Computers and Geosciences 124 (2019) 103-114

journal homepage: www.elsevier.com/locate/cageo

Contents lists available at ScienceDirect

Computers and Geosciences

COMPUTERS
GEOSCIENCES

Parallel implementation of a data assimilation scheme for operational R

Check for

oceanography: The case of the MedBFM model system el

A. Teruzzi®', P. Di Cerbo™?, G. Cossarini™®, E. Pascolo™”, S. Salon®*°

2 OGS - Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Via Beirut 2-4, 34151, Trieste, Italy

Y CINECA, Via Magnanelli 6/3, Casalecchio di Reno, BO, 40033, Italy

ABSTRACT

The MedBFM model system provides forecasts and reanalysis of the Mediterranean Sea biogeochemistry for the European Copernicus Services. The system integrates
model and observations through a 3D variational assimilation scheme, whose performance capitalizes on present HPC systems and ensures compliance with the
service requirements. Domain decomposition with message passing paradigm was implemented to parallelize the assimilation code and maximize performance and
scalability. In particular, the parallelization of the horizontal recursive filtering algorithm was implemented using a dynamic sliced domain decomposition.
Moreover, the efficient parallel solver of the PETSc/TAO library was adopted for optimizing the cost function minimization on which the variational assimilation is
based. Considering the complex domain decomposition of the Mediterranean Sea and the high variability of the data input, a modern and scalable software
application for variational assimilation schemes that exploits the performance of modern HPC architectures on the whole node was developed.

1. Introduction

Numerical models are powerful tools for the investigation of geo-
physical processes, providing a full-domain representation of the tem-
poral evolution of three-dimensional fields. However, models are in-
trinsically affected by errors owing to approximations in their
mathematical formulation. On the other hand, observations are often
discontinuous in time and space and affected by measurement errors.

Data Assimilation (DA) is a technique widely used in geophysical
sciences to optimally integrate information provided by observations
into a prediction model. DA algorithms are extensively used, for ex-
ample, in numerical weather prediction and operational oceanography
(Ghil and Malanotte-Rizzoli, 1991; Bertino et al., 2003; Rabier, 2005).
Among operational applications, DA in biogeochemical fields is rela-
tively recent (Teruzzi et al., 2014; Ford et al., 2012) and is relevant for
the absence of standardized formulation of the governing equations and
the lack of extensive observational data availability.

Two main approaches are typically used in DA applications: Kalman
filters and variational schemes. Owing to the high dimensionality of
biogeochemical oceanography, the application of Kalman filters

* Corresponding author.

requires the use of approximate schemes (Cossarini et al., 2009;
Ciavatta et al., 2016; Tsiaras et al., 2017). The variational approach is
less common to assimilate biogeochemical fields (Teruzzi et al., 2014),
however, it is quite frequently adopted in numerical weather prediction
(Bannister, 2017) and physical oceanography (Bennett et al., 2008;
Dobricic and Pinardi, 2008).

A recent example of a successful implementation of biogeochemical
variational DA is the 3DVarBio code (Teruzzi et al., 2014, 2018), that
adopts a three-dimensional variational scheme in the MedBFM opera-
tional system for the assimilation of surface chlorophyll concentration
estimated by satellite. MedBFM integrates 3DVarBio with the coupled
physical-biogeochemical model OGSTM-BFM (Lazzari et al., 2010,
2012), based on a medium complexity biogeochemical model (Lazzari
et al., 2016; Cossarini et al., 2015) that describes the plankton, bacteria
and nutrient dynamics. MedBFM provides the short-term forecast and
the reanalysis of the Mediterranean Sea biogeochemistry for the Co-
pernicus Marine Environment Monitoring Services (CMEMS®). In this
framework, a 10-day forecast of biogeochemical variables (chlorophyll,
nitrates, phosphates, phytoplankton biomass, primary production, dis-
solved oxygen, ocean pH, and pCO2) is released weekly (Bolzon et al.,

E-mail addresses: ateruzzi@inogs.it (A. Teruzzi), pierluigi.dicerbo@gmail.com (P. Di Cerbo), gcossarini@inogs.it (G. Cossarini),

eric.pascolo@cineca.it (E. Pascolo), ssalon@inogs.it (S. Salon).

! 3DVarBio code developer and manager; code implementation; results analysis and discussion; manuscript drafting.
2 Development and implementation of parallel version of 3DVarBio; results analysis and discussion; manuscript drafting.

3 Development of ideas for parallel 3DVarBio; results discussion and presentation.

4 Implementation of parallel version of 3DVarBio; results discussion.
5 Results discussion and presentation; manuscript critical revision.
6 http://marine.copernicus.eu.

https://doi.org/10.1016/j.cageo.2019.01.003

Received 1 March 2018; Received in revised form 6 November 2018; Accepted 7 January 2019

Available online 09 January 2019

0098-3004/ © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

http://www.sciencedirect.com/science/journal/00983004
https://www.elsevier.com/locate/cageo
https://doi.org/10.1016/j.cageo.2019.01.003
https://doi.org/10.1016/j.cageo.2019.01.003
mailto:ateruzzi@inogs.it
mailto:pierluigi.dicerbo@gmail.com
mailto:gcossarini@inogs.it
mailto:eric.pascolo@cineca.it
mailto:ssalon@inogs.it
http://marine.copernicus.eu
https://doi.org/10.1016/j.cageo.2019.01.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2019.01.003&domain=pdf

A. Teruzzi et al.

2017), and a reanalysis (i.e., a multiyear simulation carried out by the
most recently validated operational forecasting system) is performed
annually (Teruzzi et al., 2016). Operational systems rely on the com-
putational efficiency of the numerical codes embedded in their work-
flows to provide timely service to users, and the time-to-solution of
3DVarBio may hamper the performance of MedBFM.

The variational approach relies on the minimization of a cost
function (Lorenc, 1986), and crucial issues for its implementation
concern the definition and the inversion of the background error cov-
ariance matrix, which accounts for the uncertainty of the model vari-
ables and their covariance. In geophysical problems, the covariance
matrix is proportional to the square of the spatial size of the model
domain multiplied by the number of state variables, so it may have
large dimensions. Using the approach proposed in Dobricic and Pinardi
(2008), the background covariance matrix can be factorised into a
series of operators, allowing to define the background error covariance
matrix in a modular framework, where each operator describes a dif-
ferent aspect of the covariance. The operators may be matrices, diag-
nostic models, or even dynamical models that can be developed sepa-
rately. Using the factorization, the inversion of the background error
covariance matrix is no longer required for the evaluation of the cost
function. However, the computational cost of this approach is still high
for the typical dimensions and constraints of operational oceanography
applications and foreseen increases of spatial resolution (Guest et al.,
2012). Consequently, the parallelization of 3DVarBio is critical in im-
proving the performance of the MedBFM system within the CMEMS
requirements.

Parallelization of variational assimilation systems for realistic ocean
modelling applications can be performed using the domain decom-
position approach, as for example in Farina et al. (2015) and Moore
et al. (2011). Dedicated studies demonstrated the scalability of the
domain decomposition approach and its mathematical consistency
when applied in variational assimilation (Arcucci et al.,, 2017a;
D'Amore et al., 2018, 2014, 2012). On the other hand, it has been
highlighted that scalability of variational approaches may be limited by
the use of 2D recursive filters to model the horizontal correlation
(Weaver et al., 2016).

This study describes the parallelization and the optimization of the
DA scheme implemented in the 3DVarBio code, in which the error
covariance matrix is factorised following Dobricic and Pinardi (2008)
with the horizontal error covariance implemented as a 2D recursive
filter. Domain decomposition with MPI was used, and the TAO module
of the PETSc library (Balay et al., 2016a, b, 1997) was adopted for the
cost function minimization, while, differently from previous works, the
parallelization of the recursive filters was implemented using a dynamic
sliced domain decomposition.

Hereafter, the original serial version of 3DVarBio code will be
referred in the text as original code. The paper is organized as fol-
lows: Section 2 describes the minimization algorithm and the im-
plementation of the solver provided by the TAO module. Section 3
presents the issues related to the parallelization and the adopted
approach. In Section 4, the data sets and the computational facil-
ities are first described; subsequently, the results are presented. In
Section 5, a discussion on the results is provided, and the conclu-
sions are drawn.

2. Minimization algorithm
2.1. Mathematical problem

In the 3DVarBio code the assimilated field (i.e., analysis) is obtained

104

Computers and Geosciences 124 (2019) 103-114

through the minimization of a cost function that is defined on the basis
of Bayes’ theorem (Lorenc, 1986). The cost function relies on the misfit
between the model results and the observations, weighted according to
their accuracy estimations, represented by the error covariance ma-
trices B and R, respectively (the complete formulation of the cost
function is provided in Appendix A). In the present application, the size
of the state vector X (i.e., the number of the model variables times the
number of grid points) is nearly equal to 10¢, while the size of the ob-
servation vector y (surface chlorophyll map) is approximately equal to
103. Hence, the dimensions of B and R are 10° X 10° and 10? x 103 re-
spectively. The cost function formulation (Eq. (A.1)) requires the in-
version of both the error covariance matrices. Assuming that the ob-
servation errors are uncorrelated, the observation error matrix R is an
easily invertible diagonal matrix, whilst the inversion of the covariance
matrix B is computationally not affordable.

According to the scheme implemented in Dobricic and Pinardi
(2008), the background error covariance B can be approximated by
B = VVI. Therefore, the cost function can be rewritten as

1 1 _
J(v) = EVTV + E(d — HVV)'R(d — HVv), o)

where

ox = Vv. 2

In this formulation, the inversion of B is no longer required, and the
solution of the minimization is a vector v of size n depending on the
definition of V (in our case order 10°).

The solution v within the original 3DVarBio code is iteratively
computed using a library that implements a quasi-Newton L-BFGS
minimizer requiring the computation of the cost function gradient,
namely,

J'(v) =v—VIHRY(d — HVv). 3

Once the solution v is found, the final increment for the biogeo-
chemical variables dx is evaluated by Eq. (2).

For the application of the 3D variational approach in the framework
of biogeochemical DA a factorization of V based on the approach
proposed by Dobricic and Pinardi (2008) has been applied in Teruzzi
et al. (2014, 2018). In particular, in order to account of the main as-
pects of the background covariance matrix in biogeochemical applica-
tions, V is factorised as

V =V VV,. 4

These three operators describe the vertical error covariance of the
chlorophyll fields (V;), the horizontal error covariance (V,), and error
covariance of the biogeochemical variables (V;). As it will be illustrated
later, the V,, operator has a strong data dependency and is the most
computationally expensive (details on its formulation are provided in
Appendix B). The operators V, and V, are based, respectively, on syn-
thetic vertical profiles of chlorophyll obtained by an empirical ortho-
gonal function (EOF) decomposition applied to a multiyear run, and on
a functional variance operator that accounts for phytoplankton growth
status along with phytoplankton internal quotas and phytoplankton
species relative quotas (Teruzzi et al., 2014, 2018). In other examples of
variational DA EOFs were applied to the whole covariance matrix
(Arcucci et al., 2017b).

With the described factorization of V, the size n of the solution of
the minimization of Eq. (1) is equal to the number of EOFs used in V,
multiplied by the number of grid points on which DA is applied.

A. Teruzzi et al.

Read
Input
Initialize
Coefficients
L-BFGS Minimization [min cfn] ‘
Vv [veof]
ViV,v [ver hor] C
— ompute new state v
HV,V,v [obsop] p
d-HV, Vv [resid]
Compute J(v): [costf] No
J(v) = 1/2 V'V + 1/2(d - HVv)"'R"'(d-HVY))
R'(d-HVv) [res_inc] sva
H'R'(d-HVv) [obsop_ad] L.
V,"H'R"(d-HVv) [ver hor adl[% [rIBNrATiy D)
V,"V,TH™R"(d-HVv) [veof ad] for J?
Compute J'(v): [costf]
J'(v) =v- VIH'R'(d-HVYv) v
es

!

Convert to innovation
ox = Vv

|

Write
Output

Fig. 1. Workflow scheme of the original version of the 3DVarBio code. Names
of subroutines are in typewriter font within square brackets.

2.2. 3DVarBio code structure

The 3DVarBio code is written in Fortran 90 and consists of 55
subroutines. The workflow of the subroutine-call sequence is shown in
Fig. 1.

The first group of subroutines (not shown in Fig. 1) initializes the
components required for the computation. Namely, they load the ob-
servation data, read the grid structure, initialize the coefficients re-
quired for the computation, and perform other minor operations. Then,
the minimum of the cost function is computed by calling the corre-
sponding library (min_cfn subroutine). The solver is iteratively called
until an exit condition is satisfied and requires at each iteration the
value of the cost function (Eq. (1)) and its gradient (Eq. (3)). The
subroutine costf splits the calculation of the cost function (Eq. (1)) into
different subroutines:

e veof: Applies the operator V to the state vector v.

e ver_hor: Applies the operator Vj, to the output of the veof subroutine,
yielding the product Vv in Eq. (1).

e obsop: Applies the observational operator to obtain the product
HVv.

o resid: Computes the difference d — HVv.

The gradient (Eq. (3)) is computed through another series of sub-
routines (adjoint subroutines), that apply the adjoint operators:

e res_inc: Initializes quantities for adjoint calculations; the initial
vector is R™1(d — HVv).

Computers and Geosciences 124 (2019) 103-114

e obsop_ad: Applies the adjoint observational operator to obtain
HRY(d — HWW).

e ver_hor_ad: Applies the V], operator to obtain VI HTR™(d — HVv).

o veof ad: Applies the V] operator to obtain VIHTR™}(d — HVv).

Among the 3DVarBio subroutines, the most time-consuming ones
are ver_hor and ver_hor_ad (see Code Box 1), which require almost 90%
of the total computation time (profiling not shown). These subroutines
solve the horizontal covariance operator Vj, which is composed of a
series of recursive Gaussian filters (Dobricic and Pinardi, 2008) applied
in forward and backward direction in the x (longitude) and y (latitude)
direction (the details of the recursive filters formulation are resumed in
Appendix B).

2.3. Characteristics of the solver

The original version of the 3DVarBio code uses the L-BFGS-B library
version 2.1 (Zhu et al., 1997), implementing a limited memory quasi-
Newton algorithm for solving large nonlinear optimization problems
with simple bounds on the variables. The L-BFGS-B library features the
BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm, which is widely
used for approximating the Hessian matrix and constraining the solu-
tion (Malouf, 2002). The quadratic form of the cost function ensures
that using the BFGS method the solution converges.

The minimization solver of the TAO module within the PETSc li-
brary (Balay et al., 2016a, b, 1997) was adopted to parallelize the BFGS
algorithm in the new code, as it was natively coded for parallel ex-
ecution. In particular, the Limited Memory Variable Metric solver
(Munson et al., 2015) which implements a quasi-Newton optimization
based on the BFGS formula was chosen, ensuring the reproducibility of
the results with respect to the original version.

3. Computational methods and implementation
3.1. Dynamic domain decomposition for filtering

Domain decomposition exploits the computing power of a parallel
computer and relies on a partition of the computational domain into
sub-domains, which are assigned to processes that store only a portion
of the entire data structures. Ideally, each process performs the opera-
tions required for updating its part of the domain, and the output is the
composition of all local results. This programming paradigm was also
chosen for the parallelization of the OGSTM code, using MPI (Lazzari
et al., 2010). Domain decomposition in the 3DVarBio code cannot be
easily implemented, as the filter has a strong data dependency. Indeed,
the application of the filter in a specific direction, x or y, requires in-
formation of the entire row or column (intra-row dependency; Eq.
(B.2)), while, the result of filtering on a specific row does not depend on
the other rows (inter-row independency). This data-dependency struc-
ture motivates the application of a sliced domain decomposition, which
must dynamically change to allow the filter application on the other
direction after the application of the filter in the x (or y) direction.

3.2. Implementation

Figure 2a shows a domain decomposition of the Mediterranean Sea
using four processes. The axes are defined with the origin set in the
bottom left corner, the x axis right-oriented (eastwards) and the y axis
upwards (northwards). The sub-domains are assigned starting from the
top (the northernmost area belongs to process zero). Initially, each
process has a portion of rows (Fig. 2a), on which the filter is separately

A. Teruzzi et al.

(b)

Fig. 2. Dynamic domain decomposition. a) Example of a generic x-domain
decomposition with four processes: this decomposition allows filtering along
the x direction. b) Overlap among the x-domain decomposition (black lines)
and the y-domain decomposition (red lines). (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the Web version of
this article.)

Computers and Geosciences 124 (2019) 103-114

applied along the x direction (x-decomposition). Then, when the filter is
applied along the y direction, the domain decomposition must change
as shown in Fig. 2b (red lines) with each process having a portion of the
columns of the domain. Therefore, to obtain the new decomposition
(and return to the previous one), each process must communicate with
the others, exchanging parts of sub-domains. All the processes are in-
volved in the communication sending a part of their sub-domain to the
other processes and receiving the remaining parts.

The MPI_Alltoallv function is used to execute the dynamical switch
among decompositions. This function implements collective commu-
nication, acting on a group of processes and involving all the processes
of the group, and allows to dynamically reconstruct the domain for
filter application (Schulz, 2008). Indeed, the MPI_Alltoallv function
takes as input an array, divides it into parts, and sends the first part to
process zero, the second to process one, etc., with an analogous pro-
cedure occurring in data gathering.

The dynamic domain decomposition was implemented by suitably
executing the MPI_Alltoallv function before the filtering operations. The
implementation of the filtering is provided in Code Box 1, which shows
the structure of the ver_hor before parallelization. The calling sequence
shown in Code Box 1 consists of subroutines that implement the re-
cursive filters: the direct application of the filters (W,G,W,G,),. in Eq.
(B.1)) is implemented by the execution of the subroutines rcfl x_dir and
rcfl y_dir, resulting in the grd%chl dir field. The second term of Eq.
(B.1), i.e., (WyGyW,Gy),,, is implemented by rcfl y rev and rcfl x rev,
resulting in the grd%chl rev field. Following the direct and reverse
application of the filters, the 3D fields grd%chl_dir and grd%chl rev are
estimated. Each rcfl subroutine implements a recursive filter that acts in
forward and backward directions (see Eq. (B.2)), where the first three
entries are the global grid dimensions (grd%i, grd%j, and grd%k), while
the others are coefficients required for recursive filtering (grd%aex and
grd%aey). For instance, grd%aex provides the value of « (x, y, z) of Eq.
(B.2) for the application of filter Gy.

Code Box 1. Pseudo-code for the ver_hor subroutine of the original
code. Further details are in the text.

1!
... Initialize some quantities
3| !
5| ! apply direct recursive filter along the x direction
call rcflox_dir (grd%i, grd%j, grd%k, grd%aex, grd%chl_dir)
‘ !
of ! Perform some operations
|
11
! apply direct recursive filter along the y direction
call rcfl_y_dir (grd%i, grd%j, grd%k, grd%aey, grd%chl_dir)
15(!
! Perform some operations
17| !
19| ! apply reverse recursive filter along y direction
call rcfl_y_rev (grd%i, grd%j, grd%k, grd%aey, grd%chl_rev)
21
!
23| ! Perform some operations
|
25
! apply reverse recursive filter along x direction
27| call refl_x_rev (grd%i, grd%j, grd%k, grd%aex, grd%chl_rev)
20| ! compose the results
do k=1,grd%k
31 grd%chl(:,:,k) = 0.5 * (grd%chl_dir(:,:,k) + grd%chl_rev(:,:,k))
enddo
!
35| ... Exiting from ver_hor
1

106

A. Teruzzi et al.

All the communications required to carry out the parallel filtering
occur before the call to rcfl subroutines (rcfl_x_dir, rcfl y_dir, rcfl x_rev
and rcfl_y_rev in Code Box 1). Therefore, these subroutines do not need
to be modified to implement the 3DVarBio parallel version, and are
executed in local sub-domains. As rcfl_y_dir and rcfl_y_rev are applied in
sequence on two different arrays (grd%chl_dir and grd%chl_rev), a new
MPI data type composed of the pairs (grd%chl _dir(i,j,k), grd%chl_rev
(i,j,k)) is defined to minimize the number of MPI_Alltoallv executions.
This allows the exchange of both arrays by a single MPI_Alltoallv call.
Thus, starting with a domain decomposition that allows filtering along
the x direction (x-decomposition), only two calls to MPI Alltoallv
function must be performed to execute the ver_hor subroutine. The first
call shifts from the x-decomposition to the y-decomposition; the second
returns to the x-decomposition and applies the rcfl_x_rev subroutine.

Code Box 2. Pseudo-code for the parallel version of ver hor sub-
routine. Further details are in the text.

Computers and Geosciences 124 (2019) 103-114

the sum of the number of water cells in the row and of the number of
additional cells (red cells), which depends on the number of coast
points in the row.

4. Results
4.1. Computational setup

Implementation, testing, and performance analysis were carried out
on a compute node of the PICO cluster installed at CINECA, the main
Italian supercomputing centre. PICO is a Linux Infiniband cluster
composed of 74 nodes with two Intel Xeon ten-core processors (E5-
2670 v2) at 2.5GHz capable of eight FPO per cycle. Intel hyper-
threading technology is disabled. Each computing node is equipped
with 128 GB of RAM with a maximum theoretical bandwidth of
59.7 GB/s, and all the nodes are interconnected through a Mellanox

! apply direct recursive filter along the x direction
call rcflox_dir (grd%i, grd%j, grd%k, grd%aex, grd%chl_dir)
A
!
6! ... construct the array to send
|
sl call MPI_Alltoallv (MPI_Array)
|
10f ! unpack the MPI_Alltoall output
|
12
! apply direct recursive filter along the y direction
14| call rcfl_y_dir (grd%i, grd%j, grd%k, grd%aey, grd%chl_dir)
16| ! apply reverse recursive filter along y direction
call rcfl_y_rev (grd%i, grd%j, grd%k, grd%aey, grd%chl_rev)
18
!
20! ... constuct the array to send
|
22| call MPI_Alltoallv (MPI_Array)
|
24| ! unpack the MPI_Alltoall output
|
! apply reverse recursive filter along x direction
28| call refl_x_rev (grd%i, grd%j, grd%k, grd%aex, grd%chl_rev)
30| ! compose the results
do k=1,grd%k
32 grd%chl(:,:,k) = 0.5 * (grd%chl_dir(:,:,k) + grd%chl_rev(:,:,k))
enddo
34
!
36| ! ... Exiting from ver_hor
|

The pseudo-code for the parallel version of the ver_hor subroutine is
shown in Code Box 2. As the subroutine ver_hor_ad is similar to ver_hor,
and the computation of the cost function requires the execution of both
ver_hor and ver_hor_ad, four MPI_Alltoallv calls are performed for each
call to costf.

3.3. Extended grids

Extended grids are structures that support the application of fil-
tering operations (Dobricic and Pinardi, 2008). Indeed, the filter must
be applied only on seawater cells, whereas land cells do not contribute
to the computation. Therefore, the extended grids are composed by all
the seawater cells and by a fixed number of additional cells for each
coast point (defined as a land cell followed by a water cell or vice versa)
preventing that filtering operation occurs between water cells separated
by land cells.

In Fig. 3, a sketch of the extended grid construction for filtering in x
and y direction is shown.

The number of cells in a given row of the extended grid is equal to

Infiniband FDR 56 Gb/s network, allowing for a low latency/high
bandwidth interconnection.

3DVarBio as well as the PETSc library were built using the Intel
Fortran compiler from Intel Composer XE-2016 (version 16.0.0). The
performance analysis and the communication profiling (presented in
Section 5) were obtained using Intel VTune Amplifier and Intel Trace
Analyzer, respectively.

4.2. Benchmark datasets

The 3DVarBio code was executed on a grid with dimensions
720 X 256 X 72 (1/16° horizontal resolution). The number of iterations
for minimizing the cost function strongly depends on:

o the number of missing values of the satellite chlorophyll input (the
cloud cover is higher in winter than in summer);

o the shape of the spatial gradients of the input, which depends on the
variability of the chlorophyll patterns (higher in winter than in
summer);

Computers and Geosciences 124 (2019) 103-114

A. Teruzzi et al.

(*3o1Ie ST} JO UOISISA A U} 0] PALISJAI SI Jopeal oy} ‘puada] oISy SIY) U JNOJ0D 0] SIDUSIAI) Jo uonelardiaiur Jo04) 'syurod 1seod Jo sduasaid 9y} ur uoIsNYIp Juasaid o3
Pappe a1e S[[90 pai Yy} ‘pLIS papualxa 3 uJ *(sarenbs umoiq) s[[ed pue| pue (sarenbs anjq) S[[ed 19JeMEIS YIIM ‘SUONIIIP (Y1) A pue (IYS1I-w0330q) X 9y} Suofe SULI)[Y 10] UOTIINISUOD PLIS papUalXa 1) JO Y2I1aYS '€ 814

'S . y

108

A. Teruzzi et al.

-6 1 7
46

43

40

36

33

(a) April dataset.

(b) July dataset.

Fig. 4. Maps of misfit (dy, as defined in Section 2) of the April (top) and July
(bottom) datasets. No data points are shown in grey. The axes represent the
longitude and the latitude.

Table 1

List of simulation tests conducted for the 3DVarBio code.
Test name Input data Precision Nodes Processes
Original code April/July double 1 1
SingleApril April single 1 1, 2, 4-20
SingleJuly July single 1 1, 2,4-20
DoubleApril April double 1 1, 2, 4-20
DoubleJuly July double 1 1, 2, 4-20
TwoNodes April double 2 2, 4-20
FourNodes April double 4 2, 4-20

o the heterogeneity of the vertical EOF profiles of the V, operator,
which vary on a monthly basis.

As it is not straightforward to evaluate the relation of these three
factors to the number of iterations, two different misfit conditions
(spring case and summer case, Fig. 4) were chosen as input for the
simulations (see Table 1).

The spring case (23 April 2013, hereafter referred to as “April”) has
a larger number of missing data points (grey regions) and higher spatial
pattern heterogeneity compared with the summer case (16 July 2013,
hereafter referred to as “July”). By contrast, the V,, operator for the July
case exhibits higher vertical heterogeneity due to the non-uniform
vertical distribution of chlorophyll in summer, characterised by the
presence of a deep chlorophyll maximum.

4.3. Time-to-solution and scalability

Given the 3-D spatial heterogeneity of the domain, different choices
for the domain decomposition were available. The results presented
here were obtained using an equally distributed domain decomposition
among the processes for x and y direction.

Several tests (Table 1) were performed in the April and July con-
ditions using two precision versions of the code (single and double),
and different node distributions (1, 2, or 4 nodes). We computed strong
scalability, or speedup (also referred to as fixed-size scaling; Keyes,
1998), as the ratio between the single-process and the multiple-pro-
cesses time-to-solution: for each test, the code was executed 10 times,

109

Computers and Geosciences 124 (2019) 103-114

and the mean value of the time-to-solution was considered (the time-to-
solution in the case of a single process refers to the original version of
the code).

Figure 5 shows that the time-to-solution generally decreases as the
number of processes increases. The April case has a longer time-to-so-
lution compared with the July case, and the single precision version of
the code is always significantly faster than the double precision version.
The best scaling obtained is 12.7 with 20 processes for the SingleApril
dataset and 18.6 with 18 processes for the SingleJuly dataset. The cor-
responding values for the version of the code that employs double
precision are 7.6 with 20 processes for April and 8.8 with 18 processes
for July. Though a significant reduction of the time-to-solution is ob-
tained with the parallelization (Fig. 5, top), code scalability does not
result optimal, particularly for the double precision tests (Fig. 5,
bottom).

In addition to the single node configuration (all processes equally
distributed between the two sockets of the node), the processes were
placed on two nodes and four nodes minimizing the number of pro-
cesses per socket.

Figure 6 shows that for the different node configurations the time-
to-solution differs with an increased number of processes. In particular,
scalability does not improve in multiple-node configurations (except
the case of 8 processes distributed over 2 nodes, bottom panel), with
execution times even becoming 25 to 30% slower than the single-node
configuration using 16 processes, while, with less than 8 processes, the
execution times change little. Moreover, as shown in Fig. 7, a significant
portion of the time-to-solution is spent in MPI communication and in-
creases linearly as the number of processes increases (e.g., 30% of the
time-to-solution is devoted to communication in the run with 20 pro-
cesses).

The relevant decrease of time-to-solution in the single precision case
along with the similar time-to-solution obtained with less than 8 pro-
cesses in the multiple- and in the single-node configuration suggests
that code performance is limited by a memory bandwidth issue. Indeed,
at fixed memory bandwidth, in the single precision case each process
doubles the amount of data available for processing with respect to the
double precision case, resulting in increased code scalability. Moreover,
the total time-to-solution would be expected to increase on multiple
nodes considering the communication aspect. However, since the
available bandwidth per process increases when decreasing the number
of processes per node (even though the bandwidth of the Infiniband
network connecting the nodes is one tenth slower than the intranode
one), the time-to-solution is almost the same in the single- and multiple
node configurations for less than 8 processes. When the number of
processes is greater than 8, the time-to-solution is higher in the mul-
tiple-node case because the total network overload increases (more
communications are executed, Fig. 7), and the narrow Infiniband
bandwidth becomes relevant. Additional tests of performance analysis
(not shown), carried out using Intel VTune Profiler, confirm that the code
is significantly memory bound, and the optimal scaling is mainly
slowed down by the memory bandwidth saturation.

All the results presented above were obtained assigning an equal
number of rows (columns) to each process. We also tested an alternative
domain decomposition balancing the workload among processes. The
optimal load balancing was performed by an algorithm based on the
extended grids (where the horizontal filters are applied) that pre-
computes two optimal thresholds for the x and for the y directions,
respectively. As an example, using 10 processes the number of rows
(columns) per each process ranged from 6% to 19% of the total number
of rows (columns), and the maximum wait time decreased of nearly
50%. However, the time-to-solution with the balanced domain decom-
position increases of about 12% with respect to the configuration with
equal number of rows (columns) for each process. Indeed, the time per
process spent in the MPI Allreduce function increases significantly
using the balanced domain decomposition, because of the application of
the whole horizontal covariance operatorVj, (see Eq. (B.1) in Appendix

A. Teruzzi et al.

Computers and Geosciences 124 (2019) 103-114

160

140} -

120}

Time to Solution (s)
=
)] (o] o
o o o

I
o
T

20}

—f— DoubleApril
—— SingleApril
—— Doublejuly
—— Singlejuly

0 i i i i
8

10

12

Number of Processes

20

—— DoubleApril
—— SingleApril
—— Doublejuly
—— Singlejuly

16}

12f

Speedup

0 i i i i
8

10 12 14 16 18 20

Number of Processes

Fig. 5. Time-to-solution (top) and scalability (bottom) obtained using the two input datasets presented in the previous section for the two versions of the code (single
and double precision). Only the configurations with an even number of processes are presented, whereas the time-to-solution in the case of a single process was

obtained using the original version of the code.

B), that is composed by the two filters (G, and G,) and the two nor-
malizations (W, and W,). While the application of the filters is per-
formed on the balanced domain (with extended grids), normalizations
are penalized, since they are performed on the unbalanced domain
composed by seawater cells without extended grids.

5. Discussion and conclusion

The results shown in Fig. 5 indicate significant heterogeneity,
showing that the best parallel configuration is dependent on the data
input. However, the number of processes that minimizes the time-to-

110

solution cannot be predicted prior to scaling analysis. The SingleJuly
case for less than 20 processes is super-linear with respect to the ori-
ginal code, while in the other cases parallelization saves a large amount
of computational time even though not following the optimal scaling.
Moreover, we verified that a domain decomposition balanced on ex-
tended grids does not improve the code performance in terms of time-
to-solution. Thus, for the present operational implementation of
3DVarBio, where execution time is critical, we decomposed the domain
without a load balancing based on the extended grid, assigning the
same number of rows (columns) to each process.

On the other hand, memory bandwidth has been identified as an

A. Teruzzi et al.

Computers and Geosciences 124 (2019) 103-114

140

120}

100

60

Time to Solution (s)

40}

0 ; i ; i

| —— Singlejuly
|~ TwoNodes ||
|—t— FourNodes

0 2 4 6 8

10

12

14

16

18

20

30

25¢-

Number of Processes

—— TwoNodes
—— FourNodes

20

15¢-

10}

Percentage Difference

-10 i i i i
0 2 4 6 8

10 12 14 16 18 20
Number of Processes

Fig. 6. Time-to-solution (top) obtained using different process configurations on multiple nodes. Bottom figure shows the percentage difference between these
configurations and the SingleJuly code. The time-to-solution in the case of a single process is obtained using the original version of the code.

issue that can affect the code performance. Geophysical models based
on finite differences are usually affected by memory bandwidth issues
(e.g., Xu et al., 2014; Pascolo et al., 2016). Indeed, finite differences
adopt stencil computations that update the array elements according to
a fixed access pattern and are typically memory bound
(Krishnamoorthy et al., 2007; Fuhrer et al., 2013). In our case the
memory bandwidth issue was confirmed by the significant improve-
ment of the code scalability when using single precision numbers
(Fig. 5) and by comparison of single- and multiple-node configurations
(Fig. 6). The maximum bandwidth achievable depends on the hardware
components of the machine: the higher the number of processes, the
more the processes compete for the bandwidth. Thus, our results show

that bandwidth saturation limits the benefit of the reduction of the
computational workload related to the implemented parallelization.
Literature provides examples of performance optimization of intra-
node MPI collective communications in combination with shared
memory approach as OpenMP, kernel assisted copy approach (e.g., the
KNEM module”), or cache-oblivious implementations (Li et al., 2018)
especially in the frame of many-core systems. Application of similar
techniques is beyond the objectives of the present work, but they might
represent promising future developments of 3DVarBio. Presently, our
choice to adopt MPI was motivated by the parallelization scheme

7 http://knem.gforge.inria.fr/.

http://knem.gforge.inria.fr/

A. Teruzzi et al.

Computers and Geosciences 124 (2019) 103-114

Bl Communication
Hl Computation

80

60

40

% of Time to solution

20

| |

2 4 6 8 10 12 14 16 18

Number of processes

already applied in the MedBFM model system in which 3DVarBio is
embedded, and by the suitability of MPI to be applied to eventual de-
velopment of the codes (e.g., additional V operators).

Optimizing variational schemes in ocean science is a new field and
the present approach is innovative in terms of the efficient parallel
scheme implemented for the horizontal filtering. Parallel implementa-
tions of realistic applications of a 3D variational code with horizontal
recursive filtering are proposed by Farina et al. (2015) and by D’Amore
et al. (2012) using a static domain decomposition. In Farina et al.
(2015) the communication among processes was performed exclusively
using the MPI send and MPI recv functions, including the commu-
nication required to carry out filtering. Differently, in D’Amore et al.
(2012) the parallelization of the filtering was based on independent
operations calculated on 3 different quantities distributing data to 3
processors with maximum scalability nearly equal to 6 with 24 cores.
The higher scalability obtained in our study shows that the use of dy-
namic domain decomposition allows to better exploit the full potential
of parallelism with respect to a static domain decomposition approach
in case of intrinsically serial algorithms, such as 3DVarBio filters, that
may be handled using MPI_Alltoallv functionality (Jagode, 2006) for
the reconstruction of the domain in row or column slices.

This study can be summarized as follows:

e The L-BFGS-B library used by the original version of the 3DVarBio
code was updated with the minimization solver of the PETSc library,
which allows parallel computation. Furthermore, a dynamic sliced
domain decomposition was adopted, and implemented with the
MPI_Alltoallv function.

® As a result, a maximum scaling of 18.7 (8.8) was obtained with 18
processes in single (double) precision.

e A comparison of single-node and multiple-node configurations

Appendix A. Cost function formulation

Fig. 7. Time-to-solution (black line and dots) and code
profiling with different number of MPI processes shown as
160 percentage of time-to-solution between computational time
(blue) and MPI communication among the processes (red).
Data refer to DoubleApril test. (For interpretation of the re-
ferences to colour in this figure legend, the reader is referred
to the Web version of this article.)
120
1
2
E
2
80 £
=
F
40
0

20

showed that the execution time does not change significantly, de-
monstrating the memory bandwidth issues that affect the code.

Computer code availability

e Name of code: 3DVarBio

e Developers: Anna Teruzzi, Pierluigi Di Cerbo

e Contact details: OGS - Istituto Nazionale di Oceanografia e di
Geofisica Sperimentale, Via Beirut 2/4, 34151 Trieste, Italy; Tel.
+39 040 2140622; email: ateruzzi@inogs.it

® Year first available: 2018

e Hardware required: 3DVarBio was run on 20 cores of the PICO
cluster located at CINECA (Bologna, Italy)

o Software required: 3DVarBio code was compiled with intel compiler
and needs MPI, PETSC and NETCDF libraries

e Program language: the code is written in Fortran90

® Program size: 7.5 Mb

® Details on how to access the source code: the source files of the
3DVarBio code can be downloaded from github (see details on the
Instruction Guide)

Acknowledgements

This work was carried out as part of the Copernicus Marine
Environment Monitoring Service (CMEMS) MASSIMILI project. CMEMS
is implemented by Mercator Ocean in the framework of a delegation
agreement with the European Union. The research reported herein was
partially supported by the Italian Ministry of Education, Universities
and Research (MIUR) through OGS and CINECA under HPC-TRES
program grant number 2015-02 awarded to P. Di Cerbo. This study was
conducted using E.U. Copernicus Marine Service Information.

The variational assimilation is based on the minimization of a cost function, that at each assimilation step is defined as

J@x) = %SXTB‘ISX + %(d — HEX)'R-I(d — Hox),

(A.1)

where §x = x* — x/ is the correction made by the assimilation to the model forecast and d = y — H (x) is the misfit vector between the observation
and the model forecast. The term H is the observational operator, which transforms the state vector x into the observation space, and in the present
application is assumed to be linear. The matrices B and R are the model and observation error covariance matrices, respectively.

mailto:ateruzzi@inogs.it

A. Teruzzi et al. Computers and Geosciences 124 (2019) 103-114

Appendix B. Horizontal covariance operator

The horizontal covariance operator V,, has been designed as a Gaussian recursive filter operating along x and y directions:

+ (‘NXG’C‘VYG}’)W\)’

1
Vi = 5((WyGy‘VxGx)dir

(B.1)
where G, and G, represent the recursive filter operators in the x and y directions, respectively, while W, and W, are diagonal matrices with
normalization coefficients that may account for variable grid resolutions and correlation scales in the x and y directions, respectively. Eq. (B.1) shows
that the filter is applied twice to overcome issues that are due to the extended grids and to ensure symmetry of the filter (see Dobricic and Pinardi
(2008)). In particular, (W,G,W,Gy),,. applies the filter first in the x direction and then in the y direction (“direct”), whereas (W,G,W,Gy),,, applies the
filter first in the y direction and then in the x direction (“reverse”). Both G, and G, are recursively applied in two steps, first forward and then
backward. The total number of recursive filter applications is given by a namelist file and, in the present case, is equal to four.
For example, the recursive filter operator G along the x direction can be formulated as

B(x’y’ Z) = a(x’ Vs Z)B(x - 1’ys Z) + [1 - O‘(X,y, Z)]A(xs Vs Z)
Cly,2)=alxy2Cx+1,y 2 +[1-aly 2By 2) (B.2)

=
where a(x, y, z) is a filter parameter, A(x, y, z) is the input of the filter, B(x, y, z) the result of forward filtering, and C(x, y, z) is the output after
backward filtering. The correction at a given point depends on the previous point (in the case of the x direction, the correction at (x, y, z) depends on
(x = 1, y, z) in the forward filter and on (x + 1, y, z) in the backward filter).

Appendix C. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.cageo.2019.01.003.
References International Publishing, pp. 48-57.

D'Amore, L., Arcucci, R., Marcellino, L., Murli, A., 2012. Hpc computation issues of the
incremental 3d variational data assimilation scheme in oceanvar software. J. Numer.

Arcucci, R., D'Amore, L., Carracciuolo, L., Scotti, G., Laccetti, G., 2017a. A decomposition Anal. Ind. Appl. Math. 7 (3-4), 91-105.
of the tikhonov regularization functional oriented to exploit hybrid multilevel par- Dobricic, S., Pinardi, N., 2008. An oceanographic three-dimensional variational data as-
allelism. Oct. Int. J. Parallel Program. 45 (5), 1214-1235. https://doi.org/10.1007/ similation scheme. Ocean Model. 22 (3-4), 89-105. URL. http://www.sciencedirect.
510766-016-0460-3. com/science/article/pii/S1463500308000176.

Arcucci, R., D'Amore, L., Pistoia, J., Toumi, R., Murli, A., 2017b. On the variational data Farina, R., Dobricic, S., Storto, A., Masina, S., Cuomo, S., Mar 2015. A revised scheme to
assimilation problem solving and sensitivity analysis. Apr. J. Comput. Phys. 335, compute horizontal covariances in an oceanographic 3D-VAR assimilation system. J.
311-326. http://www.sciencedirect.com/science/article/pii/S0021999117300505. Comput. Phys. 284 (C), 631-647. URL. https://doi.org/10.1016/j.jcp.2015.01.003.

Balay, S., Gropp, W., McInnes, L., Smith, B., 1997. Efficient management of parallelism in Ford, D., Edwards, K., Lea, D., Barciela, R., Martin, M., Demaria, J., 2012. Assimilating
object oriented numerical software libraries. In: Arge, E., Bruaset, A.M., Langtangen, globcolour ocean colour data into a pre-operational physical-biogeochemical model.
H.P. (Eds.), Modern Software Tools in Scientific Computing. Birkh&duser Press, pp. Ocean Sci. 8 (5), 751-771.

163-202. Fuhrer, O., Osuna, C., Lapillonne, X., Gysi, T., Bianco, M., Schulthess, T., 2013. Towards

Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Dalcin, L., gpu-accelerated operational weather forecasting. In: The GPU Technology
Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M., McInnes, L., Rupp, K., Smith, B., Conference.

Zampini, S., Zhang, H., Zhang, H., 2016a. PETSc Users Manual. Tech. Rep. ANL-95/ Ghil, M., Malanotte-Rizzoli, P., 1991. Data assimilation in meteorology and oceano-
11 - Revision 3.7. Argonne National Laboratory URL. http://www.mcs.anl.gov/ graphy. Adv. Geophys. 33, 141-266.
petsc. Guest, M., Aloisio, G., Bliigel, S., Orozco, M., Ricoux, P., Schéfer, A., Kenway, R., Downes,

Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Dalcin, L., T., Lippert, T., Ramalho, M., Erbacci, G., 2012. The Scientific Case for HPC in Europe
Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M., McInnes, L., Rupp, K., Smith, B., 2012 - 2020. Insight Publisher Ltd., Bristol, UK.

Zampini, S., Zhang, H., Zhang, H., 2016b. PETSc Web Page. URL. http://www.mcs. Jagode, H., 2006. Fourier Transforms for the BlueGene/L Communication Network.
anl.gov/petsc http://www.mcs.anl.gov/petsc. University of Edinburgh, Master’s thesis.

Bannister, R., 2017. A review of operational methods of variational and ensemble-var- Keyes, D., 1998. How scalable is domain decomposition in practice. In: Proceedings of the
iational data assimilation. Q. J. R. Meteorol. Soc. 143 (703), 607-633. URL. https:// 11th International Conference on Domain Decomposition Methods. Citeseer, pp.
doi.org/10.1002/qj.2982. 286-297.

Bennett, A., Chua, B., Pflaum, B., Erwig, M., Fu, Z., Loft, R., Muccino, J., 2008. The Krishnamoorthy, S., Baskaran, M., Bondhugula, U., Ramanujam, J., Rountev, A.,
inverse ocean modeling system. Part I: Implementation. J. Atmos. Ocean. Technol. 25 Sadayappan, P., Jun 2007. Effective automatic parallelization of stencil computa-
(9), 1608-1622. tions. SIGPLAN Not. 42 (6), 235-244. URL. http://doi.acm.org/10.1145/1273442.

Bertino, L., Evensen, G., Wackernagel, H., Aug 2003. Sequential data assimilation tech- 1250761.
niques in oceanography. Int. Stat. Rev. 71 (2), 223-241. URL. http://projecteuclid. Lazzari, P., Teruzzi, A., Salon, S., Campagna, S., Calonaci, C., Colella, S., Tonani, M.,
org/euclid.isr/1069172299. Crise, A., 2010. Pre-operational short-term forecasts for Mediterranean Sea bio-

Bolzon, G., Cossarini, G., Lazzari, P., Salon, S., Teruzzi, A., Crise, A., Solidoro, C., 2017. geochemistry. Ocean Sci. 6 (1), 25-39. URL. http://www.ocean-sci.net/6/25/2010/.
Mediterranean Sea Biogeochemical Analysis and Forecast (CMEMS MED AF- Lazzari, P., Solidoro, C., Ibello, V., Salon, S., Teruzzi, A., Béranger, K., Colella, S., Crise,
Biogeochemistry 2013-2017). Copernicus Monitoring Environment Marine Service. A., 2012. Seasonal and inter-annual variability of plankton chlorophyll and primary
https://doi.org/10.25423/MEDSEA_ANALYSIS_FORECAST_BIO_006_006. production in the Mediterranean Sea: a modelling approach. Biogeosciences 9 (1),

Ciavatta, S., Kay, S., Saux-Picart, S., Butenschoen, M., Allen, J.I., 2016. Decadal reanalysis 217-233. URL. https://www.biogeosciences.net/9/217/2012/.
of biogeochemical indicators and fluxes in the North West European shelf-sea eco- Lazzari, P., Solidoro, C., Salon, S., Bolzon, G., Feb 2016. Spatial variability of phosphate
system. J. Geophys. Res.: Oceans 121 (3), 1824-1845. URL. https://doi.org/10. and nitrate in the Mediterranean Sea: a modeling approach. Deep-Sea Res. I:
1002/2015JC011496. Oceanogr. Res. 108, 39-52.

Cossarini, G., Lermusiaux, P.F.J., Solidoro, C., 2009. Lagoon of Venice ecosystem: sea- Li, S., Zhang, Y., Hoefler, T., 2018. Cache-oblivious mpi all-to-all communications based
sonal dynamics and environmental guidance with uncertainty analyses and error on morton order. IEEE Trans. Parallel Distr. Syst. 29 (3), 542-555.
subspace data assimilation. J. Geophys. Res.: Oceans 114 (C6) n/a—n/a, c06026. URL. Lorenc, A., 1986. Analysis methods for numerical weather prediction. Q. J. R. Meteorol.
https://doi.org/10.1029,/2008JC005080. Soc. 112 (474), 1177-1194. URL. https://doi.org/10.1002/qj.49711247414.

Cossarini, G., Lazzari, P., Solidoro, C., Mar 2015. Spatiotemporal variability of alkalinity Malouf, R., 2002. A comparison of algorithms for maximum entropy parameter estima-
in the Mediterranean Sea. Biogeosciences 12, 1647-1658. tion. In: Proceedings of the 6th Conference on Natural Language Learning - Volume

D'Amore, L., Arcucci, R., Carracciuolo, L., Murli, A., Nov 2014. A scalable approach for 20. COLING-02. Association for Computational Linguistics, Stroudsburg, PA, USA, pp.
variational data assimilation. J. Sci. Comput. 61 (2), 239-257. URL. https://doi.org/ 1-7. URL. https://doi.org/10.3115/1118853.1118871.
10.1007/510915-014-9824-2. Moore, A.M., Arango, H.G., Broquet, G., Powell, B.S., Weaver, A.T., Zavala-Garay, J.,

D'Amore, L., Arcucci, R., Li, Y., Montella, R., Moore, A., Phillipson, L., Toumi, R., 2018. 2011. The regional ocean modeling system (roms) 4-dimensional variational data
Performance assessment of the incremental strong constraints 4dvar algorithm in assimilation systems: Part i-system overview and formulation. Prog. Oceanogr. 91
ROMS. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (Eds.), Parallel (1), 34-49.

Processing and Applied Mathematics. Lecture Notes in Computer Science. Springer Munson, T., Sarich, J., Wild, S., Benson, S., McInnes, L., 2015. Tao 3.6 Users Manual.

113

https://doi.org/10.1016/j.cageo.2019.01.003
https://doi.org/10.1007/s10766-016-0460-3
https://doi.org/10.1007/s10766-016-0460-3
http://www.sciencedirect.com/science/article/pii/S0021999117300505
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref3
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref3
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref3
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref3
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
https://doi.org/10.1002/qj.2982
https://doi.org/10.1002/qj.2982
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref7
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref7
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref7
http://projecteuclid.org/euclid.isr/1069172299
http://projecteuclid.org/euclid.isr/1069172299
https://doi.org/10.25423/MEDSEA_ANALYSIS_FORECAST_BIO_006_006
https://doi.org/10.1002/2015JC011496
https://doi.org/10.1002/2015JC011496
https://doi.org/10.1029/2008JC005080
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref12
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref12
https://doi.org/10.1007/s10915-014-9824-2
https://doi.org/10.1007/s10915-014-9824-2
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref14
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref14
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref14
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref14
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref14
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref15
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref15
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref15
http://www.sciencedirect.com/science/article/pii/S1463500308000176
http://www.sciencedirect.com/science/article/pii/S1463500308000176
https://doi.org/10.1016/j.jcp.2015.01.003
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref18
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref18
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref18
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref19
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref19
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref19
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref20
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref20
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref21
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref21
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref21
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref22
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref22
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref23
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref23
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref23
http://doi.acm.org/10.1145/1273442.1250761
http://doi.acm.org/10.1145/1273442.1250761
http://www.ocean-sci.net/6/25/2010/
https://www.biogeosciences.net/9/217/2012/
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref27
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref27
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref27
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref28
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref28
https://doi.org/10.1002/qj.49711247414
https://doi.org/10.3115/1118853.1118871
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref31
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref31
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref31
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref31
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref32

A. Teruzzi et al.

Tech. rep. .

Pascolo, E., Salon, S., Melaku Canu, D., Solidoro, C., Cavazzoni, C., Umgiesser, G., 2016.
OpenMP tasks: asynchronous programming made easy. In: International Conference
on High Performance Computing & Simulation. HPCS 2016, Innsbruck, Austria July
18-22, 2016. pp. 901-907. URL. https://doi.org/10.1109/HPCSim.2016.7568430.

Rabier, F., 2005. Overview of global data assimilation developments in numerical
weather-prediction centres. Q. J. R. Meteorol. Soc. 131 (613), 3215-3233. URL.
https://doi.org/10.1256/qj.05.129.

Schulz, R., 2008. 3D FFT with 2D decomposition. CS project report:; http://cmb.ornl.
gov/Members/z8g/csproject-report.pdf .

Teruzzi, A., Dobricic, S., Solidoro, C., Cossarini, G., 2014. A 3-D variational assimilation
scheme in coupled transport-biogeochemical models: forecast of Mediterranean
biogeochemical properties. J. Geophys. Res.: Oceans 119 (1), 200-217. URL. https://
doi.org/10.1002/2013JC009277.

Teruzzi, A., Cossarini, G., Lazzari, P., Salon, S., Bolzon, G., Crise, A., Solidoro, C., 2016.
Mediterranean Sea Biogeochemical Reanalysis (CMEMS MED REA-Biogeochemistry
1999-2015). Copernicus Monitoring Environment Marine Service. https://doi.org/
10.25423/MEDSEA_REANALYSIS_BIO_006_008.

Teruzzi, A., Bolzon, G., Salon, S., Lazzari, P., Solidoro, C., Cossarini, G., 2018.
Assimilation of coastal and open sea biogeochemical data to improve phytoplankton

114

Computers and Geosciences 124 (2019) 103-114

simulation in the mediterranean sea. Ocean Model. 132, 46-60. URL. http://www.
sciencedirect.com/science/article/pii/S1463500318303184.

Tsiaras, K., Hoteit, 1., Kalaroni, S., Petihakis, G., Triantafyllou, G., Apr 2017. A hybrid
ensemble-OI Kalman filter for efficient data assimilation into a 3-D biogeochemical
model of the Mediterranean. Ocean Dynam. 67 (6), 673-690 responsible Editor:
Dieter Wolf-Gladrow).

Weaver, A.T., Tshimanga, J., Piacentini, A., Jan 2016. Correlation operators based on an
implicitly formulated diffusion equation solved with the Chebyshev iteration. Q. J. R.
Meteorol. Soc. 142 (694), 455-471. URL https://rmets.onlinelibrary.wiley.com/doi/
abs/10.1002/qj.2664.

Xu, S., Huang, X., Zhang, Y., Hu, Y., Fu, H., Yang, G., 2014. Porting the princeton ocean
model to GPUs. In: Sun, X., Qu, W., Stojmenovic, 1., Zhou, W., Li, Z., Guo, H., Min, G.,
Yang, T., Wu, Y., Liu, L. (Eds.), Algorithms and Architectures for Parallel Processing:
14th International Conference, ICA3PP 2014, Dalian, China, August 24-27, 2014.
Proceedings, Part I. Springer International Publishing, Cham, pp. 1-14. URL. https://
doi.org/10.1007/978-3-319-11197-1_1.

Zhu, C., Byrd, R., Lu, P., Nocedal, J., Dec 1997. Algorithm 778: L-BFGS-B: fortran sub-
routines for large-scale bound-constrained optimization. ACM Trans. Math Software
23 (4), 550-560. URL. http://doi.acm.org/10.1145/279232.279236.

http://refhub.elsevier.com/S0098-3004(18)30233-4/sref32
https://doi.org/10.1109/HPCSim.2016.7568430
https://doi.org/10.1256/qj.05.129
http://cmb.ornl.gov/Members/z8g/csproject-report.pdf
http://cmb.ornl.gov/Members/z8g/csproject-report.pdf
https://doi.org/10.1002/2013JC009277
https://doi.org/10.1002/2013JC009277
https://doi.org/10.25423/MEDSEA_REANALYSIS_BIO_006_008
https://doi.org/10.25423/MEDSEA_REANALYSIS_BIO_006_008
http://www.sciencedirect.com/science/article/pii/S1463500318303184
http://www.sciencedirect.com/science/article/pii/S1463500318303184
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref39
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref39
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref39
http://refhub.elsevier.com/S0098-3004(18)30233-4/sref39
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.2664
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.2664
https://doi.org/10.1007/978-3-319-11197-1_1
https://doi.org/10.1007/978-3-319-11197-1_1
http://doi.acm.org/10.1145/279232.279236

	Parallel implementation of a data assimilation scheme for operational oceanography: The case of the MedBFM model system
	Introduction
	Minimization algorithm
	Mathematical problem
	3DVarBio code structure
	Characteristics of the solver

	Computational methods and implementation
	Dynamic domain decomposition for filtering
	Implementation
	Extended grids

	Results
	Computational setup
	Benchmark datasets
	Time-to-solution and scalability

	Discussion and conclusion
	Computer code availability
	Acknowledgements
	Cost function formulation
	Horizontal covariance operator
	Supplementary data
	References

