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A B S T R A C T

Three-dimensional visualization, factor analysis, and fractal/multifractal modeling are combined to study the
geochemical data of borehole primary halo in the Kekeshala mining area in Northwestern China to screen ex-
ploration targets. First, based on the borehole spatial database comprising collar, survey, geology, and sample
tables, 3D borehole primary halo samples are extracted. Their 3D block model is then constructed by spatial
interpolation. Second, sample factor analysis of the borehole primary halo mainly includes four factors: F1
consists of Ag–Cu–Sn combination, F2 consists of Pb–Zn combination, F3 consists of As–Sb combination, and F4
consists of Mo–W combination. Moreover, 3D geochemical zoning is conducted for the samples. Third, based on
the 3D block model of the primary halo, the F1 factor score is further modeled by Concentration–Volume (C–V)
fractal model. Furthermore, based on the fractal fitting line's four segments obtained from the inflection points,
geochemical barren host rocks, weakly deep prospect, moderately deep prospect, and highly deep prospect are
extracted. Results indicate the following: (a) the F1 factor embodies the main metallogenic process or stage,
which can be used as a comprehensive indicator of the spatial aggregation of major metallogenic elements in the
study area; (b) the C–V fractal model can effectively determine the F1 factor deep prospect threshold of the
skarn-Cu deposit in Kekeshala; and (c) the moderately and highly deep prospects of the F1 factor can well reflect
the favorable geological conditions of metallogenesis and be used as the basis for delineating the prospecting
target. Therefore, the fractal deep prospect of the geochemical F1 factor of the borehole primary halo has a good
application effect in deep prospecting and prediction, which can be effectively used to explore the depth and
edge of known deposits.

1. Introduction

The geological anomaly theory is a basic theory that guides ore
prospecting (Zhao and Chi, 1991), indicating that primary geochemical
halo anomalies are the most economical and effective methods for de-
lineating mineralized zones from barren host rocks in 3D geochemical
exploration. The investigation of metallogenic elements and para-
genetic sequence provides useful data for ore-forming processes in de-
posits, because the characteristics of various types of ore deposits are
reflected by their element assemblages. Factor analysis, an effective
method to study the symbiotic combination of elements, can realize the
division of different geochemical backgrounds (Shi et al., 2004; Zhao
et al., 2012; Liu et al., 2015), can reflect the regional metallogenic
geological background, and can reveal the spatial variation character-
istics of the metallogenic element and its elemental combination. The

analysis factor, reflecting the main metallogenic information (element
combination), is more meaningful than the traditional single element or
other multielement combination in abnormity assessment.

Mineralization involves huge energy release or supernormal en-
richment and the accumulation of matter within a relatively short time
interval or space range, especially in endogenetic hydrothermal me-
tallogenic system. The ore source and the ore-forming fluid are often
restricted by the heterogeneity of material distribution and the earth's
tectonic activity and evolution. The enrichment and depletion of ore
minerals and ore-forming elements are complex nonlinear processes
(Cheng, 2008). In recent years, the fractal theory based on the fractal
geometry proposed by Mandelbrot (1983), which is an effective non-
linear research tool, has made a series of research achievements in
geochemistry (e.g. Turcotte, 1986; Agterberg et al., 1993; Cheng et al.,
1994; Sim et al., 1999; Goncalves et al., 2001; Li et al., 2003; Carranza
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et al., 2009; Carranza and Sadeghi, 2012; Zuo et al., 2009a, 2009b,
2009c, 2009d; Afzal et al., 2010; Wang et al., 2011; Cheng, 2011; Zuo,
2011a, 2011b; Cheng, 2012; Zhang and Zhou, 2012; Zuo et al., 2015).
Several fractal models have been developed and applied to geochemical
exploration by separating various geochemical populations (including
mineralized zones and phases), such as concentration–area (C–A) by
Cheng et al. (1994), concentration–distance (C–D) by Li et al. (2003),
concentration–volume (C–V) by Afzal et al. (2011), and number–size
(N–S) by Mandelbrot (1983) and Agterberg (1995). Fractal analysis
assists in describing the relationships among geological, geochemical,
and metallogenic settings with the spatial information from the analysis
of primary-halo geochemical data. Various geochemical processes can
be explained due to the differences in fractal dimensions obtained from
the analysis of relevant geochemical data. In this paper, C–V fractal
model was utilized for delineating the prospecting target in the skarn
copper deposit in Kekeshala, Northwestern (NW) China. The multi-
fractal characteristics of the main metallogenic factors in factor analysis
and the application effect of prospecting are discussed.

2. Methodology

Results derived from the 3D borehole, factor analysis, and fractal/
multifractal modeling are combined in delineation of potential targets
in the skarn copper deposit in Kekeshala, NW China. The 3D borehole
database of the Kekeshala deposit was constructed using 167 boreholes
and 4878 samples from the borehole dataset. The factor analysis in-
volved information from the synthesis of 11 trace elements in the pri-
mary halo of the borehole and the extraction of main ore-forming or
ore-indicating factors. The fractal models used include (a) the estima-
tion of ore-forming or ore-indicating factors in the analysis of primary
halo factor from the borehole dataset to model the continuity of mi-
neralization and (b) the application of the C–V fractal model to define a
threshold value for the ore element to constrain the mineralization fluid
center or a path in a 3D block model (Afzal et al., 2011; Sadeghi et al.,
2012; Ebadi Rajoli et al., 2015; Afzal et al., 2015). This study aims to
identify potential copper targets through the methods mentioned.

2.1. 3D borehole database

Deep geochemical exploration and geological data are generally
obtained through engineering drilling (e.g., in addition, pit exploration,
trough exploration, etc.). Information on spatial location and basic li-
thology and the sample analysis data are obtained by drilling holes.
Considering the redundancy and reference integrity of the data, we use
the relational database model to divide the borehole information into 4
basic correlation tables: collar, survey, geology, and sample tables
(Table 1). Each table is related by the “Hole_ID”.

By using digital mine software such as Surpac, the data from the
above tables are imported to establish the borehole geological in-
formation database and display the geological engineering data in 3D
space, including the borehole trajectory line, lithology and character
description, grade value, sampling trajectory. Subsequently, the geo-
logical phenomena are analyzed in 3D space. The 3D discrete sample
data are extracted using the data extraction function module of the
borehole database. Information on the central position (including
sample length) and the analysis data corresponding to the trace

elements of the sample are stored in the form of 3D points. During
spatial interpolation, it is generally necessary to analyze the variation of
sample length and element value for a more objective sample location
information and to generate sample data with uniform sample length.

2.2. Factor analysis

Factor analysis can be used to determine the symbiotic association
of elements with diagenesis and metallogenesis, and the use of factor
score map can reveal the relationship between assemblage anomalies
and geological bodies (e.g., strata, intrusive rocks, orebodies) in space
(Davis, 1973; Zhang, 1989; Agnew, 2004). The steps in factor analysis
include determining factor load, carrying out factor rotation, and cal-
culating the factor score, where the initial factor load matrix is not
unique, and the meaning of the factor is often ambiguous. Hence, the
initial load matrix needs to be rotated to obtain a more practical public
factor. In this paper, based on the borehole primary halo, the factor
analysis is done by using the SPSS software. Moreover, the main factors
whose eigenvalue is greater than 1 are obtained, and the elemental
combination and factor score are determined.

2.3. Fractal modeling

Since the 1980s, fractal and multifractal models have been effec-
tively used to describe the distributions of geological objects, especially
mineralization features (Agterberg, 2012; Bansal et al., 2011; Carlson,
1991; Carranza et al., 2009; Cheng, 1995, 2004; Cheng et al., 1994;
Mandelbrot, 1983; Raines, 2008; Turcotte, 1997; Zuo et al., 2009a,
2009b, 2009c, 2009d; Zuo, 2011a, 2011b, 2012; Zuo et al., 2013;
Sadeghi et al., 2012; Ebadi Rajoli et al., 2015; Afzal et al., 2015).
Fractal analysis can be used to indicate and justify the differences
among the mineralization, alteration, lithology, and zonation of ore
deposits especially in hydrothermal occurrences (Cheng, 2007;
Carranza, 2008; Carranza et al., 2009; Afzal et al., 2011, 2012; Wang
et al., 2011a, 2011b, 2012). Afzal et al. (2011) proposed the C–V fractal
model for delineating supergene enrichment and hypogene zones from
oxidation zones and the barren host rocks in porphyry-Cu deposits. The
C–V fractal model can be expressed as follows:

≤ ∝ ≥ ∝−V ρ υ ρ V ρ υ ρ( ) ; ( )a a
1

–
2 (1)

where V(ρ≤ υ) and V(ρ≥ υ) denote two volumes with concentration
values (ρ) less than or equal to and greater than or equal to, respec-
tively; υ represents the threshold value of a mineralized zone (or vo-
lume), and a1 and a2 are characteristic exponents.

The log–log plots of the corresponding volumes V(ρ≤ υ) and V
(ρ≥ ν) follow a power-law relationship, where the linear relationship
of V varies at different ρ intervals, as indicated by several straight lines.
This linear relationship can be fitted using the least square method.
These different linear segments reflect different fractals between V
(ρ≥ υ) and ρ and may also represent the difference in metallization or
stages of major metallogenic processes (Afzal et al., 2016; Hashemi
Marand et al., 2018).

In this paper, the C–V fractal model was utilized for delineating and
classifying synthetic deep prospects exposed by main metallogenic
factor on primary halo in borehole to delineate various enriched zones
and rocks in the skarn copper deposit. The terms “highly deep pro-
spect”, “moderately deep prospect”, “weakly deep prospect”, and
“barren host rocks” are used to classify the mineralized zones in the
deposit based on C–V fractal modeling in 3D space. The main dis-
tribution block models of the metallogenic factor for the study area
were generated using the ordinary inverse distance weighted (IDW)
interpolation method using the Surpac software. The volume or per-
centage of blocks with different scores is obtained statistically. The C–V
fractal method can be implemented using the Excel software. First, a
text file for the statistical data of the 3D interpolation block model is
imported and read. Then, the scores of the main metallogenic factor are

Table 1
Field information in the borehole database.

Table name Field

Collar Hole_ID, Y, X, Z, Max_depth, Hole_path
Survey Hole_ID, Depth, Azimuth, Dip
Geology Hole_ID, Samp_ID, Depth_from, Depth_to, Rock_type
Sample Hole_ID, Samp_ID, Depth_from, Depth_to, Cu, Au, etc.
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sorted form high to low. Afterwards, the number of voxels for each
factor score interval are counted, their accumulated value in the deposit
district is computed. Finally, the logarithm of all data for metallogenic
factor scores and the accumulated frequency values are calculated be-
fore drawing the C–V log–log plot.

3. Geological setting and datasets

The Kekeshala copper district (ca. 28 km2) is situated in the
Boluokenu metallogenic belt in NW China. It can be divided into three
ore sections: Kekeshala, Aimusidaiyi, and Xiangtou shan. The 3D study
area is situated within the coordinates 4,883,360–4,888,284 N and
636,106–641,630 E. The elevations, including the subsurface portions
of the model, range from 2500m to −3850m relative to the sea level
(Figs. 1 and 2).

The copper district is located in the Boluokenu island arc, which
went through the Proterozoic ancient craton formation, the
Sinian–Cambrian stable sedimentation, the Ordovician–Silurian ancient
craton disintegration, the Silurian–Carboniferous extensional

aggregation alternate stage, Carboniferous–Permian intracontinental
extensional rift, and the late Permian intracontinental orogeny and
Foreland basin formation. Sedimentary caprocks represented by the
Paleozoic are formed, accompanied by large-scale granite intrusive
activities and multiple changes in regional fault structures, which
create good material sources and thermodynamic conditions for mi-
neralization in this area. The outcrop formation is relatively simple,
including only the upper Ordovician Hudukedaban formation (O3h) and
Quaternary (Q). The Hudukedaban formation involves a set of shallow
marine carbonate rocks, which generally shows the NW–SE extension
anticline. Its Southwest Wing yields 210°–230°∠ 56°–78°, while its
Northeast wing produces 50°–110°∠ 56°–60°. According to its litholo-
gical characteristics, the formation can be divided the upper and lower
sections. The lower section (ls1) consists of a gray-black thin layer of
bright grain limestone (local calcareous siltstone intercalation), which
is mainly distributed in the south, middle (occurring as a limestone
trap), and northeast corner of the mining area. The upper segment (ls2)
consists of a grayish-white thick-layered, massive microcrystalline
limestone, which is mainly distributed in the southwest and southeast

Fig. 1. Geological map of the Kekeshala copper deposit and the exploration profile of the L10 ore body.
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corners of the mining area. Quaternary (Q) is mainly composed of al-
luvial, slope, and moraine, which are distributed in the hillsides and
gullies of the mining area. The outcropping structure of the mining area
is simple. In the northern rock mass, a positive fault fracture zone (F1)
occurs, with a broken bandwidth of 200–400m. Its overall trend is NEE,
and the fault occurred at 5°–20°∠62°–65°, which has no influence on the
ore body in the mining area. The magmatic rocks in the copper district
mainly include intrusive rocks, particularly biotite monzogranites,
which are distributed in most areas under study. The magma intrusions
are generally basic-like (i.e., the southeastern margin of the Huster rock
mass) with a large scale, and the long axis is nearing the northwest
direction, which is in line with the regional tectonic line. The
LA–ICP–MS zircon U–Pb age of the diagenetic rocks is (368.0 ± 3.6)
Ma (Gu et al., 2013), which indicates that the Huster intrusive body
formed in the tectonic setting of the North Tianshan Ocean subduction
southward from the Devonian to the early late Carboniferous. The in-
trusive rock mass was intruded into the Hudukedaban formation with a
zigzag contact surface. The contact metamorphism of skarn, silicifica-
tion, marble, and others occurred within the contact zone. The rock
mass was in passive emplacement, and the contact surface was ex-
troverted.

The Kekeshala copper deposit, a typical skarn deposit that occurs in
the inner skarn of the late Devonian acid intrusive body and the
Ordovician Hudukedaban formation limestone, which is formed
through the hydrothermal metasomatism of ore-bearing hydrothermal
fluids. The orebody is veined, lenticular, and cystic, and its dip angle is
50°–80°, which is strictly controlled by skarn belts and is in abrupt
contact with the surrounding rocks. The main ore bodies include L2,
L2+1, and L10. The ore body mainly consists of copper, with a few of
iron, lead, zinc, and other metallic elements. The main ore type in the
ore deposit is sulfide ore (chalcopyrite), while the main metal minerals
include chalcopyrite and a few porphyry copper ore and molybdenite.
The wall rocks near the ore body mainly consist of monzonite, grano-
diorite, garnet skarn, and marble. According to the mineral symbiotic
assemblage and the intercalation relationship between different mi-
nerals, the metallogenic stages of the deposit are divided into skarn,
quartz–sulfide, and supergene phases. The copper sulfide ore (chalco-
pyrite) is formed in the early sulfide stage of the quartz–sulfide period.
The ore-forming controlling factor is the contact zone structure. The
skarn contact zone is the most direct prospecting indicator.

Basic datasets from the copper deposit in Kekeshala include the
1:2000 scale geological map, 1:2000 scale topographic maps, and 4878
assay samples from 167 boreholes (Fig. 3), which were provided by the
Seventh Geological Group of Xinjiang Geology and Mining Bureau,
2016. The dimensions of the borehole spacing vary from 40m×20m

to 130m×80m according to the standard for copper deposit ex-
ploration in China. Among the 167 boreholes, 153 intersected miner-
alized rocks, while the other 14 boreholes intersected non-mineralized
rocks only. Among the 167 boreholes, 87 were sunk into the orebody
L2+1 for the evaluation of the skarn copper deposit in Kekeshala, 9
boreholes were sunk into orebody L10, 400m to the east, and the other
boreholes are scattered and distributed in several other mineralized
areas to explore for the undiscovered skarn copper deposit(s).

4. Results and discussion

4.1. Dataset of borehole primary halo and closure effect analysis

The borehole samples were crushed, reduced in volume, and pul-
verized to 200 mesh. Geochemical analyses of samples were performed
using different methods at the Seventh Geological Group Analytical
Laboratories of Xinjiang Geology and Mining Bureau in China. Au was
dissolved in aqua regia and fluoride and then enriched using activated
carbon, while Ag was dissolved in aqua regia. Both concentrations were
determined through flame atomic absorption spectrometry. Ba was
melted using NaCO3, while Cu, Mo, Pb, W, Sn, and Zn were dissolved by
the mixture of hydrochloric acid, nitric acid, hydrofluoric acid, and
perchloric acid. The results were determined by ICP–OES and full-
spectrum direct-reading plasma-emission spectrometry. As, Sb, and Bi
were dissolved in aqua regia, and their concentration was determined
through atomic fluorescence spectrometry. A total of 4878 samples
were collected from different depths of the borehole in the district. The
statistical characteristics of each element are shown in Table 2.

The geochemical data generally consist of the typical composition
data, and their “closure effect” have been widely known (Aitchison,
1984). In the closure effect, the total amount of all components (ele-
ment contents) is constant (e.g., equal to 1 or 100%), the components
are mutually restricted, and a certain pseudocorrelation exists between
the components. For example, the main components, SiO2 and Al2O3,
are often negatively correlated with the petrochemical analysis data.
Geochemists believe that the data should be “turned on” before math-
ematical processing. At present, the most popular method is log ratio
transformation, such as additive (alr), centered (clr), and isometric-
logarithmic ratio transformation (ilr) (Egozcue et al., 2003).

However, these transformations are not very suitable for the sta-
tistical analysis of R-type geochemical data involving only trace ele-
ments. For example, the data transformed by the clr are collinear and
are not suitable for robust covariance estimation (Filzmoser et al.,
2009). Moreover, the assumption of factor analysis is not satisfied,
because the KMO and Bartlett sphericity test are not passed. For the ilr

Quaternary 

Ls2 limestone 

Ls1 limestone 

Adamellite 

Moyite

Fig. 2. 3D geological model of the Kekeshala district.
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and alr defects, the transformed vector is one component less than the
original one, while ilr assumes that the sum of components is 1. How-
ever, it is not guaranteed by trace elements, because the trace element
contents in geological samples are very small with a difference of al-
most four orders of magnitude from the major elements. Hence, it is
weakly affected by the overall closure effect. In addition, the relation-
ship between ilr variable and the original data is related by the non-
linear function, and the linear correspondence between ilr and original
variable is lost, making it difficult to make a direct geological inter-
pretation (Egozcue et al., 2003).

In substance, the correlation between trace elements is related to
the capacity (total content) of all elements within the sample. This in-
formation is lost upon closing. Subsequently, the compositional data no
longer completely retains the information about the correlation of the
elements in the original sample. That is, all the results obtained from
the R-type statistical analysis method based on the related structure of
compositional data represent only the characteristics of the compo-
nents, excluding the characteristics of the elements of the sample
(Zhou, 1997; Kork, 1977). Hence, the closure effect is not considered.

4.2. Identification of synthetical anomalies via factor analysis of
multielement

4.2.1. Factor analysis of trace element
Factor analysis is among the commonly used methods for multi-

variate statistical analysis, which is often used to solve complex geo-
logical genesis and mineralization superposition problems; it also pro-
vides good decomposition to the superimposed geochemical field (Dong

et al., 2008). By concentrating a large amount of geological data, a new
dominant independent variable (factor) is extracted to reveal the in-
terrelationship between variables, samples and material components,
and geological processes. It provides a basis for studying the classifi-
cation and causes of the variables.

In this paper, the R factor analysis based on principal component
variables (KMO value is 0.709, Bartlett sphericity test is passed, and
factor analysis hypothesis is met) was carried out by using the SPSS
software. At an eigenvalue that is greater than 1 and accumulative
variance contribution of 59.310%, 4 factors are extracted (Table 3), and
the factor load matrix is rotated with maximum variance (Table 4). The
factor scores of each sample are stored as variables in the sample at-
tribute.

Table 4 indicates the following composition of each factor: the
principal component of F1 is Ag, Cu, and Sn; F2 is Pb, Zn; F3 is Sb, Au,
and As; and F4 is Mo. The variance contribution of factor F1 is
27.413%, which is the dominant factor in the study area. The main
element is the medium–high temperature sulfurophilic element Ag–-
Cu–Sn, which contains the main metallogenic elements, and the cor-
responding Ag and Cu may indicate the early sulfur phase (iron–copper
sulfide phase) of the quartz–polymetallic sulfide stage, which reflects
the main metallogenic process or stage. It can be used as a compre-
hensive indicator for the spatial accumulation of major metallogenic
elements in the study area. The variance contribution of factor F2 is
12.253%. Pb and Zn may correspond to the late sulfide phase (lead–zinc
sulfide phase), indicating the mineralization of Pb and Zn. The variance
contribution of factor F3 is 10.357%, which is mainly composed of
Sb–As cryogenic elements. Sb and As are the main elements of V and As

Borehole 

Sample 

Fig. 3. 3D borehole and sample distribution of the Kekeshala district.

Table 2
Statistical characteristics of the elements in the borehole primary halo in Kekeshala deposit.

Element Sample numbers Minimum Maximum Mean Standard deviation Skewness Kurtosis

As 4857 0.015 2025.000 14.06984 50.387050 18.257 592.929
Sb 4877 0.010 405.000 2.22656 8.635532 25.052 1020.501
Bi 4859 0.0070 951.0000 3.799353 33.6257382 17.806 384.090
Cu 4853 0.110 102,046.000 463.02930 3153.385790 14.527 315.648
Zn 4819 0.23 28,700.00 105.9122 612.26675 32.099 1235.970
W 4868 0.01 3051.00 12.1821 69.97708 23.070 820.873
Mo 4870 0.012 10,201.000 8.73180 159.967115 56.631 3472.557
Pb 4875 0.07 2000.00 23.0405 60.94074 20.592 569.656
Sn 4877 0.34 500.00 14.9948 68.14112 6.528 42.699
Ag 4872 0.030 100.000 0.93692 5.645653 9.749 112.488
Au 4867 0.042 1500.000 5.09901 40.079960 27.632 930.875

Note: in the element mass fraction, Au is 10−9 and the rest is 10−6.
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as chalcophile elements, which belongs to semi-metallic amphoteric
element at low temperature with similar geochemical behavior, strong
migration ability, and are mostly distributed in the periphery of acid
intrusive rock mass or near structure. The variance contribution of
factor F4 is 9.287%, which is mainly a high-temperature element. It is
easily enriched in the acid rock mass and can represent the element
assemblage related to magmatic hydrothermal fluid.

4.2.2. Geochemical subdivision
According to the factor score of the sample, 4878 samples in the

whole area are classified into four sample types. Each sample is as-
signed according to factor type corresponding to the highest score, and
each category corresponds to a combination of a standard type element,
representing a certain type of geochemical partition. In Surpac, ac-
cording to the statistics of sample length with an average of approxi-
mately 5m, the 3D block model of the mining area is established with
grid dimensions of 10m×10m×5m. Based on the sample points
introduced after classification, the block model is spatially assigned by
the nearest distance method. The 3D geochemical zoning map con-
trolled by the borehole in the district can be obtained (Fig. 4).

The chemical zoning of F1 is mainly distributed near the Kekeshala
L2+1 and L10 ore bodies in the middle and southern part of the study
area, reflecting the main metallogenic location of Cu as revealed by the
boreholes in the district, which agree with those of known orebodies.
The chemical zoning of F2 is widely distributed, indicating the main
location of the mineralization of Pb and Zn, and F3 as the type of the
front halo element assemblage, and its chemical zoning is generally

distributed in the head of the main orebody, which can be used as an
indicator element in the deep metallogenic region. As the tail halo
element assemblage, the chemical zoning of F4 generally reflects the
end of a certain period of orebody mineralization, which is mainly in
the acid intrusive rock or near the contact zone. It may also be related
to its concealed bottom rock mass. In ore-prospecting, mineralization
results from multistage synthesis and the occurrence of late denudation
of the orebody. Hence, the primary halo of the orebodies at different
metallogenic stages or the similar series bead orebody formed by the
same metallogenic stage has complicated head-and-tail superposition
structure.

4.3. Fractal analysis

4.3.1. Multifractal modeling of factor F1 through C–V multifractal method
The enrichment and loss processes of ore minerals and ore-forming

elements in the metallogenic process are complex nonlinear process,
especially when multiple stages are involved. Even the same metallo-
genic processes may undergo different metallogenic stages, making the
main metallogenic elements inhomogeneous within the metallogenic
domain. Multifractal model can be used to measure the dilution or
enrichment degree and the spatial variability (Cheng, 2008). A previous
factor analysis shows that factor F1 is the main metallogenic element
assemblage, which reflects the main metallogenic process in the dis-
trict. Its deep prospect can be used as a comprehensive indicator of the
spatial aggregation of major metallogenic elements. In this paper, the
factor F1 is selected to extract multielement synthetic deep prospect
based on the C–V multifractal model.

In SPSS, the F1 score of 11 elements from 4878 samples in the study
area can be saved as a result variable. To avoid the negative value of the
late logarithm, it can be properly adjusted (minus the minimum value
plus one) on the F1 variable. It will not change the curve form of the
later scatter point fitting. The minimum value is −6.52333, making the
adjustment value 7.52333. After dropping the sample containing the F1
factor variable (with attributes) in the Surpac, based on the known
sample F1 factor score, the F1 factor block model is generated by the
new F1 attribute of the 3D block model (previously established) and 3D
interpolation. IDW is used as the interpolation method. Based on the
distance between the exploration lines (40m), the horizontal direction
of the search radius is 80m, the vertical direction is 40m, the ratio of
spindle to semi spindle is 0.5, the ratio of spindle to secondary axis is 1,
the minimum number of samples to select is 3, whereas the maximum is
15. Based on the scoring frequency statistics of the F1 factor block
model (completed in Surpac software, Fig. 5), the volume percentage of
the different scores of the F1 factor can be counted. The scatter plot of
concentration (F1 score) and cumulative volume (effective interpola-
tion block percentage) can be drawn using the Excel software. The least

Table 3
Characteristic roots and total variance explained of R-factor analysis in Kekeshala deposit.

Factor Initial eigenvalue Load square sum Rotating load square sum

Total Variance
(%)

Accumulate
(%)

Total Variance
(%)

Accumulate
(%)

Total Variance
(%)

Accumulate
(%)

1 3.015 27.413 27.413 3.015 27.413 27.413 2.171 19.736 19.736
2 1.348 12.253 39.666 1.348 12.253 39.666 1.667 15.154 34.891
3 1.139 10.357 50.023 1.139 10.357 50.023 1.642 14.927 49.817
4 1.022 9.287 59.310 1.022 9.287 59.310 1.044 9.493 59.310
5 0.905 8.228 67.539
6 0.859 7.809 75.348
7 0.793 7.205 82.552
8 0.692 6.287 88.840
9 0.515 4.683 93.522
10 0.450 4.091 97.613
11 0.263 2.387 100.000

Extraction method: principal component analysis.

Table 4
Orthometric rotating factor loading matrix for the R-factor analysis in the
Kekeshala deposita.

Variable Factor load

F1 F2 F3 F4

As 0.385 0.133 0.608 −0.010
Sb −0.075 0.115 0.689 0.027
Bi 0.287 0.485 0.372 −0.012
Cu 0.815 0.101 0.126 0.026
Zn 0.006 0.763 0.032 −0.011
W 0.128 −0.058 0.450 0.433
Mo −0.004 0.035 −0.087 0.921
Pb 0.089 0.845 0.080 0.025
Sn 0.722 −0.088 0.103 0.013
Ag 0.840 0.283 0.088 0.048
Au 0.142 0.045 0.638 −0.054

Extraction method: principal component analysis.
Rotation method: Kaiser standardized maximum variance method.

a The rotation has converged after five iterations.
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squares method is used for fitting (Fig. 6), and the fractal dimension
equation of F1 factor is obtained, which can be expressed as follows:

= < <−V ρ ρ ρ( ) 5.003 0 9.823.069 (2)

= ≤ <−V ρ ρ ρ( ) 353.60 9.82 9.85354.3 (3)

= ≤ <−V ρ ρ ρ( ) 67.79 9.85 9.9866.97 (4)

= ≤−V ρ ρ ρ( ) 13.65 9.9812.78 (5)

The C–V log–log plot shows that the F1 factor can be fitted using
four straight lines, reflecting the existence of four scale-free regions in
its spatial distribution. The slope of the low-value area is −3.069, and
the goodness of fit R2 is small, which is random and belongs to the
barren host rocks. The main concentration (factor score) interval is
above the second section, and the goodness of fit is above 0.8, which
shows obvious correlation and good fitting degree, usually it is ab-
normal area. In this anomaly area, the slope of the second section is
relatively large (the absolute value, the same below), which reflects the
rapid decrease in frequency from low to high concentration, as well as
the large area of distribution, which reflects the regional geological
process that is closely related to mineralization. Moreover, the process
rate in this area is possibly faster, and the boundary control is obvious,
which belongs to the weakly deep prospect area. The third section has a

relatively small straight slope, which reflects the relatively slow de-
crease in frequency of the high concentration and the smaller dis-
tribution area. It is mainly associated with the local mineralization
process and the change in metallogenic conditions, which belongs to
the moderately deep prospect area. The fourth section is relatively
smaller compared with the previous sections, which reflects the slow
decrease in concentration and the smallest distribution area, which is
usually at the center of the moderately deep prospect that belongs to
the highly deep prospect area.

4.3.2. Predictive mapping of potential exploration targets
The multifractal theory and model can depict the inhomogeneity

and spatial variability of each metallogenic element in the metallogenic
process. It can also divide the enrichment areas to guide the delineation
of favorable metallogenic target areas. The spatial variation of ore-
forming enrichment and dilution in the whole region can be determined
using the multifractal dimension spectrum (Cheng, 2003, 2006). Fractal
dimension exponent is an important parameter to quantify extremely
complex fractal objects, such as non-smooth, irregular, and broken
objects. Moreover, it is a measure of the complexity, roughness, irre-
gularity, and the effective occupancy of space. A large fractal dimension
exponent corresponds to a complex and rough fractal object; otherwise,
the object is regular and smooth. According to the C–V multifractal

Borehole 

F1 zoning 

Borehole 

F2 zoning 

a 

b

Fig. 4. 3D geochemical zoning map of the Kekeshala district.

Z. Xiang et al. Journal of Geochemical Exploration 198 (2019) 71–81

77



model in this district, the fractal characteristics of different fractal deep
prospects can be calculated as shown in Table 5.

Table 5 shows that the fractal dimension exponent of factor F1
barren host rocks area is 3.069, indicating a uniform distribution in the

3D space. The weakly anomalous fractal dimension exponent is 354.30,
which shows the irregularity and complexity of its spatial coverage and
geometry. This value may be related to the complex water-rock inter-
action in the carbonate rocks of the Hudukedaban formation (O3h)

c

d

Fig. 4. (continued)

Fig. 5. Histogram of the scoring frequency statistics for the F1 factor block model.
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intruded by the Huster granite (~368Ma), which may reflect a contact
zone structure and a favorable metallogenic geological environment for
skarn deposits. The fractal dimension exponent at the moderately deep
prospect is 66.97, which follows a strong agglomeration law. However,
the exponent decreases obviously, reflecting the superposition of com-
plex mineralization in the favorable metallogenic geological environ-
ment, forming the local enrichment of the corresponding elements,
which has great potential for prospecting. Mineralization is usually
inherited. The Re–Os age of molybdenum (~295Ma) in the deposit may
represent the superposition of another magmatic hydrothermal me-
tallogenic event in the early Permian period. This type of mineralization
at different geological periods superimpose each other in space, which
mostly occur in areas with strong tectonic and magmatic activity and
had relatively small coverage, making the fractal dimension exponent

relatively low. The fractal dimension exponent at the highly deep
prospect is 12.78, which is reclustered in the moderately deep prospect.
This finding reflects the concentration center of moderately deep pro-
spect and that its prospecting potential is the greatest. Based on the
statistical anomalous inflection point, the moderately and highly deep
prospect of the factor F1 can be extracted as the prospecting target
(Fig. 7).

The known orebodies delineated by boreholes are superimposed on
some moderately and highly deep prospects (Fig. 8), showing a good
correlation between them. The moderately deep prospect is mainly
distributed within and around L2+1 and L10 orebodies, which accu-
rately reflects the spatial distribution and trend of orebodies, especially
for L2+ 1. Good moderately and highly deep prospects are present
along the deep contact zone. This finding indicates that a large exten-
sion of prospecting space remains in the deep part of the L2+1.

5. Conclusions

The Kekeshala deposit is a typical skarn-copper deposit. The ore-
body is controlled by the contact zone between the Huster rock mass
and the carbonatite strata (O3h). The orebody shape is complex, and the
trend of deep extension is unknown. In this paper, 3D visualization,
factor analysis, and C–V multifractal model are combined to study the
geochemical samples of primary halo in Kekeshala district. Taking the
F1 factor as the fractal object, which reflects the main metallogenic
geological process of the deposit, the weakly, moderately, and highly
deep prospect are extracted through C–V fractal modeling. It provides a
basis for the screening of target regions. The results of this study can be
summarized as follows:

(1) Based on the Surpac software, 167 boreholes in the Kekeshala
mining area are modeled and visualized, from which 4878 3D
borehole primary halo samples are extracted, and a 3D block model
of the borehole primary halo is established. Subsequently, a basic
model was created for succeeding analysis and visualization.

(2) The Kekeshala deposit is mainly a skarn-copper deposit. Factor
analysis of the geochemical data of the borehole primary halo
shows that the factor F1 consists of the combination of the main
metallogenic elements Cu and Ag in the study area, F2 reflects
Pb–Zn mineralization, F3 reflects As–Sb front halo association, and
F4 reflects subore halo association. F1 may reflect the early sulfide
phase of the quartz-polymetallic sulfide stage (iron–copper sulfide
phase), which represents the main metallogenic process or stage. It

y = -3.0694x + 5.0037
R² = 0.5275 y = -354.36x + 353.69

R² = 0.871

y = -66.977x + 67.791
R² = 0.9671

y = -12.786x + 13.656
R² = 0.9943
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Fig. 6. Log–log plot of the cumulative volume versus F1 factor score in the
Kekeshala district.

Table 5
Statistical characteristics of different fractal deep prospects.

Deep prospect
classification based on
C–V model

Fractal
dimension
exponent

Statistical
fitting degree
(R2)

Fractal
inflection point
(F1-adjusted
score)

Barren host rocks 3.069 0.527 0
Weak 354.30 0.871 9.82
Moderate 66.97 0.967 9.85
High 12.78 0.994 9.98

Borehole 

Highly deep prospect 

Moderately deep prospect 

Fig. 7. Moderately and highly deep prospect of the factor F1 in the Kekeshala district.
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can be used as a comprehensive indicator of the spatial aggregation
of major metallogenic elements in the study area. The chemical
zoning of F1 is in good agreement with those of known main or-
ebodies.

(3) The C–A fractal model of factor F1 shows that the fractal fitting line
of the study area consists of four segments, reflecting the multi-
fractal characteristics. The inflection point indicates that the geo-
chemical barren host rocks area and the weakly, moderately, and
highly deep prospect can be divided. The weakly deep prospect
reflects the contact zone structure between the Huster rock mass
and the carbonatite strata (O3h). The moderately deep prospect may
reflect the complex mineralization process based on the ore-bearing
strata and favorable tectonic conditions. The highly deep prospect
reflects the center of the moderately deep prospect.

(4) Based on the fractal deep prospect analysis of factor F1, the mod-
erately and highly deep prospect can well reflect the favorable
metallogenic geological conditions and can be used as the basis for
delineating the prospecting target. The known main orebodies
L2+1 and L10 are in good agreement with some moderately and
highly deep prospects. The fractal deep prospect of geochemical
factor F1 has potential application in ore-prospecting and predic-
tion, and can thus be effectively used to explore the depth and edge
of known deposits.
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