
Contents lists available at ScienceDirect

Computers and Geosciences

journal homepage: www.elsevier.com/locate/cageo

Parallel variable-resolution bathymetric estimation with static load
balancing
B.R. Calder
Center for Coastal and Ocean Mapping and NOAA-UNH Joint Hydrographic Center, University of New Hampshire, Durham, NH, 03824, USA

A R T I C L E I N F O

Keywords:
Parallel processing
CHRT
CUBE
Data-driven estimation
Branch and bound
Bathymetric data processing
Surface estimation

A B S T R A C T

A method for partitioning a large computation task (direct, variable resolution bathymetric grid construction
from raw observations) into thread-parallel code is described. Based on the data density estimated for the first
pass of the CHRT algorithm, this algorithm statically partitions the estimation task into spatially distinct blocks of
approximately equal total data observation count so that each can be executed in parallel and be expected to
complete approximately concurrently. No communication between blocks or further load balancing is therefore
required. A branch-and-bound algorithm is used to control the complexity of the partitioning task, but the
computation time increases significantly as more partitions are required, leading to a degree of diminishing
returns for allocating further computational resources and suggesting alternative approaches for high thread-
count systems. Speed-up of the algorithm over a pair of test datasets (using real-world hydrographic survey data)
shows that the performance consistently improves with the number of computational tasks assigned, initially
(super-) linearly, although ultimately sub-linearly as other resource sharing limitations take over. An overall
speedup of 4.1 times is demonstrated with a quad-core single-processor workstation.

1. Introduction

Bathymetry is often a base layer in marine spatial modelling, pro-
viding an important constraint on the physical environment (e.g., de-
fining the waveguide for acoustic propagation studies) and driving
other analyses. The reconstruction of a best-estimate of depth (or, more
generally, any scalar field) within a given area based on remote-sensed
observations (Krishnan et al., 2010; Hofierka et al., 2017) is therefore
an important problem with many practical applications, including
ocean mapping, geophysical modelling, coastal zone management, and
nautical charting.

The problem is computationally challenging. The datasets are often
large (order 10 109 10 observations), and the algorithms can be com-
plex due to dataset features such as observational blunders (Calder and
Mayer, 2003; Debese et al., 2012; Isenburg et al., 2006). The datasets
may also have a spatial-varying data density, requiring spatial adap-
tation of reconstruction resolution to avoid spatial aliasing or over-
smoothing. (In hydrographic practice, over-smoothing could result in
missed navigationally significant objects, which are a primary concern.)
In many cases, the data density is approximately a function of the water
depth, so deeper areas can only be reconstructed at significantly lower
resolution; these changes can happen within very short distances, for
example in fjord-like environments.

Efficient computation of the reconstruction is therefore essential. In
addition to minimising processing time, fast computation allows for
more advanced algorithms to be built around the basic estimation task.
For example, it can be difficult to compensate for the effects of slope in
CHRT (the estimation algorithm considered here) a priori because there
is no good estimate of slope until the reconstruction is computed, but
that reconstruction is biased by lack of slope compensation. Iterating to
solution is plausible, but if the algorithm is expensive to compute, the
iterations might take sufficiently long as to render the method in-
effective.

Computing a reconstruction in parallel is therefore advantageous.
Many algorithms, however, are either global (i.e., require all data in an
area to proceed, for example the surface fitting of Debese et al. (2012)),
or non-local (i.e., need to interact with nearby estimation sites to
complete the estimation, for example the continuous spline in tension
method of Smith and Wessel (1990)), which can make them difficult to
segment for parallel implementation. Sending packets of observations
to different threads for update of a common data structure generally
requires a significant level of complexity in the data structure to allow
simultaneous access, while splitting spatially has difficulties in ensuring
that the sub-tasks are well balanced. A solution which is well balanced,
does not require memory locking, and can be scaled to many compu-
tational resources is therefore key.

https://doi.org/10.1016/j.cageo.2018.11.011
Received 27 April 2018; Received in revised form 6 September 2018; Accepted 26 November 2018

E-mail address: brc@ccom.unh.edu.

Computers and Geosciences 123 (2019) 73–82

Available online 29 November 2018
0098-3004/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00983004
https://www.elsevier.com/locate/cageo
https://doi.org/10.1016/j.cageo.2018.11.011
https://doi.org/10.1016/j.cageo.2018.11.011
mailto:brc@ccom.unh.edu
https://doi.org/10.1016/j.cageo.2018.11.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2018.11.011&domain=pdf

Load-balancing, or the more general case of splitting a non-even
workload computational domain over a number of computational re-
sources so as to achieve some metric, is a common problem, and has
therefore received much attention in the literature. The problem of
finding the optimal general partition in two dimensions is known to be
NP-Hard (Khanna et al., 1998), or NP-Complete in some cases such as
the Generalized Block Distribution (Grigni and Manne, 1996); even
achieving a bound on the performance within a factor of two is NP-Hard
(Aspvall et al., 2001). Consequently, most of the research on the matter
has revolved around finding better approximations to the problem, and
lowering the upper bound on performance (see, e.g., (Manne and
Sørevik, 1996), (Aspvall et al., 2001), (Berman et al., 2001), (Lorys and
Paluch, 2003), (Saule et al., 2012), etc.).

The most general case of partitioning would allow for arbitrary
segments to be assigned to a computational resource; in keeping with
Tobler's Law (Tobler, 1970), however, most solutions focus on assigning
rectangular areas in order to maintain advantages of spatial locality in
the computations. Most work has been done on recursive partitions
(Berger and Bokhari, 1987), the rectilinear partition (Nichol, 1991),
also known as the Generalized Block Distribution (Grigni and Manne,
1996), and the jagged partition (Manne and Sørevik, 1996), also known
as the Semi-generalized Block Distribution (see (Saule et al., 2012) for a
good overview), although there are many more potential partitioning
schemes.

The complexity and performance of the best known algorithms for
the various approximations vary widely. Saule et al. (2012) compare a
variety of algorithms, with different heuristics designed to achieve
better performance, including hierarchical sub-division, rectilinear di-
vision, and jagged partitions, for which polynomial time algorithms are
available. They conclude that their jagged partition variant, or a hier-
archical subdivision may achieve better load balancing than other al-
gorithms while still being runtime efficient, while a combination of
algorithms (a “hybrid”) can improve on achievable balance even fur-
ther. (Intriguingly, the best case load imbalances reported are of similar
magnitude to those reported here.)

These approaches, while efficient, are more constrained than is re-
quired in the case presented here, primarily due to a basic assumption
that communications costs between the segments of the partition are
important. Here, however, given the observations, each segment of the
partition can compute independently its part of the solution to the
overall estimation problem, so there is no limitation to the arrangement
of the segments, and a more general solution can be attempted.
Furthermore, the focus here is on splitting the overall task over a re-
latively small number of computational resources, since the primary
goal is a multithreaded, single CPU solution, which remains the most
commonly available computational resource for most users in the field
(Qin and Zhan, 2012). Consequently, the more sophisticated heuristic-
based algorithms are not required, and an optimal solution of the
(constrained) partitioning problem can be used, simplifying the im-
plementation. (The problem of scaling to higher numbers of computa-
tional resources is considered in Section 4.)

In this paper, therefore, a spatial partitioning algorithm is proposed
for the CHRT (CUBE with Hierarchical Resolution Techniques) algorithm
(Calder and Rice, 2017) which takes advantage of the structure of CHRT

to ensure that each computational resource can operate independently
of the others without communication or interlocks so long as they have
global access to all of the observations (Section 2.1 has an outline of the
CHRT algorithm.). The algorithm uses the data density estimates com-
puted during the first pass of the CHRT algorithm to drive the partition,
which allows for the partition segments to contain approximately the
same number of observations, and consequently to have nearly uniform
computation time. Our goal here is not to minimise the maximum cost
for any segment (c.f. (Saule et al., 2012), or (Muthukrishnan and Suel,
2005)) but to have even load across all of the computational resources,
hence keeping them all busy for the minimal time with highest effi-
ciency. Operating system file caching assists in delaying IO-limited

performance (i.e., where recently used files remain in memory, and
therefore are not subject to spinning-disc latency), and a branch-and-
bound evaluator allows the partition to be computed efficiently. Use of
the partitioning algorithm allows ready extension of the CHRT algorithm
to a multi-threaded implementation, with consequent performance
improvement.

The remainder of the paper outlines the relevant features of the CHRT

algorithm that support the partitioning algorithm, its implementation,
and the performance improvements achieved using commodity single-
processor workstation hardware. Finally, some perspectives on the
ability of the algorithm to be scaled, and generalized to a distributed
(i.e., network-connected) implementation, are offered.

2. Methods

2.1. Core estimator

The CHRT (CUBE with Hierarchical Resolution Techniques) algorithm
(Calder and Rice, 2017), a development of the CUBE (Combined Un-
certainty and Bathymetry Estimator) algorithm (Calder and Mayer,
2003) was used as the basis for the current work. The CHRT algorithm
was developed to estimate variable resolution depths from raw ob-
servational data based on the premise that in regions where there is
higher data density it should be possible to reconstruct with smaller
sample spacings, giving higher resolution reconstructions of the sur-
face. The algorithm starts with a low-resolution virtual tile (Yıldırım
et al., 2015) grid across the area of interest, and at each grid node
estimates the data density of the observations. A piecewise constant
sample spacing (PCSS) grid is then constructed by replacing each low-
resolution grid cell with a regular grid at the sample spacing de-
termined by the data density, after which a variable resolution depth
reconstruction can be computed in a second pass. Fig. 1 shows an ex-
ample of the first pass of the algorithm applied to a hydrographic
survey in Woods Hole, MA.

A basic problem for any parallel algorithm is how to split the task
into manageable sub-tasks. The low-resolution grid used in CHRT allows
for a relatively simple solution to this problem since the refinement
grids established after the first pass of the algorithm are by design
constrained to lie entirely within their parent cell, Fig. 2. Consequently,
given the observations that contribute to the cell (which may include
some immediately adjacent in order to avoid edge effects), the com-
putation of each cell is independent of the others, and therefore can be
processed without any communication or interlock, and there is no
requirement for “ghost cell” edge buffers (Tesfa et al., 2011). Any sub-
group of cells can therefore be assigned to any available computational
resource, so long as it has access to all of the observations. This de-
composition of the base algorithm avoids having to design a variant for
parallel implementation, with all of the associated development and
maintenance costs (Hofierka et al., 2017). The CHRT Conformance Test
Suite (Calder and Plumlee, 2017) ensures equivalence of serial and
parallel computation.

2.2. Partitioning scheme

For the CHRT algorithm, the processing cost is reasonably approxi-
mated by the number of observations that have to be assimilated at a
particular reconstruction location. A plausible load balancing parti-
tioning scheme is therefore to split the overall area to be processed into
sub-areas that contain approximately the same number of observations.
(Alternatives, such as partitioning by input files and then recombining
partial grids, or dynamic partitioning of sub-groups (Yıldırım et al.,
2015) would lead to serialized code or higher communications costs,
respectively.) In order to facilitate this, the partition algorithm assumes
that a spatial observation density estimate is available from the first
pass of the CHRT algorithm (this is a core component of the base algo-
rithm).

B.R. Calder Computers and Geosciences 123 (2019) 73–82

74

Let the data density estimates be arranged in a grid,
< <u v u U v V u v(,), 0 , 0 , (,) 2, with N total observations in

the dataset spread through the area. The goal is to find an optimal
partition of the overall domain = ×u v u v U V{(,): (,) [0,) [0,)}0S
into C segments, one for each computational resource, each containing
an equal number of observations. The grid could be partitioned into
arbitrarily-shaped groups of cells with equal numbers of observations,
but to contain the complexity consider admitting only north-south or
east-west segment boundaries (Berger and Bokhari, 1987).

The algorithm solves this problem recursively over
the general segment of the grid, =S u v u v{(,): (,)

× < < < <u u v v u u U v v V[, 1] [, 1], 0 , 0 }0 1 0 1 0 1 0 1 , which is
to be split into C CS segments each of N C/S S observations, where

N NS is the observation count for S. The recursion root is = 0S S ,
=C CS , =N NS .
Consider first an algorithm that enumerates all possible partitions.

Each partition line is placed to split S into sub-segments of some mul-
tiple <cN C c C/ , 1S S S of the observations in the segment, Fig. 3.
Given an area A for each cell in the domain, the partition line is placed
at <u c C{ , 1 }c S where

= <
< = =

u x u v A cN Cmax : (,) /c
u x u u u

x

v v

v 1

0 1 0 0

1

S S

(1)

or at <v c C{ , 1 }c S where

Fig. 1. Example of the CHRT algorithm applied to a NOAA survey in Woods Hole, MA, showing (a) first-pass low-resolution depth estimate, (b) data density estimate (note
logarithmic scale), and (c) estimated sample spacing for each low-resolution cell. Black rectangle is shown in detail in Fig. 2. This figure is reproduced from Calder
and Rice (2017).

B.R. Calder Computers and Geosciences 123 (2019) 73–82

75

= <
< = =

v y u v A cN Cmax : (,) /c
v y v v v

y

u u

u 1

0 1 0 0

1

S S

(2)

for north-south and east-west partition lines, respectively, giving
C2(1)S potential partial segmentations.

For north-south partitions, these potential positions split S into

= ×u v u v u u v v{(,): (,) [,] [, 1]}L c0 0 1S (3)

and

= + ×u v u v u u v v{(,): (,) [1, 1] [, 1]}R c 1 0 1S (4)

so that = L RS S S and = ØL RS S , and equivalently for east-west
partitions. The algorithm can then be applied recursively to LS and RS ,

each now of N LS and N RS observations, respectively, with a target of
C 1S computational resources assigned to them. The recursion ter-
minates when =C 1S . Since each partition can be placed either north-
south or east-west on each occasion, this algorithm naturally leads to a
tree of potential partition schemes, Fig. 4. Many of the partitions gen-
erated are logically separate (i.e., the order in which the partition lines
were generated are different) but practically the same (i.e., the resulting
segments are identical). This can lead to implementation efficiencies, a
topic pursued in the following section.

In principle, this algorithm can be applied from 0S to enumerate all
leaves of the partition tree. Due to the granularity of the low-resolution
cells, it is unlikely that any given partition will exactly split the problem
in C segments of N C/ observations. The viability of the different leaves
of the partition tree can therefore be assessed according to how closely

Figure 2. Example of variable resolution depth reconstruction, and the location of variable resolution reconstruction points derived from data density estimates
during the first pass for the data indicated in the black rectangle in Fig. 1. Each refinement grid is constrained to be entirely within the parent low-resolution grid cell
(here, at 8 m intervals). Colours represent the estimated depths; white dots mark the locations of the variable resolution estimation points. Labels on the geographic
axes mark the edges of the low-resolution cells containing the refined (white dot) grids. This figure is reproduced from Calder and Rice (2017).

B.R. Calder Computers and Geosciences 123 (2019) 73–82

76

they achieve this goal, with the closest match being the preferred so-
lution. An example of an 8-partition applied to the data in Fig. 3 is
shown in Fig. 5.

2.3. Partitioning algorithm implementation

In theory, the partition that best matches the ideal, even, distribu-
tion of observations could be determined by simply enumerating the
tree of potential partitions. The first stage of splitting has C2(1)
potential splits; the second has C2(2), and so on, for a total of

C2 (1)!C 1 potential solutions. Some reduction in effort could be ob-
tained by exploiting similarities in the potential partitions, but for any
reasonable target number of segments the size of the tree rapidly makes
a full enumeration intractable: for =C 8, for example, a reasonable
choice for quad-core hyper-threaded processors, a total of 645,120
potential solutions would have to be enumerated; at =C 16, the total is

×4.285 1016. The goal is still to evaluate the whole tree, however, so the
algorithm applies the “branch and bound” technique (Land and Doig,
1960) to avoid evaluating inefficient branches of the tree as often as
possible, and applies heuristics to attempt to accelerate the process.

Consider the situation at any node in the tree of Fig. 4. Assume that
for any individual segment S there is a cost function P N C(, ,)S that
represents the penalty for not matching the nominal ideal observation
count of N C/ observations per segment. If =C 1S (i.e., the segment
represents the best approximation to a single quantum of observations),
then the cost can be evaluated directly; otherwise, the potential re-
finements of the segment are = … …v v h h{ , , , , , }C C1 1 1 1R S S where the vi
represent north-south, and hi east-west partitions, respectively, com-
puted according to (1)–(2). Each refinement induces a pair of segments

r r r((), ()),P SS S R according to (3)–(4), corresponding to the seg-
ment prior to, and subsequent to, the partition location, respectively.

The overall penalty for each potential refinement of the segment can
therefore be computed as

=
= +

P r P r r N C
P r N C P r N C

() (() (), ,)
((), ,) ((), ,),

P S

P S

S S
S S (5)

with the individual penalties being evaluated recursively. Clearly, the
optimal refinement is

=r P rargmin (),
r

*
(6)

and the parent node therefore has a “best known partition” penalty of
P r()* .

At each node in the tree, the partitioning decisions made further up
the tree lead to a penalty which the algorithm has already assumed in
order to get to the decision point represented by the node. An allowable
penalty can therefore be passed to each node by its parent, indicating
the maximum penalty remaining to the branch for any refinement to be
viable in comparison with the best available refinement elsewhere;
testing against this limit can therefore reduce the number of evaluations
that need to be attempted.

Let S be the available penalty provided to the node for segment S;
to seed the recursion, let 0S , or in practice the maximum value
available. Clearly, if >P r N C((), ,)PS S, the proposed refinement is
not viable, irrespective of P r N C((), ,)SS , and the evaluation of po-
tential refinements of SS need not be computed (and vice versa).
(Observe that if <P r N C((), ,)PS S, then the bound for evaluating

r()SS should be P r N C((), ,)PS S, which can help to reject more
potential refinements, further reducing the computation cost.) This
bound can be incrementally tightened by observing that each refine-
ment evaluated can provide a better target if <P r() S. Therefore,
define

Fig. 3. Example of potential position points
for the first stage of the partitioning algorithm
with four computational resources, where the
goal is to split off one, two or three quarters of
the observations (with regions of two or three
quarters being split in later stages of algo-
rithm); the background images are the data
density estimated from the observations in the
Ernest Sound, AK test dataset (see Section 3.1).
Note the significantly larger area associated
with the 1/4 position (left) image compared to
the 3/4 position (right) image, due to the sig-
nificantly lower data density to the west of the
partition line in the former case. Solving for a
different number of computational resources
would have different partition points as the
algorithm attempts to split off different sized
portions of the data.

Fig. 4. Example of a partial hierarchical tree for four
computational resources, indicating some of the po-
tential combinations of north-south and east-west
partitions applied in sequence to split the problem
into four segments, each of one quarter of the pro-
blem. Note the practical redundancy in many of the
logically separate partitions, which can reduce the
efficiency of the search if the whole tree is en-
umerated.

B.R. Calder Computers and Geosciences 123 (2019) 73–82

77

=(0) S (7)

=r r P r() min((1), ()) (8)

so that the target that candidate refinements have to better tightens as
good refinements are determined. The ordering in which refinements
are attempted is essentially arbitrary, but the choice of which to eval-
uate first for most efficient evaluation is not. Given that one side or
other of the partition might be eliminated from consideration after the
other is evaluated, it is advantageous to evaluate first the side that is
shallowest (i.e., with smallest NS).

The efficiency of the pruning algorithm is maximised if the algo-
rithm can establish a plausible solution (i.e., one close to the optimal)
early in the sequence of evaluations, since it will lead to many more
branches being pruned more quickly. There is no way to predict where
a “good” solution would lie a priori, but a useful heuristic is to observe
that splitting off a segment of N C/ observations early in the sequence is
unlikely to provide a good solution, since the split position can only be
adjusted by a whole row or column of low-resolution cells, which can
contain many observations. If, on the other hand, the first split breaks
the area approximately in half (c.f. (Berger and Bokhari, 1987)), then
any error in the observation count can be amortised over all of the
remaining splits. The algorithm therefore starts at the =c C/2 posi-
tion, and moves outward towards either extreme, swapping sides after
each step (i.e., evaluating at + …C C C C/2 , /2 1, /2 1, /2 2,).

Evaluating the number of observations within a proposed segment is
the most expensive part of the partition computation. The count of
observations within each low-resolution cell is, however, fixed.
Therefore it is possible to utilise a variant of the summed-area table

technique (Crow, 1984), also known as a prefix sum table (Ladner and
Fischer, 1980), to cache cumulative sums and hence significantly im-
prove the computation time.

There are a number of plausible definitions for the cost function.
Here, a simple comparison against the nominal observation count per
computational resource is used,

=P N C N N C(, ,) | / |.S S (9)

In the simplest case, =N u v A(,)u v(,)S S . Evaluation of cost
functions in bounded arithmetic (i.e., where there is a maximum re-
presentable cost, Pmax) requires some care. In particular, saturation
addition is required, so that if

=P N C P P N C(, ,) min(, (, ,))maxS S (10)

is the bounded arithmetic representation of the cost function, then

= +P r P N C P N C P P N C() (, ,) min((, ,), (, ,)).P S PmaxS S S (11)

The CHRT algorithm utilises some observations from just outside an
assigned computation domain so as to avoid any edge effects in the
estimation. If these are ignored, then the computational cost of pro-
cessing a segment will be underestimated, potentially significantly in
shallow areas with dense observations. Let ES be the annulus, one low-
resolution cell wide, around segment S, with NE observations. The CHRT

algorithm, by default, uses observations only out to W2 from the
segment boundary for cells of width (and height) W m. The annulus
therefore provides approximately N2 E observations (simplifying for
the corner cells), and the total effective number of observations used in
(9) is

= +N u v A u v A2 (,) (,) .
u v u v(,) (,)E

S
S S (12)

2.4. Parallel estimator implementation

Although the core estimation algorithm is the same for serial and
parallel computation, some care in staging is required. The CHRT algo-
rithm supports virtual tiles, with memory-mapped files that are demand
paged with least-recently-used cache replacement. The memory-
mapped structures may cross segment boundaries, however, and to
avoid interlocks it is therefore necessary for each computational re-
source to have a separate copy of the results of the first pass of the
algorithm for the tiles associated with the segment assigned. Knowledge
of the segment bounds allows this computation to be done a priori, and
the parallel wrapper code can pre-copy the required files along with the
base metadata for the data structure. After the initial configuration, the
computational resources are independently scheduled as separate
threads within the main process.

A producer-consumer pattern is used with one consumer im-
plementing the estimator for each segment of the partition. The pro-
ducer implements the Command pattern (Gamma et al., 1994) by
constructing work packages for each stage of the computation, derived
from an abstract interface, that are queued for all of the worker threads
to execute. A modified barrier synchronisation pattern (Wilkinson and
Allen, 2005) allows for the threads to be marshalled, indicating to the
producer that all required computations have been completed (e.g., so
that the client interface can determine when it is safe to request a re-
construction take place).

2.5. Partial result reassembly

As with the partitioning problem, reassembly of the partial results
from each computational resource is made simpler because the seg-
ments are aligned with low-resolution cell boundaries. Each computa-
tional resource can therefore, on demand, generate its partial result and
write them into the shared output data structure for the overall result
without interlocks.

Fig. 5. Example of a partition for eight computational resources applied to the
Ernest Sound data (Fig. 3). The segments selected by the algorithm are shown as
white outlines (with semi-transparent colours) over the sounding count (in log-
scale). Note that the segments are shown with boundaries slightly separated for
clarity; in reality, they completely tile the computational area.

B.R. Calder Computers and Geosciences 123 (2019) 73–82

78

In theory, the partial reconstruction computations for each segment
could be overlapped with any remaining primary computation in order
to avoid any serial-code delays. The operational paradigm for re-
construction is user-driven, however, so it is not necessarily the case
that reconstruction immediately follows primary computation. The test
implementation therefore treats these as separate events.

3. Results

3.1. Test datasets

Two datasets were used to test the performance of the partitioning
algorithm, and the parallel version of CHRT; both are hydrographic da-
tasets collected by the U.S. National Oceanographic and Atmospheric
Administration as part of the U.S. national charting programme.

The first, a primary hydrographic survey in the vicinity of Woods
Hole, MA, was conducted by the NOAA Ship Whiting in 2001 (Barnum,
2001), and consists of a total of ×37.7 106 observations in depth ranges
from 2 to 30 m. The second dataset is a portion of the survey conducted
in Ernest Sound, AK in the vicinity of Union Point by the NOAA Ship
Fairweather in 2009 (Baird, 2009), and consists of a total of ×9.3 106

observations in depth ranges from 4 to 220 m.
Both datasets were used previously to demonstrate the development

and behaviour of the CHRT algorithm, and are more fully described in
Calder and Rice (2017).

3.2. Reconstruction partitioning

To assess the performance of the partitioning algorithm itself, the
data density estimates from both datasets were used to compute a
partition for differing computational resource counts. The run-time
efficiency of the algorithm is essential to its use: if the algorithm takes
longer to compute the partition than having the problem partitioned
improves the run-time of the estimation algorithm, then the effort is
wasted. Fig. 6 illustrates the actual and relative computational time
observed on a particular computer system, and in particular the rapid
increase in run-time engendered by increasing computational resource
allocation (c.f. Saule et al. (2012)), as might be expected given the

known complexity class of the general case. For the Woods Hole data,
slightly higher run-times are observed, corresponding to the larger area
being surveyed and the 8 m low-resolution cell size compared to the
32 m size used for Ernest Sound. For moderate (e.g., single workstation)
resource counts, however, the actual run-time is significantly smaller
than the estimator run-time, making the algorithm a pragmatic solu-
tion. (Note that the actual computational time is only illustrative, since
it will vary with hardware and compiler selections.) Trade-offs between
the estimator and partitioning algorithm runtime, and their implica-
tions for how to partition the problem, are considered further in Section
4.

The potential performance of the algorithm depends on the even-
ness with which the observations can be distributed among the seg-
ments of the partition (i.e., the degree of deviation from the nominal
allocation of N C/ observations). Fig. 7 shows the mean deviation per
segment as a function of the number of computational resources as-
signed, clearly showing that the percentage mismatch between actual
and ideal workload per computation resource is on the order of a few
percent of nominal workload. The mismatch rises with computational
resources since each segment becomes smaller, making each row or
column added or removed a larger (potential) percentage of the nom-
inal workload. The difference between the two datasets is due to dataset
size and geographical extent.

3.3. Speedup and processing rate

The two test datasets were processed using first the serial version of
the algorithm, and then the parallel version, repeating the process 100
times in each case in order to gather statistics on variability. The test
hardware having a quad-core, hyper-threaded processor, a range of 2–8
computational elements were considered.

The speedup achieved for the multi-threaded version of the algo-
rithm is shown in Fig. 8, and the efficiency (also known as strong
scaling (Barnes, 2016)) is shown in Fig. 9. The algorithm demonstrates
almost perfect (and very slightly super-linear) speedup for 2–3 com-
putational elements, but then starts to diverge from ideal speedup as
the effects of cache, memory bandwidth, and I/O contention start to
take effect; the corresponding efficiency shows the equivalent relatively
gentle decline with additional computational resource. Note, however,
that performance does not decrease as further resources are added. An
overall speedup of about 4.1 times is achieved, which is perhaps not
surprising on a single quad-core (albeit hyper-threaded) processor.

The overall computation rate per thread is shown in Fig. 10. Clearly,
the theoretical observation processing rate for each thread is constant;
the apparent processing rate, however, drops as the number of threads
increases and contention for resources takes effect. For small numbers
of threads, the additional threads lead to sufficient improvement to
compensate for the reduction in apparent processing rate; for larger
number of threads, the resource contention overwhelms the benefit of
extra threads, leading to reduced speed improvements.

The distribution of observations at the threads is given in Fig. 11. A
significant difference is observed between the two datasets due to the
differences in bathymetry in the regions, and the type of echosounder
used during the surveys. The more even distribution achieved with the
Woods Hole dataset is one reason for the slightly improved speed-up
observed. Analysis of the observation counts recorded at the threads
indicates that the over-computation (i.e., the observations that need to
be redundantly included in the partial computations so that no edge
effects are engendered) average over all of the segments in the partition
to approximately 2% of the total number of observations.

4. Discussion

The multi-threaded implementation of the CHRT algorithm clearly
improves on the overall run-time for the algorithm, being limited on a
single processor by factors other than the CPU bound of the algorithm.

Fig. 6. Estimate of absolute and relative run-time to compute a partition as a
function of computational resource count. Note logarithmic scale on absolute
run-time plot; dashed lines (only visible to the right of the absolute run-time
plot due to scale) are 95% CI limits for =N 100 runs of the partitioning algo-
rithm. Relative run-times are computed with respect to that for a computational
resource count of two units.

B.R. Calder Computers and Geosciences 123 (2019) 73–82

79

That is, the algorithm could theoretically complete faster if higher
memory and disc bandwidth, and/or larger caches were available.
Compressing the virtual tiles that act as intermediate results before
serialization (Barnes, 2016) or the addition of solid state disc buffers
(Barnes, 2017) might also improve the situation. On a single processor,
however, there is a limit to achievable performance improvement,
which suggests that it might be advantageous to distribute the algo-
rithm over more nodes in order to achieve greater speedups, a topic of
current research.

An increase in the number of computational resources committed to
the algorithm has implications for the overall efficiency of the algo-
rithm, and may not always be advantageous. That is, although

increasing numbers of computational resources on distributed nodes
will reduce the estimation algorithm's run-time, it remains an open
question whether the gain will be sufficient to offset the partition run-
time costs for larger computational resource counts. This in turn sug-
gests that it might make sense to allow for a logical grouping of com-
putational resources (i.e., making sub-clusters), partitioning over the
groups at the global level, and then sub-dividing the assigned segment
locally within the group either equally, or through an iteration of the
partitioning algorithm applied to the assigned segment; this is similar in
spirit to the “hybrid” solution of Saule et al. (2012). This would mini-
mise the run-time for the partitioning algorithm (the more so because
the local sub-division could be computed in parallel), although it would
result in a globally sub-optimal partition. The difference between the
performance of a locally optimal but globally sub-optimal solution and
the globally optimal partition when all effects are taken into account is
not obvious, and would require further investigation.

The results demonstrate that the degree of even distribution of ob-
servations between segments depends on the problem itself, although
the mean performance is within 1–2% of nominal for the two (very
different) datasets tested. Absolutely even distribution is likely im-
possible without further complexity in the partitioning algorithm to
allow for non-rectangular segments. This might not be beneficial,
however. Due to the CHRT algorithm's use of observations surrounding
each segment to ensure that there are no edge effects, a longer peri-
meter, such as could be generated with non-rectangular segments,
would lead to more observations being drawn into a segment. This extra
computation is redundant in the sense that more than one computa-
tional resource will have to do the same base computations for the
observation. Although current evidence is that this is a small effect
(approximately 2% of the overall load on each thread), increased
numbers of computational resources (resulting in smaller segments
with higher perimeter to area ratios) and non-rectangular segments
could potentially increase it to a significant degree.

Consequently, it seems likely that further improvements to the al-
gorithm do not necessarily pertain to larger numbers of computational
resources. Multi-threading of the algorithm as applied to a single seg-
ment, for example by having one thread set up the data at each low-
resolution cell while one or more threads do the processing within cells,
might be a productive line of investigation.

Fig. 7. Percentage average deviation from ideal observation distribution per segment as a function of computational resource count.

Fig. 8. Speedup achieved by the algorithm with 2–8 threads on a single, quad-
core, hyper-threaded CPU. Dashed lines indicate 95% CI limits.

B.R. Calder Computers and Geosciences 123 (2019) 73–82

80

5. Conclusions

The time taken to compute a bathymetric (or other scalar field)
reconstruction from raw observations is critical for practical data pro-
cessing methods; acceleration of the computation can also be an enabler
for more advanced algorithms built on the base computation.

The results here demonstrate that it is possible to efficiently pre-
partition the computational task for a bathymetric reconstruction al-
gorithm (in this case CHRT) into a fixed number of segments, each of
which has approximately the same amount of computational effort.
This allows the computation to proceed without further communication
between computational units, avoiding communication or synchroni-
sation overhead. Partition times of order 10–100 ms are observed for
small numbers of computational resources, along with mean absolute
deviations from even distribution of effort on order 1–2%.

The resulting multi-threaded demonstration implementation of a
parallel CHRT, for use on a single, quad-core CPU, is observed to achieve
maximum speed-up of 4.1 on eight threads, with the sub-linear per-
formance being driven by cache, memory, and disc contention between
the threads. Nominal processing rates of up to ×1.5 106 observations
per second per thread are observed.

Examination of algorithm behaviour (partition computation rate,
redundant but necessary computations, and observation count balance)
with increasing numbers of computational resources indicate that it
might be fruitful to examine either distribution over multiple compute
nodes, or multi-threading the core algorithm to further improve the
performance of the algorithm.

Fig. 9. Efficiency of computation (i.e., speedup per computational resource committed to the task) corresponding to Fig. 8. Dashed lines indicate 95% CI limits.

Fig. 10. Processing rate per thread (in millions of observations per second
processed) for 2–8 threads on a single, quad-core, hyper-threaded CPU. Dashed
lines indicate 95% CI limits.

Fig. 11. Maximum and mean absolute deviation of processed observations per
partition segment from nominal “even” division as a percentage of nominal
observation count. Non-zero deviations cause non-uniform thread run-times
and hence lower overall efficiency.

B.R. Calder Computers and Geosciences 123 (2019) 73–82

81

Computer code availability

An example implementation of the algorithm, written in C++11, is
available at https://github.com/brian-r-calder/density-partition.git,
using the GNU GPL, version 2. The code was written to be portable, and
therefore should require only a C++11 compiler for use; it was de-
veloped primarily on macOS, but has also been tested on both Windows
and Linux platforms. Further details on compilation are provided in the
source distribution. Example input data density files, and expected
output, are also provided. An example implementation of a one-di-
mensional version of the CHRT algorithm was published to accompany
Calder and Rice (2017), and can be found at https://github.com/brian-
r-calder/vr-grid-estimator.git. The corresponding author may be con-
tacted for further details.

Declarations of interest

None.

Acknowledgements

The support of NOAA grants NA10NOS4000073and NA15NOS
4000200for this work is gratefully acknowledged.

References

Aspvall, B., Halldórsson, M.M., Manner, F., 2001. Approximations for the general block
distribution of a matrix. Theor. Comput. Sci. 262, 145–160.

Baird, D.D., 2009. Descriptive report: hydrographic survey H11825 (Ernest Sound, AK).
Tech. rep. National Oceanic and Atmospheric Administation.

Barnes, R., 2016. Parallel Priority-Flood depression filling for trillion cell digital elevation
models on desktops or clusters. Comput. Geosci. 96, 56–68.

Barnes, R., 2017. Parallel non-divergent flow accumulation for trillion cell digital ele-
vation models on desktops and clusters. Environ. Model. Software 92, 202–212.

Barnum, S.R., 2001. Descriptive report: hydrographic survey H11077 (Woods Hole, MA).
Tech. rep. National Oceanic and Atmospheric Administation, 1315 East West
Highway, Silver Spring, MD.

Berger, M.J., Bokhari, S.H., 1987. A partitioning strategy for nonuniform problems on
multiprocessors. IEEE Trans. Comp. C 36 (5), 570–580.

Berman, P., DasGupta, B., Muthukrishnan, S., Ramaswami, S., 2001. Efficient approx-
imation algorithms for tiling and packing problems with rectangles. J. Algorithm 41,
443–470.

Calder, B.R., Mayer, L.A., 2003. Automatic processing of high-rate, high-density multi-
beam echosounder data. G-cubed (G3) 4 (6). https://doi.org/10.1029/
2002GC000486.

Calder, B.R., Plumlee, M.D., 2017. On testing of complex hydrographic data processing
algorithms. In: Proc. U.S. Hydrographic Conference 2017. The Hydrographic Society
of America, Galveston, TX, pp. 1–6.

Calder, B.R., Rice, G., 2017. Computationally efficient variable resolution depth estima-
tion. Comput. Geosci. 106, 49–59.

Crow, F.C., 1984. Summed-area tables for texture mapping. Proc. ACM SIGGRAPH 18 (3),
207–212.

Debese, N., Moitié, R., Seube, N., 2012. Multibeam echosounder data cleaning through a
hierarchic adapative and robust local surfacing. Comput. Geosci. 46, 330–339.

Gamma, E., Helm, R., Johnson, R., Vissides, J., 1994. Design Patterns. Addison-Wesley
Professional.

Grigni, M., Manne, F., 1996. On the complexity of the generalized block distribution. In:
Proc. International Workshop of Parallel Algorithms for Irregularly Structured
Problems. Springer, Berlin Heidelberg, pp. 319–326.

Hofierka, J., Lacko, M., Zubal, S., 2017. Parallelization of interpolation, solar radiation
and water flow simulation modules in GRASS GIS using OpenMP. Comput. Geosci.
107, 20–27.

Isenburg, M., Liu, Y., Shewchuck, J., Snoeyink, J., Thirion, T., 2006. Generating raster
DEM from mass points via TIN streaming. In: In: Raubal, M. (Ed.), Geographic
Information Science (Lecture Notes in Computer Science), vol. 4197. Springer-Verlag,
pp. 186–198.

Khanna, S., Muthukrishnan, S., Paterson, M., 1998. On approximating rectangle tiling and
packing. In: Proc. ACM Symp. on Discrete Algorithms. Assoc. Comp. Machinery, pp.
384–393.

Krishnan, S., Baru, C., Crosby, C., Nov. 2010. Evaluation of MapReduce for gridding lidar
data. In: Qiu, J., Zhao, G., Rong, C. (Eds.), Proc. Second IEEE International
Conference on Cloud Computing Technology and Science, pp. 33–40.

Ladner, R.E., Fischer, M.J., 1980. Parallel prefix computation. J. Assoc. Comp. Mach. 27
(4), 831–838.

Land, A.H., Doig, A.G., 1960. An automatic method of solving discrete programming
problems. Econometrica 28 (3), 497–520.

Lorys, K., Paluch, K.E., 2003. New approximation algorithm for RTILE problem. Theor.
Comput. Sci. 303, 517–537.

Manne, F., Sørevik, T., 1996. Partitioning an array onto a mesh of processors. In:
Waśniewski, J., Dongarra, J., Madsen, K., Olesen, D. (Eds.), Proc. International
Workshop of Applied Parallel Computing. No. 1184 in Lecture Notes in Computer
Science. Springer, Berlin Heidelberg, pp. 467–477.

Muthukrishnan, S., Suel, T., 2005. Approximation algorithms for array partitioning pro-
blems. J. Algorithm 54, 85–104.

Nichol, D.M., 1991. Rectilinear partitioning of irregular data parallel computations. Tech.
Rep. NASA-CR-187601, NASA.

Qin, C.-Z., Zhan, L., 2012. Parallelizing flow-accumulation calulations on graphics pro-
cessing units–from iterative DEM preprocessing to recursive multiple-flow-direction
algorithm. Comput. Geosci. 43, 7–16.

Saule, E., Bas, E.Ö., Çatalyürek, Ü.V., 2012. Load-balancing spatially located computa-
tions using rectangular partitions. J. Parallel Distr. Comput. 72, 1201–1214.

Smith, W.H.F., Wessel, P., 1990. Gridding with continuous curvature splines in tension.
Geophysics 55 (3), 293–305.

Tesfa, T.K., Tarboton, D.G., Watson, D.W., Schreuders, K.A.T., Baker, M.E., Wallace, R.M.,
2011. Extraction of hydrological proximity measures using DEMs using parallel
processing. Environ. Model. Software 26, 1696–1709.

Tobler, W., 1970. A computer movie simulating urban growth in the Detroit Region.
Econ. Geogr. 46, 234–240.

Wilkinson, B., Allen, M., 2005. Parallel Programming, second ed. Pearson Education,
Upper Sadde River, NJ 07458.

Yıldırım, A.A., Watson, D., Tarboton, D., Wallace, R.M., 2015. A virtual tile approach to
raster-based calculations of large digital elevation models in a shared-memory
system. Comput. Geosci. 82, 78–88.

B.R. Calder Computers and Geosciences 123 (2019) 73–82

82

https://github.com/brian-r-calder/density-partition.git
https://github.com/brian-r-calder/vr-grid-estimator.git
https://github.com/brian-r-calder/vr-grid-estimator.git
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref1
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref1
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref2
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref2
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref3
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref3
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref4
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref4
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref5
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref5
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref5
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref6
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref6
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref7
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref7
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref7
https://doi.org/10.1029/2002GC000486
https://doi.org/10.1029/2002GC000486
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref9
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref9
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref9
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref10
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref10
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref11
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref11
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref12
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref12
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref13
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref13
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref14
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref14
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref14
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref15
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref15
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref15
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref16
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref16
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref16
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref16
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref17
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref17
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref17
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref18
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref18
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref18
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref19
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref19
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref20
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref20
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref21
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref21
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref22
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref22
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref22
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref22
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref23
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref23
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref24
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref24
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref25
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref25
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref25
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref26
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref26
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref27
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref27
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref28
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref28
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref28
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref29
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref29
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref30
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref30
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref31
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref31
http://refhub.elsevier.com/S0098-3004(18)30421-7/sref31

	Parallel variable-resolution bathymetric estimation with static load balancing
	Introduction
	Methods
	Core estimator
	Partitioning scheme
	Partitioning algorithm implementation
	Parallel estimator implementation
	Partial result reassembly

	Results
	Test datasets
	Reconstruction partitioning
	Speedup and processing rate

	Discussion
	Conclusions
	Computer code availability
	Declarations of interest
	Acknowledgements
	References

