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A B S T R A C T

Principal tensor analysis (PTA) is considered as a potentially useful tool in geosciences, particularly for re-
constructions of multi-way (time (depth), space, and proxies) datasets. We introduce an extension of PTA: PTA
enhanced with Singular Spectrum Analysis (SSA). Using this enhancement, we were able to isolate clear patterns
in noisy multi-way data. As an illustrative example, the method has been applied to 4-way data tensor (time,
space, proxies, and delay-time) constructed from marine sediment proxies. Possible restrictions and main reasons
for the method's limitations are discussed. The algorithm has been implemented as an R function which is
provided in the supplementary data and appendix.

1. Introduction

Statistical methods for dealing with multidimensional data such as
Principal Component Analysis (PCA) and factor analysis are now
standard tools in geosciences. Attempts to generalise the approach from
classical two-way data matrix analysis to arbitrary number of dimen-
sions have been made since the middle of previous century (Hitchcock
(1928); Cattell (1944); Tucker (1964)). The most common term of this
approach is known now as Principal Tensor Analysis (PTA). Principal
tensor analysis is becoming a standard technique in many scientific
disciplines, such as psychometrics, linguistics, chemometrics, and
others (e.g., Carroll and Chang (1970); Harshman (1970); Smilde et al.
(2004)). A detailed historical review and introduction to the methods
can be found in e.g. Cichocki et al. (2015), Kroonenberg (2008), Kolda
and Bader (2009). At the same time, geological sciences are usually
restricted to classical two-way multi-dimensional methods. We believe
that the main reason of this restriction is that raw geological data are
always space distributed. It is usually a hard and time-consuming task
to construct correct and accurate general (normally time) scales to build
a reliable n-way data hypercube for multi-way data analysis. Some
details and explanations will be provided in the “Data” section of this
article. Additionally, standard statistical packages such as Statistica and
SPSS Statistics do not offer needed functionality, which generally re-
stricts the popularity of the method, not only in geosciences.

In the following method section, we derive the simplest form of
tensor decomposition as a starting point, followed by PTA enhancement
by Singular Spectrum Analysis (Kotov and Pälike (2017)). The data

section describes measured physical properties from a set of deep ocean
sediment cores, which were utilised in a decomposition example. Fi-
nally, we discuss the results from both methods in the results section
and show that the enhanced PTA yields more appropriate results.

2. Method

2.1. 3-Way tensor decomposition

As a starting point, we used a simple form of Tensor Decomposition
known from different sources as Polyadic decomposition, PARAFAC,
CANDECOMP, or CP decomposition (Cichocki et al. (2015); Kolda and
Bader (2009)). The general idea of the method is to represent an ob-
served tensor χ as a sum of R orthogonal rank one tensors (an N-way
tensor is rank one if it can be written as the outer product of N vectors):

=
a b c

r

R

r r r
1 (1)

the symbol ‘ ’ represents the vector outer product.
Fig. 1 shows a schematic tensor decomposition of a three-way array.
We assume that the vectors a, b, c are normalised to length one with

the weights in the vector of singular values :

=
a b c

r

R

r r r r
1 (2)

It is interesting to note that for a two-way data matrix, the task is
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reduced to the classical Principal Component Analysis, where a br r is
the outer product of the scores and loadings of the r-th Principal
Component correspondingly.

Computational nuances are beyond the scope of this article. In our
research, we used the R package PTAk (Principal Tensor Analysis on k-
modes) after Leibovici (2010). The PTAk-modes method is a way to
generalise Singular Value Decomposition from matrices to arrays of
arbitrary dimension. The numerical method is based on the algorithm
of “reciprocal averaging” (Leibovici (2010); Hill (1973)).

It will be demonstrated in section 4 that it can be difficult to in-
terpret raw results of PTA applied to real geological data. The two main
reasons are the complexity of geological systems and noise components
that are difficult to separate from true signal. We introduce here an
algorithm to improve the outcome by merging PTA with Singular
Spectrum Analysis (SSA) elements. General principles of Singular
Spectrum Analysis will be briefly described in the next section.

2.2. SSA enhanced PTA

Singular Spectrum Analysis (SSA) is a modern method of time series
analysis aiming at decomposing one-dimensional signals into ortho-
gonal time components using empirical orthogonal functions (Ghil et al.
(2002); Allen and Smith (1996); Danilov and Zhigljavsky (1997);
Golyandina and Osipov (2007)). “SSA is designed to extract information
from short and noisy time series and thus provide insight into the un-
known or only partially known dynamics of the underlying system that
generated the series”, Ghil et al. (2002).

The main task of SSA is calculating the principal directions in the
reconstructed phase space. Let us highlight the main steps of the clas-
sical SSA while they will be incorporated into our algorithm (Ghil et al.
(2002)):

a. Construction of the so-called trajectory matrix (a sequence of M-
dimensional vectors X t{ ( )}) from one-dimensional sequence of ob-
servations X t( ) using delay-time procedure:

= + … +t X t X t X t MX( ) ( ( ), ( 1), , ( 1)) (3)

the vectors X t( ) are indexed by = …t N1, , , where = +N N M 1, N
– length of the time series X t( ), M – length of delay time window.

b. Estimation of the matrix of eigenvectors Ex and eigenvalues x of
the covariance matrix = NC X X1/ ( )x

T (PCA approach):

=E C E ,X
t

X X X (4)

or singular values decomposition of the trajectory matrix tX( ) (SVD
approach):

=X USV ,T (5)

where U is an ×N M matrix of left singular vectors, S is an ×M M
diagonal matrix with singular values on the diagonal, and VT is also an

×M M matrix of right singular vectors (e.g., Wall et al. (2003)). We use
the second approach because it allows us to merge SSA and PTA very
easily. Following Ghil et al. (2002), we will call the rows of V empirical
orthogonal functions (EOFs).

c. Projecting the time series onto EOF (PCA approach) to get principal
components (PCs) is not needed in the SVD approach. Instead, we
use columns of the matrix U as raw PCs (Ak).

d. Reconstruction of a time series based on a set of selected PCs (Ak)
and EOFs ( k):

K

K

= +
=

R t
M

A t j j( ) 1 ( 1) ( )
t k j L

U

k k
t

t

(6)
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(7)

– normalisation factor for the windowed bounds of the time series, see
notations for equation (3).

Reconstruction is also needed to capture the phase of the time
series, which is uncertain in raw PCs (Ghil et al. (2002)). Having in
mind that tensor decomposition is simply a generalisation of Singular
Value Decomposition from matrix to an array of arbitrary dimension,
we now have merged ideas of PTA and SSA:

1. Construction of 4-way tensor from our 3-way tensor with the same
procedure of time delay as in SSA, but using 3-way tensor instead of
the time series and 1-st dimension (vertical) for delaying,1 see Fig. 1.
In tensor notation, the main task can be reformulated as

=
a b c d

r

R

r r r r r
1 (8)

where dr stands for delay coordinates or EOFs.

2. Second, we apply PTAk method to constructed 4-dimensional data
array to estimate R singular values and raw vectors a, b, c and d
followed by reconstruction of obtained components a’ (tensor
scores) using SSA technique to get reconstructed components RCs,
equation (6) and (7). The algorithm is implemented as an R func-
tion. An example case for the function is given in Appendices A and
B and in the supplemental files.

3. Data

The International Ocean Discovery Program (IODP) is an interna-
tional marine research collaboration that explores Earth's history and
dynamics using data recorded in seafloor sediments and rocks (https://
www.iodp.org). IODP databases contain gigabytes of information,
particularly on climate history of the Earth, written in different physical
and chemical properties (proxies) of ocean sediments, contained (what

Fig. 1. Schematic tensor decomposition of a three-way
array: r is the minimal number of needed tensors to
represent the data tensor (modified from Kolda and
Bader (2009)).

1 Theoretically, it could be possible to extend our tensor to 5 and even more
dimensions, e.g. delaying the space dimension (unordered now), thus in-
corporating some elements of kriging. Unfortunately, we are restricted in
computational resources, see section 4. A trade off between the size of the data
tensor and calculation time can be very important.
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is important for us) in space (sediment core position) and depth dis-
tributed data sets.2 Unfortunately, it is not easy to use data directly
from measurements as it could be in other disciplines, like doc-
umentation of encephalograms or other direct measurement. Being
originally time archives, geological data are non-linearly transformed
into space depending on the local geological history with different se-
dimentation rates, tectonic processes, events etc. To decipher geological
history, or in mathematical terms, to build an inverse mapping function
from space to time, is a principal task in geosciences.

Let us briefly highlight some details which are specific to IODP
cores, IODP-MI (2011), but can be very illustrative to understand
geological scale problems in general, especially in chronostratigraphy.
Most of the measurements, especially made onboard, are collected in
the so-called meters below sea floor scale (mbsf-scale). Already here,
one can recognise a source of uncertainty – seafloor, which is not
possible to define precisely due to a soft layer of unconsolidated sedi-
ments on the top. Every borehole consist of several cores with un-
avoidable disturbances and sediment lost between cores. Later, every
core is cut in sub-sections for sampling and measurement. Effects such
as sediment contraction or expansion due to degassing are very
common for deep sea cores (one more scale). Then, a composite depth
scale is constructed based on available data from several adjacent
boreholes from one site (to avoid possible gaps in data). In particular,
the most difficult task is to put data from different sites onto a common
scale, normally time. This task requires accurate mapping (or time
scale) from space to time taking in account possible hiatuses, changing
sedimentation rates and other artefacts. In the case of IODP paleo-cli-
mate reconstruction problems on the scale of thousands of years, this
mapping normally involves the construction of a rough model based on
some stratigraphical markers followed by more precise tuning of data to
some target (for example, to some astronomically driven climatic so-
lution according to the Milankovitch theory3).

Raw proxy-data for the site 1385 are shown in Fig. 2 as functions of
meters below sea floor (mbsf), where 18 stands for the delta 18 of
oxygen in benthic foraminiferas, MS – magnetic susceptibility, GRA –
density, NGR – natural gamma ray, RSC – reflectance, and SRM – re-
manent magnetisation. An example data tensor was constructed using
measurements of these six proxies from six sites (925, 927, 929, 1143,
1146, 1385) as illustrated in Fig. 3.

Raw data were mapped from the depth below sea floor (mbsf-scale)
to meters composite depth (mcd-scale), de-trended (de-trending is a
standard procedure in time series analysis aimed to refine high fre-
quency components in the observed signal and to avoid low frequency
poorly resolved pseudo components due to linear trends in data),
cleaned from outliers, and normalised. Transformation from depth to
time (age) was made using piecewise linear mapping based on time
scales from Lisiecki and Raymo (2005) and Hodell et al. (2015). To
construct the final data tensor, data were interpolated with an even step
of 2 kilo-years from 8 to 1000 kilo-years before present. The choice of
the data step is dictated by the size, sampling resolution of raw data,
and power of the computer. The time step should not be too large to
avoid loss of high frequencies, but not too small to keep the reasonable
computing time. See the computing time illustration in Fig. 9. The re-
sulting tensor is represented as a 3-way (Age, Site, Proxy) R array with

dimensions × ×497 6 6.
We now use the methods described in Section 2 on the real-world

data to test the effectiveness of the SSA enhanced PTA method.

4. Results

4.1. 3-Way PTAk

Fig. 4 shows results of tensor decomposition (PTA3) on three modes
applied to the original data set. They can be interpreted in a very si-
milar way as in classical Principal Component Analysis, except that
here we have two sets of loadings (sites are in red colour, proxies in
green) and vectors of loadings are normalised to the length one. Fig. 5
shows the distribution of scores in time. We discuss interpretations of
principal tensors later. Let us just note that we have split the original
data tensor on 5 orthogonal sub-tensors explaining about 45% of the
global variability – some of them demonstrate quasi-periodical beha-
viour (PT 1), some contain a non-linear trend (PT 2). The rest (PT 3–5)
looks like noise and is difficult to interpret. One possible solution for
dealing with large amounts of noise could be additional data proces-
sing, such as filtering, de-noising, etc. Nowadays, this technique is
standard in time series processing, which is well described in scientific
literature, and beyond the scope of this paper. We introduce another
method – Enhanced Principal Tensor Analysis based on the idea of
merging of PTA with Singular Spectrum Analysis, see section 2.

4.2. 4-Way PTAk (enhanced tensor decomposition)

Fig. 6 shows results of tensor decomposition applied to 4-way data
tensor, constructed from the original 3-way data tensor by the function
PTA_SSA (). Additionally to sites and proxies (red and green colours),
there are Empirical Orthogonal Functions (EOFs) printed in black. It is
possible to see how different EOFs catch different frequencies, see
Figs. 6 and 7: the higher the number of Principal Tensor (PTs are or-
dered in decreasing singular values, or explained variability of data) the
higher frequency it covers. Such a power frequency distribution is very
typical for many paleo-climatic signals, especially for those driven by
astronomical parameters of the solar system, Pälike (2005). The ex-
ception is PT 2 – the non-linear trend in time. Reconstructed compo-
nents and corresponding periodograms are shown in Fig. 8.

To simplify the interpretations of tensors based on the values of
loadings from Figs. 6 and 7, we use the “digest” representation: struc-
tures of tensors are represented as fractions with leading (with absolute
values >0.3 here) positive loadings in the numerator and negative in the
denominator, see equation (9)–(13). The percentages of explained
variability is shown in round brackets before the fractions. Different

Fig. 2. Raw proxy-data versus depth, site 1385.

2 The reason why we use proxies from paleo-climatic sciences is that these can
serve as an appropriate and illustrative example: 1) it is straightforward to
create a multi-way array (tensor) from different proxies and sites distributed in
depth and time, 2) the data contains multiple periodical components, which is
essential for SSA, and 3) the records contain natural noise that is typical for
many geological situations.

3 Milankovitch theory describes the collective effects of changes in the Earth's
movements on its climate over thousands of years. According to it, the main
driving climate parameters are periodic changes in the eccentricity of the orbit
( 100, 400 kyr periodicity), precession ( 19, 22, 24 kyr) and tilt of the Earth's
rotation axis ( 41 kyr), see e.g. Pälike (2005).
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kinds of loadings (sites and proxies) are grouped in brackets.4

Now, let us have a closer look at results and interpretations. First,
results are much smoother and the noise components were discarded
when incorporating SSA. The percentages of explained variability are
rather low - 13% in total against 45% in case of 3-way PTA, but it is

because, as we believe, of the artificial increase of the total data
variability by multiple data replication in delaying process. Methods of
possible normalisation of the results need additional investigations but
are outside of the scope of this article. Second, tensor loadings and
frequencies are easier to interpret. While the interpretation of tensor
loadings is not the principal task of this article, we give here some
possible geological explanations as an example.

As illustrated by the periodogram, see Fig. 8, and equation (9), PT1
represents climate variations with 100 kyr periodicity (Eccentricity),
that affect mainly temperature plus ice volume expressed by delta of
oxygen (- d18), and lightness of sediments (RSC) in all sites.

Fig. 3. Positions of sites indicated by their IODP numbers.

Fig. 4. Loadings of 3-way PTA: PT 1 vs PT 2, 3, 4, 5; sites are in red, proxies in green. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

4 For example, first fraction tells us that first Principal Tensor is responsible
for more than 7% of variability of our 4-way data tensor, it is manifested
synchronous in all investigated sites (927, …, 1143; all loadings are positive,
minus in the denominator stands for the absence of negative loadings for sites),
positively correlated with the reflectance of sediments, and negatively corre-
lated with delta 18 of oxygen, and natural gamma ray activity.
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Fig. 5. Scores of 3-way PTA vs age (left) and their associated periodograms (right).

Fig. 6. Loadings of 4-way PTA: PT 1 vs PT 2, 3, 4, 5; sites are in red, proxies in green, EOFs in black. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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Fig. 7. Singular values (left) and Empirical Orthogonal Functions (right) for PT 1–5.

Fig. 8. Scores of 4-way PTA vs age (left) and their associated periodograms (right).

Fig. 9. Execution time versus the length of delay window.
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PT RSC
d NGR

1(7.2%) (927 925 1146 929 1385 1143 )( )
( )( 18 )

0.46 0.44 0.42 0.4 0.37 0.33 0.45

0.81 0.31 (9)

PT2 (eq. (10)) possibly represents long non-linear trend of different
terrestrial input with magnetic minerals to sediments (SRM, MS) from
Europe to Eastern Atlantic (sites 1385, 929) with a switch in the middle
of observed interval, which can be related to the middle Pleistocene
transition (MPT) – a long-term average ice volume gradual increase, see
e. g. Clark et al. (2006).

PT SRM MS2(4.5%) (1385 )( )
(929 )( )

0.73 0.89 0.43

0.48 (10)

PT3 (eq. (11)) represents quasi-periodical specifics of sedimentation
(GR, MS, NGR) in China Sea (sites 1143, 1146).

PT
GR MS NGR

3(0.72%) (1143 1146 )( )
( )( )

0.64 0.53

0.65 0.57 0.38 (11)

PT4 (eq. (12)) represents climatic variations with 41 kyr periodicity
(Obliquity) in Atlantic (temperature + ice volume (d18) + terrestrial
supply (GR, RSC, sites 925, 929).

PT GR d RSC SRM
MS NGR

4(0.3%) (929 )( 18 )
(925 )( )

0.63 0.61 0.41 0.37 0.36

0.69 0.31 0.31 (12)

PT5 (eq. (13)) represents mainly China Sea water streams oscilla-
tions with 23 kyr periodicity (Precession), different terrestrial supply
(NGR, MS), sites 1143,1146.

PT NGR
MS

5(0.11%) (1143 1385 )( )
(1146 )( )

0.52 0.47 0.72

0.62 0.59 (13)

Thus, just in one computer run we have extracted and refined
several informative components from the noisy climatic data, in-
cluding those with main Milankovitch frequencies, separated non-
linear trend, located sites and recognised appropriated proxies best
suited for paleo-climatic reconstructions. This was clearly not possible
using the ordinary PT decomposition on 3-way data as we demon-
strated in section 4.1.

As mentioned above, one source of the uncertainty in the method
lays in original data, which includes natural noise, and in data pre-
processing steps – such as de-trending and, especially, re-mapping from
the original scale to a general scale (time in our case) or tuning.
Extended method of PTA can resolve some of these uncertainties. But
there is also another source related to the numerical algorithms used for
the tensor decompositions (Principal Tensor Analysis on k-modes in this
paper). Fig. 9 shows the execution time versus the length of delay
window. The algorithm was tested on a computer with the 3.4 GHz Intel
Core i7, 24 GB DDR3, data array of doubles × ×497 6 6. It is possible to
see that we need a trade off between the size of the data tensor, delay
window and execution time. The dependence is rather quasi-linear, but
the execution time can be unpredictably long due to problems of the
convergence of the algorithm, see Leibovici (2010) for details. Using

another algorithms and packages can produce slightly different results.

5. Conclusions

Principal tensor analysis (PTA) is a modern tool for multi-way data
reconstructions. It can also be useful in geosciences, particularly for
extraction of information from multi-way (time (depth), space, and
proxies) datasets. As opposed to other disciplines, like psychometrics,
medicine and others with direct multiple data measurements in the
same scale, it is not easy to use the similar direct approach with geo-
logical data. To construct an initial data tensor, all the measurements
have to be re-mapped from the original (normally, depth or other dis-
tance) to some general scale (most often, time). We illustrate this using
an example set from the IODP data base constructed using some cli-
matic physical proxies from several deep ocean sediment cores.

Different solutions to run PTA are available, e.g. as R or Python
packages. We illustrated here using an R package PTAk that direct
application of the method on real geological data produces results
which are difficult to be interpreted, mainly due to high levels of noise
present in the data (sub-section 4.1, 3-way PTAk). We introduce an
advanced method of PTA: PTA enhanced with Singular Spectrum
Analysis (SSA). Using this enhancement, we were able to isolate clear
patterns in noisy multi-way data. As an illustrative example, the
method has been applied to 4-way data tensor (time, space, proxies, and
delay-time) constructed from marine sediment proxies (sub-section 4.2,
4-way PTAk). In one computer run, we extracted and refined several
informative components from the noisy climatic data, including those
with main Milankovitch frequencies, separated non-linear trend, lo-
cated sites and recognised appropriated proxies best suited for paleo-
climatic reconstructions.

Theoretically, it could be possible to extend the data tensor to 5 and
even more dimensions, e.g. delaying the space dimension, thus in-
corporating some elements of kriging. Practical problems can be ex-
pected because of the restrictions in computational resources. A trade
off between the size of the data tensor and calculation time can be very
important.

The algorithm has been implemented as an R function and available
for use in the supplementary data and appendix. The applicability of the
method is not limited to geosciences. It can be successfully used to
reconstruct arbitrary multi-way datasets, including those that contain
high level noise and non-linear trends.
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