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A B S T R A C T

Remotely sensed Land Surface Temperature (LST) is of paramount importance in numerous environmental
applications. Although, coarse spatial resolution sensors provide frequent LST measurements, their applicability
is rather limited for many applications. Downscaling methods are therefore applied to improve the spatial re-
solution of LST products. A number of Machine Learning (ML) methods have already been used in the LST
downscaling studies. Nevertheless, the literature lacks a suitable inter-comparison of different ML methods, as
well as the impact of the feature selection process on downscaling results. This study aims at comparing
downscaled LST from 1 km daily MODIS LST product (MOD11A1) to 240m using Random Forest Regression
(RFR), Support Vector Regression (SVR), Extreme Learning Machine (ELM) and Temperature Sharpening
(TsHARP) approaches with 11 predictor variables at a heterogeneous area in different seasons. In addition, by
implementing a feature selection with the Support Vector Machine-Recursive Feature Elimination (SVM-RFE)
method, the most important variables were selected and used as inputs of the models. The results were evaluated
against the LST derived from Landsat-8 thermal imageries using a split window method, showing that all the ML
methods perform well in LST downscaling (with an average RMSE=2.5 and MAE=1.74) with marginal dif-
ferences, outperforming the TsHARP method (RMSE∼ 3.02, MAE∼ 2.19). Among all the methods, ELM re-
quired the least computational effort, and when it was combined with SVM-RFE, general efficiency of the
downscaling procedure was increased substantially.

1. Introduction

The retrieved Land Surface Temperature (LST) from satellite ima-
geries has been used in a wide variety of fields, including forest mon-
itoring (Guo and Zhou, 2004; Hansen et al., 2008), burn severity as-
sessment (Quintano et al., 2015; Zheng et al., 2016), land cover change
detection (de Beurs et al., 2015; Muster et al., 2015), urban heat island
monitoring (Fu and Weng, 2016; Li et al., 2016; Peres et al., 2018),
drought assessment and monitoring (Hao et al., 2015; Son et al., 2012),
energy balance modeling (Bhattarai et al., 2016; Song et al., 2016) and
agricultural studies (de Wit et al., 2004; Marques da Silva et al., 2015).
These analyses are often carried out at fine to moderate spatial re-
solutions, and thus requiring LST measured at relevant spatial scales.
However, acquiring LST at high temporal and spatial resolutions from
space is challenging and to some extent infeasible, given the orbital

configurations and technical considerations of the current satellites. An
alternative, and widely adopted in thermal remote sensing studies, is to
downscaling LST acquired from coarse spatial resolution imageries
through utilizing ancillary data (Atkinson, 2013; Zhan et al., 2013).

Different statistical (Bechtel et al., 2012; Kustas et al., 2003; Zakšek
and Oštir, 2012), physical (Liu and Pu, 2008; Liu and Zhu, 2012) and
spatio-temporal (Addesso et al., 2015; Moosavi et al., 2015; Weng et al.,
2014; Wu et al., 2015) methods have been developed for LST down-
scaling. Among the various methods, statistical methods have been
highly considered due to their simplicity and accuracy (Zhan et al.,
2013). Statistical methods generally estimate the relationship between
LST and predictor variables at coarse spatial resolution, and this re-
lationship is then applied to high resolution predictor datasets to re-
trieve LST at fine resolution.

Traditional and well-known statistical methods, such as

https://doi.org/10.1016/j.cageo.2019.01.004
Received 18 August 2018; Received in revised form 5 January 2019; Accepted 8 January 2019

∗ Corresponding author.
E-mail addresses: hamdebrahimy@gmail.com (H. Ebrahimy), m_azadbakht@sbu.ac.ir (M. Azadbakht).

1 Hamid Ebrahimy designed the research experiments and provided the analyses.
2 Mohsen Azadbakht supervised the research and contributed to preparation of the manuscript.

Computers and Geosciences 124 (2019) 93–102

Available online 09 January 2019
0098-3004/ © 2019 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00983004
https://www.elsevier.com/locate/cageo
https://doi.org/10.1016/j.cageo.2019.01.004
https://doi.org/10.1016/j.cageo.2019.01.004
mailto:hamdebrahimy@gmail.com
mailto:m_azadbakht@sbu.ac.ir
https://doi.org/10.1016/j.cageo.2019.01.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2019.01.004&domain=pdf


Disaggregation of Radiometric Temperature (DisTrad) (Kustas et al.,
2003) and Temperature Sharpening (TsHARP) (Agam et al., 2007) use
vegetation indices and linear regression relationships. Nevertheless,
despite their simplicity and good results in homogeneous agricultural
areas (Agam et al., 2007, 2008) they may not perform well in down-
scaling LST over heterogeneous and urban areas (Chen et al., 2014;
Jeganathan et al., 2011; Mukherjee et al., 2015; Yang et al., 2017b). To
address this problem, advanced nonlinear methods and different an-
cillary datasets such as topographic information, spectral bands, vege-
tation indices and land cover data have been successfully used in dif-
ferent studies (Bechtel et al., 2012; Bindhu et al., 2013; Ghosh and
Joshi, 2014; Liu and Pu, 2008; Liu and Zhu, 2012; Yang et al., 2017b;
Zhan et al., 2013). Meanwhile, various Machine Learning (ML) methods
such as Regression Trees (RT), Partial Least Square (PLS), Artificial
Neural Network (ANN), Support Vector Regression (SVR) and Random
Forest Regression (RFR) are also used and they perform well compared
to traditional methods such as DisTrad and TsHARP (Gao et al., 2012;
Ghosh and Joshi, 2014; Hutengs and Vohland, 2016; Yang et al., 2010,
2011, 2017a). To the best of the author's knowledge, of the ML
methods, Extreme Learning Machine (ELM) has not yet been used in
LST downscaling, while it has been successfully applied in remote
sensing studies (Ding et al., 2015) and analyzing complex spatial pro-
blems (Leuenberger and Kanevski, 2015).

In the studies conducted so far, less attention has been paid to the
thorough comparison of different ML methods in LST downscaling in
order to recommend the most operative method(s). This study evaluates
the performance of the selected ML methods (RFR, SVR, and ELM) and
TsHARP for downscaling MODIS LST product in a very heterogeneous
area and in different seasons, providing a detailed quantitative and
visual comparison of the downscaling methods. Furthermore, in order
to reduce the computational complexity, a feature selection process
based on Support Vector Machine-Recursive Feature Elimination (SVM-
RFE) method is applied to select the best predictor variables and use
them as model inputs, where finally, an evaluation of downscaling re-
sults with and without feature selection is also addressed. In addition,
the impact of pixel impurity and heterogeneity on LST downscaling is
also investigated.

2. Study area

The study area with an approximate area of 5170 km2 covers a part
of Tehran province in Iran, and it is located between latitudes 35° 37ʹ N
and 35° 59ʹ N, and longitudes 50° 99ʹ E and 51° 88ʹ E (Fig. 1). The
altitude of this area decreases significantly from north to south, ranging
from 3960 to 867m above sea level. The study area is covered with five
main land covers, where approximately 50% of the area is covered by
rangelands, while agricultural areas, residential areas, barelands and
water bodies cover 25.5%, 15.5%, 8.5% and 0.5%, respectively. Land
cover diversification as well as heterogeneity of the study area in terms
of elevation and vegetation status allow comparison of the selected
algorithms and may lead to generalize the results to other study areas.
In order to analyze the downscaling methods in more details, five
spatial subsets are selected in the study area. Subset 1 (S1) includes
residential areas with relatively flat topography, subset 2 (S2) is located
in agricultural lands with almost similar topographical conditions as in
S1. Major part of the subset 3 (S3) is covered by barelands in low al-
titude areas, subset 4 (S4) contains barelands and water bodies, and
subset 5 (S5) is mainly covered by barelands and is located in a
mountainous area.

3. Materials and methods

Fig. 2 shows workflow of the present study for downscaling MODIS
daily LST product, including initial data collection and preprocessing,
Landsat-8 LST retrieval, feature selection, LST downscaling and finally
accuracy assessment. Initial data collection and preprocessing consists

of acquiring MOD11A1 images and other remotely sensed datasets and
performing some pre-processing steps such as resampling and calcula-
tion of vegetation indices. Then, Landsat-8 LST is retrieved using a split
window method. A feature selection method, SVM-RFE, is then con-
ducted to identify the best predictor variables. The next step involved
adopting the ML models (RFR, SVR, and ELM) for downscaling LST at
240m. Finally, performance evaluation of the methods is carried out
using evaluation metrics, visual comparisons and their relationships
with the Normalized Difference Vegetation Index (NDVI).

3.1. Data preparation

In order to achieve more reliable results and a more detailed com-
parison of the selected ML techniques in downscaling LST, three MODIS
images of land surface temperature (MOD11A1) from different seasons
(Spring, Summer and Autumn) were acquired through the Reverb–Next
Generation Earth Science Discovery Tool (http://reverb.echo.nasa.gov/
reverb) on June 20 (Spring), on August 7 (Summer), and on November
24 (Autumn) in 2016. Calibrated Landsat-8 Operational Land Imager
(OLI) and TIRS images of the same times were also downloaded from
the USGS Earth Explorer website (http://earthexplorer.usgs.gov). The
MODIS images were then registered to the WGS 84/UTM Zone 39 N
coordinate system (same as Landsat-8 images) using the MODIS
Reprojection Tool (Dwyer and Schmidt, 2006).

In this study, eleven predictor variables are selected from four main
groups including spectral bands, vegetation indices, topographic para-
meters and land cover for downscaling LST of MOD11A1 from 1 km
pixel size to 240m. These parameters are selected based on the previous
studies (Bonafoni, 2016; Gao et al., 2012; Hutengs and Vohland, 2016;
Mukherjee et al., 2014; Yang et al., 2017a; Zakšek and Oštir, 2012) and
specific conditions of the study area. Selected variables are including
the red band, near infrared band, Simple Ratio Index (RVI), Differenced
Vegetation Index (DVI), Renormalized Difference Vegetation Index
(RDVI), NDVI, Soil Adjusted Vegetation Index (SAVI), Modified Soil
Adjusted Vegetation Index (MSAVI), land cover, altitude and Sky view
factor (Zakšek et al., 2011). A full description of the selected vegetation
indices are available in Bannari et al. (1995). Predictor variables are
extracted from the MODIS surface reflectance product (MOD09GQ)
(Vermote and Wolfe, 2015), a national land cover data and the ASTER
Global Digital Elevation Model2 (GDEM2) (Tachikawa et al., 2011).

In the final step of data preparation, the MOD11A1 LST product is
resampled to 960m cell size using the nearest neighbor method and is
used as a dependent variable in fitting the regression models. The
predictor variables are also converted to 960m pixel size serving as
inputs to model fitting and to 240m pixel size for downscaling LST.
Some accuracy assessment approaches have already been applied
(Rodriguez-Galiano et al., 2012; Zhan et al., 2013), while in this study
we use Landsat-8 LST images. The LST of Landsat-8 TIRS images were
retrieved using a Split Window method proposed by Jiménez-Muñoz
et al. (2014), and they were resampled using the nearest neighbor
method to a pixel size of 240m same as the downscaled LST, for ac-
curacy assessment purposes. Moreover, direct comparison between the
downscaled LST and Landsat-8 LST is not possible due to the structural
differences between these two types of sensors, thus to convert the
Landsat LST to the comparable MODIS LST (Bindhu et al., 2013), inter-
sensor conversion coefficients were derived using linear regression from
aggregated Landsat LST and MODIS LST at 960m and were applied on
240m Landsat LST.

3.2. Feature selection

Support Vector Machine-Recursive Feature Elimination (SVM-RFE)
is categorized among the embedded ranking-based methods that selects
a fixed number of high-ranking features for subsequent analyzes
(Guyon et al., 2002). SVM-RFE has been successfully used in remote
sensing studies (Tuia et al., 2009; Zhang et al., 2017). With this method,
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at first, the current feature subset F contains all the variables. At each
iteration, an SVM model is built based on the current feature subset F,
the weight (||w||2) of each feature in F is calculated based on analysis of
the observed changes in the cost function as a criterion to rank the
variables, and then the feature with the smallest ranking score is
eliminated (Guyon et al., 2002). This process continues until no further
features are remained and a feature ranking list is generated. The full

description of this method is available in Guyon et al. (2002). SVM-RFE
is implemented within the caret (Kuhn, 2008) and e1071 (Meyer et al.,
2017) packages in R environment (R Core Team, 2017). This method is
applied for each of the MODIS LST data and predictor variables on
different dates. Among the high-ranked features in all different acqui-
sition dates, 3 similar high-ranked variables were chosen as the final
variables, namely DEM, NDVI, and the Red band.

Fig. 1. Study Area with five spatial subsets highlighted.

Fig. 2. A schematic workflow of the current study.
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3.3. Machine learning methods

3.3.1. Random Forest Regression
Random Forest Regression (RFR) is a powerful ensemble ML method

that provides reliable estimates using large number of random and de-
correlated decision trees (Belgiu and Drăguţ, 2016; Breiman, 2001) and
it has been widely used in regression and classification problems
(Aghighi et al., 2018; Azadbakht et al., 2018). Decision trees are
growing by generating random subsets with replacement (bootstrap)
from training datasets. As an improved form of Classification and Re-
gression Trees (CART) (Liaw and Wiener, 2002), a large collection of
decision trees (forest) is used instead of using only one decision tree in
order to increase the stability and decrease the sensitivity of the model
as well as to avoid over-fitting problems. In RFR, the bootstrap method
is used to select a random subset of several variables that describe
training samples, and data excluded from this set are called “Out-of-
Bag” (OOB) samples, which are usually used in model performance
evaluation (Breiman, 2001). In general, to generate an optimal RFR
model, it is necessary to tune two parameters, namely ntree (number of
decision trees in the forest) and mtry (number of predictor variables on
each node of the trees), which lead to achieving the highest possible
accuracy of the constructed model. According to the previous studies
(Belgiu and Drăguţ, 2016), the numerical ranges of these two para-
meters were determined and then using a 10-fold cross validation ap-
proach, the best values of ntree and mtry were simultaneously identi-
fied. The RFR model was built using the randomForest package (Liaw
and Wiener, 2002) in R environment.

3.3.2. Support Vector Regression
Support Vector Machine (SVM) is known as a very specific ML al-

gorithm, which has been extensively used in classification and regres-
sion problems in various remote sensing studies (Mountrakis et al.,
2011). In general, SVM in regression problems called “Support Vector
Regression” (SVR) and it uses a kernel function to transfer training data
from a lower-dimensional space to a higher-dimensional feature space,
where a complex regression problem can be solved linearly (Basak
et al., 2007; Mountrakis et al., 2011; Vapnik, 2000). The main purpose
of SVR is to fit an optimized function using a subset of training data,
called “support vectors”, in which all of errors are less than a predefined
value () (Smola and Schölkopf, 2004). SVR tries to avoid over-fitting
problems and also due to the definition of the algorithm as a convex
optimization problem, the convergence occurs at global minima rather
than local minima (Schölkopf et al., 2000). So far, various kernel
functions, including linear, polynomials, Radial Basis Function (RBF),
and Sigmoid have been introduced and developed. In this study, the
RBF kernel is selected, in which it is known as the most widely used
kernel in remote sensing studies and its performance superiority over
other kernels has been reported in previous studies (Mountrakis et al.,
2011). In the RBF kernel, selection of high value for the cost parameter
(C) leads to an over-fitted model, while gamma values affect the shape
of the separator hyper-plane. In this study, the e1071 package (Meyer
et al., 2017) in R software was used for SVR implementation with the
RBF kernel, and optimal values of the hyper-parameters were de-
termined through adopting 10-fold cross validation.

3.3.3. Extreme Learning Machine
Extreme Learning Machine (ELM) is known as an extended version

of the single-hidden layer feed-forward neural networks (SLFNs), which
was introduced by Huang et al. (2006). A typical form of ELM consists
of a single input layer, a hidden layer, and an output layer. The learning
speed of this model is considerably faster than the traditional artificial
neural networks, and it also provides much more generalizability and
transferability (Ding et al., 2015; Huang et al., 2012). There are also
other advantages of ELM, including easy implementation, fast con-
vergence speed and rate, and the ability of modeling highly complex
and non-linear processes such as environmental phenomena and

modeling of real world issues (Ding et al., 2015; Leuenberger and
Kanevski, 2015). In this algorithm, hidden layer weights and biases are
randomly generated without an iteratively tuning procedure, while an
analytical method determines the weights of the output layer (Huang
et al., 2012). A detailed formula and comprehensive description of this
method can be found in Huang et al. (2006). In this algorithm, only one
meta-parameter (number of hidden neurons) should be tuned by the
user to reach the optimum performance of the model, so similar to RFR
and SVR, a 10-fold cross validation was used to estimate the optimal
meta-parameter. It should be noted that ELM was implemented entirely
in R software using the ELMR package (Petrozziello, 2015).

3.4. Downscaling procedure

A ML regression model for downscaling LST is as follows,

=Y f X( ) (2)

where X represents the predictor variables and is the dependent vari-
able (LST), and f symbolizes a non-linear regression function con-
structed through the training procedure by a ML method. In this study,
the relationship between the LST and multiple predictor variables is
established on 960m datasets using the three ML methods. Finally, the
developed regression models are applied to 240m datasets to predict
downscaled LST at 240m cell size. In order to consider the total var-
iation of LST distribution, a residual correction process was adopted to
the LST downscaling procedure based on the previous studies (Chen
et al., 2014; Jeganathan et al., 2011; Kustas et al., 2003). In this pro-
cess, a pixel-wise residual value between the predicted model and ori-
ginal MODIS LST in 960m was calculated, then this 960m residual was
resampled to 240m, and this residual was finally added to the 240m
downscaled LST from different methods. It should be noted that the
TsHARP model was implemented in accordance with the proposed
method by Agam et al. (2007), using a moving window of 7 pixels. The
quantitative accuracy assessment was performed using two well-known
evaluation metrics of regression analysis: Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE).

4. Results and discussion

4.1. Downscaling results

The accuracy of the models is presented in Table 1 for the whole
study area as well as for the five selected spatial subsets, in terms of the
RMSE and MAE. In general, RFR provides better results than ELM, SVR
and TsHARP, while the results show that there is a slight difference in
the performance of the ML models and there is a remarkable perfor-
mance superiority of the ML methods over TsHARP. It is interesting to
note that, there are slight dissimilarities in the RMSE and MAE values of
the ML methods in the downscaled LST of different dates, which in fact
represents the high-performance stability of the methods. The overall
RMSE values varied from 2.45 to 2.62 °C for RFR, 2.49–2.7 °C for SVR,
2.43–2.64 °C for ELM and 2.94–3.13 °C for TsHARP. The MAE values
were around 1.69–1.77 °C for RFR, 1.69–1.82 °C for SVR, 1.67–1.79 °C
for ELM and 2.11–2.32 °C for TsHARP.

With regard to the RMSE and MAE values, all the ML methods
performed far better than TsHARP. As an example, in the spring image
(20/06/2016), for the entire study area, the RMSE and MAE values
were decreased by 23%–25% for the ML methods as compared with
TsHARP. This improvement is in agreement with other studies, at-
tempted to downscaling LST using regression trees and RFR (Gao et al.,
2012; Hutengs and Vohland, 2016).

As shown in Fig. 3, LST in downscaled maps at 240m share similar
patterns and spatial distributions with those of the Landsat-8 LST re-
ference maps and the original MODIS LSTs. More precisely, RFR, SVR
and ELM are fairly similar to the reference LSTs, nevertheless all of the
methods are in some way incapable of retrieving the full spatial
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Table 1
Downscaling accuracy measurement indexes (RMSE and MAE) across all acquisition dates using all features and the selected features over the entire study area and
the selected subsets.

Features ↓ Methods Overall S1 S2 S3 S4 S5

↓ RMSE (MAE) °C RMSE (MAE) °C RMSE (MAE) °C RMSE (MAE) °C RMSE (MAE) °C RMSE (MAE) °C

20/06/2016
All features RFR 2.5 (1.77) 1.23 (0.93) 1.49 (1.21) 1.21 (0.96) 4.97 (3.52) 2.58 (1.94)

SVR 2.55 (1.82) 1.29 (0.99) 1.59 (1.29) 1.48 (1.21) 4.86 (3.46) 2.96 (2.17)
ELM 2.52 (1.79) 1.28 (0.98) 1.53 (1.24) 1.40 (1.15) 4.9 (3.48) 2.91 (2.15)

Selected features RFR 2.5 (1.77) 1.22 (0.92) 1.48 (1.2) 1.2 (0.96) 4.93 (3.48) 2.62 (1.97)
SVR 2.54 (1.81) 1.28 (0.98) 1.56 (1.27) 1.44 (1.18) 4.89 (3.47) 2.96 (2.17)
ELM 2.52 (1.78) 1.27 (0.97) 1.53 (1.24) 1.4 (1.15) 4.91 (3.49) 3.01 (2.19)

TsHARP 3.13 (2.32) 1.75 (1.38) 1.88 (1.49) 1.62 (1.31) 5.24 (3.84) 3.79 (2.95)
07/08/2016
All features RFR 2.61 (1.76) 1.06 (0.57) 2.7 (1.95) 1.42 (1.06) 4.64 (3.54) 2.73 (2.09)

SVR 2.7 (1.81) 1.23 (0.69) 2.83 (2.06) 1.41 (1.02) 4.55 (3.5) 3.06 (2.23)
ELM 2.64 (1.76) 1.24 (0.72) 2.69 (1.93) 1.53 (1.07) 4.64 (3.53) 2.89 (2.18)

Selected features RFR 2.62 (1.77) 1.13 (0.89) 2.7 (1.93) 1.1 (0.79) 4.57 (3.45) 2.57 (1.73)
SVR 2.64 (1.78) 1.22 (0.95) 2.77 (2.01) 1.2 (0.82) 4.48 (3.37) 2.81 (2.23)
ELM 2.64 (1.77) 1.3 (1.04) 2.7 (1.95) 1.09 (0.78) 4.55 (3.44) 2.76 (1.98)

TsHARP 3.00 (2.16) 1.33 (0.82) 2.98 (2.24) 2.61 (1.98) 4.76 (3.71) 3.68 (2.94)
24/09/2016
All features RFR 2.46 (1.7) 0.85 (0.59) 2.13 (1.59) 1.49 (1.19) 4.2 (3.46) 2.84 (2.15)

SVR 2.49 (1.72) 0.93 (0.65) 2.11 (1.53) 1.55 (1.28) 4.06 (3.31) 2.96 (2.25)
ELM 2.43 (1.67) 0.97 (0.6) 2.01 (1.45) 1.63 (1.33) 4.25 (3.47) 2.88 (2.2)

Selected features RFR 2.45 (1.69) 1.11 (0.81) 2.1 (1.56) 1.04 (0.69) 4.07 (3.35) 2.28 (1.62)
SVR 2.46 (1.69) 1.18 (0.86) 2.08 (1.5) 1.14 (0.7) 3.99 (3.21) 2.41 (1.72)
ELM 2.43 (1.67) 1.19 (0.88) 2.01 (1.47) 1.22 (0.73) 4.17 (3.4) 2.33 (1.66)

TsHARP 2.94 (2.11) 1.08 (0.62) 2.36 (1.78) 2.36 (1.94) 4.33 (3.53) 3.86 (3.12)

Fig. 3. Comparison of the downscaled LST from different methods (RFR, SVR, ELM, TsHARP) using selected features with the original LST 960m and Landsat-8 LST
240m for the acquired image on 07/08/2016.
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variations and distribution of the reference LSTs. RFR, ELM and SVR
provided much more detail than TsHARP, as shown in subset 1 (Fig. 3)
that could, in turn, provide a great opportunity for investigating tem-
perature conditions in residential areas. Although all the downscaling
methods have a relatively large blurring effect compared to the re-
ference LST from Landsat-8, this effect was less evident in the results of
the ML techniques as compared to TsHARP. It should also be noted that
some of these blurring effects are inevitable and are directly related to
the residual correction procedure.

The pixel-based scatter plots of the downscaled LSTs based on the
selected features against the reference Landsat LSTs using different
methods are presented in Fig. 4. As shown in this Figure, most of the
pixels for all the methods follow a 1:1 relationship, while there still
exists some pixels with large variations from the 1:1 relationship, either
under-predicting or over-predicting the LST values. A detailed in-
vestigation of the scatter plots demonstrated that most of the variations
from the 1:1 line and outliers were observed in low LST values, oc-
curring in mountainous areas and water bodies. Nevertheless, the point
density in the high LST values is much better than the low LST values
and there is a good agreement with the 1:1 line. This can demonstrate
that the downscaling approaches are more accurate in predicting higher
LST values, especially in the range of 35–40 °C as observed in the ac-
quired image in spring season.

According to the results, performance of the ML models on different
acquisition dates did not differ substantially after performing feature
selection using SVM-RFE, and rather similar results were obtained
when using all the predictor variables. Downscaling by all of the se-
lected features as input parameters demands higher computational
costs. However, by adopting a feature selection approach and excluding

unimportant variables, reduction of the computational time is provided
while maintaining similar accuracy levels.

4.2. Comprehensive accuracy assessment

Detailed investigation of the downscaled models with the selected
features in the spatial subsets demonstrates that despite the existence of
slight differences between the models, it is impossible to introduce a
unique model that provides the highest accuracy across all subsets. For
more clarification, in subsets 1, 2, and 5 on all dates and in subset 3
from the spring and autumn LST data, the lowest RMSE and MAE were
obtained using RFR, while ELM presented the best results for subset 3 in
the summer LST data. In subset 4, SVR predicted the downscaled LST at
240m with the least error rate compared to the other methods on all
dates. The possible explanation for these results might be attributed to
the characteristics of multiple and complex interactions between the
LST and predictive variables, variations in spatial distribution and
patterns of LST, and degree of adaptability and flexibility of the selected
ML models in different conditions.

Among the subsets, the highest increase in accuracy compared to
TsHARP was obtained in subset 5 in autumn using RFR with the se-
lected features. Particularly, the RMSE and MAE values of RFR were
boosted about 32% and 34% as compared with TsHARP, respectively.
On the other hand, the highest degree of similarity in the accuracy of
the ML methods and TsHARP was observed in subset 2. This can be an
indication for good performance of TsHARP in fairly homogenous ve-
getated areas (Agam et al., 2007; Chen et al., 2014; Gao et al., 2012;
Jeganathan et al., 2011). Same as the subsets, the evaluation metrics for
each of the land cover classes showed that despite very small

Fig. 4. Scatter plots of per-pixel comparison between Landsat-8 LST 240m vs. downscaled LST 240m using the selected features.
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differences in error values, some of methods have been more accurate
in some land cover classes.

In the LST images of spring and autumn, the highest level of accu-
racy was recorded for the residential areas, either with all features or
the selected ones, where SVR performed better than the rest. However,
in the acquired image in summer, the best accuracy was observed in the
class barelands by ELM with either all features or the selected ones.
More detailed per-class evaluation shows that in all the three acquired
images, the highest accuracy in agriculture and rangeland classes is
obtained by RFR, while SVR-based downscaled LST with the lowest
error rate in residential areas and water bodies. This is justifiable in the
case of water bodies due to the ability of this method to achieve max-
imum accuracy with the limited training data (Mountrakis et al., 2011).
The highest accuracy for the bareland areas was achieved by ELM.

As seen in Table 2, the lowest accuracies of the ML methods across
different land cover classes were recorded in water bodies, where the
RMSE and MAE values were in the range of 5.91 to 4.03 °C and 4.81 to
3.61 °C, respectively. For the class water bodies, due to the special
characteristics of the calculated vegetation index and topographical
parameters, it is hardly possible to create an appropriate linear or non-
linear regression relationship between the predictor parameters and the
LST values. Inappropriate accuracy in such areas has also been reported
in other studies (Mukherjee et al., 2014; Yang et al., 2017b). The se-
lected ML methods also had poor accuracy in rangeland areas possibly
due to the heterogeneity and complexity of this class which covers a
major fraction (50%) of the entire area, and thus having a large
variability in terms of the vegetation cover and spatial distribution of
LST.

4.3. Comparison of the ML methods

Despite numerous studies on comparing ML methods for classifica-
tion or regression problems in the remote sensing community, there has

not yet been a consensus among various researchers to introduce a
specific method that would provide the most appropriate results in all
circumstances. In fact, it seems that the general disagreement among
the researchers is due to the structural differences between the studies,
type of used datasets, heterogeneity levels of the regions, training and
testing samples, method of model parameters optimization, accuracy
assessment approach and the preprocessing and post-processing steps.
On the other hand, in LST downscaling studies it is not sufficient to
evaluate the accuracy of the method only, because adoptability of a
downscaling procedure depends on the computational complexity in
terms of training time and parameter tuning, on the selected features,
and on the degree of heterogeneity in the study area.

In terms of overall accuracy, the averaged RMSE and MAE values of
the ML methods across all acquisition dates are almost identical, while
RFR (RMSE=∼2.52, MAE=∼1.74) provides a marginally higher
accuracy than ELM (RMSE=∼2.53, MAE=∼1.74) and SVR
(RMSE=∼2.56, MAE=∼1.77). From the standpoint of computa-
tional complexity, ELM represents superior performance as compared to
RFR and SVR, where high learning speed of this model is due to the
random generation of input layer weights and hidden layer biases
(Huang et al., 2006, 2012). Moreover, only one meta-parameter should
be optimized which in fact leads to the fast adeptness in exploring real
world problems with high dimensional datasets, as in downscaling LST.
On the other hand, RFR and SVR have more structural complexity than
ELM, due to the presence of multiple meta-parameters (e.g. mtry and
ntree in RFR; type of kernel, cost function, and gamma in SVR), as well
as demanding longer training time (Belgiu and Drăguţ, 2016;
Mountrakis et al., 2011; Zhang et al., 2017).

Similarity of the results with all the features and the selected fea-
tures indicates the ability of the selected ML models in achieving the
best possible performance with the most important predictor variables.
It seems adopting a feature selection process leads to a significant re-
duction in primarily preparation steps of the downscaling procedure

Table 2
Per class downscaling accuracy measurement metrics (RMSE and MAE) for all features and the selected features.

Features ↓ Methods ↓ Agricultural area Bareland Rangeland Residential area Water bodies

RMSE (MAE) °C RMSE (MAE) °C RMSE (MAE) °C RMSE (MAE) °C RMSE (MAE) °C

20/06/2016
All features RFR 2.03 (1.44) 1.87 (1.41) 2.94 (2.14) 1.76 (1.23) 5.14 (4.56)

SVR 2.11 (1.54) 1.86 (1.42) 3.01 (2.2) 1.65 (1.2) 4.03 (3.61)
ELM 2.08 (1.49) 1.82 (1.39) 2.97 (2.17) 1.67 (1.19) 5.37 (4.75)

Selected features RFR 2.03 (1.44) 1.87 (1.41) 2.93 (2.13) 1.74 (1.22) 5.21 (4.64)
SVR 2.09 (1.52) 1.85 (1.41) 3 (2.19) 1.64 (1.18) 4.04 (3.64)
ELM 2.05 (1.47) 1.82 (1.39) 2.98 (2.17) 1.66 (1.19) 5.29 (4.79)

TsHARP 2.42 (1.82) 2.51 (1.88) 3.7 (2.81) 2.14 (1.62) 5.66 (4.99)
07/08/2016
All features RFR 2.79 (1.91) 1.89 (1.26) 2.82 (1.99) 1.93 (1.12) 5.91 (4.68)

SVR 2.89 (1.99) 1.82 (1.18) 2.98 (2.07) 1.84 (1.11) 4.47 (3.36)
ELM 2.83 (1.94) 1.81 (1.14) 2.88 (2) 1.85 (1.13) 5.74 (4.42)

Selected features RFR 2.79 (1.91) 1.89 (1.26) 2.84 (2) 1.9 (1.1) 5.84 (4.61)
SVR 2.87 (1.96) 1.83 (1.18) 2.88 (2.01) 1.8 (1.07) 4.95 (3.8)
ELM 2.85 (1.95) 1.8 (1.14) 2.88 (2) 1.82 (1.1) 5.53 (4.32)

TsHARP 2.79 (1.92) 2.67 (1.84) 3.01 (2.19) 2.06 (1.54) 5.97 (4.81)
24/09/2016
All features RFR 2.06 (1.42) 2.05 (1.53) 2.81 (2.01) 1.78 (1.05) 5.33 (4.2)

SVR 2.17 (1.49) 1.96 (1.42) 2.9 (2.08) 1.67 (1.01) 4.28 (3.26)
ELM 2.11 (1.45) 1.89 (1.34) 2.84 (2.04) 1.67 (1.02) 5.17 (4.02)

Selected features RFR 2.06 (1.43) 2.06 (1.53) 2.83 (2.03) 1.75 (1.02) 5.63 (4.69)
SVR 2.14 (1.47) 1.97 (1.42) 2.86 (2.05) 1.63 (0.96) 4.46 (3.65)
ELM 2.11 (1.45) 1.89 (1.34) 2.82 (2.02) 1.64 (0.97) 5.58 (4.66)

TsHARP 2.26 (1.59) 2.43 (1.83) 3.18 (2.3) 1.81 (1.09) 5.98 (4.92)
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and the demanding time for parameter tuning and model training,
without imposing a significant influence on the model performance.
This will ultimately improve the overall performance of downscaling
MODIS LST product at near real-time or automatic applications.

Accuracy of the ML methods using the selected subsets was sig-
nificantly decreased when heterogeneity or complexity of the topo-
graphical conditions and land cover types in the subsets increased. This
finding is in agreement with the previous studies (Mukherjee et al.,
2015; Yang et al., 2017a). For example, in subset 1 that is located in a
fairly homogenous residential area with a flat topography, the highest
accuracy of the models was achieved. The lowest accuracies, however,
were recorded in subsets 4 and 5 due to the high degrees of hetero-
geneity in these areas especially in terms of land cover type, topo-
graphical conditions as well as the presence of water bodies.

4.4. Relationship of downscaled LST and NDVI

To further evaluate the results, regression analysis was used to de-
termine the best downscaling methods in reconstructing the well-es-
tablished negative relationship between NDVI and LST. For this pur-
pose, linear regression analysis was conducted to examine the
variations of the relationship between LST and NDVI in both the
downscaled and reference (Landsat-8) LSTs of 240m pixel size.
Moreover, a chow test was calculated to explore whether the regression
coefficients of the downscaled LSTs and those of the reference LSTs
were identical (Chow, 1960). The results of this analysis are presented
in Table 3. It should be noted that only the results of the downscaled
LST using the selected features in subset 3 are presented. The results
show that the coefficients of the regression equations extracted from the
ML models were comparable to those extracted from the reference LST
as compared with the TsHARP method. Closer inspection of the results
shows that the regression coefficients and R2 values were fairly dif-
ferent from those measured using the reference LSTs; however, no
significant difference (p≥ 0.05) was found between the regression re-
lationships, meaning that the regression models of the downscaled LST
and reference LST were equal. In summary, these results confirm the
accuracy of these methods, and superiority of the ML models in LST
downscaling, which effectively retrieves the existing LST and NDVI
relationship at fine spatial resolution.

4.5. Analyzing the heterogeneity effects on LST

To investigate the effects of pixel heterogeneity in terms of land
cover composition on the LST values, per pixel fraction of each land
cover class in the original MODIS LST (960m) was calculated and it was
used together with the LST values as inputs of a linear regression model.
These fraction maps represented land cover types by designating the
abundance of each land over in each pixel of the MODIS LST. A detailed
land cover map was derived from the Landsat-8 image using Random
Forest Classifier, with the overall accuracy being 88% (Kappa= 0.77).
The regression coefficients were computed and are presented in
Table 4. In total, the results indicate a strong negative correlation be-
tween LST and the rangeland and water bodies on one hand, and a
strong positive correlation between LST and bareland areas on the other

hand, while agricultural and residential areas representing a relatively
weak positive correlation with the LST. This form of relationships be-
tween LST and land cover fractions could generate a spectrally het-
erogeneous structure in mixed pixels, with an adverse effect on de-
termining the correct linear or non-linear relationship between LST and
predictive parameters. More importantly, this finding leads to the idea
that by increasing the pixel impurity, there will be a significant re-
duction in downscaling capability of different methods, either using
linear or non-linear models.

5. Conclusion

In this study, downscaling daily MODIS LST product (MOD11A1)
from 1 km to 240m on three different acquisition dates in a hetero-
geneous area was investigated through adopting the three selected ML
(RFR, SVR, ELM) methods by using 11 predictor variables and 3 se-
lected variables based on a feature selection method (SVM-RFE) in
comparison with TsHARP. Moreover, detailed accuracy assessments
across different spatial subsets and for land cover classes in the study
area were also presented. The ML algorithms outperformed TsHARP in
downscaling MOD11A1 LST in terms of quantitative evaluations, visual
analyses and retrieval of the existing relationships with NDVI.
Evaluation of the methods was carried out using the retrieved LST by a
split window method from the Landsat-8 thermal band on the same
date. Although the performance measures (RMSE and MAE) indicated
that all of the downscaling methods with the exception of TsHARP
performed similarly, more detailed analysis revealed that the RFR-
based downscaled LST, followed by ELM, yielded the highest prediction
accuracy. RFR and ELM were identified as the most accurate methods
for downscaling LST on all the acquired dates, where the latter de-
manded the least model learning, parameter tuning, and computational
time as compared to RFR and SVR. Further analysis also showed that
the variation of the accuracy metrics (RMSE and MAE) for all of models
was consistent with the heterogeneity level presented in the study area.
The lowest accuracy was emerged in mountainous areas and water
bodies and the highest accuracy was observed in homogeneous re-
sidential areas.

Moreover, the accuracy assessment analyses showed slight differ-
ences in performance of the ML methods using either all features or the
selected features, indicating the good stability of the methods when a
feature selection is adopted. Overall, we can conclude that RFR and
ELM showed the best overall accuracy and computational efficiency.
Moreover, adopting a feature selection method (SVM-RFE) resulted in
significant reduction of the required preprocessing steps, increasing the
computational simplicity and decreasing training time, which may ul-
timately increase the overall cost-effectiveness of the LST downscaling
procedure. The results of the feature selection procedure also revealed
the most informative features including DEM, NDVI, and the Red band,
where this finding can offer guidance on the selection of variables for
LST downscaling studies.

In the future studies, the suitability of these approaches and ex-
tended version of them should be further investigated for low resolution
LST images from different sensors in different heterogeneous and
homogenous areas. Additional studies with these and other ML methods

Table 3
The regression coefficients of the referenced and downscaled LST with NDVI in subset 3.

Acquired Date → 20/06/2016 07/08/2016 24/09/2016

Methods ↓ Equation R2 Equation R2 Equation R2

Reference LST −12.3 × NDVI+41.8 0.29 −24.5 × NDVI+50.7 0.33 −17.4 × NDVI+44.1 0.34
RFR LST −9.5 × NDVI+41.4 0.19 −8.1 × NDVI+49.3 0.19 −7.5 × NDVI+44.2 0.26
SVR LST −7.1 × NDVI+40.8 0.17 −6.5 × NDVI+49.2 0.15 −8.2 × NDVI+44.3 0.25
ELM LST −8.6 × NDVI+40.6 0.17 −7.8 × NDVI+49.1 0.14 −5.7 × NDVI+44.2 0.21
TsHARP LST −16.3 × NDVI+40.9 0.14 −4.3 × NDVI+49.1 0.11 −4.5 × NDVI+44.1 0.16
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with sensitivity and uncertainty analysis of results are also expected to
investigate model performances and accuracy improvement. Further
research could also be conducted to investigate possible methods for
mitigating the blurring effect on the downscaled LST.
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