperse location uncertainty (ranges from
250m to 1600m). DE has the highest location stability among the three
algorithms.

Fig. 7. Imaging results of CCS. (a) FGS; (b) PSO; (c) DE; (d) NA. The imaging results are squared and normalized according to individual maximum values.
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Given the relatively low SR of PSO and NA for DS, location bias of
the two algorithms for the 100 events is studied. Based on analysis in
Section 3.3, = =NP NG( 550, 50) is a good choice for DS, =w( 0.7) and

=n( 50)r are selected for PSO and NA, respectively. The SRs corre-
sponding to PSO and NA are 79% and 30%. Fig. 9 shows the detailed
location results. The average location bias between FGS and PSO in
East-, North-, and Depth-axis is [44.0m, 24.5m, 173.5m], and the
overall average bias is 185.7m. The corresponding result of NA is
[121.0 m, 83.5m, 611.5m] and 643.9m. Higher SR of PSO naturally
yields a lower location bias (higher consistency). The largest bias is in
the depth direction, which results from the depth-origin time tradeoff of
DS. The distribution of seismicity swarm of PSO reserves well, while
that of NA is more scattered compared with results of FGS.

4. Discussion and conclusion

In this work, we conduct parameter tuning of three stochastic op-
timization algorithms, particle swarm optimization (PSO), differential
evolution (DE), and neighbourhood algorithm (NA), for two waveform-
based microseismic location methods. Stochastic optimization algo-
rithms can improve the efficiency of microseismic location and examine
(reveal) the performance of stacking operators. Our parameter tuning

tests have illustrated that the convergence performance (including ro-
bustness and efficiency) of stochastic optimization algorithms strongly
depends on the fitness or objective function. For cross correlation
stacking (CCS), the imaging function is relatively simple and smooth, all
the three algorithms can approach the global optimum fast, locate the
event(s) reliably and produce quite stable location uncertainty. In this
case, the control parameters make little difference. For diffraction
stacking (DS), the studied algorithms perform distinctively in many
aspects. PSO is average in terms of the overall convergence perfor-
mance. DE shows slow convergence speed but high computational ef-
ficiency. When control parameters are well selected, the success rate
(SR) of PSO and DE can exceed 90%, under the premise that the
computational efficiency is also ensured. NA has limited SR and
speedup, though its convergence speed is the best. To sum up, DE has
the best comprehensive performance among the three algorithms, and
is the preferential algorithm for both CCS and DS. It is important to
stress that stochastic algorithms are problem- or function-dependent.
For instance, NA has limited SR when incorporated with DS, but shows
high SR with CCS in our study.

The performance of optimization algorithms is not only fitness
function-dependent, but also data-dependent. Here we only investigate
the algorithmic aspect of source location with one field dataset. Many

Fig. 8. Imaging results of DS. (a) FGS; (b) PSO; (c) DE; (d) NA. The imaging results are squared and normalized according to individual maximum values.
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other issues, such as the SNR, the source-receiver geometry, the velocity
model, also affect the location result. For field microseismic monitoring
associated with hundreds or thousands of receivers in large surface
arrays, we can even save thousands of seconds for locating a single
event (Li et al., 2017). The studied stochastic algorithms, along with the
proposed parameter tuning workflow, are also suitable for source me-
chanism inversion and joint microseismic inversion. For instance, Tan
et al. (2018b) has successfully applied NA in source mechanism de-
termination for induced seismicity. An advantage of NA is that it in-
volves only two control parameters, which can be tuned more simply
and easily. Based on our workflow, we believe NA and other optimi-
zation algorithms will perform better. However, optimized parameters
from one problem or dataset are not recommended being directly ap-
plied to another one.

From an algorithmic point of view, the convergence performance is
determined by the exploration-exploitation tradeoff. Increasing the
number of candidates NP( ) and generations NG( ) can improve the
convergence robustness by enhancing the exploration ability, while it
decreases the computational efficiency by involving increased number
of fitness function evaluations. This can be also regarded as robustness-
efficiency tradeoff. Parameter tuning is supposed to control the ex-
ploration-exploitation tradeoff in an improved way, thus improve the
overall performance of optimization algorithms. In this work, we take
established stochastic optimization algorithms with limited ranges of
control parameters. There are many modified versions of these algo-
rithms available (e.g. Yang et al., 2007; Wathelet, 2008; Das and
Suganthan, 2011). It is probably impossible to obtain a set of universal
control parameters that work well in all cases. Following empirical
procedure and the proposed parameter tuning workflow, stochastic

optimization algorithms could be incorporated with microseismic lo-
cation more efficiently.
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Fig. 9. Location results of DS with PSO (a)(b) and NA (c)(d). Red dots are results with FGS, blue and green dots are results of PSO and NA, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

L. Li et al. Computers and Geosciences 124 (2019) 115–127

123

https://github.com/leileely/microseismic_stochastic
https://github.com/leileely/microseismic_stochastic
https://doi.org/10.1016/j.cageo.2019.01.002


Appendix A. Pseudo-codes of the three stochastic optimization algorithms for microseismic location

Algorithm 1: Particle Swarm Optimization (PSO) for microseismic location

1: Procedure PSO_ML w c c NP NG( , , , , )1 2
2: Initialize velocities vi and source parameters xi, where =i NP1,2,
3: Initialize personal best parameter vector Pi and global best parameter vector G
4: Calculate imaging function S x( )i
5: Find the best personal and global imaging value S Sx x( ), ( )pbest i gbest and the parameter vector P G,i
6: For <k NG
7: = + +w c r c rv v P x G x( ) ( )i

k
i
k

i
k

i
k k

i
k1

1 1
1 1

2 2 1 1 update velocities

8: = +x x vi
k

i
k

i
k1 update source parameters

9: If >S Sx x( ) ( )i pbest i

10: S Sx x P x( ) ( );pbest i i i
k

i update best personal imaging value and the parameter vector
11: End If
12: Update S x G( ),gbest k

13: End For

Algorithm 2: Differential Evolution (DE) for microseismic location

1: Procedure DE_ML F CR NP NG( , , , )
2: Initialize source parameters xi, where =i NP1,2,
3: Initialize personal best parameter vector Pi and global best parameter vector G
4: Calculate imaging function S x( )i
5: Find the best personal and global imaging value S Sx x( ), ( )pbest i gbest and the parameter vector P G,i
6: For <k NG
7: For <i NP
8: Pick three distinct numbers p p,1 2 and p3
9: Generate an integer L within P[1 ] P is the number of source parameters
10: If <rand CR or =j L rand is a random number within [0 1], j is the source parameter index

11: = + Fm x x x( )i
k

p
k

p
k

p
k

1 2 3 mutation and crossover, m is the competing population
12: else
13: =m xi

k
i
k

14: End If
15: If >S Sm x( ) ( )i i selection by one-to-one competing strategy

16: S Sx m P m( ) ( );pbest i i i
k

i
17: End if
18: End For
19: Update S x G( ),gbest k

20: End For

Algorithm 3: Neighbourhood Algorithm (NA) for microseismic location

1: Procedure NA_ML n NP NG( , , )r
2: Initialize source parameters xi, where =i NP1,2,
3: Calculate imaging function S x( )i
4: Determine the nr candidates with the maximum imaging value among all candidates generated so far
5: Generate NP new candidates by random walking in the nrVoronoi cells (NP n/ rcandidates in each cell)
6: + randx V V Vmin{ } ·(max{ } min{ })i nr nr nr rand is a random number within [0 1], V is the Voronoi cell space
7: Update the best global imaging value S x( )gbest and the parameter vector G
8: For <k NG
9: Repeat steps 3–7
10: End For

Appendix B. Complete results of SR and speedup in this work.

Table B.6
Results of SR (%) for CCS of a single field event.

NP PSO DE NA

NG (w=0.7) NG (w=1: (1-0.3)/NG:0.3) NG (F= 0.5 CR=0.5) NG (F=0.5 CR=0.9) NG (nr= 25) NG (nr=50)

30 50 100 30 50 100 30 50 100 30 50 100 30 50 30 50

30 76 100 100 99 100 100 66 100 100 91 100 100 \ \ \ \
50 98 100 100 100 100 100 79 100 100 99 100 100 99 100 93 100
100 100 100 100 100 100 100 92 100 100 100 100 100 100 100 100 100
250 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
550 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
1000 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
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Table B.7
Results of SR (%) for CCS of 100 field events.

NP PSO DE NA

NG (w=0.7) NG (w=1: (1-0.3)/NG:0.3) NG (F= 0.5 CR=0.5) NG (F=0.5 CR=0.9) NG (nr= 25) NG (nr=50)

30 50 100 30 50 100 30 50 100 30 50 100 30 50 30 50

30 81 100 100 99 99 100 57 100 100 93 100 100 \ \ \ \
50 98 100 100 98 100 100 82 100 100 98 100 100 100 100 97 100
100 99 100 100 100 100 100 96 100 100 100 100 100 100 100 100 100
250 99 100 100 100 100 100 99 100 100 100 100 100 99 99 100 100
550 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100
1000 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Table B.8
Results of SR (%) for DS of a single field event.

NP PSO DE NA

NG (w=0.7) NG (w=1: (1-0.3)/NG:0.3) NG (F=0.5 CR=0.5) NG (F= 0.5 CR=0.9) NG (nr= 25) NG (nr= 50)

30 50 100 30 50 100 30 50 100 30 50 30 50 30 50

30 1 1 16 2 4 3 0 0 6 0 10 \ \ \ \
50 0 7 15 1 12 8 0 0 4 0 8 3 13 1 9
100 0 16 46 5 17 31 0 0 3 0 8 8 9 15 15
250 12 43 59 25 48 57 0 0 4 1 10 9 14 21 16
550 25 65 73 55 57 67 0 0 14 1 27 17 22 20 18
1000 47 70 72 64 69 72 0 0 28 1 42 16 9 25 23

Table B.9
Results of SR (%) for DS of 100 field events.

NP PSO DE NA

NG (w=0.7) NG (w=1: (1-0.3)/NG:0.3) NG (F= 0.5 CR=0.5) NG (F= 0.5 CR=0.9) NG (nr= 25) NG (nr= 50)

30 50 100 30 50 100 30 50 100 30 50 100 30 50 30 50

30 0 2 14 1 1 6 0 0 6 0 4 92 \ \ \ \
50 0 10 21 1 9 15 0 1 3 0 5 97 7 9 0 19
100 4 35 49 8 19 36 0 0 5 0 9 98 11 10 20 15
250 19 59 74 28 51 71 0 0 10 0 17 99 14 12 13 22
550 36 79 81 70 81 81 0 0 14 0 33 99 16 20 25 30
1000 65 83 91 71 84 87 0 0 23 0 35 100 26 14 29 21

Table B.10
Results of SR (%) for CCS of a single synthetic event using only S-waves.

NP PSO DE NA

NG (w=0.7) NG (w=1: (1-0.3)/NG:0.3) NG (F= 0.5 CR=0.5) NG (F=0.5 CR=0.9) NG (nr= 25) NG (nr=50)

30 50 100 30 50 100 30 50 100 30 50 100 30 50 30 50

30 96 100 100 69 97 97 6 93 100 61 100 100 \ \ \
50 98 100 100 81 99 99 5 99 100 77 100 100 100 100 100 100
100 100 100 100 98 100 100 14 100 100 90 100 100 100 100 100 100
250 100 100 100 100 100 100 16 100 100 100 100 100 100 100 100 100
550 100 100 100 100 100 100 25 100 100 100 100 100 100 100 100 100
1000 100 100 100 100 100 100 61 100 100 100 100 100 100 100 100 100
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Table B.11
Results of SR (%) for DS of a single synthetic event using only S-waves.

NP PSO DE NA

NG (w=0.7) NG (w=1: (1-0.3)/NG:0.3) NG (F= 0.5 CR=0.5) NG (F= 0.5 CR=0.9) NG (nr= 25) NG (nr= 50)

30 50 100 30 50 100 30 50 100 30 50 100 30 50 30 50

30 2 15 20 1 3 27 0 0 0 0 0 68 \ \ \ \
50 3 19 32 0 10 25 0 0 0 0 0 78 4 12 1 11
100 13 35 34 0 29 37 0 0 0 0 0 76 9 11 17 33
250 50 45 63 9 44 35 0 0 0 0 0 84 21 20 31 32
550 54 67 71 34 56 54 0 0 0 0 0 86 16 24 34 42
1000 73 72 80 51 61 64 0 0 0 0 0 98 22 23 40 30

Table B.12
Speedup of three algorithms for CCS and DS.

NP CCS (∼2.6 s) DS (∼88.9 s)

PSO DE NA PSO DE NA

30 50 100 30 50 100 30 50 30 50 100 30 50 100 30 50

30 260.00 130.00 52.00 260.00 130.00 65.00 \ \ 21.17 13.07 6.68 2963.33 2222.50 1778.00 \ \
50 130.00 65.00 32.50 130.00 65.00 32.50 13.00 8.67 21.17 13.07 6.68 2222.50 1778.00 1270.00 20.67 12.70
100 65.00 37.14 20.00 52.00 32.50 15.29 6.50 2.89 21.17 13.07 6.68 1481.67 1111.25 683.85 18.91 10.98
250 28.89 17.33 8.67 16.25 9.63 4.81 1.44 0.58 21.17 13.07 6.68 683.85 423.33 222.25 13.07 6.35
550 13.68 8.39 4.19 4.91 2.92 1.46 0.35 0.14 21.17 13.07 6.68 197.56 120.14 76.64 5.63 2.48
1000 7.88 4.73 2.41 1.73 1.03 0.51 0.12 0.05 21.17 13.07 6.68 66.84 39.87 20.11 2.28 0.86

Table B.13
Location uncertainty of a sample field event with FGS and three optimization algorithms for CCS and DS.

NP CCS (83.57m) DS (378.59m)

PSO DE NA PSO DE NA

30 50 100 30 50 100 30 50 30 50 100 30 50 100 30 50

30 89.70 79.09 76.00 96.09 84.18 82.14 \ \ 1522.86 1650.22 1382.90 1480.13 835.44 326.14 \ \
50 81.37 78.31 85.67 84.06 82.14 84.51 79.76 89.55 1409.06 1296.82 1233.05 1412.18 885.58 242.69 1310.97 1119.94
100 81.84 84.51 80.29 84.71 80.58 80.52 79.50 82.20 1199.32 1298.45 1276.24 1363.00 834.21 249.57 1105.50 1093.89
250 87.51 83.31 83.33 86.13 84.56 81.60 76.55 81.08 963.13 987.37 1085.79 1304.54 796.03 276.22 897.61 923.56
550 83.57 80.46 81.70 84.48 81.76 90.12 91.58 80.20 771.91 725.13 781.34 1243.52 739.17 272.78 837.62 834.97
1000 80.65 82.79 82.36 82.43 91.61 83.70 82.72 84.26 721.26 587.58 652.19 1180.40 717.64 268.71 779.02 714.33
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