
Contents lists available at ScienceDirect

Computers and Geosciences

journal homepage: www.elsevier.com/locate/cageo

Research paper

Detection of spatiotemporally coherent rainfall anomalies using Markov
Random Fields

Adway Mitraa,∗, Ashwin K. Seshadrib,1

a Indian Institute of Technology, Bhubaneswar, India
b Centre for Atmospheric and Oceanic Sciences and Divecha Centre for Climate Change, IISc, Bangalore, India

A B S T R A C T

Precipitation is a large-scale, spatio-temporally heterogeneous phenomenon, with frequent anomalies exhibiting unusually high or low values. We use Markov
Random Fields (MRFs) to detect anomalies in gridded annual rainfall data across India from 1901 to 2005, such that these anomalies are spatio-temporally coherent,
but permitting flexibility in size and spatial and temporal extent. MRFs are undirected graphical models where each node is associated with a {location, year} pair,
with edges connecting nodes representing adjacent locations or years. Some nodes represent observations of precipitation, while the rest represent unobserved
(latent) states that can take one of three values: high/low/normal. The MRF represents a probability distribution over the variables, using potential functions defined
on edges of the graph. In our model, these functions enforce spatial and temporal coherence of the latent variables. Optimal values of latent state variables are
estimated by maximizing their posterior probability using Gibbs sampling, conditioned on the observations. From these latent states we can identify spatio-tem-
porally extended rainfall anomalies, both positive and negative. We study various properties of rainfall anomalies discovered by this method, such as spatio-temporal
size and intensity. Identification of such rainfall anomalies can help in monitoring and studying floods and droughts in India. Properties of anomalies derived from
this approach could be used to test climate models and statistical simulators.

1. Introduction

In many parts of the world, such as India, rainfall plays an important
role in the economy and the well-being of millions of people (Gadgil
and Gadgil, 2006). Consequently, excess or deficient rainfall can have
very significant effects, especially if it occurs continuously over a region
such as a watershed or river basin. Hence, identification of such spatio-
temporally extended events of excess or deficient rainfall is important
in both observed historical data and simulations of future scenarios by
climate models. In this work, we call such events “anomalies”.

In climate science, “anomaly” of a climatic variable (eg. precipita-
tion) at a particular location and time is defined as the amount of de-
viation from its climatological value, averaged over many years.
Generally such deviations are caused by some climatic processes, which
may extend over a considerable area and/or persist for a considerable
time. Identification of the exact spatial and temporal extent of such
processes based on the observations is often not easy, since the mani-
festation is often uneven over space and time. The important feature
here is spatio-temporal coherence. Anomalies can occur at different
spatial and temporal scales, and their occurrence is heterogeneous (the
statistics are location-dependent) and anisotropic (not uniform in all
directions). The more consequential anomalies could be the ones with
significant spatio-temporal extent, and therefore it is important to

identify them. Identification of such anomalies of rainfall are very
useful in monitoring floods (Dhar and Nandargi, 2003; Yan and Hamid,
2015) and droughts (Cook et al., 2010; Kumar et al., 2013; Dracup,
1991; Rouault and Richard, 2005) in India and elsewhere, as it gives us
the information about which regions received excess or deficient rain-
fall in any given year. Any approach to detection of such anomalies
should be general enough to work at any time scale of interest, in-
cluding “extreme rainfall events” ((Goswami et al., 2006; Bernard et al.,
2013; Conrad and Sharma, 2017)) which are special anomalies with
very large deviation from the mean value, but spatio-temporally loca-
lized. With climate change, the frequency of rainfall extremes may in-
crease, along with changes in the spatial pattern of rainfall (Ghosh
et al., 2012). To understand these changes, scientists rely on climate
models like general circulation models (GCMs) which simulate global
climatic variables including rainfall. Such analysis cannot be done
manually because of the large and growing volume of data and simu-
lation results, raising the need for automated procedures such as
(Narisma et al., 2007; Sandra Maria Araújo and Celso Augusto
Guimarães, 2009; Sharma, 2006).

Anomalies are inherently subjective, depending on definition and
detection threshold (Chandola et al., 2009). Anomaly detection in
general, and spatio-temporal anomaly detection in particular are con-
sidered important research areas in Data Science (Shekhar et al., 2015;
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Kisilevich et al., 2009). Anomalies can be both positive and negative
depending on the sign of deviation of rainfall volume from the long-
term mean. However, the magnitude of deviation to be considered as
“anomaly” is a design choice. The simplest approach to anomaly de-
tection is based on a predefined threshold. With rainfall, one might
consider the time-series of annual mean rainfall at each grid location,
estimate its mean and variance, and identify years departing sig-
nificantly from the mean. However, this approach does not account for
its spatio-temporal neighbors. Hence, the anomalies found by this ap-
proach are generally localized and incoherent.

Here we consider anomalies in rainfall using a latent state variable
(Bishop, 2006) at each spatio-temporal location. Each latent variable
has three possible values: 1 (positive), 2 (negative) or 3 (normal). Such
latent (i.e. unobserved) variables are best estimated through probabil-
istic methods (Bishop, 2006; Neal, 1993). A graph is constructed with
all these spatio-temporal variables as nodes, where pairs of nodes cor-
responding to neighboring locations are connected by edges. An
anomaly is a connected component of such a graph, such that at each
node in the component the associated latent variables have equal value.
The approach of using local wet/dry conditions along with their spatio-
temporal extents for monitoring floods and droughts has been at-
tempted earlier also (Du et al., 2013), though using standard pre-
cipitation index instead of discrete variables.

We model these latent variables to be spatiotemporally coherent
through parameters of a Markov Random Field. We identify coherent
regions where anomalies occur, but this does not necessarily mean that
these regions must be large. We estimate these latent variables as the
maximum posterior (MAP) solution of a Markov Random Field (MRF) -
undirected random graphical models generally used to model joint
distributions of several variables (Kindermann and Snell, 1980). MRFs
are defined using “potential functions” for nodes and edges to encode
spatio-temporal coherence of the states. To identify the MAP config-
uration of the latent states we use a Markov-Chain Monte Carlo ap-
proach (Diaconis, 2009; Robert and Casella, 2013) called Gibbs sam-
pling (Stoehr, 2017; Rue, 2001). A discussion on how the proposed
model is related to previous models is provided in the Supplementary
Material.

2. Methodology

2.1. Definitions and notation

We consider S locations and T years, and spatio-temporal observa-
tions Yst of a geophysical variable such as annual-mean rainfall. Then s
indexes location and t indexes time, and Yst signifies rainfall received by
location s at time t. Unlike time, 2-dimensional spatial locations have no
natural ordering. So we order the spatial locations based on their
longitude first, latitude next. Each location in the 2-dimensional spatial
grid system has 8 neighbors. For each location s, we denote by NB s( )
the set of its neighboring locations, according to the grid system. Thus,
for a location having coordinates lat lon( , ), its neighbors will be

+ +lat i lon j{( , )}, where ∈ −i j, { 1,0,1}, except = =i j( 0, 0) which is
the location itself. This particular way of ordering and indexing the
spatial locations has no bearing on the analyses undertaken below, and
any other indexing scheme is also equally compatible with it. This is
because, the indexing does not indicate any sequence of the spatial
locations, it just identifies them. The important thing in our analysis is
the neighborhood structure, which is based on the spatial locations of
the grids and independent of the indexing scheme.

Let us consider a graph G, where each node is associated with a pair
s t( , ). Further, for each spatio-temporal location s t( , ) we have two
nodes, one corresponding to Zst and one for Yst . Zst is a discrete variable
which indicates the state of rainfall at location s, time t. While Y is
known from the dataset, Z is unknown, and must be estimated. We put
edges between pairs of nodes corresponding to Zst and Zs t' for each year
t if s and ′s are neighbouring grid-points, i.e. ′ ∈s NB s( ). We call such

edges as spatial edges. Again, we put edges between pairs of nodes
corresponding to Zst and +Zs t, 1 for each location s, and such edges are
called temporal edges. Finally, for each spatio-temporal pair s t( , ) we
have an edge between Zst and Yst , and we call such edges as data edges.
Thus a spatial edge connects a Z-nodes associated with neighboring
locations and same time, a temporal edge connects Z-nodes associated
with same location but adjacent times, and a data-edge connects Z-node
and Y-node at the same location and time. Thus, we have ST2 nodes, ST
data edges, −S T( 1) temporal edges, and ∑ NB s T| ( )|s spatial edges.

We consider each location s to be in one of three possible states in
any year t-high (1), low (2) or normal (3), which is encoded by Z. This
follows the conventional classification of rainfall-years as excess rain-
fall, deficient rainfall, or normal, at each location. The state is re-
presented by a latent discrete variable Zst taking one of 3 values. In such
a graph, an anomaly is a connected component of the Z-nodes corre-
sponding to spatio-temporal locations, such that all of the nodes in the
component have the same value of Z: either 1 (positive anomaly) or 2
(negative anomaly). The goal of anomaly detection in this work is to
estimate these latent variables, from which the connected components
can be computed and thus spatio-temporally coherent anomalies
identified (Chandola et al., 2009).

2.2. Location-wise analysis (LWA)

A naive solution to anomaly detection is to treat the time-series at
each location individually. For each time-series we compute mean μs
and standard deviation σs. We then set =Z 1st (high) for those years
where ≥Y HIGHst s, =Z 2st (low) for those years where ≤Y LOWst s, and

=Z 3st (normal) for all other years, where HIGHs and LOWs are
thresholds specific to location s. We call this method Location-Wise
Analysis (LWA), since it treats each location independently without
considering the state of its neighbours. Corresponding assignments to
the latent variables by this method are denoted as Z0.

This approach suffers from some major limitations. Firstly, it is not
clear how to choose the thresholds, and results vary strongly with the
choice. The histogram of annual rainfall in most locations resembles the
bell-shaped curve of Gaussian distribution. So, it is reasonable to set

= +HIGH μ σs s s and = −LOW μ σs s s. Through the rest of this paper, we
will use this choice. However, an approach that circumvents the need to
specify such thresholds is a better solution.

The second major limitation of this approach is of course its neglect
of spatial coherence in the latent variable. For example an individual
location may be in a certain mode, while all its neighbours are in a
different mode in the same year. Such isolated anomalies often do not
have any particular significance, and may simply be a local artifact of
the essentially chaotic process of rainfall. Spatially extended anomalies
are usually more significant and consequental. This is the most im-
portant limitation of LWA, and we need a fundamentally different ap-
proach to circumvent it.

Finally, the LWA approach also neglects temporal coherence in each
of the location-specific time-series. An anomaly may extend over a
period, but this may be missed by treating each time-point separately.
We need state persistence to achieve temporal coherence of the time-
series of latent states. This can be achieved by the method proposed
below.

2.3. Modelling by Markov Random Fields

Detecting extended anomalies requires a different lens from LWA,
one inducing spatial or temporal coherence during assignment of the Zst
-variables. To induce such coherence, we take the approach that assigns
probabilities to different configurations of latent Z-variables, with
higher weights to configurations where Z-assignments are spatially or
temporally coherent. This is achieved by modelling the latent variable
as an MRF, along the lines of the drought discovery technique in (Fu
et al., 2012). We seek to discover spatial and temporal clusters within
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which Z-values are the same.
Markov Random Field is an undirected graphical model, where a

probability distribution is defined on an undirected graph. Each node in
the graph corresponds to a random variable, and each edge has an as-
sociated potential function that depends on the random variables cor-
responding to the two nodes connected by that edge. The full likelihood
of the model is defined as the product of all the edge potential func-
tions.

We have 2 nodes for every spatio-temporal pair s t( , ) - corre-
sponding to Zst and Yst . Spatial edges, temporal edges and data edges are
defined between pairs of variables as mentioned above. In addition to
grid-wise latent states, these can also be defined for the all-India mean,
relative to its corresponding distribution across years. The Indian
Meteorological Department (IMD) currently makes annual forecasts of
spatial aggregate rainfall over India during the summer monsoon
months of July–September (JJAS), called Indian Summer Monsoon
Rainfall (ISMR). We define an analogous quantity for the entire year,
All-India Mean Rainfall (AIMR), and denote by Yt . Its anomalies are
relative to its interannual mean μ and standard deviation σ. Once again,
we define discrete latent variable Zt corresponding to AIMR, which can
take 3 values.

A Markov Random Field is an undirected graph, with nodes for each
s t( , ) pair. Corresponding to each s t( , ) pair is associated a latent vari-
able Zst and an observation Yst . Each observation node Yst has a single
edge, to the corresponding latent variable node Zst . The graph also
contains nodes corresponding to each year, associated with latent Zt
and observed Yt , corresponding to AIMR. For any year t, Zt is linked by
edges to all nodes for that year Z{ }st for every location s. Large
anomalies in ISMR are declared by IMD as excess or deficient rainfall
years. However, rainfall is highly heterogeneous spatially. Therefore in
order to define anomalies in the aggregate measure of AIMR, we con-
sider not only calculations of Yt but also the frequencies of local
anomalies in the corresponding year. This is achieved by linking the Zst
and Zt nodes. Fig. 1 illustrates the model.

Probabilities are assigned to each configuration of Z using node
potential functions ψ Z( )v

st on each node, edge potentials ′ ′ψ Z Z( , )e
st s t on

each edge occurring between spatio-temporal nodes and ψ Z Z( , )f
st t on

each edge occurring between spatio-temporal nodes and AIMR nodes.
Edge potentials influence spatial and temporal coherence and node
potentials influence the threshold for anomaly detection. Edge poten-
tials describe prior probabilities that the nodes connected by the edge
are in the same state. The node potential functions can be interpreted as
describing the prior probability distribution across different states.

The precipitation amount at any location and year, given by Yst , is
modelled using a Gaussian distribution with parameters μ σ( , )sk s specific

to the location s and latent state =Z kst . These conditional distributions
can be interpreted as edge potentials on the −Z Yst st data edges con-
necting the latent and observed states respectively.

2.4. Spatial and temporal coherence through MRF

The spatio-temporal rainfall volume Yst is modelled as a multi-modal
Gaussian distribution, and =Z pst specifies the mode (1:high,2:-
low,3:normal). The parameters μ σ( , )sp s of this distribution depend on
the latent state p as well as location s, and are estimated from data.
Similarly for spatial mean rainfall Yt we use a Gaussian distribution with
state-specific parameters μ σ( , )p . Initial estimates of these parameters
can be made from the dataset using LWA to assign states.

We define edge potential functions so that if two vertices con-
nected by an edge have same values of Z then the corresponding edge
potential is larger than if the values were different. Since the likelihood
function involves products of these edge potentials, this encourages
spatial and temporal neighbours to have same state, leading to spatial
and temporal coherence. For each edge between location state node Zst
and the corresponding AIMR state node Zt for the same year, the edge
potential influences the extent to which the local state is sought to be
made coherent with the aggregate state. We define potential functions
for different edges as follows:

= ′ = =

′ ∈
= =

= −

= =

=

′ ′

+ +

( )ψ Z Z exp C s s Z Z exp D

s NB s
ψ Z Z P Z Z
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otherwise
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st t st t

, 1 , 1

(1)

To emphasize spatial coherence, D is a small constant compared to
′C s s( , ). The latter describes edge potentials if spatial neighbours are in

the same state. Two neighbouring grid-locations need not be highly
correlated, for e.g. on either side of a narrow mountain range (such as
the Western Ghats). Therefore unlike the MRF estimated by (Fu et al.,
2012), where all edges between neighbouring pairs have the same
potential function, here the potentials on edges are estimated from data
and are location-dependent.

The value of edge potential P, for edges connecting nodes with
neighbouring years, lies between zero and one. It induces temporal
coherence, and hence is called the temporal coherence parameter.
Higher values induce a higher emphasis on temporal coherence.

The third set of edge potentials describes behaviour of edges be-
tween the location nodes in any given year and the AIMR-node for that
year. It is defined using the exponential, so that the contribution

Fig. 1. Proposed Markov Random Field for
Anomaly Detection. Each column represents
one year and each row represents one lo-
cation. The horizontal edges are “temporal
edges”, vertical ones are “spatial edges”,
angular ones are “data edges”. For simpli-
city, only one or two spatial edges have
been shown per location. The latent vari-
ables are shown in blue, observed ones in
Green. (For interpretation of the references
to colour in this figure legend, the reader is
referred to the Web version of this article.)
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depends on the total number of locations whose states coincide with the
state assigned to the spatial mean node. S is the total number of loca-
tions. The edge potential is higher when the location nodes are in the
same state as the spatial mean node.

A discussion of certain aspects of this model such as spatio-temporal
separability is provided in the Supplementary Materials.

2.5. Anomaly detection by Markov Random Fields

According to the model proposed above, the joint distribution of the
random variables Z and Y is:

∏ ∏ ∏ ∏

∏

∝ ′ ′( ) ( )

( )

L Z ψ Z ψ Z Z ψ Z Z Y μ σ

Y μ σ

( ) ( ) , ( , ) ; ,
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s t

v
st

e

e
st s t

f

f
st t

s t
st sZ s

t
t Z

, ,
st

t

N

N
(2)

Having defined the likelihood function, we carry out inference on
the latent variables Z and estimate parameters μ( sp, σs, ′C s s( , )) for lo-
cations s, corresponding neighbours ′s and conditioned on latent state p.
Unlike the maximum likelihood estimation of (Fu et al., 2012) that is
based on integer programming, here we carry out inference by Gibbs
Sampling, which is computationally simpler (Rue, 2001; Brown and
McMahan, 2017; Haran et al., 2003). Each latent variable Zst is in-
itialized based on location-wise analysis described earlier, and corre-
sponding parameters are estimated. Gibbs Sampling is an iterative
process, in which we visit each latent variable (say Zst) one by one,
compute its conditional distribution (conditioned on the current as-
signments of the other variables) = − −p Z k Z Z Y( | , , )st s t t st, and sample a
new value for Zst . The procedure is repeated for several iterations, after
each iteration the parameter estimates are updated according to the
contemporary assignments of the latent variables, and samples are
collected at regular intervals. The stationary distribution of this Markov
chain Monte Carlo procedure is the posterior distribution on the latent
variables. The maximum a-posteriori (MAP) estimate of Z-variables can
then be made from the samples.

The Gibbs Sampling equation for any latent variable Zst or Zt is
given by:

= ∝ =
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where ′s refers to neighbours of s, ′t to the previous and next years, i.e.
−t( 1) and +t( 1), the state ∈k {1,2,3}, and − −Z s t, means all the Z-

variables except Zst . Markov independence refers to the property of
Markov Random Fields that any node is conditionally independent of
all other nodes, given its neighbors. While applying this equation, we
do not consider variables corresponding to spatio-temporal locations
that are not neighbours of Zst , since the Markov property of MRF holds
that each node is conditionally independent of all non-neighbouring
nodes conditioned on the neighbouring nodes. The Gibbs Sampling
proceeds by drawing samples for each Zst and each Zt from Equation
(3), and the optimal value for each latent variable is estimated from the
distribution across these samples.

After estimating the latent-variable-set Z, we identify anomalies by
discovering spatially and/or temporally coherent sets of spatio-tem-
poral locations. Spatiotemporal anomalies are estimated as connected
components of the MRF, such that each node of the connected

component has the same value of Z. These values of Z can be either 1 or
2, corresponding to positive and negative anomalies respectively. Due
to coherence, the clusters thus identified can be at a single location but
extending over several continuous years, or spatially contiguous loca-
tions in a single year, or both. Clearly, the spatio-temporal extents of
the anomalies discovered this way are not fixed by prior specification.

3. Experimental results

We now come to our experimental study based on the model pro-
posed in the previous section. First of all, we carry out experiments on
simulated datasets where we have planted anomalies of different sizes,
and we show that our method performs well. This experiment estab-
lishes that the results produced by the proposed model are related to
the nature of the dataset, and not merely an artifiact of the parameters.
For space constraints, these results are placed in the Supplementary
Materials.

Next, we come to experiments on the real data. We use a dataset of
−∘ ∘1 1 gridded rainfall data measured all over India, for the period

1901–2005. This grid system has 357 locations over India ( =S 357).
The data is available at daily scale, but for the analysis in this paper we
compute annual aggregate values. First we do a test of the method
based on the all-India state variables. We find that these variables in-
deed agree with IMD's classification of years as excess/deficient/
normal, and also carry additional information about grid-scale condi-
tions. We also study the effects of varying the edge potential function
parameters on the latent state assignments. The details of these ex-
periments are given in the Supplementary Materials.

Next, we analyze properties of the detected anomalies. Two im-
portant questions are how widespread and persistent positive and ne-
gative rainfall anomalies are, and how much different the rainfall vo-
lumes are from the long-term climatology during each anomaly. We
address these questions in this section.

3.1. Anomaly statistics

The spatio-temporal size of each anomaly is the size of the corre-
sponding connected component in the graph, i.e. the number of nodes
present in it. We measure the STS: mean spatio-temporal size of all
anomalies, including all years; and similarly the STSP: mean spatio-
temporal size of all positive anomalies; and STSN: mean spatio-tem-
poral size of all negative anomalies. We define the spatial size of an
anomaly as the number of distinct spatial locations included in the
nodes covered by it. The temporal size of an anomaly is similarly defined
as the number of distinct years included in it. We thereby estimate
mean spatial size of all anomalies (SS), only positive (SSP) and only
negative (SSN) anomalies. Similarly we measure (TS, TSP, TSN) for
corresponding mean temporal sizes.

Each state of Z at each location is associated with a distribution over
rainfall values. Fig. 2 shows the mean rainfall values for each of the
locations and each state of Z. Mathematically, these are =mean Y( )t Z st: 1st
for positive anomalies, and =mean Y( )t Z st: 2st for negative anomalies. Two
different settings of the MRF are considered: using spatio-temporal
coherence with temporal coherence parameters =P 0.7 and =P 0.9,
and the “prop” setting of spatial coherence where edge potentials are
proportional to the number of years in which locations have the same
state (See Supplementary Material). The plots in Fig. 2 show that these
mean rainfall fractions for the different states (shown by green, blue
and red plots) are clearly well-separated in most locations.

To quantify the severity of each anomaly quantitatively, we first
compute the ratio of the rainfall received at each spatio-temporal lo-
cation covered by the anomaly, and the long-term mean rainfall over
each of these locations. We define the intensity parameter of the anomaly
as the mean of these ratios. Mathematically, let A be the set of spatio-
temporal locations affected by a particular positive or negative anomaly
a. For each ∈s t A( , ) , we compute =F s t( , )a

Y
μ
st

s
. Then the intensity of

A. Mitra, A.K. Seshadri Computers and Geosciences 122 (2019) 45–53

48



anomaly a is given by = ∈I mean F s t( , )a s t A a( , ) .

3.2. Effect of MRF settings

We consider location-wise analysis (LWA), and using MRFs under
different settings. These settings include only spatial coherence (SC),
only temporal coherence with parameter P ( −TC P) and both spatial
and temporal coherence ( −STC P). Results are shown in Table 1. The
different groups of columns show the number of anomalies, spatio-
temporal size, spatial size, temporal size and intensity respectively,
each one separately for positive and negative anomalies.

The results indicate complex relationships involving spatial and
temporal scales of anomalies. As expected, with LWA, the number of
anomalies is much larger and their mean sizes much smaller, in com-
parison to versions of the MRF where various constraints of coherence
are present. In the absence of spatial coherence, as the temporal co-
herence parameter is increased, the spatial size of anomalies becomes
smaller. Larger temporal coherence parameter selects for more long-
lived anomalies and hence these tend to become smaller in spatial ex-
tent. The spatio-temporal size decreases as the temporal coherence
parameter is increased. The aforementioned effect is also present when
spatial coherence is included in the MRF. The selection for longer but
spatially less extended anomalies when the temporal coherence para-
meter is increased creates a trade-off between spatial and temporal
extents. Such a trade-off is intrinsic to spatio-temporal anomaly de-
tection: with a larger emphasis on a certain type of coherence (spatial
or temporal) the corresponding size of anomalies increases while the
other size decreases.

In Table 1, we also study the mean intensity of the anomalies under
different settings of MRF. Clearly, as either type of coherence is in-
creased, the mean intensity parameter of positive anomalies increases,

and that of negative anomalies decreases, and given the aforemen-
tioned definition of this parameter the selected anomalies are more
“intense”. This is a welcome result, indicating that use of spatio-tem-
poral coherence helps us to identify severe anomalies, rejecting mild
ones.

3.3. Variations among anomalies

The above discussion pertained to parameter-based tradeoffs in
mean spatial and temporal sizes of anomalies. However, even for fixed
parameter settings of the MRF, there is substantial variation in size and
intensity of the detected anomalies. Such variation of spatial and tem-
poral sizes is shown in Fig. 3 for two realizations of the MRF. It is seen
that generally larger anomalies tend to be shorter-lived, but there are
individual exceptions. There is a large range of temporal sizes for a
known spatial size, for both positive and negative anomalies. In Fig. 3
we also plot the variation of intensity with spatio-temporal size of the
anomalies in two realizations of MRF. Here the correlation is even
weaker.

We compute the correlations between these statistics of individual
anomalies. Once again, this is done separately for each setting of the
MRF considered in Table 1, and separately for positive and negative
anomalies. The results are shown in Table 2. It shows that in almost all
the settings the correlation between spatio-temporal size and spatial
size is very strong, though it reduces as the temporal coherence para-
meter P is increased (i.e. the mean temporal size of the anomalies in-
crease). The correlation between spatio-temporal and temporal sizes is
less strong, though it increases slightly with P. The spatial and temporal
sizes are less well correlated. There is no noticeable correlation between
spatio-temporal size and intensity.

Fig. 2. The mean rainfall at each of the locations in the two anomaly states, and overall, for MRF settings using P=0:7 (left) and P=0:9 (right), along with spatial
coherence.

Table 1
Mean spatial, temporal, spatio-temporal sizes and mean intensities of positive and negative anomalies in different settings of edge potentials of MRF. A trade-off
between the spatial and temporal sizes of anomalies is inherent to anomaly detection; and illustrated here by varying the temporal coherence parameter. Spatial
coherence effect in the MRF leads to larger spatial size of detected anomalies, which correspondingly have shorter mean temporal size. Larger temporal coherence
parameter leads to longer mean temporal size and correspondingly smaller mean spatial size. Also, the anomalies become more intense (high intensity for positive
and low intensity for negative) as the spatio-temporal coherence are increased.

Method #Anomalies S-T SIZES Spatial sizes Temporal sizes Intensity

NP NN STSP STSN SSP SSN TSP TSN IP IN

LWA 1085 1163 5.3 5.0 5.0 4.4 1.1 1.2 1.34 0.69

MRF-SC 519 472 11.5 12.5 10.8 11.0 1.1 1.2 1.37 0.70

MRF-TC-0.5 1083 1155 6.9 6.6 6.3 5.8 1.2 1.2 1.24 0.80
MRF-TC-0.75 1000 1105 6.7 6.1 5.7 5.1 1.3 1.2 1.26 0.78
MRF-TC-0.90 795 825 6.5 5.9 4.8 5.0 1.6 1.5 1.30 0.76
MRF-TC-0.99 472 365 6.7 6.8 3.4 2.8 2.3 2.6 1.34 0.73

MRF-STC-0.5 550 459 10.8 12.6 10.0 11.1 1.2 1.2 1.32 0.75
MRF-STC-0.75 401 317 11.5 13.5 10.0 11.0 1.3 1.3 1.37 0.71
MRF-STC-0.90 303 137 9.5 15.3 7.5 9.3 1.4 1.8 1.44 0.68
MRF-STC-0.99 208 75 7.0 15.8 3.9 6.4 1.9 2.7 1.47 0.67
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4. Case studies of some anomalies

In this section we investigate some of the anomalies individually,
which were discovered using MRF with spatio-temporal coherence,
with temporal coherence parameter =P 0.9.

We first consider a positive anomaly that occurred in the states of
Odisha and Jharkhand along the eastern coast (Fig. 4A), in the year
1994. This anomaly covered 20 grid-locations, but persisted for only 1
year (spatial size 20, temporal size 1). The long-term mean annual
rainfall over the concerned 20 grid-locations is 4.18mm per day per
location, but that year the mean rainfall over these locations was
5.84mm per day per location (anomaly intensity of 1.4). Overall, the
year 1994 was classified as a positive anomaly year in terms of AIMR,
with mean rainfall of 4.23mm per day per location, compared to the
long-term mean of 3.94mm per day per location (intensity of 1.1). The
map of locations having local positive and negative anomalies in 1994
are shown in Fig. 4B, which indicates that the Odisha anomaly was
quite significant. The LWA-based local anomalies are shown in Fig. 4C.
Another major anomaly occurred roughly in the same area (Fig. 6D) in
2001, covering 11 locations. The mean rainfall that year over this
anomaly was 5.5 mm per location per day, compared to the long-term
mean of 4.1 mm per location per day (intensity of 1.3). The year 2001
was classified as normal at all-India scale, and the map in Fig. 5E shows
the locations under positive and negative anomalies according to MRF.

A significant negative anomaly occurred around a stretch of Central
India (Fig. 5A) in 2000, which was classified as an all-India negative
anomaly year. The anomaly map by MRF of the year is shown in
Fig. 5B. The anomaly covered 22 locations which receive 3.88mm per
day per location rainfall on average, but in that year they received only
2.17mm (anomaly intensity of 0.56). Again, around 10 locations in
Odisha near the eastern coast (Fig. 5D) had a negative anomaly in 2002,
which was a major drought year in terms of AIMR. These locations,
which receive 4.18mm on average, received only 2.4 mm in 2002
(intensity of 0.57). The MRF-based anomaly map for 2002 is shown in
Fig. 5E, while Fig. 6F shows the local anomalies by LWA.

Some anomalies are temporally extended, i.e. they cover several
years. A good example is a positive anomaly that covered 5 years from
1987 to 1991, over the Meghalaya and Southern Assam region, cov-
ering 24 locations (Fig. 6A). The mean annual rainfall over these lo-
cations is 6.35mm per location per day, but in these 5 years, the mean
rainfall volumes were 6.99, 8.53, 6.92, 7.14 and 7.45mm per location,
per day. Among these years, only 1988 and 1990 were classified as
positive anomaly at all-India scale, while the other three years were
classified as normal. The MRF-based anomaly map of 1987 is shown in
Fig. 6B. Again, 11 locations in the south-western state of Kerala
(Fig. 6D), one of the wettest parts of India, suffered a negative anomaly
stretching over 1985-87, all of which were classified as normal years.
The mean rainfall over these locations is 6.15mm per location per day,

Fig. 3. Above: Temporal versus spatial sizes of individual
positive and negative anomalies, in dexed parameter
settings. Spatial coherence (prop) is used with two
choices of the temporal coherence parameter (left:
P= 0:50, right: P= 0:90). Larger anomalies tend to be
shorter-lived, but there are individual exceptions and
large variability exists in the sizes of individual anoma-
lies. Below: Spatio-temporal size versus intensities of the
same set of anomalies.

Table 2
Pearson Correlation Coefficients between different pairs of statistics for individual positive and negative anomalies, computed by different methods.

Method Temp size vs Spat. size Spat-temp size vs Spat size Spat-temp size vs Temp size Intensity vs Spat-temp size

POS NEG POS NEG POS NEG POS NEG

LWA 0.42 0.40 0.99 0.94 0.49 0.61 0.15 −0.1

MRF-SC 0.43 0.33 0.99 0.93 0.51 0.61 0.01 0.1

MRF-TC-0.50 0.45 0.44 0.99 0.96 0.50 0.60 0.23 −0.2
MRF-TC-0.75 0.43 0.44 0.98 0.96 0.52 0.59 0.19 −0.2
MRF-TC-0.90 0.38 0.37 0.95 0.82 0.57 0.69 0.18 −0.1
MRF-TC-0.99 0.33 0.29 0.80 0.70 0.59 0.65 0.06 −0.1

MRF-STC-0.5 0.40 0.26 0.99 0.94 0.48 0.53 0.14 −0.2
MRF-STC-0.75 0.38 0.31 0.97 0.87 0.52 0.68 0.06 −0.1
MRF-STC-0.90 0.34 0.18 0.94 0.79 0.57 0.67 0 0
MRF-STC-0.99 0.32 0.22 0.87 0.65 0.60 0.76 −0.1 0
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but during these three years, this mean was 4.83, 4.59 and 4.9 re-
spectively. The MRF-based anomaly map of 1985 is shown in Fig. 6E.

5. Conclusions

This paper describes a method for coherent anomaly detection using
Markov Random Fields (MRFs), where each node is associated with a
location and year. Coherence is emphasized because it is an inherent
property of rainfall, and we introduce this constraint in order to identify
connected components where anomalies are extended over some spatio-
temporal size. However, this does not mean that the method can only be

used to detect large anomalies, as it is flexible enough to detect
anomalies having a wide range of spatial and temporal scales. For ap-
plications where a larger scale is of interest, for example involving
droughts over a river basin or food-producing region, the method can
be adapted to emphasize not only coherence but also spatial extent.
While anomalies are subjective by their nature, as they are identified by
a procedure that is chosen by the analyst, the general feature of co-
herence is not unique to anomalies detected through our approach, and
is also elicited in anomaly detection methods such as wavelets. The
approach presented here has the additional feature of not privileging
any particular shape or size. In this sense, MRFs offer an approach to

Fig. 4. ABOVE: 4A: a set of locations that formed a positive anomaly in 1994, shown in pink. 4B: MRF-based Anomaly map for 1994 (yellow: positive, red: negative).
4C: LWA-based local rainfall anomaly map for 1994. BELOW: 4D: a set of locations that formed a positive anomaly in 2001, shown in pink. 4E: MRF-based Anomaly
map for 2001 (yellow: positive, red: negative). 4F: LWA-based local rainfall anomaly map for 2001. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

Fig. 5. ABOVE: 5A: a set of locations that formed a negative anomaly in 2000, shown in pink. 5B: MRF-based Anomaly map for 2000 (yellow: positive, red: negative).
5C: LWA-based local rainfall anomaly map for 2000. BELOW: 5D: a set of locations that formed a negative anomaly in 2002, shown in pink. 5E: MRF-based Anomaly
map for 2002 (yellow: positive, red: negative). 5F: LWA-based local rainfall anomaly map for 2002. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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handling the heterogeneity and anisotropy in the occurrence of
anomalies, where more traditional methods such as wavelets may be
limited by particular assumptions about shape or size. We have tested
the method on synthetically generated anomalies and shown that the
MRF-based approach performs well on a variety of measures as com-
pared to location-wise thresholding based methods, for a variety of
different anomaly statistics.

The anomaly states are represented as latent random variables, so
probabilistic methods are required for their estimation. The resulting
MRF is able to identify more coherent anomalies compared to tradi-
tional analysis using location-specific thresholds. The method can dis-
cover intense positive and negative anomalies of various sizes, without
requiring any thresholds for detecting individual points as belonging to
anomalies.

Furthermore, as noted earlier, anomaly detection involves a trade-
off between intensity and spatio-temporal extents. The intensities and
spatial and temporal extents of the discovered anomalies would depend
primarily on the statistics of the data. But the free parameters in the
MRF model leaves some flexibility for emphasizing some aspects over
others, according to the goals of the application in question. The si-
mulation studies of the Supplementary Material clearly show that sizes
of the discovered anomalies in the three datasets depend mainly on the
nature of the data, in particular the anomalies themselves, but ad-
ditionally changing of the temporal coherence parameter (P) also
causes subtle differences in results. As pointed out in Section 3.2 of the
paper, one can manifest the inherent trade-off between the spatial and
temporal extents of the discovered anomalies using this parameter, as
demanded by the application. If we are analyzing the rainfall dis-
tribution at a single time-point (say, one year) then temporal extent of
the anomaly events is not important, and we should focus on the spatial
extents. Then we may set the parameter P to low value. On the other
hand, if we want to detect regime changes in the time-series, then it
makes sense to set a higher value of P. Likewise, the choice of node
potentials is also a way by which the users can prioritize one kind of
anomalies over another kind, according to their requirements. Formally
node potentials describe prior probabilities of the nodes having various
states.

Overall, this study provides some understanding of heterogeneities

in rainfall over Indian region. The results also raise the question of
whether the anomalies discovered by this method are relevant for un-
derstanding hydrological floods and droughts, which are based on
considering multiple variables, including soil moisture. A natural ex-
tension of this work would be to infer anomaly states based on the
inclusion of additional climatic and hydrological variables. This method
can be used for anomaly detection on other datasets as well. For ex-
ample, the technique is being applied to a daily maximum temperature
dataset to identify heat-waves that cover large areas for several days. In
this case, we prioritize positive anomalies over negative ones through
node potentials.
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