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A B S T R A C T

In recent years, technological advances have stimulated researchers to try to unravel the extremely complex
microscale processes that control the activity of microorganisms in soils. In particular, significant work has been
carried out on the development of models able to accurately predict the microscale distribution of water, and the
location of air–water interfaces in pores. A comparison, by Pot et al. (2015), of two different modeling ap-
proaches with actual synchrotron-based tomography data, shows that a two-phase lattice Boltzmann model
(LBM) is able to predict remarkably well the location of air–water interfaces but is extremely slow, whereas a
morphological model (MOSAIC), representing the pore space as a collection of spherical balls, provides a rea-
sonable approximation of the observed air–water interfaces when each ball is allowed to drain independently,
but does so blazingly fast. Interfaces predicted by MOSAIC, however, tend to have nonphysical shapes. In that
general context, the key objective of the research described in the present article, based on the same tomography
data as Pot et al. (2015), was to find out to what extent the use of ellipsoids instead of spherical balls in MOSAIC
could not appreciably speed up computations, or at least, at equal computational time, provide a quantitatively
better approximation of water-air interfaces. As far as we know, this is the first time an ellipsoids-based ap-
proximation of the soil pore space is proposed. A secondary objective was to assess whether ellipsoids might
yield smoother, more physical, interfaces. Simulation results indicate that the use of ellipsoids provides a
sizeable increase in accuracy in the prediction of air-water interfaces, an approximately 6-fold drop in com-
putation time, and much more realistic-looking interfaces, compared to what is obtained with spherical balls.
These observations are encouraging for the use of models based on geometric primitives to describe a range of
microscale processes, and to address the still daunting issue of upscaling to the macroscopic scale.

1. Introduction

Over the last two decades, significant progress has been achieved in
the microscopic characterization of the geometry of interstices in
porous media, and in particular in soils. Since the mid-90s, researchers
have had access to X-ray micro-computed tomography (X-ray μCT)
equipment at the various synchrotrons facilities around the world,
providing 3-D images of soils at micrometric resolution. More recently,
in the past 15 years, soil scientists have also had dedicated table-top
scanners at their disposal, whose resolution is still steadily improving
and is now as fine as 0.3 μm for small samples. At the same time, sig-
nificant efforts have been devoted to the development of efficient,

operator-independent segmentation algorithms that allow the 3D
grayscale images produced by X-ray μCT scanners to be transformed
into binary, i.e., black and white, images (Houston et al., 2013; Baveye
et al., 2018). These images afford detailed information about the geo-
metry and topology of pores in soils, at least of the portion of the pores
that are visible at the finite resolution of μCT images (Baveye et al.,
2017, 2018).

The availability of high-resolution information about the geometry
of soils has stimulated a significant research effort by modelers in recent
years (Baveye, 2015; Falconer et al., 2012; Houston et al., 2013; Masse
et al., 2007; Monga et al., 2008, 2009; Nguyen-Ngoc et al., 2013;
Nguyen-Ngoc et al., 2015; Vogel et al., 2015). In earlier days, attempts
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to model microscale processes in soils relied on the assimilation of pores
to idealized geometrical structures, typically geometrically-regular
networks of cylinders (e.g., Held and Celia, 2001) or angular wedges
(e.g. Ebrahimi and Or, 2015a,b) of various sizes. Network features (e.g.,
pore size distribution) were determined by comparison of model out-
puts with macroscopic measurements, like the soil moisture retention
curve. By contrast, research over the last 15 years has focused on the
actual geometry of pores, as revealed in μCT images. Among the dif-
ferent approaches that have been explored, a new generation of net-
work models has emerged, where the geometrical configuration of the
networks is obtained directly from inspection of binary 3D CT images of
soils. Using this technique and including the cross-section areas and arc-
length of the pores in the description of the different branches of the
network, Pérez-Reche et al. (2012) were able calculate the probability
for a microbe to enter individual pores and, broadly, to propagate
through soils.

Several other approaches have been explored as well, to describe
various retention or transport processes in soils, and when coupled with
suitable descriptions of microbial activity, to model microbially-medi-
ated processes as well. In this context, the lattice-Boltzmann method
has been, and continues to be, used extensively (e.g., Vogel et al., 2015;
Portell et al., 2018; Baveye et al., 2018). For example, Pot et al. (2015)
show that a two-phase, two relaxation-times (TRT) lattice-Boltzmann
model produces remarkably accurate predictions of air-water interfaces
in individual pores of a silty loam soil. In a few cases, LBM predicts the
presence of air in pores where none is observed experimentally,
whereas occasionally the opposite occurs. Nevertheless, these dis-
crepancies are very minor. In general, the results of the comparison are
remarkably good, with a high level of agreement between measured
and predicted locations of air–water interfaces. These observations
suggest that LBM-based models can be used reliably to determine where
water is located in the pore space of soils, information that is crucial to
describe properly the activity of soil bacteria, archaea, and fungi.

One sizeable drawback of the LBM is the very long time that com-
putations take to process the hundreds of millions of voxels involved in
typical situations. For example, it took of the order of 20 h for the
longest simulations carried out by Pot et al. (2015). With techniques
like domain decomposition, the use of computer clusters with multiple
processors, and computations using graphic processors (GPUs) instead
of CPUs, it will probably be possible to speed the computations up
drastically in years to come (e.g., Vidal et al., 2010), but the size and
resolution of 3D images that one will want to use will also steadily
increase for a variety of reasons (e.g., representativeness of simula-
tions), so that no matter what computational breakthroughs occur, LBM
modeling is likely to remain a computer-intensive endeavor (Baveye
et al., 2018).

An alternative to the LBM approach, which may help alleviate some
of its hefty computational demands and be very useful in applications,
consists of approximating the pore space in soils in a piecewise fashion
by a network of so-called “volume primitives.” These can be simple
geometric shapes (balls, cylinders, cones, torus, generalized cylinders
…) that may be transformed and combined at will to represent more
complex geometries, and to which capillary theory can be applied to
predict their filling or emptying. Pot et al. (2015) proposed a model,
named MOSAIC, which uses balls as volume primitives. Pot et al.
(2015) show that, when pores are allowed to drain regardless of the
status of their neighbors, and when the critical diameter at which pores
empty is adjusted to fit the experimentally measured degree of water
saturation, MOSAIC produces a reasonable agreement between mea-
sured and predicted locations of air–water interfaces and that it does so

extremely fast compared to the LBM approach. Pot et al. (2015) found
that, on a similar type of computer (typical desktop computer with two
2.6 GHz processors), running the LBM program on the cases they con-
sidered takes around 19 h, whereas exactly the same cases take about
5min when run with MOSAIC (Ngom et al., 2011, 2012; Monga et al.,
2014).

Balls are among the simplest geometrical primitives that could be
used to approximate the shape of interstices in soils. At least in prin-
ciple, there is a possibility that other types of primitives, for example
conical wedges, ellipsoids, tori, or generalized cylinders, would require
a smaller number of individual objects in any given soil, and therefore
would lead to a significantly shorter computational time to obtain a fit
of the same quality to water retention data. Indeed, the speed of the
algorithm determining water-air interfaces is roughly proportional to
the number of primitives. Alternatively, with a number of objects si-
milar to that of the spherical balls used in Pot et al. (2015), one could
perhaps expect a much higher prediction accuracy than what these
authors found. At this juncture, it is not clear which, if any, of these two
perspectives is valid.

In this general context, the key objective of the research described in
the present article was to assess the extent to which ellipsoids could
advantageously replace the spherical primitives considered in the
MOSAIC model by Pot et al. (2015). As far as we are aware, this is the
first attempt to model pore space in soils using ellipsoids. In order to
illustrate the relevance of ellipsoids-based pore space geometrical
modeling, we show that this representation can be used for the de-
termination of the three dimensional distribution of water and air in
soil pores. Exactly the same cases are analyzed as in this earlier article,
and the modelled results are compared with those obtained experi-
mentally, with the LBM approach, or with the spherical primitives,
respectively. A statistic, the mean absolute error, is used to compare the
modelled predictions and measured data relative to the location of

Fig. 1. Illustrative representation of voxels in 3D images of soils.
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water-air menisci in the different cases.

2. Computational modeling

2.1. Geometrical pore space modeling: from voxels to ellipsoids

2.1.1. Context
The key advantage of primitive-based representations over voxel-

based descriptions, like those considered in the Lattice-Boltzmann ap-
proach, is that the former explicitly associate shape descriptors to the
pore space, and therefore do not require one to handle the prohibitively
high numbers of voxels, typically in the tens of millions, that constitute
this pore space. The situation is not unique to soils, but occurs in
general whenever one needs to extract an intrinsic shape representation
from raw sensor data (Alsallakh, 2014, Monga, 2007, Ayache, 2003,
Banégas et al., 2001, Blinn, 1982; Caumon et al., 2004, 2005; Doube,
2015; Druoton et al., 2013; Malladi et al., 1995; Schlüter et al., 2010;
Terzopoulos, 1991). The basic principle of most shape modeling
methods consists of looking for piecewise approximations by analytic
surface- or volume primitives. The representation by piecewise primi-
tives is computed through the explicit, or sometimes implicit, optimi-
zation of a non-linear functional integrating an approximation error
term and an antagonist scale term (Monga, 2007; Mumford, 1989).

In the case of natural shapes, 3D image segmentation remains a
difficult and open problem due to the difficulty to find a suitable
functional, as well as tractable minimization schemes. The reason is
that natural shapes have not been designed as manufactured items
using analytic surfaces and volumes. Then, in a certain sense, the al-
gorithm has to invent a meaningful analytic representation of the shape
initially described, typically, by dozen of millions of voxels. By mean-
ingful, we mean that the shape representation should faithfully ap-
proximate the shape, be robust to small shape changes, have a kind of
“continuity” with respect to initial description, be compact, and also be
adapted to its ultimate use. Indeed, the current state of the art indicates
that very little research has been devoted so far to the 3D shape mod-
eling for complex natural volume shapes. This is due in part to the
related subsequent mathematical and algorithmic difficulties that have
to be faced, and also to the lack of motivation linked to specific ap-
plication contexts. It is likely that the first point will remain true maybe
for a few decades but will be more and more overcome by the in-
creasing performance of computers. One could argue that the second
hurdle is not going to last much longer, in view of the intensifying re-
search effort in the area of natural complex systems modeling and
especially for soil science applications (Shomar et al., 2014; Darwish
et al., 2014; Vogel and Roth, 2001; Wen and Gomez Hernandez, 1996;
Whiffin et al., 2007; Eickhorst and Tippkötter, 2008; Freije, 2015;
Kuiper et al., 2015; Vogel, 2015; Baveye et al., 2018). For instance
(Delerue and Perrier, 2002; Ngom et al., 2011, 2012), proposed to use
balls, tori, and generalized cylinders to represent pore space from
computed tomography images in order to simulate microbial decom-
position in soil.

2.1.2. Problem formal statement
Let S be a volume shape defined by a set of voxels as follows:
Let I (i,j,k) be a 3D discrete binary image.
Let S be the volume defined by all voxels M(i,j,k) of I set to one:

M(i,j,k)∈ S⇔ I(i,j,k)= 1

In the continuous space, each voxel could be considered as a cube

(see Fig. 1):
The goal consists of finding out piece wise approximations of shape

S using typical primitives having compactness, robustness and in-
variance properties. The invariance properties are: invariance by rigid
transformation of the initial data, invariance with respect to the course
of data, etc. The robustness properties are linked to the stability of the
representation to small changes. Of course, as in every approximation
scheme, the scale notion should be explicitly expressed within this re-
presentation. Given that this representation will be used to simulate
complex spatialized phenomena taking place inside the shape, deep-
learning based descriptors cannot, at least directly, be applied to solve
this problem.

Let V be the set of voxels defining the volume shape:

= …V v v v{ , , }n1 2

Let E be a set of ellipsoids such that each pair is either disjoint or
tangent:

= … =E e e e i j e e e e S E{ , , . }; ( , ), ( ) ( ( ))m i j i j1 2

where S(E) is the set of regular surfaces of affine space E.
Following the basic principle described in Monga (2007), we define

the following functional:

= + +
=

=

C V E VE E V e( , ) ( ( ) ( )) ( )
j

j m

j
1

where is the function that associates to a volume shape the numerical
value of its volume, is the function that associates to a surface shape the
numerical value of its area, and defines the scale of the representation
C V E( , ) (Monga, 2007, Mumford, 1989).

We look for sets of ellipsoids E minimizing C V E( , ). In order to
address this optimization problem, we propose to use a “split and
merge” strategy involving clustering and region-growing algorithms.

2.1.3. Optimal set of spherical balls
The first step in the morphological modeling of soil pores by ellip-

soids consists of identifying the minimal set of spherical balls in-
cluding the λ-skeleton of the shape. The shape is determined within the
voxels associated with the pores in the thresholded)i.e., binary) CT
images. As explained in detail in several previous publications (Monga
et al., 2007; Ngom et al., 2012), this minimal set of balls is obtained
after subjecting the image to several successive operations. First, voxels
at the pore boundary are identified. They are defined as solid phase
voxels that have at least one pore voxel in their immediate neighbor-
hood. Second, once the boundary voxels are all known, a so-called
“Delaunay triangulation” is computed, which by definition connects
boundary voxels via tetrahedra with faces that are as equilateral as
possible. Third, for each tetrahedron of the Delaunay triangulation, the
center and radius of the circumscribed sphere are calculated. Fourth,
one proceeds to the “pruning” of Delaunay spheres, which means that
one evaluates the extent of overlap between a Delaunay sphere and the
set of voxels forming the pore space, and one discards the spheres for
which this overlap is less than an arbitrary number. Indeed, the nu-
merical discretization implies that some maximal balls are not com-
pletely included within the shape. In order to select also these balls, we
relaxed the constraint using a threshold set to 90% after trial and error.
We found that the results were not sensitive to 3–5% threshold varia-
tions. Fifth, in principle the next step consists of extracting from all the
spheres the so-called “λ-skeleton”, defined as the subset of balls whose
radius is at least λ (in units of voxel widths). But in the present
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research, it is assumed for convenience that λ=1, so that, practically,
all balls are retained. Sixth, the spherical balls are ranked in decreasing
order according to their radius. Seventh, starting with the largest ball
and going down the list, the next ball in the list is considered, and it is
discarded if this ball overlaps previous balls that were kept by more
than a percentage of the value of the ball volume. In previous articles
(Monga et al., 2007; Ngom et al., 2012), we chose this threshold in
order to ensure that the shape skeleton is included within the union of
the balls. In a preliminary study, we found that a global recovery per-
centage of 20% was fitting regarding the shape skeleton inclusion
constraint adoted by Monga et al. (2007) and Ngom et al. (2012). This
process is repeated until there are no more balls to consider, at which
point one has obtained the smallest (or near smallest) set of balls,
covering the skeleton of the pore space.

2.1.4. Clustering of balls
In applications in other contexts, several authors have developed

statistical techniques to find connected and compact set of voxels (e.g.,
Mokhtari et al., 2014; Banégas et al., 2001; Baillard et al., 2000;
Alsallakh, 2014). One such technique is a variant of Diday's dynamic
clustering method, also known as the “k-means” algorithm. Basically,
one searches for the best partition of a given cloud of points into k
classes. The best partition maximizes the inter-class variance (the var-
iance between distinct classes) and minimizes the sum of intra-class
variances (the variance inside each class). In order to apply this tech-
nique to the minimal set of balls described earlier, each ball has to be
assigned a weight, equal to its volume. Then, using for k a value equal
to 30% of the total number of balls to cluster, the balls are divided in k
groups, so as to minimize the sum, for all the balls, of the products
(weight x distance2), where “distance” is measured between the center
of each ball and the barycenter of the group to which the ball belongs.
The principle of setting k to a percentage of the total number of max-
imal balls is that the value of k should be linked to the complexity of the
shape, which is related to the initial number of maximal balls. Ac-
cording to preliminary trials, we found that a value of 30% for k was
reasonable. Also, the value of this percentage can influence the com-
puting time, but less so the final result due to the region-growing step
that follows.

Once the k groups are obtained, points on the surfaces of the balls in
each group are selected randomly, and a Matlab algorithm is applied to
these points to obtain the convex envelope of all the points in the group.
The algorithm produces a set of triangular facets approximating the
convex envelope. Then, trough minimization of algebraic distances
(Bricault and Monga, 1997) one tries to determine the parameters of the
ellipsoid that best fits the convex envelope in each group.

For each ellipsoid, the percentage of the volume of the ellipsoid that
overlaps the set of pore voxels is calculated. If this percentage is less
than a threshold of 90%, the ellipsoid is considered “invalid.” Only
“valid” ellipsoids are kept. The balls associated with invalid ellipsoids
are once again pooled all together, and the k-means algorithm is ap-
plied to them, with the same k value (which now leads to a smaller
number of groups since there are fewer balls to divide). This process of
generating ellipsoids and pruning those that are invalid, is continued
until it is no longer possible to come up with valid ellipsoids, at which
stage the remaining balls are kept as they are. Indeed, this clustering
stage is equivalent to segmenting the shape skeleton using the set of
maximal balls computed through 3D Delaunay triangulation (George
and Borouchaki, 1998). Afterwards, to each part of the skeleton parti-
tion, we attach a corresponding set of maximal balls. A key asset of this
method is that it provides ellipsoids whose axes fit by construction with

the skeleton of the shape and also that are sticking to the shape
boundaries. These strong geometrical properties explain why the drai-
nage simulation can perform well. Indeed, the goal is to obtain a pore
space representation that provides a good approximation of the volume
shape defined by the segmented image.

2.1.5. Merging of ellipsoids
The above procedure yields a sometimes large number of ellipsoids,

which can overlap slightly with neighboring ones, although the design
of the method makes this overlap relatively small, as a rule.
Nevertheless, since there are still many ellipsoids, it is useful to find out
if their number cannot be reduced, to eventually speed up calculations
made with them. Merging of ellipsoids is done by systematically
looking at pairs of neighboring ellipsoids, and determining if a new
ellipsoid obtained on the basis of all the balls associated with the two

Fig. 2. Comparison of ellipsoids-versus ball-based representations of the pore
space of ROI p1bkko4a. The first row shows the ball-based representation of the
pore space. The second row shows primary ellipsoids resulting from the ap-
plication of the split-merge algorithm, and the third row shows final ellipsoids
produced by the region-growing algorithm. The images on the right are mag-
nified versions of the regions under the squares in the images on the left.
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individual ellipsoids is still a “valid” ellipsoid, in the same sense as
above. Each valid ellipsoid that is identified in this manner is kept, and
the systematic process of reviewing ellipsoids and merging them is
continued until it is no longer possible to do further merging. This
merging stage allows to provide a final result in the sense of the seg-
mentation completeness.

In order to optimize this merging stage, we use a data structure
described by Faugeras and Hebert (1984) and Monga (1987), which
allows the iterative merging of the best pair of ellipsoids with respect to
the fitting error. In a first step, we compute the adjacency graph of the
ellipsoids obtained at the previous step. We determine the connectivity
by means of the corresponding set of balls associated with each ellip-
soid. Then, for each pair of connected ellipsoids, we sample the points
of the union of the set of balls. We compute the convex hull and then
the best fitting ellipsoid. We calculate the ratio between the ellipsoid

volume and the summation of the volumes of the two corresponding
ellipsoids. In order to increase the precision of the error evaluation, we
can also come back to the initial set of voxels as previously. We take the
minimum between the ratio of the volume of the ellipsoid divided by
summation of the two initial ellipsoids, and the inverse. The merging
cost is set to this ratio which is also used to calculate the criterion de-
fining the merging predicate (see Monga, 1987). In annex is included a
detailed description of the implemented algorithms.

2.2. Draining from pore space morphological representation: from ellipsoids
to air-water interfaces

This section deals with the computation of air-water interfaces on
the basis of the ellipsoids-based representation of the pore space.

Initially, all ellipsoids (see sub-section 2.1) are filled by water. The

Fig. 3. Comparison between segmented SR-μCT data (first
row) and model predictions of the air-water distribution in
the connected pore space of ROI p1bkk04a at different
vertical sections z= 22,64, 106, and 148 (from left to
right). The water saturation index of the pore is 0.45. Solid
phase is in white, water is in light gray, and air is in black.
The second row corresponds to predictions using spherical
balls, whereas the third, fourth, and fifth result from mod-
eling with ellipsoids defined on the basis, respectively, of
the minimal radius (3rd row), maximal radius (4th row),
and mean radius (5th row). To drain ellipsoids, the
threshold diameter is taken as 300 μm according to Young-
Laplace equation.

A.T. Kemgue et al. Computers and Geosciences 123 (2019) 20–37

24



final water content distribution is simulated by an iterative drainage
procedure, following Pot et al. (2015). In this scheme, the Young–La-
place equation gives the equivalent maximum radius, req [m], of the
pores that are filled with water at a fixed matric potential, ψ [kPa]:

ψ=2σcos(θ) / req (1)

Where σ is the surface tension of water in contact with air [Nm−1], θ is
the contact angle of water on the solid surface, assumed in this study to
be zero for a fully wetting fluid.

The conditions under which a given ellipsoid is allowed to empty
are similar to those adopted in Pot et al. (2015), in the sense that an
ellipsoid is allowed to empty even if none of the neighboring ellipsoids
are empty. Like with the description of drainage using the ball-based
representation (Monga et al., 2014), we can either fill with air or water
the primitives (balls, ellipsoids, cylinders etc.) only according to their
geometrical features, or take into account the adjacency relationships.

In the first case, a ball will empty only if its radius is larger than a given
value given by the Young-Laplace equation. In the second case, a ball
will empty if its radius is larger than a given threshold and also if it is
not surrounded by balls whose radius is smaller than the threshold.
However, since unlike balls, an ellipsoid has 3 axes of symmetry, one
has to decide which “radius” along which axis is used as a criterion to
determine if the ellipsoid empties. Options are the smallest radius of the
three, the largest of the three, and an average of all three. In the fol-
lowing, all 3 options are investigated. Eventually, when all the ellip-
soids have been considered using a uniform rule for all of them, the
model accounts for the spatial distribution of water in the soil, which
can be directly compared to the air-water distribution observed in the
segmented 3D SR-μCT images, and also to the model predictions ob-
tained by Pot et al. (2015) with a lattice-Boltzmann approach. Of course
the above statement requires that the same physical equations be fol-
lowed.

Fig. 4. Region of Interest p1bkk04a viewed from two different perspectives, presented side-by-side. The solid phase is not represented, whereas water is in blue and
air is in red. The images on top correspond to the segmented SR-μCT images, and the bottom images show ellipsoids-based predictions, using the minimal axis and a
threshold of 300 μm to evaluate their saturation level. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of
this article.)
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3. Soil data set

The different steps leading to the 3D images used in the research
recounted in this paper (Sections 3.1 to 3.4) have been described in
detail by Pot et al. (2015). A shortened account is given here, in order
for the text to be reasonably self-contained.

3.1. Soil preparation

Surface soil samples obtained in Versailles (France), with 17% clay,
56% silt and 27% sand, were passed through a 2mm sieve. Soil ag-
gregates between 2 and 3.15mm in size were collected from the coarse
fraction and their gravimetric moisture content was adjusted at
0.205 kg kg−1. They were then packed uniformly at a bulk density of
1200 kgm−3 into cylinders, 50mm in diameter and 40mm high. The
resulting soil columns were subsequently sawed to about 8mm thick
slices. Nine 6×6×8mm3 soil cubes were sampled out of each slice
with the help of a razor blade in order to minimize disturbance during
cutting.

3.2. Equilibration at set matric potential

With an especially-developed, miniaturized experimental suction
device, the small soil cubes were equilibrated at fixed matric potentials
close to water saturation. The soil cubes were first equilibrated at a
matric potential of −2 kPa for two days using de-aired water. Then, all
soil cubes were slowly saturated and were kept equilibrated at 0 kPa for
1 h in order to re-move residual entrapped air. Then the syringes, in
series of three, were directly equilibrated at specific matric potentials of
−0.5 kPa, −1 kPa, and −2 kPa, respectively, for 24 h.

3.3. Synchrotron X-ray μCT (SR-μCT) scans

Microtomography measurements were carried out at the SR-μCT
facility operated by the GKSS Research Center at HASYLAB (Hamburger
Synchrotron Strahlungslabor) in Hamburg, Germany. An X-ray energy
of 30 keV and rotation of the CCD camera in 0.2° steps from 0 to 180°
yielded a voxel resolution (after reconstruction) of 4.6 μm.

3.4. Image pre-processing and analysis

Reconstructed image datasets were preprocessed in several ways.

Fig. 5. Air phase in Region of Interest p1bkk04a viewed from two different perspectives, presented side-by-side. The images on top correspond to the segmented SR-
μCT images, and the bottom images show the predictions using ellipsoids, using the minimal axis and a threshold of 300 μm to evaluate their saturation level.
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First, inscribed cubic subvolumes, of size 900×900×500 voxels,
were extracted to avoid boundary effects at the edges of the sample. To
facilitate computations mainly for LBM method, the resolution of the
images was coarsened by a factor of two, to 9.2 μm. A rank order
median filter was applied to reduce image noise. To obtain a ternary
image, a global threshold value was automatically computed according
to Otsu (1979) from the gray value histogram by maximizing the intra-
class variance of the matrix and pore classes while minimizing the gray
value variances within the two classes. The threshold to segment the
water- and gas-filled pore regions was selected at the minimum be-
tween the two distinct peaks.

The relative fractions of the three phases (gas, water, matrix) were
subsequently computed regarding the number of voxels attached to
each phase. Porosity was computed as the sum of the relative fractions
of gas and water and the water saturation index, Sw, was equal to the

ratio of the relative fraction of water over porosity. Air–water trian-
gulated isosurfaces were calculated by the Isocontour tool of ParaView
(hrens et al., 2005) from the extracted 3D data including the segmented
air phase of the images. The surface area was then simply computed by
integration and translated into physical units of mm2 via multiplication
with the squared voxel resolution.

Houston et al. (2013) showed that different pre-treatments on the
gray-scale image and different segmentation methods can provide dif-
ferent segmented images. Therefore, the outcomes of modeling are still
dependent on the chosen method. Although recommendations are
sometimes provided (Vaz et al., 2011; Houston et al., 2013), there is
still a lack of standardization in the acquisition and processing of soil
images.

Fig. 6. Comparison between segmented SR-μCT data (first
row) and model predictions of the air-water distribution in
the connected pore space of ROI p1bkk03a at different
vertical sections z= 18, 24, 34, and 65 (from left to right).
The water saturation index of the pore is 0.20. Solid phase is
in white, water is in light gray, and air is in black. The
second row corresponds to predictions using spherical balls,
whereas the third, fourth, and fifth result from modeling
with ellipsoids defined on the basis, respectively, of the
minimal radius (3rd row), maximal radius (4th row), and
mean radius (5th row). To drain ellipsoids, the threshold
diameter is taken as 73.6 μm according to Pot et al., (2015).
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4. Assessing model predictions of air-water interfaces

One goal of the present work was to assess whether a morpholo-
gical model using ellipsoids predicted more accurately and/or faster
than a model based on spherical balls the distribution of water in the
various single pores analyzed by Pot et al. (2015). Therefore, exactly
the same cases, associated with one cube each out of the series at
−2 kPa and −1 kPa (cubes bkk03a and bkk04a, respectively) were
considered in the research described here. Practically, we used the
first data set to calibrate optimally the parameters and the second one
to validate.

To evaluate the spatial agreement of the position of the menisci
between simulations and measurements, the mean absolute error, MAE,
was computed as follows:

MAE = (Σi-1n |si-mi|)/n (2)

Where the summation is taken over all pore voxels n, and si
and mi are the thresholded densities of the voxels for the simulated
and measured images respectively. Indeed, we attach to each
ellipsoid the corresponding set of voxels in order to calculate
MAE.

5. Results and discussion

The description of the results and their discussion in the following
follows closely section 3.2. in Pot et al. (2015), dealing with the pore-
scale modeling of air-water interfaces. Figs. 2–11 and Tables 1 and 2
illustrate the estimation of air-water interfaces using ellipsoids. The
experimental data are the same as in Pot et al. (2015).

The computation of MAE associated with drainage using the Young-
Laplace equation for sample p1bkk04a at matric potential of −1 kpa,
and for sample p1bkk03a and p4bkk03a ata matric potential of −2 kpa
(Table 1) has been carried out with different functions of the three el-
lipsoids radii. Indeed, at least for our data sets, the results (MAE values)
are not very sensitive to the choice of function (minimal radius, mean
radii, …). A plausible reason for this observation is that the radii of the
ellipsoids, for these specific data, are relatively homogeneous. How-
ever, we recommend to choose the minimal radius because the Young-
Laplace equation has been designed for cylinders, and when an ellipsoid
has an elongated shape, its minimal radius is a good approximation to
the radius of an equivalent cylinder.

Compared to the ball-based approach described by Pot et al. (2015),
there is a clear gain of the ellipsoids-based approach in terms of com-
puting time. Insofar as the gain in quality is concerned, one way to
quantify it is via the ratio of MAEs, specifically the ratio of the MAE

Fig. 7. Region of Interest p1bkk03a viewed from two different perspectives, presented side-by-side. The solid phase is not represented, whereas water is in blue and
air is in red. The images on top correspond to the segmented SR-μCT images, and the bottom images show ellipsoids-based predictions, using the minimal axis and a
threshold of 73.6 μm to evaluate their saturation level. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of
this article.)
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obtained with ball-based representation to the MAE obtained with an
ellipsoid-based case. For the ROI p1bkk04a, there is a two-fold decrease
of the MAE obtained with the maximal balls, and a larger 5.75 ratio
with the minimal set of maximal balls. For ROI p1bkk03a and ROI
p4bkk03a, the values of MAE are comparable (in the case of Rmin) if one
considers the ball-based representation with maximal balls, but the
ratio of MAEs is around 2 relative to the minimal set of maximal balls.

It is useful to try to estimate fitting errors when approximating the
pore space by means of the set of ellipsoids and by means of balls
(Table 2). There are two different error measurements: ρ1 and ρ2, re-
spectively, quantify the is the fitting error linked to the percentage of
the union of the ellipsoids resp. balls not included within pore space.
The ratio ρ1 is smaller for ellipsoids than for balls and ρ2 is smaller for
balls than for ellipsoids. This is due to the fact that we computed el-
lipsoids using the convex hull of the set of corresponding balls and
therefore somewhat overestimated the pore space. Indeed, as noticed in
Pot et al. (2015), the ball-based coverage underestimates the porosity.
The use of ellipsoids corrects this problem but increases a little bit the
porosity. Also, in Table 2, to parallel what was done in Pot et al. (2015),
we have also considered all maximal balls, which have strong recovery,
and not only the minimal set of balls recovering the skeleton as in
Monga et al. (2014). The reason for this is that for applications to

drainage, the results are much more precise by taking into account the
set of all maximal balls.

For ROI p1bkk04a, the balls- and ellipsoids representations (Fig. 2)
lead to model predictions of the air water distribution depicted in
Figs. 3–5. It should be stressed that the balls-based representation used
here, like in Pot et al. (2015), includes all maximal balls of the pore
space shape. Indeed, to simulate drainage, we consider the union of all
maximal balls whose radius is less than the threshold computed thanks
to the Young-Laplace equation. Given that the maximal balls intersect
strongly, they do not define at all a piecewise approximation of pore
space. On the other hand, the ellipsoids, by construction, have very
weak intersections, and can be construed as providing a piecewise ap-
proximation of the pore space. Therefore, the ellipsoids-based re-
presentation could be used for many other applications such as flow
simulation (e.g., diffusion), biological dynamics simulation, pore space
classification etc. Indeed, within the context of water retention, a more
valid comparison of the balls-based representation of pore space versus
the ellipsoids one, would have been to use not all maximal balls, but
only the minimal set of balls recovering the skeleton. This set of balls
defines a piece wise approximation of the pore space (Monga et al.,
2007; Ngom et al., 2012), and has been used successfully to simulate
microbial decomposition of organic matter (Monga et al., 2014). Then,

Fig. 8. Air phase in Region of Interest p1bkk03a viewed from two different perspectives, presented side-by-side. The images on top correspond to the segmented SR-
μCT images, and the bottom images show the predictions using ellipsoids, using the minimal axis and a threshold of 73.6 μm to evaluate their saturation level.
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initially we had also computed the air-water interfaces using this
minimal set of balls. Indeed, due to the fact that this schematic re-
presentation does not include a significant part of pore space, the water
retention results are approximate. That is the reason why in the work
described in Pot et al. (2015), we use the set of all maximal balls to
simulate draining phase. Another way for comparing ellipsoids and
balls-based approach for drainage simulation would be to compute all
maximal ellipsoids of the shape and then to implement the same
strategy than the one used with the set of all maximal balls. Un-
fortunately, a method has yet to be developed that allows one, with
reasonable computing time, to determine all maximal ellipsoids of a 3D
volume shape.

The visualizations of the water retention using the ellipsoids-based
method for ROI p1bkk03a (Figs. 6–8) and for ROI p4bkk03a
(Figs. 9–11), respectively, are in line with the quantitative performance

evaluation given by the calculation of the MAE values (in Ttable 1).
Indeed, the ellipsoids-based method provides air-water interfaces fitting
fairly well with the experimental ones except in some cases where el-
lipsoids do not perform better than balls (Fig. 9). The predicted air-
water interfaces kept the same globulous shape than with the balls (see
Figs. 3, 5, 6 and 10).

Of course, globally, one would hope that the ellispiods-based re-
presentations could approximate experimental data better than they do,
but nevertheless one could argue that they afford a reasonable esti-
mation of the air-water interfaces in a much shorter computing time
(15–30min using a regular PC) than with the lattice-Boltzmann ap-
proach (a few days). The key explanation for this is that the ellipsoids-
based method uses a more sophisticated representation of pore space
geometry than is provided by the original set of pore voxels. The initial
computation of the ellipsoids-based pore space representation takes

Fig. 9. Comparison between segmented SR-μCT data (first
row) and model predictions of the air-water distribution in
the connected pore space of ROI p4bkk03a at different
vertical sections z=30,39,54, and 63 (from left to right).
The water saturation index of the pore is 0.20. Solid phase is
in white, water is in light gray, and air is in black. The
second row corresponds to predictions using spherical balls,
whereas the third and fourth result from modeling with el-
lipsoids defined on the basis, respectively, of the minimal
radius (3rd row), and maximal radius (4th row). To drain
ellipsoids, the threshold diameter is taken as 112 μm ac-
cording to Pot et al., (2015).

A.T. Kemgue et al. Computers and Geosciences 123 (2019) 20–37

30



between 15 and 25min CPU time using Matlab coding (see Table 3).
Especially for this specific task, requiring sophisticated data structures,
an implementation in C or C++ would run much faster.

6. Conclusions

The key results of the research described in this article show that
ellipsoids provide a better approximation of the pore space and of its

level of saturation with water than does a representation with spherical
geometric primitives (balls). In one case (ROI p1bkk04a), the value of
the mean absolute error associated with predictions of air-water inter-
faces obtained with ellipsoids even approaches that obtained with the
lattice-Boltzmann model. This is accompanied in all cases considered by
a slightly better than 6-fold decrease in the time required for the
computations, relative to the original MOSAIC model, using spheres,
which increases still the computational advantage of models based on

Fig. 10. Region of Interest p4bkk03a viewed from two different perspectives, presented side-by-side. The solid phase is not represented, whereas water is in blue and
air is in red. The images on top correspond to the segmented SR-μCT images, and the bottom images show ellipsoids-based predictions, using the minimal axis and a
threshold of 112 μm to evaluate their saturation level. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of
this article.)
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Fig. 11. Air phase in Region of Interest p4bkk03a viewed from two different perspectives, presented side-by-side. The images on top correspond to the segmented SR-
μCT images, and the bottom images show the predictions using ellipsoids, using the minimal axis and a threshold of 112 μm to evaluate their saturation level.

Table 1
Values of the mean absolute error (MAE) between the segmented SR-μCT image and the geometrical representations (set of maximal balls and ellipsoids) and of the
computation time (in seconds) for the different simulation cases. The diameter threshold was set according to Young-Laplace Equation for ROI p1bkk04a and
according to Pot et al. for the two other data sets.

Balls: minimal set of maximal balls
recovering the skeleton

Balls: set of all
maximal balls

Ellipsoids (Rmin) Ellipsoids
(Rmean)

Ellipsoids (Rmax)

ROI p1bkk04a
MAE 0.46 0.16 0.08 0.08 0.08
Quality gain (MAE ratio) versus set of all maximal balls 2.00 2.00 2.00
Quality gain (MAE ratio) versus minimal set of maximal

balls recovering the skeleton
5.75 5.75 5.75

Computation time (s) 12409 1933 1933 1934
Time gain (Computing time ratio) 6.41 6.42 6.42
Diameter threshold according to the Young-Laplace

equation
300 μm 300 μm 300 μm 300 μm

ROI p1bkk03a
MAE 0.41 0.18 0.17 0.21 0.20
Quality gain (MAE ratio) versus set all maximal balls 1.06 0.86 0.9
Quality gain (MAE ratio) versus minimal set of maximal

balls recovering the skeleton
2.41 1.95 2.05

Computation time (s) 5476 879 816 820
Time gain (Computing time ratio) 6.20 6.70 6.68
Diameter threshold according to Pot et al., (2015) 73.6 μm 73.6 μm 73.6 μm 73.6 μm 73.6 μm
ROI p4bkk03a
MAE 0.56 0.30 0.31 0.31 0.38
Quality gain (MAE ratio) versus set of all maximal balls 0.97 0.97 0.8
Quality gain (MAE ratio) versus minimal set of maximal

balls recovering the skeleton
1.80 1.80 1.47

Computation time (s) 6765 1166 1115 1112
Time gain (Computing time ratio) 5.80 6.06 6.08
Diameter threshold according to Pot et al., (2015) 112 μm 112 μm 112 μm 112 μm 112 μm
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geometric primitives relative to the high time-consuming lattice-
Boltzmann approach. In addition, the shape of the air-water interfaces
obtained with ellipsoids is less bulbous than that obtained with balls,
and is much closer to what is found in the segmented synchrotron data.
These different observations suggest that ellipsoid-based representa-
tions of the pore space of soils could serve as very valuable substitutes
to ball-based representations. Although there is still a significant gap in
terms of accuracy of predictions with the lattice-Bolztmann approach,
ellipsoid-based models should prove useful in applications where
computational time is an important constraint. This will be the case for
any attempt to increase the size of soil samples being simulated, or
when upscaling the description of microscale soil processes.
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Annex detailed algorithms

The corresponding code can be downloaded at:
https://github.com/kemgue/toellipsoids

Summary

We describe here in detail the algorithms implemented. The fitting process of the porous media by a minimal set of ellipsoids is done in two steps.
The first step called initial segmentation uses either Algorithm 1 or Algorithm 2 described below and the second step called region growth or merging
uses Algorithm 3 also mentioned. The ellipsoids obtained at the end of process are also called regions.

Initial segmentation:

Algorithm 1: Division-merge using clusters (k-means based)
Algorithm 2: Division-merge using octree data structure (octree based)

Final segmentation:

Algorithm 3: region growth or merging

Table 2
Pore space approximation errors between the segmented SR-μCT image and the geometrical models: =1 Vesp

Vsol and =2
Vprim

Vsol , where Vesp is the number of pore space
voxels of the thresholded SR-μCT images not included within the primitives,Vprim is the number of primitive voxels that are not included within the pore space of the
thresholded SR-μCT images, and Vsol is the total number of pore space voxels of the thresholded SR-μCT images.

Voxels Balls: minimal set of maximal balls recovering skeleton Balls: set of all maximal balls First ellipsoids Final ellipsoids

p1bkk04a
0 0.2442 0.0607 0.0582 0.0670
0 0.0226 0.0773 0.1305 0.1467

Number of primitives 2079943 26493 151797 4072
p1bkk03a

0 0.2592 0.0865 0.0318 0.0239
0 0.0215 0.0531 0.1140 0.1258

Number of primitives 280338 4941 125984 2011
p4bkk03a

0 0.4033 0.1190 0.0875 0.0968
0 0.0479 0.0628 0.1502 0.1664

Number of primitives 219353 5257 134417 2505

Table 3
Computing times for providing ellipsoids; C language implementation would certainly decrease a lot the computing times compared to Matlab code.

ROI p1bkk04a ROI p1bkk03a ROI p4bkk03a

Total CPU time for providing ellipsoids (Matlab code) 1370 s. 985 s. 1017 s.
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Algorithm 1. Division-merge using clusters (k-means based)
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Algorithm 2. Initial segmentation: division-merge based on octree structure
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Algorithm 3. Region growth or merge
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