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A B S T R A C T

Dimensionality reduction provides a simple, two-dimensional representation of multi-element geochemical as-
says, which facilitates visualisation of complex data and enhances their interpretation. A recently proposed
dimensionality reduction algorithm, namely t-distributed stochastic neighbour embedding (t-SNE), generates
effective two-dimensional representations of a wide range of datasets based on pairwise statistical distances of
the input. However, direct application to multi-element geochemical assays has been shown to produce re-
presentations which can fail to separate specimens by a desired geological property, such as state of hydration.
Since t-SNE is a statistical distance-based method, these sub-optimal representations may be due to the presence
of dimensions (i.e., elements) irrelevant to the desired property—an issue often termed the ‘curse of di-
mensionality’. To address this shortcoming, t-SNE was applied to (i) 31 elements in a geochemical assay database
covering 16 000 drill core intervals intersecting the Kevitsa mafic-ultramafic intrusion (Lapland, Finland); and
(ii) a subset of 11 elements capable of discriminating between unaltered and altered host rock specimens, as
determined by a Random Forest classifier within a recursive feature elimination framework. The resulting re-
presentation more effectively separates altered and unaltered specimens, and we demonstrate that it produces
more favourable representations than alternative well-known methods (namely, a self-organising map and
principal components analysis) applied to the same dataset. We also demonstrate that the proposed t-SNE re-
presentation is applicable for re-logging of the specimens' alteration state as logged by geologists, and in par-
ticular provides visual insight into the labels suggested by a black box statistical re-logging algorithm.

1. Introduction

Geochemical analysis, which decomposes geological specimens into
their elemental concentrations, can refine the geological understanding
of mineral deposits (Kyser et al., 2015). For example, rock units can be
defined by clustering geochemical assays of drill core (e.g., Ellefsen
et al., 2014; Meng et al., 2011), and predictive chemical models of li-
thology and alteration can be built with reference to corresponding
geological interpretations (e.g., Cracknell et al., 2014). However,
modern geochemical assays frequently contain concentrations for over
fifty elements (Grunsky, 2010) and are thus considered high dimen-
sional data, where the surplus of elements not only hinders effective
visualisation, but also necessitates complicated statistical analysis. Di-
mensionality reduction is a solution to this problem, whereby the input
data are transformed into a lower (often two) dimensional space,
known as an embedding, which reveals the essential structure of the data
(Hyvärinen et al., 2001). The embedding is visually interpretable and

can be a noise-reduced basis for further analysis such as clustering
(Templ et al., 2008; Reimann et al., 2008; Grunsky, 2010). Di-
mensionality reduction techniques recommended for geochemical as-
says are given by Grunsky (2010), which include: principal component
analysis (PCA) (Hotelling, 1933; Pearson, 1901), multidimensional
scaling (Torgerson, 1952), projection pursuit (Friedman and Tukey,
1974), independent component analysis (Hyvärinen et al., 2001),
Sammon mapping (Sammon, 1969), and self-organising maps (SOM)
(Kohonen, 1990).

Dimensionality reduction techniques can be divided into linear
techniques such as PCA, which are computationally economical but not
guaranteed to separate clusters (Chang, 1983); and nonlinear techni-
ques such as Sammon mapping, which can theoretically represent
nonlinear relationships between points but commonly produce lower
quality embeddings on real-world data compared to PCA (van der
Maaten et al., 2009). SOMs in particular have experienced increasing
use in the geosciences, such as in order to characterise sedimentary
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provenance (Lacassie et al., 2004), characterise phases of intrusive
activity (Penn, 2005), integrate with other geoscientific data (Fraser
et al., 2005; Fraser and Dickson, 2005), predict potential sources of
airborne particulates (Gulson et al., 2007), and determine underlying
processes contributing to water quality measurements (Juntunen et al.,
2013). The SOM's embeddings are discretised (i.e., gridded) and the
number of samples mapped to SOM grid cells may differ significantly
which necessitates careful interpretation, although the grid structure
can also be learned from the data with a growable cell structure SOM
(Alahakoon et al., 2000) as demonstrated by Lacassie et al. (2004) and
Lacassie and Ruiz-Del-Solar (2006).

A recently proposed nonlinear dimensionality reduction technique
called t-distributed stochastic neighbour embedding (t-SNE) produces
high quality and non-discretised embeddings which outperform many
existing techniques on a variety of real-world datasets (van der Maaten
and Hinton, 2008). Moreover, an approximated form of the algorithm
extends its applicability to large ( >n 1000) datasets (van der Maaten,
2014) such as deposit-scale geochemical studies. One such study de-
monstrated that t-SNE could separate mineralised and unmineralised
specimens in an iron ore deposit, but could not produce adequate se-
paration between hydrated and non-hydrated host rock specimens de-
spite the presence of loss on ignition (Balamurali and Melkumyan,
2016), which is a strong indicator of hydration. In this study, we apply
t-SNE to a large geochemical dataset (16 000 assays, 31 elements) of
drill core intersecting the Kevitsa mafic-ultramafic intrusion in Finland
which hosts a world class Ni-Cu-PGE deposit, with the primary objec-
tive of creating an embedding that clearly visualises the changes in
elemental concentrations involved in host rock hydration.

This study extends the previous work by Balamurali and
Melkumyan (2016) in three ways. First, we empirically identify a subset
of elements that are jointly predictive of alteration, and use them to
produce an embedding that separates hydrated and non-hydrated spe-
cimens. The degree of separation between hydrated and non-hydrated
specimens is quantified based on the alteration status of each speci-
men's nearest neighbour in the embedding, and is shown to compare
favourably to a t-SNE embedding generated using all elements, and an
embedding based on PCA. Practical improvements of the t-SNE em-
bedding over a SOM generated from the same data are also discussed.
Second, we propose modifications to the t-SNE algorithm to address the
compositional aspects of the input geochemical data. Last, we demon-
strate t-SNE's practicality for automated geochemical-based re-logging
of alteration, where an embedding visualises the output of a black box
re-logging algorithm as a function of the algorithm's user-defined
parameters.

The remainder of this paper is structured as follows. In Section 2,
the case study geochemical data and methods for element selection and
dimensionality reduction are discussed. Section 3 presents the t-SNE
embeddings generated from all elements and from the subset of selected
elements, and the latter embedding is compared to those produced by
PCA and SOM. A demonstration of how the t-SNE embedding can aid
geochemical re-logging is also reported. Finally, conclusions are given
in Section 4.

2. Materials and methods

Section 2.1 below provides details on the project area and the multi-
element geochemical dataset used in this study. Section 2.2 describes
the method for dimensionality reduction, which is summarised in
Fig. 1.

2.1. Case study

2.1.1. Geological setting
The Kevitsa Ni-Cu-PGE deposit—also known as the Keivitsa or

Keivitsansarvi deposit—lies within a mafic-ultramafic intrusion hosted
by the Savukoski Group of the Central Lapland Greenstone Belt,

northern Finland. The intrusion is approximately 16 km2 in surface area
(Mutanen, 1997) and formed ca 2.06 Ga (Mutanen and Huhma, 2001).
Mutanen (1997, pp. 135–139) separates the intrusion into three zones:
a basal marginal chill zone (0–8m), an ultramafic zone which hosts the
deposit (up to 2 km thick), and a gabbro zone in the south-eastern part
of the intrusion. Significant veining occurs throughout the deposit (Le
Vaillant, 2014; Le Vaillant et al., 2016).

During regional greenschist facies metamorphism, the mafic mi-
nerals were hydrated into minerals including serpentine, amphibole,
and talc (Mutanen, 1997). The olivine pyroxenite host rock underwent
pervasive amphibole alteration, which was logged as metaperidotite by
the mine-site geologists (Gregory et al., 2011). The metaperidotite is
generally accompanied by carbonate alteration, which is contained
within the selvedge of nearby millimetre to metre-scale carbonate or
carbonate-quartz veining (Gregory et al., 2011; Le Vaillant et al., 2016).

2.1.2. Data
The Kevitsa geochemical assay database (August 2014) in its un-

processed form contained 141 465 assays of exploration and grade
control holes. A total of 51 elements were recorded in the database,
however a mean of only 18 elements were present in each assay. A set
of 31 regularly assayed elements were selected for further analysis: Ag,
Al, Ars, Au, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P,
Pb, Pd, S, Sb, Sc, Sr, Th, Ti, V, Y, and Zn. The subset of assays containing
all 31 previously listed elements described diamond drill core intervals
(i.e., no grade control holes). These assays were then coupled with their
corresponding geology logs, which contained optional fields for li-
thology (rock type), major and minor alteration, and type and degree of
veining. The geology log depth intervals and assayed core depth in-
tervals were not aligned, meaning that multiple geology logs often
existed for one assay.

Assays were excluded from further analysis under the following
circumstances. First, where the drill core interval was logged multiple
times inconsistently (i.e., had overlapping geology logs with different
lithologies). Second, where the drill core interval contained a vein, as
the vein is volumetrically small and does not represent the intrusion
alteration. Third, where the drill core interval was logged against a li-
thology not present within the intrusion, as the analysis was restricted
to within the intrusion and not country rock. The final geochemical
dataset comprised 16 165 chemical assays with a 31-element suite and
no missing values. The final distribution of lithologies is described in
Table 1, subdivided by whether the lithology is considered unaltered or
altered.

2.2. Method

The dimensionality reduction method presented is summarised in
Fig. 1: first, replacement of rounded zeros in the geochemical assays
(Section 2.2.1); second, an optional step of element selection (Section
2.2.2); and third, multiple applications of t-SNE with only the lowest
error embedding returned (Section 2.2.3). Each of these computational
steps are discussed in turn below.

2.2.1. Rounded zero imputation
Many concentrations in the final subset of assays were marked as

below detection limit (zero or negative of the detection limit).
Unfortunately, substituting zero for these values excludes the applica-
tion of logarithms, which is necessary for further analysis. A simple
substitution to half the detection limit changes the covariance structure
of the data (Martín-Fernández et al., 2011), which has an unpredictable
effect in dimensionality reduction. To avoid these problems, the R
package ‘robCompositions’ (Templ et al., 2011) was used to perform a
model-based replacement of rounded zeroes (Martín-Fernández et al.,
2012) using least squares regression and iterating until convergence.
This method required predefined detection limits; in the absence of this
metadata the largest negative number for each element was assumed to
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indicate the detection limit. In the case where no detection limits were
indicated, the smallest measured positive number was used. These de-
tection limits are given alongside the proportion of concentrations
below detection limit in Table 2.

2.2.2. Element selection
The term ‘element selection’ refers to the process of empirically

determining a subset of elements which discriminate between speci-
mens according to an external geological property. To create

embeddings which may better discriminate between hydrated and non-
hydrated specimens, the specimens in the geochemical data were as-
signed labels of ‘altered’ or ‘unaltered’ according to their logged li-
thology (Table 1), and whether any alteration was explicitly logged
against them. If a specimen had an unaltered lithology but had ex-
plicitly logged alteration, it was still considered altered. The labelled
specimens were then used to determine a set of elements that were
predictive of this alteration state using Random Forests within a re-
cursive feature elimination framework, which are described in turn
below. Note that a ‘feature’ refers to single dimension in the input data,
which is an element in the context of geochemical datasets.

Fig. 1. Overview of the dimensionality reduction technique; see Method (Section 2.2) for elaboration. Note that lithology and alteration logs may be used for element
selection but are otherwise held out from the dimensionality reduction process.

Table 1
Population of specimens (drill core intervals) grouped by logged lithology.

Lithology Count

Unaltered 12 212
Olivine pyroxenite 10 445
Gabbro 440
Pyroxenite 399
Dunite 276
Olivine websterite 227
Olivine gabbro 153
Diorite 86
Peridotite 55
Magnetite gabbro 36
Plagioclase bearing olivine websterite 36
Diabase 20
Granophyre 16
Pegmatite 9
Ultramafic (undifferentiated) 7
Microgabbro 3
Intrusive (mafic) 2
Intrusive (felsic) 1
Websterite 1

Altered 3953
Metaperidotite 3494
Serpentinite 159
Uralite gabbro 150
Hornfels 71
Completely altered (lithology unknown) 38
Albitite 21
Hornblendite 12
Meta-gabbro 7
Amphibolite 1

Table 2
Detection limits (DL) used for each element in the rounded zero imputation,
and percentage of instances below detection limit (<DL). All concentrations
were above detection limit for Al, Ca, Fe, Mg, Mn, Sr, and Ti.

< DL (%) DL

Co <0.1 0.01 ppm
V <0.1 2.32 ppm
Cr < 0.1 0.77 ppm
Sc < 0.1 0.08 ppm
P <0.1 0.02 ppm
Na <0.1 0.01 %
Zn 0.3 0.20 ppm
Ba 0.6 0.04 ppm
S 0.7 0.01 %
Y 1.4 0.01 ppm
Li 1.4 0.01 ppm
Ni 1.8 0.01 %
K 2.8 0.36 ppm
Pb 3.7 0.01 ppm
La 5.7 0.01 ppm
Au 8.0 0.10 ppb
Cu 7.9 0.01 %
Pd 17 0.10 ppb
Sb 24 0.01 ppm
Cd 24 0.01 ppm
Ag 25 0.01 ppm
Mo 35 0.01 ppm
Th 41 0.01 ppm
Ars 50 0.01 ppm
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A Random Forest (Breiman, 2001) is a classifier composed of an
ensemble of independently trained classification trees (Breiman, 1984)
which aggregates the constituent trees’ votes for a given input and
classifies accordingly. The performance of the forest depends upon the
strength of its trees, but also on their lack of vote correlation: the
strength of the trees determines how frequently they cast the correct
vote, while their low intercorrelation avoids a unilateral (possibly in-
correct) vote. The method by which vote correlation is reduced is
twofold: first, each tree is trained on a randomly resampled data set
which covers approximately two-thirds of the original training set,
created by sampling (with replacement) the original training set (i.e.,
bagging); second, the features used to split branches during training are
chosen randomly.

Random Forests further leverage the bagged training set by evalu-
ating each tree with its so-called out-of-bag samples, which constitute an
unseen test set for that tree. The Random Forest calculates a ‘feature
importance’ by randomly permuting values of a given feature between
all out-of-bag samples on a tree-by-tree basis and calculating their
average decrease in classification accuracy, known as ‘out-of-bag ac-
curacy’. Unfortunately, the feature importance is diluted between
highly correlated features, as a highly correlated feature can compen-
sate for the permuted feature with little resulting decrease in prediction
accuracy. This effect can be mitigated by applying recursive feature
elimination (Gregorutti et al., 2017), whereby the lowest ranking fea-
ture is iteratively removed with importances recalculated.

In this study, recursive feature elimination was applied to the la-
belled data. Feature importances were averaged from 20 Random
Forests to reduce random effects. The Random Forests were trained
with 1000 trees, and during bagging the unaltered specimens were
subsampled to prevent class imbalance affecting the feature im-
portances (10 704 unaltered specimens vs. 5461 altered specimens).

2.2.3. t-SNE
Given a set of assays from a (possibly reduced) set of elements, t-

SNE was applied to produce two-dimensional embeddings.

2.2.3.1. Algorithm. Given a matrix of n D-dimensional points
R= ⋯ ∈X x x x x( , , , | )n i

D
1 2 , t-distributed stochastic neighbour

embedding (t-SNE) aims to produce a corresponding matrix of low
(typically two) dimensional points R= ⋯ ∈Y y y y y( , , , | )n i

K
1 2 , <K D,

where points that are similar in the original space are placed close
together in the low dimensional space. For geochemical datasets, each
point xi represents a single assayed specimen with one dimension per
elemental concentration. The joint probability pij defines the pairwise
similarity (in the high dimensional space) between points xi and xj, and
is defined as the mean of the pairwise conditional probabilities:

= +p p p( )ij j i i j
1
2 | | . While this definition of joint probability is

unconventional, it has favourable characteristics over using
conditional probability alone (see end of this section). The
conditional pairwise probabilities are estimated using Gaussian
kernels (Equation (1)), where σi is the standard deviation of the
Gaussian kernel for xi, and ‖·‖ denotes the ℓ2-norm:

=
− −

∑ − −≠

x x

x x
p

σ

σ

exp( ‖ ‖ / )

exp( ‖ ‖ / )
.j i

i j i

k i i k i
|

1
2

2 2

1
2

2 2
(1)

Note that the raw similarity (the numerator) is normalised by all other
raw pairwise similarities where ≠i j.

The standard deviation σi controls how quickly ‘similarity’ between
two points decays as a function of their distance, and is dynamically
computed such that similarity in regions of low density (i.e., where the
closest neighbour is distant) decays more gradually. This is im-
plemented by solving Equation (2) by binary search, where h is the
user-defined parameter ‘perplexity’ that loosely corresponds to how
many points should be considered highly similar to xi:

∑⎛

⎝
⎜−

⎞

⎠
⎟ =σ p p h: exp ln .i

j
j i j i| |

(2)

In the two-dimensional embedding, the pairwise similarity qij be-
tween embedded points yi and yj is calculated using a Student t-dis-
tribution with one degree of freedom:

=
+ −

∑ + −

−

≠
−

y y
y y

q
(1 ‖ ‖ )

(1 ‖ ‖ )
.ij

i j

k l k l

2 1

2 1
(3)

The corresponding error C in the embedding is calculated as the
Kullback-Leibler divergence between the joint probabilities p and q:

∑ ∑=C p
p
q

log .
i j

ij
ij

ij
2

(4)

which corresponds to information lost (in bits) when qij is used to ap-
proximate pij. The algorithm randomly initialises the embedded points
yi, and iteratively updates their positions by minimising C by gradient
descent.

The improved performance of t-SNE over its forebear stochastic
neighbour embedding is largely due to two factors. First, the new
functional form for similarity between embedded points (Equation (3))
still requires that similar points ( ≫p 0ij ) are placed close together in
the embedding ( − ≈y y‖ ‖ 0i j ), but importantly does not constrain dis-
similar points to be placed far apart. This enables embeddings which
accurately model local structure in the high dimensional space. Second,
defining similarity as = +p p p( )ij j i i j

1
2 | | rather than just pj i| ensures that

outlying points have a minimum similarity above zero:
∀ ≠ ≈ → ≈j i p p p, 0j i ij j i|

1
2 | . This penalises embeddings where outliers

are proximal to other points, thus preferring outliers to be placed away
from other points. These two improvements allow t-SNE to retain local
structure while also isolating statistical outliers in the embedding.

2.2.3.2. Aitchison distance. The similarity functions that t-SNE uses rely
on the Euclidean distance between points, expressed in terms of an
ℓ2-norm in Equation (1) and Equation (3) above. However, the
Euclidean distance is a poor metric for comparing geochemical assays
for two reasons. First, elemental concentrations are zero-bounded,
typically log-normally distributed, and can have vastly different
ranges; assays should at least be log-transformed or normalised lest
the differences between major elements dominate those between minor
and trace elements. Second, assays are compositional data (i.e.,
describe proportions of a whole), and therefore lie on a lower-
dimensional simplex instead of occupying the full (half-)space.

Aitchison (1992, 1984) devised a distance function appropriate for
data on a simplex based on elemental logratios, which can be written in
two alternative but equivalent forms:

∑ ⎜ ⎟= ⎛
⎝

− ⎞
⎠<

x xd
D

x
x

x
x

( , ) 1 log log .A
i j

D
i

j

i

j

2
1 2

1,

1,

2,

2,

2

(5)

by Aitchison (1992), and

∑ ⎜ ⎟= ⎛
⎝

− ⎞
⎠=

x x
x x

d
x

g
x

g
( , ) log

( )
log

( )
.A

i

D
i i2

1 2
1

1,

1

2,

2

2

(6)

by Aitchison (1986, p. 193), where dA is the Aitchison distance, D is the
number of dimensions (i.e., number of elements in the assay), g (.) is the
geometric mean, and x i1, and x i2, are scalars from the i’th dimension of
points x1 and x2, respectively. The difference between the Euclidean
distance of the log-transformed data and the Aitchison distance can be
obtained by rearranging Equation (6) to give

= − −x x x x
x
x

d D( , ) ‖ log log ‖ log
g( )
g( )

.A 1 2
2

1 2
2 2 1

2 (7)

where = ⋯x x x xlog (log , log , , log )D1 2 . The correcting factor log x
x

2 g( )
g( )

1
2

ensures that the Aitchison distance is scale invariant, that is, allows
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each point x1 and x2 to be scaled by different positive factors (e.g., xα 1,
xβ 2) without changing value (Aitchison, 1992). This is necessary where

the underlying data encodes size information about the specimen, ei-
ther directly such as when measured in grams instead of units of den-
sity, or surreptitiously such as when mixing volumetric and mass den-
sity units (which may both be denoted in e.g. parts per billion). This
correction is greatest between a point with roughly equal components
and a point with many components close to zero; the Euclidean dis-
tance, Euclidean distance of log-transformed points, and the Aitchison
distance on the simplex are compared geometrically in Fig. 2(a–c), re-
spectively.

2.2.3.3. Implementation. All embeddings presented in the following
sections were computed alongside nine other embeddings with
randomised initialisations and were selected for further analysis on
the basis of embedding error (Equation (4)). The Barnes-Hut t-SNE
approximation (van der Maaten, 2014) as provided by the ‘Rtsne’ R
package (Krijthe, 2015) was used due to the abundance of assays, as it
requires only O n n( log ) computation and O n( ) memory where n is the
number of specimens. The trade-off parameter was set =θ 0.5, which
has been shown to work well on real-world datasets (van der Maaten,
2014).

All similarity calculations used the Aitchison distance in place of the
Euclidean distance, which was implemented by applying an isometric
logratio (ilr) transform (Egozcue et al., 2003) to the assays before
supplying them to t-SNE: the Euclidean distance in the ilr-space is
equivalent to the Aitchison distance in the original space. This enabled
the use of existing t-SNE libraries without modification. Note that the
transformed data occupies one fewer dimension even though the ilr
transform is lossless; this is because the original data is restricted to a
plane (i.e., a simplex) in the original space, but occupies the entire
transformed space.

3. Results and discussion

This section presents a t-SNE embedding generated using all ele-
ments in the geochemical dataset and discusses the cluster structure
present within the embedding. Following this, a t-SNE embedding is
generated from the elements selected in Section 2.2.2 and compared to
the previous embedding and alternative dimensionality reduction
techniques in terms of separability of altered and unaltered specimens.
Finally, a practical demonstration using an embedding to understand
the output of a black box statistical re-logging algorithm is presented.

3.1. Embedding of all elements

Embeddings were first computed using all 31 elements and are

presented in Fig. 3, where each point represents one specimen (i.e., one
drill core interval). The subfigures show the embedding coloured by the
normalised log-concentration of each input element, using a 2% linear
clip. The relevant ranges are given in Table 3 along with the true
minimum and maximum for each element.

The embeddings produced by t-SNE can be used to visualise inter-
cluster and intra-cluster structure with some caveats (Wattenberg et al.,
2016): inter-cluster distances and the positions of the clusters in the
embedding are not necessarily informative, and the size of the clusters
(in diameter) is not informative of the range of values within that
cluster due to the dynamic adaptation of the similarity measure to
sparse regions (Equation (2)). Cognisant of these caveats, Fig. 3 can be
used to interrogate the qualitative degree to which each element con-
trols the (distance-based) assay clustering.

Elements which cover a range of values across the cluster are un-
likely to significantly contribute to the cluster structure. Such elements
within a cluster appear either ‘peppered’ or are lain out in gradient
bands across the cluster. Examples include gold, barium, cobalt, copper,
iron, molybdenum, lead, palladium, sulphur, and silver to a lesser ex-
tent. These elements may benefit from further analysis, either in-
dependently or within a specifically-chosen subset of elements.

Elements which are highly bimodal (e.g., present at high con-
centrations or not at all) appear to strongly influence the division of
clusters. For example, arsenic and thorium, which are either close to
zero or are present in high concentrations (40%–50% of values are
below detection limit, see Table 2), are not clustered in mixed values. In
some cases the clusters are not split (e.g., molybdenum), but the small-
valued specimens are forced to one end of the cluster.

Fig. 4 shows the embedding coloured by (a) the six most frequently
logged unaltered lithologies =n( 11 940), and (b) the three most fre-
quently logged altered lithologies ( =n 3803). Any specimens with li-
thology outside of the legend are shown in grey, which includes twelve
minor unaltered lithologies ( =n 272) and six minor altered lithologies
( =n 150). The lithology colour scheme approximates olivine content
(blue is low), and specimens which also have an entry under logged
alteration (regardless of lithology) are plotted as triangles.

Overlaying the embeddings with logged lithology (Fig. 4) shows
that the cluster structure within the full suite of elements can only
distinguish serpentinite (pink cluster in Fig. 4(b)) and a combination of
gabbro and uralite gabbro (blue clusters in Fig. 4(a and b)). The em-
bedding shows no discrimination between unaltered and altered
lithologies. This does not indicate that there is no such discriminative
information within the chosen set of elements, but rather that the ele-
ments jointly exhibit patterns that are unconnected to lithology – as
previously discussed, the cluster structure appears to be heavily influ-
enced by the bimodal elements. An embedding with a subset of ele-
ments more suited to discriminating between altered and unaltered

Fig. 2. A synthetic compositional dataset in (a) regular space, (b) log10 space, and (c) log10 space with points normalised by their geometric mean. The straight-line
distances in each subfigure correspond to (a) Euclidean distance, (b) Euclidean distance of log-transformed points, and (c) Aitchison distance. Note that the bolded
points on the boundary are equidistant in (b) and (c), but are both closer to the bolded centre point in (c) since the Aitchison distance corrects for geometric mean.
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specimens is presented in Section 3.2.
Interestingly, almost all specimens which had some alteration

logged against them (triangular points in Fig. 4 were placed in several
clusters towards the bottom of the embedding. Many elements con-
tributed to this clustering: Fig. 3 shows that vanadium, yttrium, tita-
nium, scandium, strontium, calcium, aluminium, and cadmium are all
present in uniquely elevated concentrations within this cluster. Silver
and antinomy hold a tight range of intermediate values within this
cluster, which is not seen elsewhere in the embedding. Still other ele-
ments are present in generally higher but more variable concentrations
within this cluster, such as sodium and magnesium.

It should be noted here that the changes in element concentrations
in Fig. 2 are in fact dependent on changes of concentration for all the
other elements. For example, an apparent elevation in scandium, which
is not normally associated with alteration, can be explained by a re-
duction in many other elements that have been leached from the
sample, such that a greater proportion of scandium remains, even

though scandium itself has not been added by the alteration process.
The tight grouping of specimens with logged alteration provides strong
evidence for the validity of the alteration logging by geologists, al-
though there are a few specimens with logged alteration positioned
elsewhere in the embedding which may be strong candidates for re-
logging.

3.2. Embedding of selected elements

Statistical distance-based analytic methods, such as k-means clus-
tering or t-SNE embedding, can be influenced by which dimensions
from the underlying data are used as input. This is because different
clusters are apparent in the data depending on which dimensions are
present, either due to true underlying structure or due to corruption by
uninformative or noisy dimensions. This section reports how applying t-
SNE to a subset of elements which were determined to be highly dis-
criminative between altered and unaltered specimens improved the

Fig. 3. Embedding of the geochemical dataset with all elements, coloured by elemental concentrations (log-scale). Large-scale clustering is strongly influenced by
elements with bimodal distributions such as arsenic and thorium, while elements with little influence appear in all clusters as peppered or in rainbow bands (e.g.,
gold and sulphur). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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resulting embeddings in terms of separability between hydrated and
non-hydrated specimens. The section concludes with a comparison with
existing dimensionality reduction techniques PCA and SOM, and an
example of practical use for geochemical-based re-logging of alteration
state.

3.2.1. Selected elements
Fig. 5 shows the result of the recursive feature elimination used to

select the subset of elements pertinent to alteration, where the y-axis
shows the out-of-bag classification error of the Random Forests for
discriminating altered and unaltered specimens using the number of
elements in the x-axis. Each point in the figure is labelled by the current
element with the lowest average feature importance, which is the next
element to be eliminated. When read from left to right, the elements
occur from least to most discriminative of altered and unaltered spe-
cimens. The classification error was judged to rapidly increase when
fewer than eleven elements remained; hence, the eleven elements to the
right of strontium (inclusive) were chosen for the alteration suite. In
decreasing order of discriminative ability, these are: chromium, scan-
dium, magnesium, yttrium, vanadium, manganese, calcium, alumi-
nium, titanium, sodium, and strontium.

3.2.2. Embedding the selected elements
The embedding constructed from the eleven selected elements is

given in Fig. 6 (coloured identically to Fig. 3). Fig. 7 shows the em-
bedding overlain with unaltered and altered logged lithology as pre-
viously in Fig. 4, where a relatively strong separation can now be seen
between the host rock olivine pyroxenite (yellow points in Fig. 7(a))
and its amphibolised counterpart metaperidotite (green points in
Fig. 7(b)). In particular, the transition from olivine pyroxenite to me-
taperidotite can be seen to correlate with decreasing magnesium and
manganese, and to a lesser degree with increasing calcium, vanadium,
yttrium, and chromium (Fig. 6, from the bottom-right to the top-left of
the main cluster). The caveat explained in Section 3.1 regarding relative
changes in element abundances applies here again: it is probable that
yttrium was immobile during hydrothermal alteration, and the ap-
parent increase in concentration is due to the removal of other ele-
ments.

This separation of hydrated host rock from non-hydrated host rock
was completely absent from the previous embedding, perhaps due to
the splitting of clusters by highly bimodal elements. This separation was
also absent in the t-SNE embedding presented by Balamurali and
Melkumyan (2016), despite the presence of a strong indicator of hy-
dration in the underlying assays (loss on ignition). This further de-
monstrates the importance of element selection prior to the application
of t-SNE so that the salient elements (which in this case pertain to

Table 3
Minimum, maximum, and 1st and 99th percentile concentrations of all assayed
elements selected for further analysis.

Min. Percentiles Max.

1st 99th

Ag (ppm) 0.000 233 0.00150 3 8.61
Al (%) 0.007 73 0.0864 7.78 10.3
Ars (ppm) 6.30× 10−6 5.20× 10−5 40.9 3500
Au (ppb) 7.08× 10−7 0.0551 270 4700
Ba (ppm) 0.0350 1 200 754
Ca (%) 0.008 50 0.0941 10.1 39.9
Cd (ppm) 0.000 384 0.002 53 1.01 4.75
Co (ppm) 0.0100 15.9 237 2590
Cr (ppm) 0.770 6.82 1680 11 100
Cu (%) 3.72× 10−8 0.003 34 0.860 7.79
Fe (%) 0.348 1.25 11.2 60.8
K (%) 2.19× 10−5 2.78× 10−5 1.76 5
La (ppm) 0.003 81 0.006 78 33.1 493
Li (ppm) 0.007 48 0.008 65 17.4 80.3
Mg (%) 0.0219 0.496 19.6 27.2
Mn (ppm) 19 89 1470 4840
Mo (ppm) 0.000 275 0.001 07 3.51 184
Na (%) 0.007 72 0.0213 4.02 8.13
Ni (%) 1.48× 10−6 0.003 80 0.510 4.16
P (ppm) 0.0200 8.71 940 4640
Pb (ppm) 0.00360 0.007 26 16.9 50.1
Pd (ppb) 1.31× 10−8 0.0227 464 8090
S (%) 2.77× 10−7 0.0100 3.37 26.5
Sb (ppm) 0.000 54 0.001 36 21.8 43.8
Sc (ppm) 0.0618 0.780 56.2 84.5
Sr (ppm) 0.300 1.18 176 448
Th (ppm) 2.08× 10−6 4.18× 10−5 9.70 57.4
Ti (%) 0.000 125 0.008 82 0.723 1.69
V (ppm) 2.19 7.59 293 6290
Y (ppm) 0.007 30 0.008 84 22.4 63.9
Zn (ppm) 0.185 2.11 78 888

Fig. 4. Embedding of the geochemical dataset of all elements, coloured by (a) unaltered logged lithology; and (b) altered logged lithology with colour approximately
indicates olivine content (blue is low). Specimens with lithologies outside of the legend (including 18 minor lithologies) are coloured grey. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)
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hydration) can sufficiently impact the resulting embedding.
Specimens with logged alteration (triangular points in Fig. 7) are no

longer completely disjoint from specimens without logged alteration as
they were in the previous embedding (Fig. 4). Manual inspection of the
previous embedding shows elements such as cadmium and antimony
clustered well in these points, but were not identified as discriminative
by recursive feature elimination where they were eliminated first and
fourth, respectively. This is because the order in which features are
eliminated does not strongly indicate their individual discriminative
ability, only that the strongest in a set of correlated features is removed
last.

The improvement of separability between altered and unaltered
specimens was quantified by relabelling each specimen according to its
nearest neighbour in the embedding, and calculating the resulting

accuracy (i.e., 1NN classification). It was found that the prior step of
element selection improved 1NN classification accuracy on the em-
bedding from 65.5% to 81.8% for altered specimens, and from 82.4% to
91.0% for unaltered specimens (Table 4). The improvement seen in the
embedding is a direct consequence of achieving better separation in the
higher dimensional space: element selection improved the 1NN classi-
fication accuracy on the original (ilr-transformed) data from 75.5% to
82.3% for altered specimens, and from 87.7% to 92.2% for unaltered
specimens (Table 4). Note that better separability is to be expected in
the full dimensional space (which cannot be directly visualised), since a
low dimensional embedding can only approximate the inter-point dis-
tances in the original space. Indeed, the proportion of points which
maintain their nearest neighbour is a measure of embedding quality
(Sanguinetti, 2008; van der Maaten et al., 2009).

3.2.3. Comparison with other techniques
The separability of altered and unaltered specimens was compared

with two existing techniques: visualisation of the first two principal
components (Fig. 8) and an SOM embedding (Fig. 9). Both techniques
used the ilr-transformed assays of the 11 selected elements for direct
comparison. For visual clarity, both figures are coloured by the al-
teration status used during element selection (i.e., ‘altered’ or ‘un-
altered’) rather than the logged lithologies. It is important to note that
the t-SNE embeddings derived from the selected subset of elements are
being compared with embeddings from alternative techniques PCA and
SOM on the same subset of elements. PCA and SOM are included here
for comparison only; they are not being suggested for dimensionality
reduction prior to application of t-SNE, nor are they related to the
feature selection performed in this study.

Although PCA (Hotelling, 1933; Pearson, 1901) is a linear technique
which is desirable for various applications, it is often used for di-
mensionality reduction due to its computational simplicity, freedom of
user-supplied parameters, and interpretable output. We show here that
it can be inadequate for this application where the data contain subtle,
nonlinear chemical patterns: Fig. 8 displays the first two principal
components, where significant mixing between the altered and un-
altered specimens can be seen. The nearest neighbour classification
accuracy is 76.6% for altered specimens and 90.3% for unaltered spe-
cimens, which are both lower than for the corresponding t-SNE em-
bedding (Table 4). Further scatter plots were produced to visualise all
remaining pairs of principal components; some pairs were able to

Fig. 5. The Random Forest's out-of-bag classification
error (y-axis) when discriminating between altered
and unaltered specimens during recursive feature
elimination. The x-axis shows how many elements
are in the current iteration of the elimination pro-
cedure and the next element to be eliminated. Error
bars represent the 95% confidence level in out-of-bag
classification error rate over 20 forests.

Fig. 6. Embedding of selected elements from the geochemical dataset, coloured
by elemental concentrations (log-scale).
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produce a small cluster of unaltered specimens, however, the remaining
specimens (i.e., the majority) remained mixed as in Fig. 8.

The SOM embedding (Fig. 9) shares the important large-scale
characteristics of the corresponding t-SNE embedding (Fig. 6), namely a
separation between altered and unaltered specimens characterised
primarily by low magnesium and manganese concentrations (lower

third of the right side of the SOM embedding), and a region corre-
sponding to specimens with logged alteration (bottom-left corner of the
SOM embedding). However, the discrete grid embedding that char-
acterises the SOM technique hides individual outliers (peppered points
in Fig. 9(a)), and is more difficult to plot with multiple labels (each grid
must show proportions of labels). Moreover, plotting the elemental
concentrations on the SOM gives a false sense of scale: the high-

Fig. 7. Embedding of selected elements from the geochemical dataset, coloured by (a) unaltered logged lithology; and (b) altered logged lithology. Refer to Fig. 4's
caption for colour scheme details. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 4
Effect of element selection on nearest neighbour reclassification accuracy (‘al-
tered’ vs. ‘unaltered’), as applied to the original (ilr-transformed) data, the t-
SNE embedding, and the first two principal components.

Dims Accuracy (%)

All elements altered unaltered
Original (ilr) 30 75.5 87.7
t-SNE 2 65.5 82.4
PCA 2 54.2 75.9

Selected elements
Original (ilr) 10 83.3 92.2
t-SNE 2 81.8 91.0
PCA 2 76.6 90.3

Fig. 8. First two principal components generated from the geochemical dataset
(selected elements only).

Fig. 9. SOM embedding of the geochemical data subset of alteration dis-
criminator elements. The top three rows show the log-scale elemental con-
centrations, while the bottom row shows: (left) the distribution of altered and
unaltered specimens over the grid cells; and (right) the U-matrix, which out-
lines distinct regions in embedding.
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manganese region covers approximately one third of the SOM cells but
only accounts for a small number of points (Fig. 6, clusters to the top
and bottom). Correct interpretation of the SOM requires reference to a
‘hit chart’ detailing the number of points assigned to each cell.

3.3. Example scenario: geochemical re-logging

The lithology and alteration of drill core at Kevitsa was logged by
multiple geologists over a span of time and is subject to human error.
Geochemical core re-logging is a quantitative method for correcting
erroneous geological logging, whereby a classifier is trained and exe-
cuted for prediction of geological logging from geochemistry. The
classifier can be made to favour a simpler geochemical model over a
more complex model with higher predictive accuracy on the training
set by regularisation. The degree of regularisation is usually determined
by maximising predictive accuracy on an unseen test set (rather than
the training set); however, if the labels are incorrect then maximising
accuracy leads to an incorrect model. In this section, a Random Forest is
used to re-log the simplified alteration status (i.e., ‘altered’ or ‘un-
altered’) and demonstrate how visualising the forest's classification on
the embedding of selected elements from the previous section can be
useful in determining an appropriate degree of regularisation.

A Random Forest with 1000 trees was trained to predict alteration
status (‘altered’ or ‘unaltered’) from the geochemical data (all 31 ele-
ments); it was deemed unnecessary to use the feature-selected set of
elements as the Random Forest performs internal feature selection
during training. Although Random Forests are not prone to overfitting,
they can be forcibly regularised by limiting the size of the constituent
trees. By default, the trees within a Random Forest are grown to their
maximum depth such that each leaf node describes one instance of the
bagged training set. Enforcing a minimum terminal node size limits the
size of the individual trees and thus regularises the forest. In this ex-
periment, the minimum terminal node size of the Random Forest was
varied between 1 (fully grown trees) to 8192 in a doubling sequence

and the resulting predictions for all specimens were recorded and vi-
sualised on the 11-element embedding (Section 3.2).

Fig. 10(a–c) shows the Random Forest classifications of altered and
unaltered specimens using the entire geochemical dataset as a function
of increasing minimum terminal node size (20, 24, and 28), visualised on
the feature-selected embedding. The embedding allows the visualisa-
tion of precisely which geochemical region is being affected by the
regularisation. Fig. 10(d) shows the out-of-bag error rates for the
Random Forest, which increases monotonically as the forest is reg-
ularised.

The full-depth Random Forest (minimum terminal node size of 1)
achieves excellent accuracy on the out-of-bag samples, however outliers
are visible towards the bottom of the main cluster which are logged as
metaperidotite but are geochemically similar to olivine pyroxenite. As
the regularisation increases (minimum terminal node size of 16), these
points are re-logged (Fig. 10(b)). It becomes clear when the forest is too
heavily regularised as large, homogeneously logged clusters of speci-
mens are re-classified (Fig. 10(c), red circle). Therefore, the adequate
level of regularisation for this model is a minimum terminal node size of
approximately 16 and certainly below 512. In addition, it should be
noted that Random Forests are not based on pairwise distances as t-SNE
embeddings are; the intuitive correspondence between the Random
Forest classifications of the specimens and their location on the t-SNE
embedding, for varying degrees of regularisation, validates the em-
bedding.

4. Conclusions

In this study, two t-SNE embeddings of geochemical data from the
Kevitsa Ni-Cu-PGE deposit (Lapland, Finland) were created to visualise
geological patterns: one using all 31 elements, the other using a subset
of eleven elements empirically determined (using a feature selection
process) to differentiate between altered and unaltered specimens. The
first embedding revealed that highly bimodal elements tended to

Fig. 10. (a–c): Random Forest classifications of altered (black) and unaltered (yellow) specimens using the full geochemical dataset, but plotted on the alteration
suite embedding, as a function of changing minimum terminal node size; (d): the classification error on out-of-bag specimens, which increases with minimum
terminal node size. The embedding characterises how the Random Forest classifications change as it is increasingly regularised: the classifications in (b) are less
peppered than in (a), signifying a simpler geochemical model, while (c) is simpler again at the expense of misclassifying a large cluster of specimens (red circle). (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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control the distance-based cluster structure of the data, but did not
adequately separate altered and unaltered specimens. The second em-
bedding could lay out non-hydrated and hydrated host rocks (i.e., oli-
vine pyroxenite and metaperidotite) such that the gradation of the
former to the latter was apparent, which was not present in the em-
bedding based on all elements. The second embedding was also de-
monstrated as an effective tool for interpreting the output of black box
classifiers: visualising the altered/unaltered classifications of a Random
Forest classifier trained at different levels of regularisation facilitated
judgement of the level of regularisation, which aided in the re-logging
of alteration status. Overall, the findings in this study illustrate that t-
SNE is capable of producing geochemical embeddings wherein clusters
or intra-cluster structure may reflect external geological properties,
however, this is reliant on exclusion of input elements which are sta-
tistically irrelevant to the desired geological property.

Future development that will increase the practical value of t-SNE
embeddings is their integration with other geoscientific data, primarily
spatial coordinates and petrophysical measurements. Incorporating
spatial coordinates may produce spatially consistent clusters which are
valuable for geochemical domaining (e.g., Le Vaillant et al., 2017).
However, this approach eliminates spatial plotting as a form of in-
dependent validation (Templ et al., 2008). Incorporating petrophysical
measurements could further separate lithologies: P-wave velocity and
density jointly relate to lithology and degree of alteration in Kevitsa,
and seismic reflection has been used to identify lithological contacts
(Koivisto et al., 2015). These additional geoscientific data could be
integrated with geochemical data directly alongside the ilr-transformed
assays, but numeric scaling would be required so that their contribution
to the inter-point distance is known relative to that from the elemental
concentrations. Alternatively, separate pairwise conditional prob-
abilities pij could be calculated for each type of geoscientific data, and
subsequently combined in a weighted sum. This falls under the para-
digm of multi-view learning, and indeed a multi-view variant of t-SNE
has been proposed by Xie et al. (2011).

Computer code availability

The R programming language scripts developed for this paper have
been made available in a public repository (http://github.com/tom-a-
horrocks/t-SNE-geochemistry). All queries can be directed to the first
author.

Acknowledgements

We wish to acknowledge First Quantum Minerals Ltd. for providing
the geochemical dataset. This work was supported by the Robert and
Maude Gledden Postgraduate Research Scholarship and First Quantum
Minerals Ltd.

References

Aitchison, J., 1992. On criteria for measures of compositional difference. Math. Geol. 24,
365–379. https://doi.org/10.1007/BF00891269.

Aitchison, J., 1986. The Statistical Analysis of Compositional Data, Monographs on
Statistics and Applied Probability. Chapman & Hall, Ltd., London.

Aitchison, J., 1984. Reducing the dimensionality of compositional data sets. Math. Geol.
16, 617–635. https://doi.org/10.1007/BF01029321.

Alahakoon, D., Halgamuge, S.K., Srinivasan, B., 2000. Dynamic self-organizing maps with
controlled growth for knowledge discovery. IEEE Trans. Neural Network. 11,
601–614. https://doi.org/10.1109/72.846732.

Balamurali, M., Melkumyan, A., 2016. t-SNE based visualisation and clustering of geo-
logical domain. In: Neural Information Processing: 23rd International Conference,
ICONIP 2016: Proceedings. Kyoto, Kansai, pp. 565–572. https://doi.org/10.1007/
978-3-319-46681-1_67.

Breiman, L., 2001. Random Forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/
A:1010933404324.

Breiman, L., 1984. Classification and Regression Trees, first ed. Wadsworth International
Group, New York The Wadsworth Statistics/Probability Series.

Chang, W.-C., 1983. On using principal components before separating a mixture of two
multivariate normal distributions. J. Roy. Stat. Soc.: C Appl. Stat. 32, 267–275.

https://doi.org/10.2307/2347949.
Cracknell, M.J., Reading, A.M., McNeill, A.W., 2014. Mapping geology and volcanic-

hosted massive sulfide alteration in the Hellyer–Mt charter region, Tasmania, using
Random ForestsTM and Self-Organising Maps. Aust. J. Earth Sci. 61, 287–304.
https://doi.org/10.1080/08120099.2014.858081.

Egozcue, J.J., Pawlowsky-Glahn, V., Mateu-Figueras, G., Barceló-Vidal, C., 2003.
Isometric logratio transformations for compositional data analysis. Math. Geol. 35,
279–300. https://doi.org/10.1023/A:1023818214614.

Ellefsen, K.J., Smith, D.B., Horton, J.D., 2014. A modified procedure for mixture-model
clustering of regional geochemical data. Appl. Geochem. 51, 315–326. https://doi.
org/10.1016/j.apgeochem.2014.10.011.

Fraser, S., Dickson, B., Kowalczyk, P., Sparks, G., 2005. And now for “SOM” thing com-
pletely different: spatial data mining. In: Window to the World: 2005 Symposium
Proceedings. Geological Society of Nevada, Reno/Sparks, Nevada, pp. 1310.

Fraser, S.J., Dickson, B.L., 2005. Ordered vector quantization for the integrated analysis
of geochemical and geoscientific data sets. In: 22nd International Geochemical
Exploration Symposium 2005: from Tropics to Tundra: Program and Abstracts.
Association of Applied Geochemists, Perth, Western Australia, pp. 52–53.

Friedman, J.H., Tukey, J.W., 1974. A projection pursuit algorithm for exploratory data
analysis. IEEE Trans. Comput. C–23, 881–890. https://doi.org/10.1109/T-C.1974.
224051.

Gregorutti, B., Michel, B., Saint-Pierre, P., 2017. Correlation and variable importance in
random forests. Stat. Comput. 27, 659–678. https://doi.org/10.1007/s11222-016-
9646-1.

Gregory, J., Journet, N., White, G., Lappalainen, M., 2011. Technical Report for the
Mineral Resources and Reserves of the Kevitsa Project (Technical Report No. Ni 43-
101). First Quantum Minerals, Ltd., Vancouver, British Columbia.

Grunsky, E.C., 2010. The interpretation of geochemical survey data. Geochem. Explor.
Environ. Anal. 10, 27–74. https://doi.org/10.1144/1467-7873/09-210.

Gulson, B., Korsch, M., Dickson, B., Cohen, D., Mizon, K., Davis, J.M., 2007. Comparison
of lead isotopes with source apportionment models, including SOM, for air particu-
lates. Sci. Total Environ. 381, 169–179. https://doi.org/10.1016/j.scitotenv.2007.03.
018.

Hotelling, H., 1933. Analysis of a complex of statistical variables into principal compo-
nents. J. Educ. Psychol. 24, 417–441. https://doi.org/10.1037/h0071325.

Hyvärinen, A., Karhunen, J., Oja, E., 2001. Introduction. In: Haykin, S. (Ed.), Independent
Component Analysis. John Wiley & Sons, Inc., New York, pp. 1–12.

Juntunen, P., Liukkonen, M., Lehtola, M., Hiltunen, Y., 2013. Cluster analysis by self-
organizing maps: an application to the modelling of water quality in a treatment
process. Appl. Soft Comput. 13, 3191–3196. https://doi.org/10.1016/j.asoc.2013.01.
027.

Kohonen, T., 1990. The self-organizing map. Proc. IEEE 78, 1464–1480. https://doi.org/
10.1109/5.58325.

Koivisto, E., Malehmir, A., Hellqvist, N., Voipio, T., Wijns, C., 2015. Building a 3D model
of lithological contacts and near-mine structures in the Kevitsa mining and explora-
tion site, Northern Finland: constraints from 2D and 3D reflection seismic data.
Geophys. Prospect. 63, 754–773. https://doi.org/10.1111/1365-2478.12252.

Krijthe, J.H., 2015. Rtsne: T-distributed Stochastic Neighbor Embedding Using Barnes-
Hut Implementation.

Kyser, K., Barr, J., Ihlenfeld, C., 2015. Applied geochemistry in mineral exploration and
mining. Elements 11, 241–246. https://doi.org/10.2113/gselements.11.4.241.

Lacassie, J.P., Roser, B., Ruiz Del Solar, J., Hervé, F., 2004. Discovering geochemical
patterns using self-organizing neural networks: a new perspective for sedimentary
provenance analysis. Sediment. Geol. 165, 175–191. https://doi.org/10.1016/j.
sedgeo.2003.12.001.

Lacassie, J.P., Ruiz-Del-Solar, J., 2006. Knowledge extraction in geochemical data by
using self-organizing maps. In: The 2006 IEEE International Joint Conference on
Neural Network Proceedings. Institute of Electrical and Electronics Engineers,
Vancouver, British Columbia, pp. 4878–4883. https://doi.org/10.1109/IJCNN.2006.
247167.

Le Vaillant, M., 2014. Hydrothermal Remobilisation of Base Metals and Platinum Group
Elements Around Komatiite-hosted Nickel-sulphide Deposits: Applications to
Exploration Methods. PhD Thesis. University of Western Australia, Crawley, Western
Australia.

Le Vaillant, M., Barnes, S.J., Fiorentini, M.L., Santaguida, F., Törmänen, T., 2016. Effects
of hydrous alteration on the distribution of base metals and platinum group elements
within the Kevitsa magmatic nickel sulphide deposit. Ore Geol. Rev. 72, 128–148.
https://doi.org/10.1016/j.oregeorev.2015.06.002.

Le Vaillant, M., Hill, J., Barnes, S.J., 2017. Simplifying drill-hole domains for 3D geo-
chemical modelling: an example from the Kevitsa Ni-Cu-(PGE) deposit. Ore Geol.
Rev. https://doi.org/10.1016/j.oregeorev.2017.05.020.

Martín-Fernández, J.A., Hron, K., Templ, M., Filzmoser, P., Palarea-Albaladejo, J., 2012.
Model-based replacement of rounded zeros in compositional data: classical and ro-
bust approaches. Comput. Stat. Data Anal. 56, 2688–2704. https://doi.org/10.1016/
j.csda.2012.02.012.

Martín-Fernández, J.A., Palarea-Albaladejo, J., Olea, R.A., 2011. Dealing with zeros. In:
Pawlowsky-Glahn, V., Buccianti, A. (Eds.), Compositional Data Analysis. John Wiley
& Sons, Ltd., Chichester, pp. 43–58. https://doi.org/10.1002/9781119976462.ch4.

Meng, H.-D., Song, Y.-C., Song, F.-Y., Shen, H.-T., 2011. Research and application of
cluster and association analysis in geochemical data processing. Comput. Geosci. 15,
87–98. https://doi.org/10.1007/s10596-010-9199-x.

Mutanen, T., 1997. Geology and Ore Petrology of the Akanvaara and Koitelainen Mafic
Layered Intrusions and the Keivitsa-satovaara Layered Complex, Northern Finland,
Geological Survey of Finland, Bulletin. Geological Survey of Finland, Espoo.

Mutanen, T., Huhma, H., 2001. U-Pb geochronology of the Koitelainen, Akanvaara and
Keivitsa layered intrusions and related rocks. In: Vaasjoki, M. (Ed.), Radiometric Age

T. Horrocks et al. Computers and Geosciences 124 (2019) 46–57

56

http://github.com/tom-a-horrocks/t-SNE-geochemistry
http://github.com/tom-a-horrocks/t-SNE-geochemistry
https://doi.org/10.1007/BF00891269
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref2
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref2
https://doi.org/10.1007/BF01029321
https://doi.org/10.1109/72.846732
https://doi.org/10.1007/978-3-319-46681-1_67
https://doi.org/10.1007/978-3-319-46681-1_67
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref7
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref7
https://doi.org/10.2307/2347949
https://doi.org/10.1080/08120099.2014.858081
https://doi.org/10.1023/A:1023818214614
https://doi.org/10.1016/j.apgeochem.2014.10.011
https://doi.org/10.1016/j.apgeochem.2014.10.011
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref12
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref12
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref12
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref13
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref13
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref13
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref13
https://doi.org/10.1109/T-C.1974.224051
https://doi.org/10.1109/T-C.1974.224051
https://doi.org/10.1007/s11222-016-9646-1
https://doi.org/10.1007/s11222-016-9646-1
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref16
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref16
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref16
https://doi.org/10.1144/1467-7873/09-210
https://doi.org/10.1016/j.scitotenv.2007.03.018
https://doi.org/10.1016/j.scitotenv.2007.03.018
https://doi.org/10.1037/h0071325
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref20
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref20
https://doi.org/10.1016/j.asoc.2013.01.027
https://doi.org/10.1016/j.asoc.2013.01.027
https://doi.org/10.1109/5.58325
https://doi.org/10.1109/5.58325
https://doi.org/10.1111/1365-2478.12252
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref24
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref24
https://doi.org/10.2113/gselements.11.4.241
https://doi.org/10.1016/j.sedgeo.2003.12.001
https://doi.org/10.1016/j.sedgeo.2003.12.001
https://doi.org/10.1109/IJCNN.2006.247167
https://doi.org/10.1109/IJCNN.2006.247167
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref28
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref28
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref28
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref28
https://doi.org/10.1016/j.oregeorev.2015.06.002
https://doi.org/10.1016/j.oregeorev.2017.05.020
https://doi.org/10.1016/j.csda.2012.02.012
https://doi.org/10.1016/j.csda.2012.02.012
https://doi.org/10.1002/9781119976462.ch4
https://doi.org/10.1007/s10596-010-9199-x
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref34
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref34
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref34
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref35
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref35


Determinations from Finnish Lapland and Their Bearing on the Timing of
Precambrian Volcano-Sedimentary Sequences, Special Papers. Geological Survey of
Finland, Espoo, pp. 229–246.

Pearson, K., 1901. On lines and planes of closest fit to systems of points in space. Lond.
Edinb. Dublin Phil. Mag. J. Sci. 2, 559–572. https://doi.org/10.1080/
14786440109462720.

Penn, B.S., 2005. Using self-organizing maps to visualize high-dimensional data. Comput.
Geosci. 31, 531–544. https://doi.org/10.1016/j.cageo.2004.10.009.

Reimann, C., Filzmoser, P., Garrett, R.G., Dutter, R., 2008. Cluster analysis. In: Statistical
Data Analysis Explained: Applied Environmental Statistics with R. John Wiley &
Sons, Ltd., Chichester, pp. 233–247.

Sammon Jr., J.W., 1969. A nonlinear mapping for data structure analysis. IEEE Trans.
Comput. C–18, 401–409. https://doi.org/10.1109/T-C.1969.222678.

Sanguinetti, G., 2008. Dimensionality reduction of clustered data sets. IEEE Trans. Pattern
Anal. Mach. Intell. 30, 535–540. https://doi.org/10.1109/TPAMI.2007.70819.

Templ, M., Filzmoser, P., Reimann, C., 2008. Cluster analysis applied to regional geo-
chemical data: problems and possibilities. Appl. Geochem. 23, 2198–2213. https://
doi.org/10.1016/j.apgeochem.2008.03.004.

Templ, M., Hron, K., Filzmoser, P., 2011. robCompositions: an R-package for robust
statistical analysis of compositional data. In: Pawlowsky-Glahn, V., Buccianti, A.
(Eds.), Compositional Data Analysis. John Wiley & Sons, Ltd., Chichester, pp.
341–355. https://doi.org/10.1002/9781119976462.ch25.

Torgerson, W.S., 1952. Multidimensional scaling: I. Theory and method. Psychometrika
17, 401–419. https://doi.org/10.1007/BF02288916.

van der Maaten, L., 2014. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn.
Res. 15, 3221–3245.

van der Maaten, L., Hinton, G., 2008. Visualizing data using t-SNE. J. Mach. Learn. Res. 9,
2579–2605.

van der Maaten, L., Postma, E., van den Herik, J., 2009. Dimensionality Reduction: a
Comparative Review (Technical Report No. TiCC TR 2009-005). Tilburg Centre for
Creative Computing, Tilburg University, Tilburg, North Brabant.

Wattenberg, M., Viégas, F., Johnson, I., 2016. How to Use T-SNE Effectively. Distill.
https://doi.org/10.23915/distill.00002.

Xie, B., Mu, Y., Tao, D., Huang, K., 2011. m-SNE: multiview stochastic neighbor em-
bedding. IEEE Trans. Syst. Man Cybern. B Cybern. 41, 1088–1096. https://doi.org/
10.1109/TSMCB.2011.2106208.

T. Horrocks et al. Computers and Geosciences 124 (2019) 46–57

57

http://refhub.elsevier.com/S0098-3004(18)30046-3/sref35
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref35
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref35
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1016/j.cageo.2004.10.009
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref38
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref38
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref38
https://doi.org/10.1109/T-C.1969.222678
https://doi.org/10.1109/TPAMI.2007.70819
https://doi.org/10.1016/j.apgeochem.2008.03.004
https://doi.org/10.1016/j.apgeochem.2008.03.004
https://doi.org/10.1002/9781119976462.ch25
https://doi.org/10.1007/BF02288916
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref44
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref44
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref45
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref45
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref46
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref46
http://refhub.elsevier.com/S0098-3004(18)30046-3/sref46
https://doi.org/10.23915/distill.00002
https://doi.org/10.1109/TSMCB.2011.2106208
https://doi.org/10.1109/TSMCB.2011.2106208

	Geochemical characterisation of rock hydration processes using t-SNE
	Introduction
	Materials and methods
	Case study
	Geological setting
	Data

	Method
	Rounded zero imputation
	Element selection
	t-SNE
	Algorithm
	Aitchison distance
	Implementation


	Results and discussion
	Embedding of all elements
	Embedding of selected elements
	Selected elements
	Embedding the selected elements
	Comparison with other techniques

	Example scenario: geochemical re-logging

	Conclusions
	Computer code availability
	Acknowledgements
	References




