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A reliable coal seam model is highly significant for mining design and resource assessment. However, due to the
anisotropic nature of geological attributes, accurately modeling the surface using existing interpolation methods
is difficult. Here, we propose a new method for coal seam surface modeling. First, we introduce a multiscale
interpolation method using compactly supported radial basis functions (CSRBFs) and improve the modeling
accuracy by anisotropy calculations using the raw mine data set. Then a fault modeling method is provided to
simulate faults intersecting with coal seams. This method consists of three main parts: (1) anisotropy calculation
to alleviate the effects of global anisotropy; (2) rapid coal seam surface modeling of large amounts of nonuniform
data through an anisotropic multiscale CSRBF method and then visualization and organization of the surface into
a triangulated irregular network (TIN); and (3) local reconstruction of the coal seam surface according to the
faults. A prototype system was developed based on this method to build a coal seam model from the collected
multisource coal seam data. A comparison with three existing interpolation methods shows that this method is
feasible and time efficient and achieves higher accuracy than previous methods. We anticipate that the method

can provide a reference for advances in digital and smart mines as well as 3D geological modeling.

1. Introduction

Coal seam surface modeling is required to fulfill the needs of coal
boundary delimitation, natural resource evaluation, hazard assessment,
and tunnel arrangement for coal mine planning (Caumon et al., 2009; Li
et al., 2013). Studies regarding coal seam modeling cannot accurately
reveal morphological surface variations of the coal seam throughout the
mining process, which is insufficient to meet the increasing demand for
a precise definition of subsurface conditions (Zhu et al., 2013). Multi-
source data from coal mine production activities, such as geological
exploration, geological profiling, underground surveying and geolo-
gical sketching, reveal coal seam surface variations in different areas
and at different scales, and an effective surface modeling method is
necessary to combine these different data (de Rienzo et al., 2008;
Kaufmann and Martin, 2009; Lindsay et al., 2012; Bianchi Fasani et al.,
2013). These findings suggest that nonuniform spatial data have be-
come an important factor that affects the modeling results. A variety of
interpolation methods have been applied to geological modeling to

reconstruct surfaces from sampling points, such as discrete smooth in-
terpolation (Caumon et al., 2009, 8; Collon et al., 2015), kriging
(Hassen et al., 2016; Boisvert and Deutsch, 2011) and Bayesian geos-
tatistical methods (Li et al., 2013).

Recently, implicit functions have been applied to this problem.
These functions automatically extract the 3D surface from the scalar
field in which the samples are distributed. In geological applications,
the signed distance function (SDF) is widely used (Wilde and Deutsch,
2012). Many interpolation methods have been used to evaluate the
SDF, including the kriging, inverse distance weight and radial basis
function (RBF) interpolation methods. Among these methods, RBF is
most commonly used in the geological modeling literature because of
its simple mathematical form and high interpolation accuracy (Franke,
1982; Cowan et al., 2003; Hillier et al.,, 2014; Knight et al., 2007;
Vollgger et al., 2015). However, when the number of points reaches
thousands, computing the global RBF matrix will become very time
consuming. The fast multipole method provided by Carr et al. (2001)
and the local compact support RBF (CSRBF) method proposed by Turk
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and O'Brien (2002) reduce the modeling time. Ohtake et al. (2003)
further developed the CSRBF method using a multiscale method. A
point set hierarchy is established based on an octree structure, and the
CSRBFs are fit recursively. The multiscale CSRBFs can be solved quickly
and used to reconstruct the 3D model from nonuniform data. Therefore,
the multiscale CSRBFs have been applied to point cloud processing and
many surface reconstruction studies.

The multiscale CSRBF method for a surface model is isotropic,
which means that the geological attributes change at the same gradient
in different directions of the 3D scalar field. However, the geographical
attributes, which change based on many factors, will cause an aniso-
tropic spatial field. The spatial interpolation method needs to consider
the anisotropic characteristics of the geographical attributes to establish
a model consistent with the process and spatial variation of the geo-
graphical attributes. Interpolations conditioned by anisotropy are ad-
vantageous when gradient data are sparsely and unevenly distributed,
and such methods can enhance the structural geometry (Martin and
Boisvert, 2017). Hillier et al. (2014) included a global anisotropy cal-
culation using an anisotropic kernel in the interpolation process.
However, this work is only capable of dealing with sparse data, and its
computational efficiency is greatly challenged when the data size to be
interpolated increases.

In this paper, we propose an anisotropic multiscale CSRBF method
for coal seam surfaces modeling and reconstruction the coal seam
surface model from multisource data. A fault modeling method on the
coal seam surface is also given. This method takes advantages of both
the time efficiency and scalability of the multiscale CSRBF method (i.e.,
Ohtake et al., 2003) and the ability to handle spatially uneven data
distributions of the anisotropy-based approach (i.e., Hillier et al.,
2014). The results prove that our method can improve both the mod-
eling accuracy and computational efficiency based on experimental
data collected in the Qianjiaying coal mine located in Tangshan, China.
Finally, the coal seams and faults in the Qianjiaying coal mine are
modeled and visualized.

2. Geological context and data sources

The Qianjiaying coal mine is located approximately 15 km southeast
of Tangshan, China and has an area of 88 square kilometers. There are 8
coal layers (5, 6 1/2, 7, 8,9, 11, 12-1 and 12-2) available in the field.
The structure of the coal mine is mainly composed of folds supple-
mented by faults (Fig. 1).

2.1. Regional geological and geophysical survey data

There are 259 exploration boreholes and 26 main faults in this area,
of which 6 faults are located in the throw range of 50-30 m, 7 faults are
in the range of 30-10 m, and the others are below 10 m. In this paper,
the 10th mining region of 7 coal seams is selected as the study area (3.5
km x 2.7 km), including 26 boreholes and 43 faults (Fig. 2, throw of
fault > 1.0 m).

2.2. Local observations obtained in the mining process

We collected coal seam location data from the excavation stage and
mining stage, including underground survey data, downhole drilling
data and geological sketch data. Survey points (985) and underground
boreholes (57) were collected in the study area, and 1410 sketch points
are from the 2074E mining area, and they are all shown in Fig. 2. For
data confidentiality, all coordinates are offset by the location of the
vertical shaft in the Qianjiaying coal mine.
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3. Methodology
3.1. Method overview

The overall workflow is illustrated in Fig. 3 and consists of four
main steps. The major coal seam surface modeling steps are described
as follows.

1. Data collection and preprocessing. Discrete points are extracted
from multisource data. Then, the normal vectors of the points are
obtained using the Point Cloud Library (PCL) (Rusu and Cousins,
2011).

2. Global anisotropy calculation. The orientation matrix is constructed
from normal vectors found within defined neighborhoods, and two
main directions for the coal seam in the scalar field are given. The
RBFs will no longer be radial through global anisotropic transfor-
mations, and the global anisotropy can be incorporated with the
interpolations.

3. Coal seam surface modeling. The multiscale CSRBF method is ap-
plied to the points and their normal vectors. A coarse-to-fine point
set hierarchy is established, and the CSRBFs of each point set are
calculated gradually. Global anisotropy is added to the implicit
method to eliminate anisotropic effects by matrix transformation
and to obtain better results. A visualization of the implicit surface is
performed by Blumenthal's polygonizer (Bloomenthal, 1988;
Narayan et al., 2015), and the final surface is transformed into TIN
for visual display.

4. Fault simulation in a coal seam model. The centerline of the fault on
the TIN is calculated from the collected fault data. The influence
domain of the single fault is calculated, and then the coal seam is
separated within this domain to complete the fault construction by
local triangulation.

3.2. Multiscale CSRBF method

Given a set of N points p = { p; } scattered along a surface, the RBF
fits a function to a scalar field F (x) that is sampled at p (Fasshauer and
Gregory, 2007). F (x) is defined by a monotonic volumetric function f
(x) = f, and its zero level-set f = O interpolates p. The scalar field is
separated into two parts by the implicit surface f (x) = 0: f (x) > 0 and
f(x) < 0. Then, the CSRBF expression is defined as follows:

f =2 %@ =Y [g®) + ulg(x - plD,

pi€p pi€p

@

where ¢_(r) = ¢(r/0) is a compact support RBF, ¢ is the support size,
g;(x) is defined at each point p; , its zero level-set g;(x) = 0 approx-
imates the shape of p in a small vicinity of p, by a quadric

w = h(u, v) = Au? + 2Bvu + Cv?,

where A, B, and C are determined by a minimization of the least squares

2

(wj,vj,w)=p; €p

¢,(lp; — p;1D(wW; — h(w;, v)))* > min.

Then, we obtain the following:
g(x)=w— h(u,v).
The coefficient 4; is determined from the interpolation conditions:

D gy =— Y, s@)¢y ¢ =4, (Ip; — ).

pi€p bi€p

An octree-based spatial index to hierarchically partition and orga-
nize the point sets is built to increase the computational efficiency of
the RBFs (see an illustration in Fig. 4). The process starts with a single
region surrounding all given points (the root node) and then recursively
sub divides the region into its 8 octree regions (the internal nodes). The
recursion ends when the number of sampling points in the node is not
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Fig. 1. Geological structure map of Qianjiaying coal mine (2-column).

more than eight (leaf nodes). Thus, points with different densities are
included in different levels to construct hierarchical point sets, and the
support radius o can be obtained from the size of a region, i.e., the node
of one level in the octree, which will positively affect the result of the
CSRBF interpolation.

After the construction of the octree, the centroid parameters for
each node, including the position and normal vector, are then calcu-
lated, and the hierarchical point set {o!, p%...,0M = p} is constructed
based on the levels of the octree.

Then, the interpolation model is constructed in a coarse-to-fine
manner. An initial value of function is set as follows:

fox)=-1,

Then, the set of interpolating functions are recursively defined as
follows:

@) =) + ok (x), k= 1,2, ..M,

where f*(x) = 0 interpolates p*, and o* (x) has the same form as Eq. (1).

3.3. Integrating global anisotropy into the multiscale CSRBF method to
handle spatially anisotropic distributed mining data

To construct an anisotropic interpolation model, the anisotropy in
the scalar field must be estimated, which means that the main or-
ientations of the attribute changes must be identified, and then the
interpolator is spatially transformed. Such information is recorded in
the transformation matrix used in the interpolation method, such as
Ordinary Kriging (OK). The acquisition of such information often re-
quires a manual review and identification process by geologists. Hence,
it cannot be performed using an automatic manner method, such as OK.

To overcome this limitation, we further integrate the vector defining
the structural anisotropy (Hillier et al., 2014) for an automatic global
anisotropy calculation. Mathematically, it can be derived from an Eigen
analysis of the orientation matrix,

k k k
Z j njzx Z j Wix My Z j ix Mz
k k k
Tty XMy 2 My s

k k k
Zj Mz jx Zj Rjz My Zj njzz

@
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which is formed by the k normal vectors n; found in the defined
neighborhood. The Eigen analysis yields the eigenvalues, E1, E2 and E3,

El1 < E2 < E3,
and the matrix of eigenvector

Vix Vax V3
Viy Vay Vyy |,
Viz V2z V3

V=

where v;, v,, and v3 are associated with the obtained eigenvalues E1, E2
and E3, respectively.

These eigenvectors locally define the main directions of anisotropy.
Here, we calculate the anisotropy to achieve a higher accuracy in re-
constructing the coal seam surface.

When performing a CSRBF interpolation for data at each hier-
archical level of the spatially organized octree, Wendland's compactly
supported RBF with a C2-continuous function in a 3D scalar field is used
(H. Wendland, 1995):

p(r)=(Q1 - r)4+(4r + 1).

Global anisotropy can be included in the interpolation using the
translation invariant basis function of the form (x, x") = p(x — x'),
which means that the RBFs are not radial anymore. This new basis
function can be constructed by a global orientation matrix (Eq. (2))
containing all planar orientation data, and an anisotropic distance can
be calculated:

[ 2 2 2
r= \/(x - xl)tmns + (y - y,)trans + (Z - Z,)trans
) B
g

3)
where

(y - y,)trans

(x = x'),
rans(z = 2 trans

NCERD
= VSVT[(X -x )(z _ z,)}
4

The scaling matrix S is defined as follows:

1 0 0
S=|0 JVE2/E1 0
0 0 VE3/E1
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Fig. 2. Overview of test area illustrating (a) multisource data, including ®underground surveying data, @drill data, ®fault data, and (b) geological sketch line data in

2074E mining area. (2-column).

Anisotropy is the property of scalars that are directionally depen-
dent in a scalar field, and it is opposite of isotropy. Here, the scalars
refer to the coordinates of sampling points. Therefore, the global ani-
sotropy matrix is not performed on normal vectors.

3.4. Fault simulation

Faults result from the destruction of the original structure by geo-
logical processes and are one of the most important geologic structures
for coal seam modeling (Guo et al, 2016). Therefore, it is necessary to
simulate faults and reconstruct the coal seam surface model in the fault
domain.

The continuous triangle generated by the Delaunay criterion can
express complex surfaces accurately, offering the best surface simula-
tion. Therefore, we can transfer the triangles from the visualization of
the implicit function onto the TIN structure and then propose a TIN-
based fault modeling method. The original fault data are from drills or
geological sketches and include tendency, inclination, and throw.

75

3.4.1. Fault centerline on a coal surface

A fault centerline is derived from an observation point set {O; (x; ¥
z),i=1, ..., n} of fault f, and the point set is extended to obtain
starting point O and ending point O, ;. For each point, we have dip
direction «, dip angle 8, throw parameter h and a three-dimensional
coordinate. To obtain O, 11 (Xn+1, ¥n+1, Zn+1), We have Oy (X, Yo, 2n)
and

] _ [02] + L[cos(oc + ﬂ/z)zin(a +7/2) ,

where L = ch and ¢ = 1.5 is a linear profile (Cowie and Shipton, 1998)
of f that extends O, to O, 41 (Fig. 5b).

Then, all points are projected to TIN to get an ordered points array O
= {0 (x, ¥ 20,1 =0, ...,n + 1 } of fault centerline. The ray-triangle
intersection algorithm (Moller and Trumbore, 2005) is implemented to
get O (Fig. 6).
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Fig. 3. Workflow of anisotropic multiscale CSRBF method for coal seam surface modeling (2-column).

Level 0 Level 1 <l 3

Fig. 4. Spatial partitioning based on octree: each node will be divided into eight equal-sized child nodes in next partition (2-column).
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Fig. 5. Calculation of fault ending position through observations, (a) position of fault observations and TIN, and (b) calculated coordinates of fault ending position
(red) from observation point (black) (2-column). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this

article.)
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Fig. 6. Fault centerline on TIN (1-column).

3.4.2. Local fault triangulation

The intersection line between a fault and coal seam, which is re-
ferred to as the interline, is typically defined by two parts: the up-in-
terline, which is the fault that intersects the hanging wall, and the
down-interline, which is the fault that intersects the footwall.

After confirming the displacement range of the fault by the fault
centerline, the local triangular mesh around the centerline is

s

Py P

1 Py
+ P

(@)

p()

(b)

reconstructed. As illustrated in Fig. 7a, p, is the pinch-out point of fault
f located in a triangle contained by p;, p,, p,. The triangle is re-
constructed into three new triangles in Fig. 7b. Then, the triangles in
the fault displacement range are removed, and the up and down
boundaries are identified (Fig. 7c).

A local fault triangulation algorithm is proposed and executed next.
The reconstruction algorithm is similar to that produced by Tsai by
inserting a constraint segment into a Delaunay triangulation network
(Tsai, 1993), and it can be applied to concave polygons. For the normal
fault, reconstruction is executed in the region surrounded by the up-
boundary and up-interline and similarly for the down-boundary and
down-interline (Fig. 8a). In contrast, for the reverse fault, the re-
construction is executed in the area surrounded by the up-boundary and
down-interline and the down-boundary and up-interline (Fig. 8b). The
pseudo code is listed in Appendix A.

The function “LOPswapping” in line 42 is a locally optimal diagonal
function for a convex quadrilateral consisting of two adjacent triangles
(Lawson, 1977), and “Intersect” is a function to judge whether the line
segments intersect. A detailed code is not given here.

4. Results from a case study: coal seam surface modeling in the
Qianjiaying coal mine

We developed a prototype system based on our modeling method.

Three-dimensional coal seam models were created based on real re-
gional geological data in this system. The testing area contained 2478

P, Py

p;

©)

Fig. 7. Local fault triangulation, (a) fault centerline on calculated coal fault, (b) fault displacement range calculation, and (c) removing triangles that intersected with

displacement boundaries (2-column).
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(b)

Fig. 8. Simulation results of faults: (a) normal fault and (b) reverse fault (2-column).

observations from multisource and multiscale data, and the basic
modeling elements in the system were created, including coal surfaces
and attitudes. Additionally, typical geological structures, such as faults,
were also simulated on the surface models. Our experiments were
performed on a ThinkPad laptop (2.5-GHz Intel(R) core (TM) i5-
4200M, 4 GB of RAM memory, and an Intel HD graphics card).

4.1. Implicit surface modeling

A total of 2478 observation points and 43 faults were involved in
our calculations, and the coal surface model was reconstructed based on
these points.

4.1.1. Normal vectors and anisotropy computations

According to section 3.3, to include global anisotropy, we first need
to obtain the normal vector of each point. The Point Cloud Library
(PCL) was used to calculate the normal vectors of the sample points,
and each normal vector was computed from 20 neighborhoods searched
by the function nearestKSearch() (Hsieh and Cheng-Tiao, 2012). The
results are illustrated in Fig. 9 using black lines.

Using these normal vectors, the global anisotropy translation matrix
was calculated in XY space, and the CSRBFs were calculated with the
translation matrix to reduce the impact of anisotropy. Thus, the co-
ordinates of sample points were transformed as shown in Eq. (4), where

r_ | 1039 —o0228
VSV = [—0.228 2.350 }

The supporting size of the CSRBFs in the first layer was calculated
by o = cL, where L is the length of a diagonal of the bounding paral-
lelogram. In addition, parameter c is 0.75 (Ohtake et al., 2003) and o is
6571.837 m in the first layer and o/2*"! in layer k.

The spatial variability in the elevation distribution of the sample
points was analyzed through the GeoR library, and variograms were
obtained in four directions (0, 45, 90 and 135°) as shown in Fig. 10.
Fig. 10a shows that the elevation distributions showed significant ani-
sotropy in 4 directions. For comparison, Fig. 10b shows the experi-
mental variance functions of the data after global anisotropic trans-
formation in the 4 directions, and the results show that anisotropy is
alleviated.

Additionally, Fig. 11 illustrates the differences between the multi-
scale CSRBF method and the improved anisotropy-based version when
a new position P was interpolated using this point set and the co-
ordinates of the points centered with P were transformed using the
transformation matrix VSVT, which means that the points selected to
interpolate the CSRBFs were more evenly distributed, which led to a
better interpolation result than the multiscale CSRBF method.

4.1.2. Calculation of multiscale CSRBFs
All sample points are divided into 7 hierarchical data sets based on
the octree. Fig. 12 shows all 7 multiscale point sets. The last point set

Fig. 9. Plot of sample points and normal
vectors. Red dots show drilling locations,
green dots show downhole drilling loca-

tions; blue dots indicate underground
e ] survey or geologic sketch locations; and
af i ’ black line segments identify normal vectors
. . . .
 deds : at each location (2-column). (For inter-
ALY il . . .
L4 uARAkAL sos ’ H, > e pretation of the references to colour in this
t ’ il "” . &L/ figure legend, the reader is referred to the
= _— hrrAd \eAnngg ot 108 2570 Web version of this article.)
\ s RABAEE LA
By bue W;T ﬁTT o o g 200 945 s
AU L f f w yeq
i i | ﬁ?}w w\ [
498
__point normal 1501

o drilling data

« underground drilling data

3501

o underground surveying data 570
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Fig. 13. Visualization of 2nd, 5th, 6th, and 7th levels of data sets (2-column).

includes all the point data used to calculate the CSRBF and confirm the
final implicit function. The regional coal seam surface was then created
based on our proposed multiscale CSRBF method with anisotropy.

4.1.3. Visualization of implicit surfaces

The implicit function was visualized for different point sets in
Fig. 13. The global view of the visualized study area is illustrated on the
left (a, c, e, and g), and the local area (2074E mining area) is on the
right and enlarged to show more details (b, d, f, and h). By contrast, we
can conclude that as the data set changes from the regional scale to the
local scale and as the local density of sample data gradually increases,
more details are modeled and illustrated.

4.2. Simulation of faults

The visualized coal seam surface is reorganized to be a TIN surface,
where the faults are simulated locally. Fig. 14 shows the results of two
reverse faults (F11 and F17) that are modeled based on section 3.4.
From the 2D contours in Fig. 14a, the coal seam is locally reconstructed
by the two faults. Fig. 14b and c show the effect of the fault simulation:
coal seam TIN surface is separated by two faults.

Finally, the coal seam surfaces and faults in the Qianjiaying coal
mine were simulated based on the proposed method (Fig. 15).

(b) (single-column)

————Contour line

(c) (single-column)

Fig. 14. Simulations of two reverse faults (a) in a 2D view with contours, (b) in a 3D frame view, and (c) in a 3D surface view.
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4.3. Comparison with other interpolation methods

Two experiments were used to verify the advantages of computa-
tional efficiency and interpolation accuracy. The inverse distance
weighting (IDW) method and the Ordinary Kriging (OK) method were
implemented, and the results were compared with those of the multi-
scale CSRBF method and our anisotropy-based multiscale CSRBF
method.

In experiment 1, point sets containing different numbers of sam-
pling points (10, 50, 250, 1250, 2478 points in each set) are used for
interpolation. The variogram function fitted with the OK method is the
Gaussian model, and the number of points in each interpolation is
limited to 8 or less. The results show the two multiscale CSRBF methods
used less time and presented a gradual increase of interpolation time as
the number of sample points increased, whereas the interpolation time
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Table 1
Error statistics result from four interpolating methods based on a cross-vali-
dation.

Error/m Standard deviation/m
Method A 18.390 25.043
Method B 1.012 3.841
Method C 0.943 1.923
Method D 0.904 1.852

Note: method A: IDW, B: OK, C: multiscale CSRBF, and D: anisotropic-based
multiscale CSRBF.

increased more rapidly with the IDW and OK methods. The interpola-
tion time between the multiscale CSRBF method and our anisotropy-
based multiscale CSRBF method are nearly equivalent (Fig. 16).

In experiment 2, a K—fold cross-validation (K = 10) is subsequently
implemented for all four methods. The sampling points are divided into
10 subsets, of which 9 are used as modeling data and the other set is
used as test data. The error in the absolute value of elevation between
the interpolated attribute and the original position of sampling point is
defined to represent the accuracy of the interpolations, and the stan-
dard deviation of the error indicates the stability of the interpolations.

The data set involved in the experiment contains 2478 points and
their unit normal vectors, and the results (Table 1) indicate that our
improved anisotropic multiscale CSRBF method achieves higher accu-
racy than the other methods. The IDW and OK methods present larger
errors when the data are sparse, and the anisotropy method achieves
the highest accuracy with a maximum of 22.015m (the multiscale
CSRBF, OK and IDW methods achieve values of 81.907 m, 209.595 m
and 262.662 m, respectively, Fig. 17). In contrast with IDW and OK
methods, both two CSRBF methods use the normal vector as a con-
straint in addition to the point coordinates, which leads to an im-
provement in the modeling and representation of geologic surfaces.
Moreover, the improved anisotropy-based multiscale CSRBF method
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Fig. 17. Error distribution of cross-validation corresponding to (a) IDW method, (b) OK method, (c) multiscale CSRBF method and (d) improved anisotropic-based

multiscale CSRBF method from left to right, top to bottom. (2-column).

represents an advancement because it considers the anisotropy of the
coal seam spatial distribution compared with the original multiscale
CSRBF method.

5. Conclusion and discussion

The multiscale CSRBF method performs well during rapid surface
reconstructions with nonuniform data and coarse-to-fine computations.
In this paper, we applied this method to coal seam surface modeling
and updated the original multiscale CSRBF modeling process by con-
sidering anisotropy. The interpolation results of the Qianjiaying coal
mine showed that our approach can provide more accurate interpola-
tion surfaces. Additionally, we presented a practical fault modeling
method for coal seam surfaces.

Compared to previous studies, the unique contributions of this re-
search are as follows.

1. An improved anisotropic multiscale CSRBF method is applied to
interpolate coal seam surface models automatically by constructing
hierarchical point sets from discrete points. Manual interventions
are not needed in the interpolation process. Therefore, this method
advances the automatic modeling of coal seams from multisource
geometric data distributions.

2. The comparison and cross-validation results show that our improved
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anisotropic-based multiscale CSRBF method has better accuracy
than the multiscale CSRBF, IDW and OK methods and is more time
efficient than the IDW and OK methods. These findings demonstrate
the superior performance of the approach.

3. An improved fault 3D modeling method based on local TIN re-
construction is implemented to model topology discontinuities on
the coal seam.

This method interpolates coal seams with location and normal data
related to data points, and it does not involve other constraints, such as
boundaries and off-contact constraints of the geological interface. For
the current data set with thousands of points, interpolation can be
executed quickly, whereas for large data sets with millions or even
larger amounts of points, the construction and calculation of a RBF
coefficient matrix will be very time consuming.
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Appendix A

1// input: /ineA ~ one line in the fault

21/ boundLinePointArray ~ points on the boundary line

3 // output: a Boolean value indicating whether the line intersects the boundary
4 Function Intersects(/7ned, boundLinePointArray)

5 foriin o: boundLinePointArray.size

6 lineB <- line(boundlinePointArray [il, boundLinePointArray[i + 1])
7  if Intersect(/ineA, lineB)

8 return TRUE

9 return FALSE

10

11 // input: boundLinePointArray ~ points on the boundary line

12// 1Begin~ start position on boundLinePointArray

13 // pointd, pointB~ two fault points

14 // output: pointd, BoundLinePointArraylilndex],pointh: index of max angle with points

15 Function FindMaxAngle(boundLinePointArray, iBegin, point4, pointB)
16 ilndex <- iBegin

17 maxAngle <- Angle(pointd, boundLinePointArray[iBeginl, pointB)
18 foriin iBegin+ 1: boundLinePointArray.size

19 angle <- Angle(pointd, boundLinePointArray[i], pointB)

20 if angle > maxAngle

21 maxAngle <- angle

22 ilndex =i

23 return ilndex

24

25 // input: boundLinePointArray ~ points on the boundary line

26// faultLinePointArray ~ points on the fault line

27 // output: triangles between boundLinePointArray and faultLinePointArray
28 Function Reconstruction(boundlinePointArray, faul tLinePointArray)
29 j<-0

30 for iin O:FaultLinePointArray.size

31  pi <- faultLinePointArray [i]

32 pi1 <- faultLinePointArray[i + 1]

33 pj <- boundLinePointArray[j]

34 if not Intersects(line(pj, pil), boundLinePointArray)

35  k<-FindMaxAngle(boundLinePointArray,j, pi, pil)

36 ifk==j

37 tridrray.add(AddTri(i, i + 1, ))

38 else//iftk>j

39 for m in j:k

40 tridrray.add(AddTri(i, m, m + 1))

41 tridrray.add(AddTri(i, i + 1, k))

42 LOPswapping(tridrray[tridrray.size-1], tridrray(tridrray.size-2])
43 j=k

44 return tridrray

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cageo.2018.12.008.
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