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A B S T R A C T

Commercial finite-element software packages like ABAQUS are widely used for geodynamic modelling, which
usually requires considering isostatic effects, for example, to calculate displacements and stresses resulting from
glacial isostatic adjustment (GIA). Since Wu (Geophysical Journal International, 158, 401–408, 2004) proposed
that models created with commercial finite-element software need to implement elastic ("Winkler") foundations
at all external and internal material boundaries to account for restoring forces, this approach has been applied by
many GIA and other geoscientific studies. However, there is no consensus about the necessity of implementing
elastic foundations, which have the disadvantage that the stress output needs post-processing to obtain mean-
ingful results. Here we demonstrate that the elastic-foundation approach was derived from an Eulerian for-
mulation of the equation of motion for elastic and viscoelastic materials. Finite-element codes like ABAQUS,
however, use a Lagrangian formulation, which renders the implementation of elastic foundations at all material
boundaries unnecessary if the geometrically non-linear formulation (NLGEOM) is used. Results from viscoelastic
half-space models show that for incompressible viscoelastic materials models with elastic foundations (but no
NLGEOM) and models with NLGEOM (but no elastic foundations) yield vertical displacements underneath the
load that differ by less than 1% from the analytical solution. Both models reach a state of isostatic equilibrium. In
contrast, models without NLGEOM and elastic foundations do not reach isostatic equilibrium, i.e. the model
surface continuously subsides under the load. Models with both NLGEOM and elastic foundations behave overly
stiff and yield wrong displacement fields. Results from models based on Archimedes' principle demonstrate that
restoring forces are correctly calculated when using NLGEOM, which has the advantage that the stress output
can be used without post-processing and that negative density contrasts (e.g. between salt and surrounding
rocks) can be taken into account within the model domain, which is impossible when using elastic foundations.

1. Introduction

Many geoscientific applications of numerical codes require the in-
corporation of isostatic effects to simulate, for example, the behaviour
of the crust or lithosphere during deformation (e.g. Bird, 1978; King
and Ellis, 1990; Wdowinski and Axen, 1992). Thereby, the modeller
usually faces the problem that the region of interest is much smaller

than the model domain that would actually be needed to compute the
isostatic compensation in the sub-lithospheric layers. To overcome this
problem, elastic foundations (also called “Winkler foundations”) were
introduced as a way to simulate isostatic effects without the need to
include the layer beneath the region of interest into the model (Fischer
et al., 2004; Fourel et al., 2014; Hampel et al., 2009; Henk, 2006;
Kurfeß and Heidbach, 2009; Lester et al., 2012; McMullen et al., 1981;
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Williams and Richardson, 1991). Elastic foundations simulate the re-
storing forces arising from the density contrast between the lowermost
model layer and a virtual layer underneath, which is not part of the
finite-element mesh (e.g. ABAQUS 6.14 documentation). The stiffness
of the foundation (vertical stress per vertical displacement) is the pro-
duct of the density of the foundation and acceleration due to gravity.
This approach is consistent with modelling uplift of a body submerged
in a fluid. A typical application is the simulation of the asthenosphere as
a virtual layer underneath the model lithosphere to consider isostatic
effects arising, for example, from mass re-distributions or loading/un-
loading of the model surface (Hampel et al., 2009; Kurfeß and
Heidbach, 2009; McMullen et al., 1981; Turpeinen et al., 2008; Watts,
2001).

While the use of elastic foundations at the model bottom is a stan-
dard approach, there is a long-standing debate on the necessity of in-
corporating elastic foundations at all material boundaries with a den-
sity contrast, including the model surface and internal boundaries
(Bängtsson and Lund, 2008; Hampel et al., 2009; Schmidt et al., 2012;
Williams and Richardson, 1991; Wu, 1992, 2004). This approach was
introduced by Wu (1992) and described in more detail by Wu (2004)
for the use in the software package ABAQUS. Wu (2004) argued that
elastic foundations are necessary because he found that commercial
finite-element software codes do not track the stress initially introduced
by the gravity field and hence neglect restoring forces at internal and
external material boundaries. To activate the restoring forces, Wu
(2004) suggested to define elastic foundations at all material bound-
aries, with a value calculated from the density contrast between the
layers. As shown by Wu (1992), only models with elastic foundations
yielded vertical displacements under loading in agreement with ana-
lytical solutions. In models without elastic foundations, the surface
sinks under the load without reaching isostatic equilibrium. The elastic-
foundation approach should be employed in models with and without
gravity, regardless if the material is incompressible or compressible
(Lund, 2005; Steffen et al., 2006; Steffen, 2013). As an advancement of
Wu (2004)'s approach, Schmidt et al. (2012) suggested to define spring
elements at each node along the material boundary instead of elastic
foundations because this allows accounting for inclined boundaries.

Wu (1992, 2004)'s approach has widely been applied in GIA simu-
lations (Lund, 2005; Schotman et al., 2008, 2009; Steffen et al., 2006,
2014a, b; van der Wal et al., 2013; Wang and Wu, 2006; Wu, 2005) but
also in other studies on, for example, deformation of continental in-
teriors (Martin-Velazquez and de Vicente, 2012) or lithospheric flexure
on Mars (Musiol et al., 2016). However, it has two main disadvantages.
First, internal elastic foundations perturb the stress field in the model,
with the consequence that the computed stresses must be post-pro-
cessed to obtain correct values by adding the product of density, ver-
tical displacement and gravitational acceleration to the diagonal com-
ponents of the stress tensor output from ABAQUS (Wu, 2004). For
models that require an undisturbed stress field prior to post-processing
to correctly calculate, for example, the shear and normal stresses on a
fault, this poses a serious problem. Second, negative density contrasts at
internal material boundaries cannot be taken into account, because
ABAQUS does not allow defining negative foundation stiffnesses. This
precludes, for example, the incorporation of salt layers or an astheno-
sphere with a lower density than the lithospheric mantle.

In Section 2, we show that the apparent need of using elastic
foundations at all material boundaries with density contrasts stems
from an Eulerian formulation of the underlying equations, which con-
tain a term for pre-stress advection. In a Lagrangian formulation, this
term is not required, which raises the question why elastic foundations
should be implemented in Lagrangian finite-element codes like
ABAQUS. We show that elastic foundations are only needed if

Lagrangian models are run with the so-called “small-displacement"
approach, whereas they are unnecessary in a geometrically non-linear,
“large-displacement" analysis. In Section 3, we present viscoelastic half-
space models with a setup after Wu (1992) and models representing a
column of solid material floating on an inviscid fluid to investigate how
elastic foundations affect the results of small and large displacement
analyses.

2. Eulerian versus Lagrangian formulation of underlying
equations

When introducing his approach of using elastic foundations, Wu
(2004) referred to equation II-22 in Cathles (1975), which is the
equation of motion for an elastic material:

=u g r g r( ˆ) ˆ 00 0 1 0 1 1 (1)

where is the stress tensor, u is the displacement vector, r̂ is the unit
vector in the radial direction and ρ, g, ϕ are density, gravitational ac-
celeration and gravitational potential, respectively. The subscript zero
refers to the hydrostatic stress state, while the subscript one refers to
the perturbed stress state. The first term of equation (1) is the diver-
gence of stress, which also appears in the stiffness equation ( = 0)
solved by commercial finite-element packages. By the third and fourth
terms, potential effects from internal buoyancy (for example, density
changes arising from material compressibility) and self-gravitation can
be included.

Wu (2004)'s approach is based on the second term, which accounts
for the so-called “pre-stress advection”. This term ensures that particles
with an initial lithostatic stress (caused by the initial gravity field) carry
this stress with them when they are displaced during deformation. The
pre-stress advection term is linked to the restoring force of isostasy.
Without this term, there will be no viscoelastic gravitational relaxation
and any mass left on the surface of the Earth will sink to the centre
resulting in a singular solution at large model times (Wu, 2004). As the
stiffness equation = 0 solved by commercial finite-element codes
does not contain the pre-stress advection term, Wu (1992, 2004) pro-
posed to introduce elastic foundations at all material boundaries to
include pre-stress advection and isostatic restoring forces. The value of
each elastic foundation should be given by the user as the density
contrast across the layers times gravitational acceleration. As internal
elastic foundations modify the stress field, the computed stresses must
be post-processed by adding the product of density, vertical displace-
ment and gravitational acceleration to the diagonal components of the
stress tensor output from ABAQUS. In contrast, the modelled dis-
placements should not be affected by adding elastic foundations to a
model (Wu, 2004).

Inspection of Cathles (1975) reveals that equation (1) is based on an
Eulerian formulation. In an Eulerian formulation, particles move re-
lative to the initially defined geometry, which remains unchanged
during deformation. As particles do not carry the information about the
initial hydrostatic stress with them, an additional terms is required for
pre-stress advection (Cathles, 1975; Love, 1911). This advection term in
general relates the material derivative of a field to its local derivative.
The total stress at the position of each particle needs to be determined
from the stress gradient in the model. In a Lagrangian formulation,
however, the material is coupled to the geometry and they deform to-
gether. As each particle carries the information about its initial position
and stress with it, the pre-stress advection term is not needed to de-
termine the total stress for each particle. Hence, pre-stress advection
and buoyancy forces may be included in a Lagrangian formulation, i.e.
no additional terms are required for their implementation.
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Commercial finite-element codes like ABAQUS are based on the
Lagrangian formulation, which raises the question why it should be
necessary to account for pre-stress advection by additional boundary
conditions such as elastic foundations or spring elements. The answer to
this question is related to the fact that there are two fundamentally
different approaches to treat the relationship between the material and
the initial mesh geometry: Lagrangian analyses may be run with or
without the so-called “geometrically non-linear formulation” (named
NLGEOM in ABAQUS). Without this formulation, the software applies
the small-displacement approach, i.e. the finite elements are formulated
relative to the initial geometry, using initial nodal coordinates, and the
kinematic relationships are linearised (ABAQUS 6.14 documentation).
In a small-displacement analysis, the infinitesimal strain measure is
used. The consequences of this infinitesimal strain approximation for
modelling isostatic effects were described by Williams and Richardson
(1991) (bold font added by authors of present study): "Any uplift that
occurs as a result of tectonic forces must be countered by isostatic forces
proportional to the amount of uplift. If this were not true, tectonic uplift
could continue indefinitely, resulting in infinite topography. Ordinarily, this
would be the case in time-dependent finite element calculations, with or
without the use of body forces. At each time step, uplift would proceed in a
manner dictated by the present set of forces, regardless of the amount of
uplift that had occurred in the previous time step. This is a result of the
infinitesimal strain approximation used in most finite element calcu-
lations. All spatial quantities are referenced to the initial nodal po-
sitions, so that the entire grid geometry remains unchanged over the
course of the calculations. Therefore, no matter how much vertical uplift
has been induced by the applied boundary conditions, the system of body
forces will be the same as it was initially." In other words, pre-stress ad-
vection and restoring forces are not taken into account in the La-
grangian small-displacement approach.

Apart from the infinitesimal strain approximation, ABAQUS offers –
since its first version published in 1978 – the possibility of a geome-
trically non-linear (NLGEOM) analysis. This kind of analysis represents
the “large-displacement" approach, in which the elements are for-
mulated in the current geometry using the current nodal positions; the
calculated stress at each point is the “true” (Cauchy) stress, which re-
sults from the deformation history of the respective element (ABAQUS
6.14 documentation). In other words, each particle carries the in-
formation about the stress with it, i.e. there is no need to account for
pre-stress advection by elastic foundations. More importantly, it re-
mains hitherto unexplored how elastic foundations affect the modelled
displacement and stresses when they are used in an NLGEOM analysis
(e.g. Steffen, 2013).

The basic finite element equations used in ABAQUS are given in
integral form in the Abaqus 6.14 documentation. In addition to the
geometrically nonlinear stiffness matrix, they include the initial stress
matrix, describing stress-stiffening effects, and the load stiffness matrix,
describing the deformation-dependency of loads such as the de-
pendency of gravity loading on the momentary density (internal
buoyancy). Self-gravitation, however, is not included.

Note that the ABAQUS documentation recommends – since at least
version 6.3, which was used by Hetzel and Hampel (2005) – the use of
NLGEOM for models containing sources of geometrical non-linearity,
such as contact interfaces to simulate faulting. Note that also all later
models by Hampel and co-workers were run with NLGEOM and hence
included pre-stress advection and buoyancy forces (e.g. Hampel and
Hetzel, 2006; Hampel et al., 2007, 2009, 2010; Turpeinen et al., 2008).
In the next section, we evaluate the effect of using elastic foundations in
models with and without NLGEOM on the model results.

3. Model sets for evaluating NLGEOM versus elastic foundations

To evaluate the two approaches – geometrically non-linear
(NLGEOM) analysis versus elastic foundations at all material bound-
aries – we computed a series of models with a deliberately simple setup.
The first two model sets represent an incompressible viscoelastic half-
space with the same parameters as used by Wu (1992). The modelled
displacements during loading are compared with the analytical solution
(Wolf, 1985; Wu, 1992, his Appendix A). The third model set comprises
a column floating on an inviscid fluid to evaluate how elastic founda-
tions affect the modelled displacement and stress fields for compressible
and incompressible as well as for elastic and viscoelastic materials. The
naming of the models is summarized in Table 1. All models were run
using ABAQUS/Standard version 6.14. To show that our conclusions
are also valid for an older and the most recent ABAQUS version, we ran
all Haskell-type and floating-column models with versions 6.7 (pub-
lished 2007; Figs. S1, S2) and 2017 (published 2017; Figs. S3, S4).

3.1. Incompressible viscoelastic half-space models after Wu (1992)

Wu (1992) presented two incompressible viscoelastic half-space
models with a boxcar (or Heaviside) load to show the validity of the
finite-element approach for GIA modelling. The first model (Wu, 1992;
his Fig. 1a) simulated the loading of a viscoelastic half-space with the
same parameters as used by Haskell (1936), who provided an analytical
solution for the loading of a viscous half-space. For the comparison
between finite-element results and analytical solution, Wu (1992; his
Fig. 1a) used the solution for Heaviside loading of a viscoelastic half-
space provided by Wolf (1985). In the following, we refer to these
models as Haskell-type models (Fig. 1a; Table 1). The second model
(Wu, 1992; his Fig. 2) had the same setup but the material density was
changed and unloading of the half-space was also considered. We
hereafter refer to these models as Wu92-Fig2-type models (Fig. 1b). In
the following, we describe the models in more detail and use them for
comparing the two different approaches (NLGEOM and elastic foun-
dations). For each setup, we computed four models (Table 1). Note that
the model name indicates the applied approach (*_E: with elastic
foundation; *_N: with NLGEOM; *_noNE: without NLGEOM or elastic
foundation; *_N+E: with both, elastic foundation and NLGEOM). For
the loading phases, we compare the vertical surface displacement
against the solution given by Wolf (1985).

3.1.1. Setup and results from Haskell-type models
Our Haskell-type models (Fig. 1a) are 60000 × 60000 km large and

meshed with 25 × 25 km large linear, rectangular plane strain elements
suitable for incompressible materials (CPE4H). By using these model
dimensions and element edge lengths, we follow the recommendations
given in Wu and Johnston (1998) for obtaining results with a deviation
of less than 1% underneath the load compared to the analytical solu-
tion. On top of the model, a 1000-km-wide load with a magnitude of
15 MPa is applied instantaneously. In the models Haskell_E and Has-
kell_N+E, an elastic foundation is applied to the model surface
(Table 1).

The models were computed as a sequence of four analysis steps. In
the first step (ABAQUS Keyword *Static), in which only elastic material
behaviour is taken into account, gravity is applied and a lithostatic
stress field is established (Ellis et al., 2006; Fischer, 2001; Hampel et al.,
2009; Hergert et al., 2015). To facilitate the calculation, we define the
lithostatic stress field as initial condition (*Initial conditions,
type = stress, geostatic) (ABAQUS 6.14 documentation). In the second
step (*Visco), viscoelastic behaviour is switched on and the viscoelastic
material is allowed to equilibrate under gravity for 10 ka. This
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procedure ensures that the deformation caused by applying gravity to a
viscoelastic material is minimized before the load is applied. Note that
these two initial steps are optional; they can be included in models of
any scale, in which isostasy is to be simulated (see Appendix A for

templates of ABAQUS input files). In the third step (*Visco), the load is
applied; this step lasts one second and yields the elastic response. In the
fourth step (*Visco), the vertical displacement of the model surface is
computed at the same three time points as in Wu (1992). To compare

Table 1
Overview of the models used to evaluate the use of non-linear geometry analysis (NLGEOM) versus elastic foundations.

Model Elastic foundation NLGEOM Gravity Material

Haskell-type models
Haskell_N – x x viscoelastic incompressible
Haskell_E x – x viscoelastic incompressible
Haskell_noNE – – x viscoelastic incompressible
Haskell_N+E x x x viscoelastic incompressible
Wu92-Fig2-type models
Wu92-Fig2_N – x x viscoelastic incompressible
Wu92-Fig2_E x – x viscoelastic incompressible
Wu92-Fig2_noNE – – x viscoelastic incompressible
Wu92-Fig2_N+E x x x viscoelastic incompressible
Floating column models
C1-3-i-e_N,C2-2-i-e_N – x – elastic incompressible
C1-3-i-ve_N, C2-2-i-ve_N – x – viscoelastic incompressible
C1-3-i-e-g_N, C2-2-i-e-g_N – x x elastic incompressible
C1-3-i-ve-g_N, C2-2-i-ve-g_N – x x viscoelastic incompressible
C1-3-i-e_E, C2-2-i-e_E x – – elastic incompressible
C1-3-i-ve_E, C2-2-i-ve_E x – – viscoelastic incompressible
C1-3-i-e-g_E, C2-2-i-e-g_E x – x elastic incompressible
C1-3-i-ve-g_E, C2-2-i-ve-g_E x – x viscoelastic incompressible
C1-3-c-e_N, C2-2-c-e_N – x – elastic compressible
C1-3-c-ve_N, C2-2-c-ve_N – x – viscoelastic compressible
C1-3-c-e-g_N, C2-2-c-e-g_N – x x elastic compressible
C1-3-c-ve-g_N C2-2-c-ve-g_N – x x viscoelastic compressible
C1-3-c-e_E, C2-2-c-e_E x – – elastic compressible
C1-3-c-ve_E, C2-2-c-ve_E x – – viscoelastic compressible
C1-3-c-e-g_E, C2-2-c-e-g_E x – x elastic compressible
C1-3-c-ve-g_E, C2-2-c-ve-g_E x – x viscoelastic compressible

Fig. 1. Model setups. a) Viscoelastic Haskell-type half-space models. b) Viscoelastic Wu92-Fig2-type half-space models used for modelling loading and subsequent
unloading (after Wu, 1992; his Fig. 2). Both model types are meshed with 25 × 25 km large linear, rectangular plane strain elements suitable for incompressible
materials (CPE4H). The same mesh and element type are used in all model runs. All viscoelastic half-space models (i.e. with and without elastic foundations and/or
NLGEOM) have the same boundary conditions (indicated by black triangles): the model bottom is fixed in both the vertical and horizontal direction while the model
sides are fixed in the horizontal direction. In models with an elastic foundation (Table 1), it is applied to the model surface. Abbreviations for model parameters are ρ
density, E Young's modulus, ν Poisson's ratio, η viscosity and g acceleration due to gravity. Following Wu (1992), we use a value of g = 9.82 m/s2 in the viscoelastic
half-space models. The linear viscosity of 1.45 × 1021 Pa s enters the model via the keyword *Creep as parameter A with a value of 2.3 × 10−22 Pa s. In all models,
the load is applied (and removed, if applicable) instantaneously. The magnitude of the applied load is 15 MPa, which is equivalent to ∼1.5 km of ice. The left end of
the load coincides with the origin of the coordinate system at the beginning of the model run. See text for details.
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our results with the theoretical prediction, we used MATLAB to com-
pute the vertical displacement of the surface at these different stages by
inverse Fourier transformation of the solution given by Wolf (1985).
The inverse Fourier transformation required the shear modulus as
input, which we calculated from the Young's modulus and Poisson's

ratio to be 3.7667 × 1010 Pa.
The results from the Haskell-type experiments show that both

models with an elastic foundation (but no NLGEOM) and models with
NLGEOM (but no elastic foundation) yield vertical displacements un-
derneath the load that differ by less than 1% from the analytical
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Fig. 2. Results from Haskell-type half-space models (Fig. 1a; Table 2). Diagrams in the upper row show the vertical surface displacement in the models (a) Haskell_N
(with NLGEOM, no elastic foundation) and (b) Haskell_E (no NLGEOM, with elastic foundation). Dashed black lines indicate the results from the inverse Fourier
transformation (iFFT) of the solution given by Wolf (1985). Diagrams in the centre row show the difference in the vertical displacement between iFFT and the models
(c) Haskell_N and (d) Haskell_E, respectively. Diagrams in the lower row show the vertical displacement in the models (e) Haskell_noNE (no NLGEOM, no elastic
foundation) and (f) Haskell_N+E (with NLGEOM, with elastic foundation). The vertical displacement derived from the finite-element models is given relative to the
upper right corner of the mesh.

Table 2
Results of the Haskell-type models with a viscoelastic halfspace under a Heaviside load (see Figs. 1a and 2). Results of the inverse Fourier transformation of the
solution given by Wolf (1985) are shown in the last row.

Model name Elastic foundation Non-linear geometry Vertical displacement (m) at x = 0

Elastic response 1840 a 5510 a 18400 a

Haskell_N no yes −155.5 −228.2 −285.8 −307.4
Haskell_E yes no −155.5 −228.9 −286.0 −307.4
Haskell_noNE no no −564.8 −1417 −3115 −9082
Haskell_N+E yes yes −98.5 −129.8 −150.3 −150.9
inverse FFT solution – – −155.8 −229.0 −286.4 −307.4
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Fig. 3. Vertical surface displacement after application (0–16 ka) and removal of load (16–32 ka) obtained from the Wu92-Fig2-type half-space models (Fig. 1b;
Table 3). (a) Wu92-Fig2_N (with NLGEOM, no elastic foundation). (b) Wu92-Fig2_E (no NLGEOM, with elastic foundation). Dashed black lines in the diagrams in the
upper row indicate the results from the inverse Fourier transformation (iFFT) of the solution given by Wolf (1985). (c) Difference in the vertical displacement after
load removal between the models Wu92-Fig2_N and Wu92-Fig2_E. (d) Semi-log plot of the remaining uplift versus the time after load removal for three different
locations (x-coordinates: 0, 550 and 750 km, respectively) underneath the former load (cf. Wu, 1992; his Fig. 3). The relaxation times at these points (τ0km, τ550km and
τ750km) are determined from the slope of the regression lines, which is inversely proportional to the relaxation time. Plot is derived from model Wu92-Fig2_N; model
Wu92-Fig2_E yields identical relaxation times. (e) Vertical displacements from model Wu92-Fig2_noNE (no NLGEOM, no elastic foundation). (f) Vertical dis-
placements from model Wu92-Fig2_N+E (with NLGEOM, with elastic foundation). The vertical displacement derived from the finite-element models is given relative
to the upper right corner of the mesh.
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Table 3
Results of Wu92-Fig2-type models with a viscoelastic halfspace under a Heaviside load (see Figs. 1b and 3). Results of the inverse Fourier transformation of the
solution given by Wolf (1985) for the phase with the load are shown in the last row.

Model name Vertical displacement (m) at x = 0

Time after loading Time after unloading

Elastic response 1 ka 2 ka 4 ka 8 ka 16 ka Elastic response 1 ka 2 ka 4 ka 8 ka 16 ka

Wu92-Fig2_N −191.1 −256.7 −304.6 −367.0 −424.1 −451.2 −260.1 −195.3 −147.9 −86.0 −28.8 −0.26
Wu92-Fig2_E −191.1 −258.2 −305.8 −367.6 −424.3 −451.2 −260.1 −193.8 −146.7 −85.4 −28.6 −0.24
Wu92-Fig2_noNE −564.8 −1028 −1491 −2416 −4268 −7971 −7406 −7406 −7406 −7406 −7406 −7406
Wu92-Fig2_N+E −129.7 −162.4 −183.9 −207.8 −223.1 −225.6 −96.0 −63.1 −41.5 −17.4 −1.77 −1.00
inverse FFT solution −191.7 −257.5 −305.7 −368.1 −424.8 −451.4 – – – – – –

Fig. 4. Principle and setup of the floating column models. a) Sketch illustrating Archimedes' principle for a column of solid material floating on an inviscid fluid.
When the initial hydrostatic equilibrium is disturbed, the column is displaced by an amount that can be calculated from the load density times the load thickness
divided by the density of the inviscid fluid. Note that the vertical displacement does not depend on the density structure of the solid column as long as the column
weight and hence the pressure P at the column bottom does not change (i.e. P1 = P2). b) Setup of the models with a column floating on an inviscid fluid. Names of
models with different densities in Layers A and B start with C1-3; models with the same density in Layer A and B have names starting with C2-2. The star (*) denotes
further additions (see Table 1). Abbreviations are ρ density, E Young's modulus, ν Poisson's ratio, η viscosity and g acceleration due to gravity (here: standard value of
9.81 m/s2). At the beginning of each model run, the column is in isostatic equilibrium. This initial equilibrium is then disturbed by instantaneous loading of the
column. Black triangles indicate that the model sides are fixed in the horizontal direction. Note that the model bottom does not need to be fixed to in the horizontal
direction; due to the boundary conditions at the model sides and the fact that the load is applied across the entire column width, the model bottom only moves in the
vertical direction. In models with NLGEOM, the only elastic foundation is applied at the model bottom to simulate the inviscid fluid; the foundation stiffness is
calculated from the absolute density (4000 kg/m3) times acceleration due to gravity. In models with elastic foundations at all material boundaries, the density
contrast (variable) between 4000 kg/m3 and the density of Layer B is used. All models have the same mesh with 500 × 500 m large linear rectangular plane strain
elements (incompressible material: CPE4H; compressible material; CPE4). To minimize the deformation caused solely by applying gravity to a compressible material,
the experiments were run with an initial geostatic stress field and geostatic step (cf. ABAQUS 6.14 documentation; for consistency, this step sequence was also applied
to models with incompressible materials). The resulting initial compression due to gravity is less than 1 mm in all compressible models. Starting the analysis with a
geostatic step does not influence the model behaviour during loading; if the *Geostatic step is replaced by a *Static step, identical results are obtained (Fig. S10). In
models with elastic material, the load is applied instantaneously in the next model step (*Static; duration: 1 s). In models with viscoelastic materials, an additional
step (*Visco; 10 ka) is included after application of gravity to allow relaxation of stresses induced by the application of gravity. The load is applied at the beginning of
the subsequent step (*Visco; 10 ka).
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solution (Fig. 2a and b; Table 2). At the edge of the load, both model
types show maximum deviations from the inverse Fourier transforma-
tion between −2.5 and 4.2 m (Fig. 2c and d), which are caused by the
Gibbs effect. Across the entire model surface, the difference between
models Haskell_N and Haskell_E is less than 1 m (Fig. S5a). Similar re-
sults are obtained for element edge lengths of 50 and 100 km, respec-
tively, except at the edge of the load where the deviation from the
analytical solution and the difference between the models increases
(Fig. S5b, c).

The two other models (Fig. 2e and f) show completely different
results and do not agree with the analytical solution. In the model
Haskell_noNE (no elastic foundation, no NLGEOM), the vertical surface
displacements are an order of magnitude too high and increase non-

linearly through time (Fig. 2e, Table 2). The model surface shows the
typical sinking of the load with time that is expected for the small-
displacement approximation (Williams and Richardson, 1991; Wu,
1992, 2004). Notably, also the model Haskell_N+E (with NLGEOM and
elastic foundation) does not yield correct results; the vertical dis-
placements are up to ∼50% too low (Fig. 2f; Table 2).

With respect to the vertical stress, models Haskell_N and
Haskell_noNE show the correct stress change of 15 MPa beneath the
load without post-processing (Fig. S6a, b); in models Haskell_E and
Haskell_N+E, the stress field is disturbed by the elastic foundations but
post-processing according to Wu (2004) yields the correct vertical stress
field (Fig. S6c, d). For an evaluation of the horizontal and shear stress
fields as well as the horizontal displacement of the model surface see

Fig. 5. Results from models with a column of solid material floating on an inviscid fluid (Fig. 4; Table 1). The latter is represented by an elastic foundation at the
bottom of the model. (a) Vertical displacement and stresses in models with incompressible materials. (b) Vertical displacements and stresses in models with
compressible material. All stress fields are shown as obtained from ABAQUS, i.e. stress values from models with elastic foundations at all material boundaries are
shown without post-processing after Wu (2004). See text for details.
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Figures S7-S9, respectively.

3.1.2. Setup and results of viscoelastic half-space models with loading and
unloading

In the second model setup (Fig. 1b), the density is changed to
3400 kg/m3 and instantaneous removal of the load is added. The re-
spective ABAQUS model consists of six steps. The first four steps are
identical with the Haskell-type models, except that the fourth step now
lasts 16000 a. In the fifth step (*Visco; duration: 1 s), the load is re-
moved and the elastic response is computed. Note that it is irrelevant
for the calculation of the elastic response if a *Static step or a *Visco
step is used, as long as the length of the latter is short with respect to the
timescale of the viscous deformation; the use of a *Visco step ensures
the continuity of the viscoelastic flow in the model, which is not con-
sidered in a *Static step. The sixth step (*Visco) lasts 16 ka and yields
the long-term response to unloading.

Again, models Wu92-Fig2_N (with NLGEOM, no elastic foundation)
and Wu92-Fig2_E (no NLGEOM, with elastic foundation) show vertical
surface displacements after loading that differ by less than 1% from the
solution obtained by inverse Fourier transformation (Fig. 3a and b;
Table 3). Both models also show similar results after unloading
(Table 3; Fig. 3a–c). For the time period 16–18 ka, the results agree
(based on visual inspection) with the diagram shown in Wu (1992; his
Fig. 2b). Between 18 and 24 ka, the vertical displacements in both
models differ from Wu (1992)'s diagram by up to ∼30 m, with the
maximum deviation near the edge of the load. Notably, both models do
not show a complete return to a horizontal surface at 32 ka, as depicted
in Wu (1992; his Fig. 2b). Instead, vertical displacements of ± ∼40 m
still occur near the edge of the former load (Fig. 3a and b). This may be
a response to the singularity at the edge of the Heaviside load. Another
reason may be an incomplete stress relaxation before unloading, as Wu
(1992) observed for power-law viscosities. Following Wu (1992), we
show a semi-log plot of the remaining uplift versus model time
(Fig. 3d), which reveals that the relaxation times at the x-coordinates 0,
550 and 750 km are 3.6, 4.8 and 6.0 ka, respectively. While the re-
laxation time at x = 0 km is close to the value of 3.3 ka obtained by Wu
(1992), the other relaxation times are higher than the ones given in Wu
(1992; 3.9 and 4.5 ka).

The model Wu92-Fig2_noNE (no NLGEOM, no elastic foundation)
first shows the continuous sinking of the load (Fig. 3e). Removal of the
load leads to uplift of the surface (565 m at x = 0; Table 3) to a position,
where it remains until 32 ka (Fig. 3e). The model Wu92-Fig2_N+E
(with NLGEOM and elastic foundation) (Fig. 3f) shows a similar tem-
poral evolution as the model without NLGEOM (Wu92-Fig2_E) but the
amount of subsidence and uplift is too low by up to ∼50%.

3.2. Models of columns floating on an inviscid fluid - the effect of using
elastic foundations on modelled displacement and stress fields

According to Wu (1992, 2004) and other authors (e.g. Lund, 2005;
Steffen et al., 2006; Steffen, 2013), elastic foundations affect only the
stresses but not the displacement field. Obtaining an undisturbed dis-
placement field is particularly important when considering that it is
required to post-process the ABAQUS stress output (see Section 2). To
compare the displacement and stress fields obtained with and without
NLGEOM, we use models representing a column of solid material
floating on an inviscid fluid (Archimedes' principle; Fig. 4a). By ap-
plying a load to the column top, the initial hydrostatic equilibrium is
disturbed and the column moves to a new equilibrium position. The
displacement of the column bottom can be calculated from the product
of load density and thickness divided by the density of the inviscid fluid
(Fig. 4a) (Turcotte and Schubert, 2002). This setup represents the

simplest form of isostatic adjustment following the application of a load
(e.g. Watts, 2001). As the system behaviour is dominated by restoring
forces, it is ideally suited to evaluate if the two approaches can correctly
calculate these forces, the resulting isostatic displacement and the stress
field. Note that shear stresses between column and fluid, lateral flow
and other processes are deliberately not considered to keep the model
simple. To allow an easy comparison with the analytical solution
(Fig. 4a), we use a load density of 1000 kg/m3, a load thickness of
1000 m and a density of the inviscid fluid of 4000 kg/m3. With these
values, the expected displacement of the model bottom is 250 m. Im-
portantly, the displacement of the bottom does not depend on the
density structure of the model as long as the column weight does not
change (Fig. 4a). We will use this fact when evaluating the two different
approaches against each other. The vertical stress in the model should
be equal to the applied load (9.81 MPa).

The setup of the floating column models is depicted in Fig. 4b. In
different experiments, the column is composed either of one 100-km-
thick layer with a density of 2000 kg/m3 or of two 50-km-thick layers
with densities of 1000 and 3000 kg/m3, respectively (Fig. 4b). In
models without NLGEOM, elastic foundations (= density contrast x
gravitational acceleration) are applied at all material boundaries. In
models with NLGEOM, the only elastic foundation is applied at the
model bottom to simulate the inviscid fluid. Using this setup, we ran
models with and without gravity using incompressible and compres-
sible as well as elastic and viscoelastic materials, respectively (Table 1;
see Fig. 4b for rheological parameters and a description of the used
ABAQUS analysis steps).

Results from models with incompressible elastic or viscoelastic
material consistently show that the entire column is displaced by
−250 m at the end of the loading step (Fig. 5a). There are no differ-
ences between models with and without internal elastic foundations or
between models with different density structures. In NLGEOM models
without gravity, the vertical stress is equivalent to the applied load
(9.81 MPa) and does not need post-processing. In the corresponding
models without NLGEOM, the stress is perturbed by the elastic foun-
dations (Fig. 5a) but adding a value of 250 m times 9.81 m/s2 times
layer density to the stress output yields the correct constant value of
9.81 MPa. In models with gravity, the magnitude of the load is added to
the vertical stress; as the former is much smaller than the latter except
near the surface, models with and without NLGEOM show similar
vertical stress fields. When calculating the stress change induced by the
load, the same values as for models without gravity are obtained
(Fig. 5a).

The effect of the internal elastic foundations becomes discernible for
compressible elastic and viscoelastic materials (Fig. 5b). Models with
NLGEOM show the correct displacement (−250 m) of the model
bottom for both density structures. In the elastic model, the surface is
displaced by −258.2 m; the viscoelastic model shows the same elastic
response and a value of −264.7 m at the end of the experiment. In
models with elastic foundations at the base and at all internal material
boundaries, the bottom is displaced by different amounts but always
less than 250 m; the 250 m isoline is located at different levels within
the model (Fig. 5b). This implies that the displacement field in models
with internal elastic foundations depends on the density structure,
which is a non-physical behaviour and in contradiction with the theo-
retical consideration (cf. Fig. 4a). In other words, elastic foundations in
the model interior and at the model surface perturb the vertical dis-
placement field. As they take up part of the applied pressure, only a
portion of the load is transferred to the model bottom, leading to less
subsidence than expected. The perturbed displacement field poses a
serious problem for post-processing the stress output, which is best il-
lustrated for the models without gravity: depending on the density
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structure, models without NLGEOM yield one or two constant values for
the vertical stress, respectively (Fig. 5b). To correct the values, one
would need to add a value obtained from the product of vertical dis-
placement times 9.81 m/s2 times layer density. As the displacement
varies with depth, however, the post-processed stress field would also
be depth-dependent instead of showing a constant value for the whole
model.

To complement our analysis, we computed models with both elastic
foundations and NLGEOM. These models yielded the same results as the
models with elastic foundations only. This is in marked contrast to the
results obtained from the Haskell- and Wu92-Fig2a-type models, where
the combination of NLGEOM and elastic foundations yielded only a
portion of the theoretically predicted displacement. These differences
result from the change in the boundary condition at the model bottom,
which is fixed in the Haskell- and Wu92-Fig2a-type models but free to
move in the vertical direction in the column models, and from the fact
that the load is applied over the entire column width.

4. Discussion

Our results show that models with NLGEOM (but without elastic
foundations) and models with elastic foundations (but without
NLGEOM) yield similar results for incompressible materials. The com-
putational efficiency is similar for both model types, with the latter
requiring ∼90% of the computational time of the former. Our results
demonstrate that ABAQUS is able to compute restoring forces in a
Lagrangian, geometrically non-linear analysis without adding internal
elastic foundations. Given that NLGEOM is the recommended procedure
for quasi-static analyses (ABAQUS 6.14 documentation), it is rather
surprising that the use of the small-displacement approach (i.e. no
NLGEOM) can be compensated (at least for incompressible materials)
by including elastic foundations. The reason may be that the computed
quantities are referenced to the initial nodal positions in the small-
displacement approach. Although not strictly comparable, this refer-
encing to the initial mesh geometry also occurs in the Eulerian for-
mulation of the equations of motion (eq. (1)), which was the starting
point for Wu (1992, 2004). This equivalence in nodal referencing in the
Eulerian formulation and small-displacement approach explains a) the
need for separate handling of pre-stress advection and b) why Wu
(1992, 2004) obtains – for incompressible materials – correct results. In
contrast, the use of elastic foundations in an NLGEOM analysis is not
only unnecessary but produces wrong results (Figs. 2, 3 and 5).

When using elastic foundations in small-displacement models with
compressible materials, the approach fails. In this case, models with
elastic foundations show a non-physical behaviour and a significant
perturbation of the displacement field (Fig. 5b). This finding is con-
sistent with Bängtsson and Lund (2008), who showed that the in-
corporation of the pre-stress advection term as a boundary condition
(i.e. as an elastic foundation) is only valid for incompressible solids and
that for compressible materials stress, strain and displacements are
disturbed. Bängtsson and Lund (2008) still claim, however, that "the
buoyancy term needs to be computed by coupling to external computations".
Our results show that such external iterative computations of the

restoring forces are not necessary if the analysis is run with NLGEOM.
Notably, also internal buoyancy forces due to material compressibility
are considered by ABAQUS when implementing gravity via the load
type *Dload (type = gravity) in an NLGEOM analysis (see Fig. S11; for
details, verification models and examples see the ABAQUS doc-
umentation). The large-displacement approach can also be applied to
calculate restoring forces arising at material boundaries that are in-
itially inclined (e.g. Lang et al., 2014; Naliboff et al., 2012; Nikolinakou
et al., 2014) or become inclined during the model run (e.g. Hampel
et al., 2009; Li and Urai, 2016a). Omitting internal elastic foundations
also allows considering negative density contrasts between layers,
which is required, for example, for modelling of salt diapirs (Li and
Urai, 2016b; Nikolinakou et al., 2014) and their behaviour during the
advance and retreat of ice sheets (Lang et al., 2014).

5. Conclusions

Based on theoretical considerations and finite-element experiments,
we show that the apparent necessity for elastic foundations to correctly
model restoring forces arises from an Eulerian formulation of the
equation of motion and the use of the small-displacement approach in
the finite-element models. If models are run as non-linear geometry
analyses, ABAQUS correctly calculates load-induced restoring forces,
displacements and stresses. The two approaches (elastic foundations or
NLGEOM) yield equivalent results only for incompressible materials.
For compressible materials, internal elastic foundations perturb both
displacements and stresses. This poses a problem for post-processing the
stress output, which relies on the assumption that displacements are not
affected by the elastic foundations. Models with NLGEOM yield correct
displacement and stress fields without the need of post-processing. If
elastic foundations are included in an NLGEOM model, the results de-
pend on the density structure and the boundary condition at the model
bottom. Our findings imply that models requiring isostatic effects
should be run with NLGEOM because this makes the simulation of re-
storing forces by elastic foundations obsolete and avoids undesired ef-
fects on stresses and displacements. The described procedures to im-
plement gravity, isostasy, flexure and rebound are not restricted to GIA
modelling but can also be used in other geodynamic models simulating,
for example, deformation on lithospheric or crustal scale or in sub-
duction zones.
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Appendix A. Templates for ABAQUS input files with NLGEOM

A.1 Template for an NLGEOM model without gravity

*Heading
** Job name: job-name
** PARTS
*Part, name=part-name
*End Part
** ASSEMBLY
*Assembly, name=assembly-name
*Instance, name=instance.name, part= part-name
*Node
*Element, type=element-type
**
** MATERIALS
*Material, name=name-material
*Density
*Elastic
** optional for a viscoelastic material:
*Creep
** 
** INTERACTIONS
*Foundation
** ----------------------------------------------------------------
** 
** STEP: Step-1
**
** for elastic models:
*Step, name=Step-1, nlgeom=YES
*Static
**
** for viscoelastic models:
*Step, name=Step-1, nlgeom=YES, inc=100000
*Visco, cetol=0.001
**
** BOUNDARY CONDITIONS
*Boundary
**
** LOADS
** load applied on model surface
*Dsload
** 
** OUTPUT REQUESTS
*Output, field
*Node Output
*Output, history
*Energy Output
**
*End Step

A.2 Template for an NLGEOM model with gravity

Note: The definition of an initial stress field and the steps 1–3 are optional but recommended to minimize deformation that occurs solely in
response the application of gravity to the model.

A. Hampel et al. Computers and Geosciences 122 (2019) 1–14

11



A. Hampel et al. Computers and Geosciences 122 (2019) 1–14

12



Appendix B. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.cageo.2018.08.002.
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