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A B S T R A C T

Abiotic methane (CH4) is today widely reported in gas seeps and hyperalkaline springs in ophiolites and peri-
dotite massifs characterized by low temperature continental serpentinization. Origin and distribution of this gas
have far reaching implications in microbiology, astrobiology and carbon cycle. We report an in-depth study of a
recently described abiotic CH4 seep occurring in shallow seafloor along the western coast of Elba Island,
Tyrrhenian Sea (Italy). The gas is characterized by stable C and H isotopic compositions of CH4 (δ13C∼−18‰;
δ2H∼−141‰) and a very low CO2 content that are typical of abiotic gas in continental ultramafic rock sys-
tems. Based on local geothermal gradients, the temperature of methane production is estimated to be below
100 °C. The isotope signature of methane is similar to that occurring in the Liguria region, about 200 km north of
Elba Island, where the same ophiolite unit exposed. A mantle CO2 component, suggested by relatively high
3He/4He ratios, has likely acted as CH4 precursor. The reconstruction of the geological-structural setting of Elba
ophiolite sequence highlighted that the seep occurs in correspondence with a faulted reverse limb of the antiform
of the ophiolite unit. The gas bearing fault forms a contact between mafic and ultramafic serpentinized rocks, as
typically observed in other continental seeps and springs related to ophiolites. Magmatic intrusions in the island
may have contributed to the C feedstock of methane.

1. Introduction

Abiotic gas linked to serpentinized ultramafic rock systems on
continents has been detected in many countries, from North America,
Europe, Asia to Oceania (e.g., Abrajano et al., 1990; Sano et al., 1993;
Boschetti et al., 2013; Boulart et al., 2013; D'Alessandro et al., 2018;
Etiope, 2017; Etiope and Schoell, 2014; Etiope et al., 2017; Vacquand
et al., 2018). The gas is typically characterized by high concentrations
of methane (CH4, often> 80 vol%), variable amounts of hydrogen (H2)
and C2+ alkanes (ethane, propane, butane) and a typical combination
of stable C and H isotope composition of CH4, which only partially
overlaps biotic (thermogenic) gas (Etiope et al., 2017; Etiope and
Sherwood Lollar, 2013). This type of methane has a key importance in

microbiological and astrobiological studies, as it may be an energy
source (electron donor), together with H2, for prebiotic chemistry and
origin of life related to serpentinization, on Earth and other planets,
(Russell et al., 2010; Oehler and Etiope, 2017). Peridotite gas seeps are
a source of methane for the atmosphere, not yet accounted for in global
estimates of geological gas emissions (Etiope et al., 2011, 2017).

A wide literature is available on the origin and molecular-isotopic
composition of this gas (e.g., Abrajano et al., 1990; Sano et al., 1993;
Etiope et al., 2011; D'Alessandro et al., 2018; Boulart et al., 2013;
Deville and Prinzhofer, 2016). A major feature that is common in all
these studies concerns the apparent low temperature of the geological
system where methane was produced, i.e. within the ophiolite nappe or
peridotite massif. Clumped-isotope and geological data suggest that this
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methane is typically produced at temperatures below 150 °C (Young
et al., 2016; Etiope et al., 2017). These seeps, in fact, are not related to
volcanic or geothermal systems. The gas production temperatures are
also lower than analogue serpentinization-related seeps documented in
mid-ocean ridges (Wang et al., 2018). Furthermore, the seeps occur
along faults at the boundary of the ultramafic units, often in contact
with sedimentary and C-bearing rocks (e.g., limestones), and in proxi-
mity of chromitite and rocks containing Platinum Group Element
(PGE), which may be a source of metal catalysts necessary for the
abiotic CH4 synthesis (i.e. catalyzed Fischer-Tropsch Type reactions or
CO2 hydrogenation; 4H2 + CO2 = CH4 + 2H2O; Etiope and Sherwood
Lollar, 2013; McCollom, 2013; Etiope et al., 2017). A recent study in-
dicated that the abiotic gas is likely produced within PGE-bearing
chromitites of the ultramafic sequence (Etiope et al., 2018). The asso-
ciated serpentinization, from which H2 can originate, is typically con-
tinental, driven by meteoric water (e.g., Bruni et al., 2002; Boulart
et al., 2013; Chavagnac et al., 2013).

Here, we report a further study on recently described (Meister et al.,
2018) abiotic methane seeps from an ophiolite located on the shallow
seafloor along the western coast of Elba Island (Tuscan Archipelago,
Tyrrhenian Sea, Italy). Free gas, not associated with water springs, is
emitted in a series of bubble plumes from seabed about 12m deep.
These seeps were preliminary documented by Ruff et al. (2016), who
described the methane-rich character of the gas and the microbial
consortia responsible for anaerobic oxidation of methane (AOM). The
objective of this work is to better define the origin of the gas, its re-
lationship with regional heat flow, and to assess relationships between
the seepage, petrology and geological-structural setting of the area.
Accordingly, we performed (a) geochemical analyses of the gas, in-
cluding molecular composition, and CH4 and He isotopic ratios in six
seepage points; (b) petrographic analysis of the rock hosting the seep
and (c) a detailed geological-structural analysis of the seepage zone. We
also compared the geochemical and geological data of the Elba seeps
with those of the nearest abiotic gas seepage site, located in the Liguria
region (Bruni et al., 2002; Cipolli et al., 2004; Boschetti et al., 2013;
Boulart et al., 2013).

2. Geological setting

2.1. General geological, structural and petrographic features

The Island of Elba, located in the westernmost portion of the
northern Cenozoic Apennine belt (Fig. 1), is formed by metamorphic
and non-metamorphic units derived from oceanic (i.e. Ligurian Do-
main) and continental (i.e. the Tuscan Domain) domains stacked to-
ward NE during the Miocene (Massa et al., 2017 and references
therein). The nappe stacking was followed by the emplacement of Late
Miocene magmatic bodies, the Central Elba Sill Complex and the Monte

Capanne pluton in western Elba (8–7Ma; Dini et al., 2002; Barboni and
Schoene, 2014; Barboni et al., 2015) and the Porto Azzurro pluton
(5.9–6.7Ma; Musumeci et al., 2015) in eastern Elba.

Offshore, west of the Island of Elba, magnetic and gravimetric data
suggest the occurrence of N-S trending ridges that, for the very high
magnetic susceptibility, have been interpreted as serpentinites, asso-
ciated with other ophiolitic rocks (Eriksson and Savelli, 1989; Cassano
et al., 2001; Caratori Tontini et al., 2004).

The ophiolite sequences in western Elba are classically interpreted
as a well-exposed ocean-floor section emplaced during the Apennine's
orogeny at the top of the tectonic nappe stack. Stratigraphic, petrolo-
gical and geochemical features indicate that these ophiolite sequences
are remnants of a slow-ultraslow spreading oceanic lithosphere analo-
gous to the present-day Mid-Atlantic Ridge (particularly to its northern
section, Gakkel ridge, Dick et al., 2003; Boschi et al., 2006; Snow and
Edmond, 2007; Ildefonse et al., 2007; Piccardo, 2008; Miranda and
Dilek, 2010; Silantyev et al., 2011); and Southwest Indian Ridge
(Saccani and Principi, 2016; Frassi et al., 2017).

The western area of the island, in proximity of the seepage area, is
characterized by a monzogranite intrusive body, the Monte Capanne
pluton, emplaced into the upper thrust complexes (Musumeci et al.,
2015). The host rocks consist of a metamorphic aureole developed at
the expense of the ophiolite. The ophiolite consists of mafic (gabbro,
basalt) and ultramafic (peridotites, serpentinite) rocks alternating with
shales, marls and limestones, from the Jurassic to the Paleogene
(Bortolotti et al., 2001). Principi et al. (2004) noted a remarkable si-
milarity between the Elba ophiolite and the ophiolite of Bracco in the
Liguria region, suggesting that they belong to the same tectonic Vara
group.

The ultramafic units of Elba (peridotites and serpentinites) are
generally markedly fractured and weathered, and experienced contact
metamorphism in response to the emplacement of the Monte Capanne
pluton. The metamorphism resulted in a local development of olivine,
talc, amphibole (actinolite and anthophyllite) and chlorite (Barnes
et al., 2006). In this case, olivine recrystallized from serpentine in clear,
well-shaped and iso-oriented neoblastic grains, often containing eu-
hedral inclusions of magnetite. Otherwise, olivine is present as a relic,
showing strong fracturing and with a high content of forsteritic com-
ponents. Anthophyllite is only found in strongly thermometamorphosed
rocks. Here, mm-sized anthophyllite crystals have statically grown on
the original serpentine mesh structure and large fanned bunches trap
prograde olivine and the strongly zoned spinel (Frassi et al., 2017). Talc
appears in aggregates or in veins of minute iso-oriented scales and
chlorites, showing a fibrous appearance, and is frequently found around
corroded spinel grains or across fractures. Spinel grains have different
sizes, but they not exceed a few millimetres, and show an irregular and
slightly lobate shape. They appear fractured, crossed by veins of mag-
netite, serpentine and/or chlorite and frequently with a magnetitic rim.

Fig. 1. Location and simplified geological map of Pomonte-
Ogliera area (western part of Elba Island) with special at-
tention to the Internal Ligurian Units that host mafic and
ultramafic rocks. Modified from Principi et al. (2015). Red
line indicates fault lineaments and the inferred fault (dashed
red line). Blue line indicates bathymetric level of the sea-
floor, and magenta arrow the location of sampling site at
12m asl. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version
of this article.)
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Apart from strongly recrystallized rocks, serpentine is often the main
component and it is mostly present in the lizardite variety accompanied
by chrysotile in veins. Orthopyroxene is not often present and serpen-
tinization has almost obliterated the original optic characteristics (e.g.,
bastite). The observable ones are attributed to enstatitic composition. It
is found as a thick prismatic structure in which there are evident traces
of cleavage sometimes marked by oxide exsolutions and sometimes
curved due to tectonic stress. Clinopyroxene relics often show tremolite
alteration rims and in thermometamorphosed rocks it is present as
small neoblastic diopside crystals (Gianfagna et al., 1992; Barnes et al.,
2006). Serpentine, in assemblage with amphibole, is also present in
fine-grained dikes that crosscut metagabbros (Barnes et al., 2006).

The heat flow at the western sector of Elba Island is relatively low,
80–100mW/m2 (Della Vedova et al., 2001; Verdoya et al., 2005),
equivalent to about 40–50 °C/km local gradient (Cataldi et al., 1998).

2.2. Description of the seep

The gas seeps are located 230m from the western coast of the is-
land, near the village of Pomonte, at a depth of about 12m, near the
islet Scoglio dell’Ogliera (Figs. 1 and 2). The seafloor is composed of
medium-grained sand with sporadic rock outcrops (mainly gabbro) and
scattered seagrass meadows (Posidonia oceanica). During our field
campaign gas was emitted from 6 major seepage spots spread over an
area of about 500m2. Seep-related macrofaunal assemblages are
lacking but filamentous mats of sulfur-oxidizing bacteria are often
visible near the seepage spots (Ruff et al., 2016), probably indicating
areas of sediment influenced by lower gas fluxes or diffuse non-bub-
bling seepage. A detailed site description is found in Meister et al.
(2018). Wiedling (2010) estimated the areal gas flow to 3 L h−1 of eight
bubble streams within an area of 100m2, or 0.72 Lm−2∙d−1.

3. Methods

3.1. Gas sampling

Gas samples were collected from bubble plumes in June 2017 by
SCUBA diving (Fig. 2) using an inverted funnel placed at the bottom of
the seafloor. Samples were stored, following water displacement, in
100mL two-valve glass tubes. Permanent gases (He, H2, O2, N2, CO,
CH4 and CO2) were measured by means of a gas chromatograph (GC,
Agilent 7890 equipped with PPU and MS5A columns) associated with a
MicroGC module (equipped with a PPU column) and a double detector
(TCD and FID) using argon as carrier gas. Higher hydrocarbons (C2-C5)
were analysed using a Shimadzu 2010 GC equipped with FID and a
capillary CP Poraplot column using helium as carrier gas. Analytical
precision for GC analyses is better than±5% for trace gases and±
10% for alkanes. Stable carbon and hydrogen isotope compositions of
CH4 and CO2 were measured using a Delta Plus XP IRMS equipped with
a Thermo TRACE GC interfaced with Thermo GC/C III and Thermo GC/
TC. 13C/12C ratios are reported as δ13C values (1 σ=0.1‰) against
VPDB standard and 2H/1H ratios are reported as δ2H values (1σ=1‰)
against VSMOW standard. Helium isotope composition (expressed as R/
Ra, which is 3He/4He of the sample versus the same 3He/4He ratio in
atmosphere, Ra=1.386×10−6) and 20Ne content were analysed by a
GVI Helix SFT mass spectrometer.

3.2. Water, sediment and rock sampling and analysis

Six water samples (three inside and three outside the seepage zone
as control samples) and six sediment samples around the bubble plumes
were taken to verify whether the seepage includes water (e.g., hyper-
alkaline water with pH > 8, as generally occurs in serpentinite-hosted
gas manifestations). Temperature, pH and electro-conductivity (EC) of

Fig. 2. Pictures of the sampling sites. (a) Elba Island image (Google Earth) with the location of the study area (red dot), Lat N 42°51′12,50''; Long E 10°25′6,48''; (b)
Scoglio dell’Ogliera detail with the location of the sampling site (red dot); (c, d) detail of bubbling and sediment sampling; (e, f, g) details of bubbling gas, rock and
pore-water sampling by SCUBA diving. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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water samples were measured on boat by using EUTECH portable
Instruments.

Sediment samples were taken using PVC cores driven to a depth of
about 20 cm into the sediments by hand, and closed by rubber stoppers.
pH and electrical conductivity (EC) of pore-water were measured after a
soil-water extraction following a routine protocol (Di Bonito et al.,
2008).

Two rock samples were taken with a hammer from an outcrop at the
seabed nearby the emission site. Thin sections were prepared and
analysed by a polarization microscope to determine the modal per-
centage of the minerals and define the rock type.

3.3. Geological and structural analysis

A geological field survey was performed along the western coast of
Elba Island, around the Monte Capanne pluton, and at the Scoglio
dell’Ogliera in order to map in detail the brittle structures (fault and
fractures) affecting the mafic and ultramafic rocks in the studied area
for comparison with mapped lineaments acquired by analysis of sa-
tellite image (Fig. 3). Fracture and fault attitude along with kinematic
indicators (slickensides) have been collected to perform fault inversion
analysis to derive the possible stress field in the area coherent with the
brittle structures (FaultKin software, Marrett and Allmendinger, 1990).
Fractures and fault indicate a local N-S extension (trend and plunge of
computed σ3: 187°/3°) affecting the whole inverse ophiolitic sequence.

4. Results

4.1. Gas chemistry

All gas samples collected in the six seeps are enriched in methane,
with concentrations between 82.4 and 86.2 vol%. Other gases include
nitrogen (up to 16 vol%), carbon dioxide (from 0.09 to 1.48 vol%),

ethane (0.049–0.062 vol%), hydrogen (up to 0.0004 vol%) and helium
(up to 0.0385 vol%) (Table 1). The isotopic composition of CH4 varies
in a narrow range, from −135 to −143‰ VSMOW for δ2H-CH4 and
from −18 to −19‰ VPDB for δ13C-CH4. CO2 is relatively 13C-depleted
(δ13C-CO2 from −6.95 to −12.42‰), compared to mantle or thermo-
metamorphic origin (δ13C-CO2 from −8 to 0‰ VPDB; Javoy et al.,
1986). The helium isotope ratio, 3He/4He, ranges from 0.87 to 0.93 Rac.

4.2. Chemico-physical features of seawater and sediment pore-water

Electro-conductivity and pH of the seawater samples at the bubble
plumes was 55.1 mS/cm and 7.8, respectively, while values of pore-
water samples at the bubbling area were ranging from 19.5 to 28.7 mS/
cm, for EC, and from 8.28 to 8.38, for pH. These values are similar to
those of seawater and pore-water at the control sites outside the see-
page zone (EC, 24.3–28.2 mS/cm; pH, 8.27–8.34), which confirms that
there is no hyperalkaline water discharge at the bubbling sites and only
gas is released from the seep, as preliminary reported by Ruff et al.
(2016).

4.3. Petrographic features of the rock at the seep site

The sampled rock at the seep site is mostly constituted by coarse-
grained quite altered gabbros. The microscopic analyses of the two rock
samples reveal that the rock is mainly constituted by clinopyroxene of
medium to fine grain size, often altered into tremolite. These milli-
metre-sized crystals seem to be arranged along a preferred orientation
and are surrounded by a groundmass of plagioclase (about 60 vol%).
Most of the plagioclases are highly altered in sericitic products, or
epidote and are allotriomorphic in shape. In very few specimens it is
still recognizable Albite and Carlsbad twinning. Opaque minerals are
also present, mainly magnetites produced by the serpentinization of
olivine. Calcite, chlorite and quartz are widespread both interstitial and

Fig. 3. Geological-structural setting of Scoglio dell’Ogliera.
(a) Map of main structural features, red lines: lineaments by
satellite image interpretation. Red squares are the sites of
field survey, dashed, thick blue line is the morphostructure
lineament PP as in Dini et al. (2008). (b) Rose diagram of
azimuth distribution of lineaments. (c) Stereonet (lower
hemisphere) of main fractures with contours (maximum
class > 21 measures). (d) Stereonet (lower hemisphere) of
main faults with associated kinematic indicators (arrows).
(For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this
article.)

Table 1
Chemical and isotopic composition of gas sampled in the Scoglio dell’Ogliera seeps site.

ID He ppmv H2 ppmv N2 vol% CH4 vol% CO2 vol% C2H6 vol% δ13CCO2 VPDB δ13CCH4 VPDB δ2HCH4 SMOW R/Rac He/Ne

POM 1 383 4.3 13.9 85.9 0.09 0.049 −8.5 −18.3 −141 0.92 768.3
POM 2 354 2.1 14.4 85.2 0.25 0.061 −11.15 −18.6 −142 0.89 2404.7
POM 3 385 4.2 16.0 82.4 1.48 0.057 −6.95 −18.0 −135 0.88 193.1
POM 5 346 1.0 14.5 85.3 0.14 0.062 −12.42 −19.0 −142 0.87 1994.7
POM 6 316 4.1 13.5 86.2 0.16 0.049 −17.6 −18.4 −143 0.93 986.6

Propane (C3H8) and CO are below detection limits in all samples.
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in veins, due to the presence of strong fracturing.

4.4. Geological and structural reconstruction

In the southwestern side of Monte Capanne, adjacent to the seepage
zone, the granite pluton is hosted by preserved HT-LP methamorphic
rocks (hornefels, calcschist, marble and quartzite) representing the
former sedimentary cover of the ophiolitic mafic and ultramafic rocks,
i.e. basalt, gabbro and peridotite. The contact between the host rocks
and the granite dips toward west and southwest of about 45–50° and
the ophiolitic sequence is cut by ENE-WSW and NNW-SSE normal faults
associated with E-W to ENE-WSW fractures. The E-W trending faults
and fractures system continues offshore up to the Scoglio dell’Ogliera
where the ultramafites (serpentinites) of the reverse limb are in contact
by fault with gabbro (Fig. 3). The ophiolite sequence appears to be the
reverse limb of a northeast verging antiform (with ultramafic rocks at
its nucleus; Fig. 4). The seepage occurs just in correspondence with the
reverse limb, which is faulted and fractured at the contact between
ultramafic and mafic rocks. Clearly, the gas found its migration
pathway along this faulted contact. Considering that, (a) the estimated
pluton thickness is about 3 km (Dini et al., 2008), (b) the pluton em-
placement level is within the Ligurian units, (c) the actual thickness of
exposed reverse limb in Elba is about 1.5 km (Fig. 1) and (d) large
bodies of ultramafic rocks occur southwards offshore, as evidenced by
magnetic anomalies (Eriksson and Savelli, 1989), we estimate that the
thickness of the Elba ophiolitic sequence does not exceed 1–1.5 km.

5. Discussion and conclusions

5.1. CH4 origin

The combined stable C and H isotope composition of CH4 (δ13C and
δ2H) of the Elba gas seep is within the range typically observed in
ophiolite and peridotite massifs (Fig. 5; Etiope, 2017). This type of
methane is considered to have a dominant abiotic origin, related to
Fischer-Tropsch Type reaction (Sabatier reaction; e.g., Etiope and
Sherwood Lollar, 2013; Etiope and Schoell, 2014), with variable, gen-
erally minor, biotic components. Ethane, frequently observed in con-
tinental serpentinized systems, is considered to be abiotically originated
via methane polymerization (e.g., Sherwood Lollar et al., 2008; Etiope
and Sherwood Lollar, 2013). The presence of minor microbial CH4

components, as observed in similar cases (e.g. Etiope et al., 2017; Miller
et al., 2016) cannot be excluded.

The H2 concentration is relatively low, in analogy with other

continental serpentinization sites, such as Ronda in Spain, Othrys in
Greece (Etiope et al., 2013, 2016) and, in particular, Genova in Liguria
(Boschetti et al., 2013), located only 200 km north of Elba Island. The
paucity of H2 in seeps related to serpentinization could be due to
complete H2 consumption by CO2 reduction in a limited H2 production
system (due, for example by an increase of the silica activity) and/or
microbial consumption (e.g., Boulart et al., 2013; Etiope et al., 2013).

The Elba seep appears to release only a gas-phase, without water
emission. In serpentinized ophiolites or peridotite massifs the water,
bearing the gas, is typically hyperalkaline, with pH > 9 (Etiope, 2017).
Our analyses of the seawater and sediment pore-water at the seep site
did not reveal any sign of such alkalinity. The Elba gas seepage system
is therefore analogue to the prevailing gas-phase discharge systems of
Chimaera (Turkey; Etiope et al., 2011), Kurtbagi (Turkey; D'Alessandro
et al., 2018) or Los Fuegos Eternos at Zambales (Philippines; Abrajano
et al., 1990). This is also confirmed by the combined stable C and H
isotope composition of CH4 (δ13C and δ2H), which is close to that of the
other gas-phase vents (Fig. 5). Such a gas-phase venting group has 2H-
enriched CH4 compared to CH4 dissolved in hyperalkaline waters (e.g.,
Oman, Bosnia, Spain, Portugal), where CH4 and H2O may have more
extensively interacted (but not necessarily attaining isotopic equili-
brium; Etiope et al., 2017). However, the δ2H-CH4 values depend also
on the original isotopic composition of H2 and isotopic fractionations
during Sabatier reactions (Whiticar and Etiope, 2014). The CH4 of Elba
is not very dissimilar from the gas of Genova springs (Italy; Boschetti
et al., 2013). Actually, Elba and Eastern Liguria ophiolites have many
similarities as they are considered to belong to the same tectonic Vara
Group (Principi et al., 2004). In particular, the Ligurian Bracco ophio-
lite hosts cromitites rich in Platinum Group Elements, including ru-
thenium (Ru) (Baumgartner et al., 2013). Chromitites or chromite-rich
lenses are not outcropping on Elba Island but, given their presence in
the Vara Group, they likely occur at depth, within the submersed ul-
tramafic unit offshore, as depicted in Fig. 4. It is worth noting that PGE-
rich rocks also occur in the Monte Maggiore ophiolite in the Corsica
Island, just 60 km east of Elba (Ohnenstetter, 1992). Ru-bearing chro-
mitites may represent the source rocks of abiotic methane, as recently
observed in Greece (Etiope et al., 2018). The hypotheses for a CH4

source from fluid inclusions in the mafic-ultramafic rocks, as proposed
by Wang et al. (2018) for submarine hot springs, is unlikely in the case
of continental ophiolite systems such as Elba, where the gas formation
temperatures are quite low (as discussed in detail below) and this is
inconsistent with post-magmatic high temperature processes related to
fluid inclusion formation.

5.2. Origin of other gases

The low amounts of CO2 as those found in the Elba seep bubbles are
quite common in other gas seeps from ophiolites (e.g., Abrajano et al.,
1990; D'Alessandro et al., 2018; Etiope et al., 2017). The low CO2

concentrations in these settings are generally due to its consumption for
CH4 production via Sabatier reaction, and to the hyperalkaline condi-
tions of water, where the main C form is HCO3

−. Although hyper-
alkaline water is not discharged in the Elba seep, it could exist in the
subsurface as an effect of serpentinization, as observed in other peri-
dotite settings, including the Ligurian site (Bruni et al., 2002; Cipolli
et al., 2004). The concentrations of helium up to 350 ppmv are, how-
ever, higher than those expected (a few ppmv) in non-sedimentary
settings. Such an enrichment could suggest a chemical fractionation
induced by partial dissolution of CO2 in water. In fact, since CO2 is
highly soluble in water, a marked gas-water interaction, under favor-
able conditions, may lead the residual gas phase being progressively
enriched in less soluble species (such as N2, CH4 and He) as CO2 dis-
solution proceeds. The same dissolution process could also be re-
sponsible for 13C-depletion of the δ13CCO2 with respect to a deep in-
organic CO2 originated from the mantle with δ13C values from −8 to
0‰ (Javoy et al., 1986) or from a thermo-metamorphic reaction

Fig. 4. Reconstruction of the Elba ophiolite geometry and faulting at the see-
page site. The reverse limb of the antiform in the host is dissected by normal
faulting that brings ultramafic rocks (deep blue) into contact with mafic in-
trusives (gabbro, green). Inset: an expanded view of the fault zone from ul-
tramafic rocks in the hanging wall to the granite in the footwall of the fault and
more detail in the structure of the ophiolite sedimentary sequence (marble and
cherts) where asymmetric folds (white lines) and gabbro dikes occur. Damage
and fault core are the preferred pathways gas release. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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involving carbonate rocks with δ13C values from −1 to +2‰ (Faure,
1986).

Atmospheric helium can be considered negligible as indicated by
4He/20Ne ratios generally ranging from 193 to 2404 (Table 1), ex-
ceeding the atmospheric air ratio (0.318) and air-saturated water ratio
(ASW 0.24). Therefore, the helium in the Elba ophiolitic gas seeps can
be a two-component mixture between crustal and mantle helium. A
simple mass balance calculation allowed to estimate the mantle-derived
helium contribution in the range between 10 and 15% assuming as
representative of the mantle beneath Elba Island a typical MORB
composition (R/Ra= 8; Kurz et al., 1982). The mantle-derived com-
ponent increases up to about 30% if we assume the deep endmember
having a composition similar to the Larderello geothermal field (R/
Ra=3.2; Gherardi et al., 2005). Therefore, a mantle-derived 3He-rich
component is present in the ophiolitic seeps offshore Elba Island.

Another possible explanation for the high helium concentrations is
that the noble gas derives from remnant magmatic sources in the
mantle rocks, as suggested for ophiolitic gases in the Philippines
(Abrajano et al., 1990) and Oman (Sano et al., 1993). In this respect, we
recall that the Monte Capanne pluton at the western sector of Elba Is-
land (described in section 2.1) may play an important role, representing
a potential additional source of remnant magmatic helium. Further-
more evaluation on CO2 origin based on CO2/3He ratios (e.g., Marty
and Jambon, 1987) cannot be indicative as CO2 in the seep is likely
residual from abiotic methanation processes, as discussed above.

5.3. Relationships among gas origin, seepage and local geology

It is generally observed that gas seeps and springs in ophiolites or
peridotite massifs occur along a fault bordering or cutting the ultra-
mafic rocks (e.g., Etiope et al., 2017). Our geological and structural
reconstruction of the seepage area revealed that the Elba seep is actu-
ally along a fault at the contact between mafic and ultramafic rocks. At
the seepage site the ophiolite sequence appears to be folded, with ul-
tramafic rocks continuing at depth towards offshore. Considering that
the ophiolite nappe has likely a maximum thickness of about 1.5 km
and the local geothermal gradient is 40–50 °C/km, we estimate that the
maximum temperature at the base of the ophiolite is about 60–80 °C.
These temperatures are also confirmed from two deep exploration
wells, located ∼30 km south and ∼50 km north of the Scoglio
dell'Ogliera (Martina 001 and Maria 001 exploratory wells drilled in
1975), with measured temperatures of 93 °C at 2900m of depth and
∼57 °C at 2000m of depth, respectively (ViDEPI, 2009–2018). The low

temperature of methane production is consistent with the temperatures
generally estimated in other continental serpentinization sites with
abiotic methane, also based on CH4 clumped-isotope analyses (Young
et al., 2016). The lack of considerable CO2 degassing confirms that the
area is not affected by active geothermal circulation systems, as in the
onshore Tuscan region, but magmatic intrusions (e.g. Monte Capanne
pluton) may have contributed to a mantle C feedstock. Clumped-isotope
CH4 analyses of Elba gas shall however be performed to define more
exactly the gas formation temperature.
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