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A B S T R A C T

Convective seepage flow plays a key role not only in naturally forming mineral deposits and oil reservoirs, but
also in the carbon-dioxide sequestration in fluid-saturated rocks. This paper presents a steady-state numerical
solver, which is based on the finite element method (FEM) and progressive asymptotic approach procedure
(PAAP), to solve steady-state convective seepage flow problems in fluid-saturated heterogeneous rocks. Although
this kind of flow problem is commonly solved by using transient-state numerical solvers, the use of the proposed
steady-state numerical solver, which is the main characteristic of this study, can have certain advantages. After
the proposed steady-state numerical solver is verified by a benchmark testing problem, for which analytical
solutions are available for comparison, it is further applied to simulate steady-state convective seepage flow in
the Australia North West Shelf basin, which is composed of naturally-formed heterogeneous porous rocks.
Through the simulated numerical results, it can be found that: (1) compared with the analytical solutions of the
benchmark testing problem, the use of the steady-state numerical solver can produce correct and accurate nu-
merical simulation results for dealing with convective seepage flow problems in fluid-saturated heterogeneous
rocks. (2) The main advantage of using the steady-state numerical solver is to avoid the need of considering
initial conditions of the problem, which are commonly difficult to be determined because the convective seepage
flow within the upper crust is a past event in geology. (3) In the Australia North West Shelf basin, the convective
seepage flow and temperature distribution patterns depend strongly on both the permeability contrast of the
faults and the basin geometry (including the layer structures and fault locations) in the computational model.

1. Introduction

Convective seepage flow plays a key role not only in naturally
forming mineral deposits and oil reservoirs, but also in the carbon-di-
oxide sequestration within fluid-saturated rocks (Zhao et al., 2008a;
Nield and Bejan 1992). Therefore, theoretical understanding and
computational modeling of the thermodynamic process that triggers
and controls convective seepage flow are extremely important for the
geophysical exploration of new mineral deposits and underground oil
resources, as well as for the innovative technology development of
carbon-dioxide sequestration in the deep Earth.

Although extensive theoretical studies have been conducted to in-
vestigate convective seepage flow in fluid-saturated homogeneous
porous rocks over the past several decades (Horton and Rogers, 1945;
Horne and Caltagirone, 1980; Gasser and Kazimi, 1976; Bau and
Torrance, 1982; Caltagirone and Bories, 1985; Kaviany, 1984; Pillatsis
et al., 1987; Lebon and Cloot, 1986; Bjorlykke et al., 1988; Tournier

et al., 2000; Alavyoon, 1993; Lin et al., 2003; Chevalier et al., 1999;
Zhao et al., 2008a), they have some limitations in dealing with con-
vective seepage flow in fluid-saturated heterogeneous rocks (Malkovsky
and Pek, 2015). For instance, it is usually very difficult to use them to
consider realistic geophysical and geological systems of complicated
geometrical shapes and complex rock (material) distributions within
the Earth's upper crust. With the rapid development of both modern
computer technology and computational geosciences, computational
simulation has become very popular in solving many geophysical and
geological problems (Phillips, 1991; Schafer et al., 1998; Zhao et al.
1997, 2008b, 2004, 2006; Paluszny et al., 2007; Alt-Epping and Zhao,
2010, 2009), including transient-state convective seepage flow in
naturally-formed heterogeneous porous media (Raffensperger and
Garven, 1995; Yang, 2006; Yang et al., 2006, 2010; Harcouet-Menou
et al., 2009; Ju et al., 2010; Vujević and Graf, 2015; Pek and
Malkovsky, 2016). However, to the best knowledge of the authors, only
transient-state numerical solvers were used to solve convective seepage
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flow problems in naturally-formed heterogeneous porous media, even
though the convective seepage flow can reach a steady-state. The main
contribution of this study is to propose a steady-state numerical solver,
which is based on the finite element method (FEM) and progressive
asymptotic approach procedure (PAAP), for solving steady-state con-
vective seepage flow problems in fluid-saturated heterogeneous rocks.
In particular, steady-state convective seepage flow in the Australia
North West Shelf basin, which is composed of naturally-formed het-
erogeneous rocks, is simulated as a real application example in this
study.

From the physical point of view, the occurrence of convective see-
page flow in fluid-saturated rocks is a physical behaviour of the com-
plex Earth system. Since the governing equations of the convective
seepage flow problem do not automatically dictate when the convective
seepage flow starts, the stationary conductive transfer is always its
solution even at large Rayleigh numbers, which is higher than the cri-
tical Rayleigh number of the hydrothermal system. Physically speaking,
the seepage flow system can be in such a metastable state until some
disturbance kicks it out. It needs to be pointed out that for convective
seepage flow of supercritical Rayleigh numbers, the resulting con-
vective seepage flow pattern can strongly depend on the Rayleigh
number of the hydrothermal system. In fact, when the Rayleigh number
of the hydrothermal system is large enough, the final stage flow pattern
can be oscillating one, implying that the system can be in an inter-
mittent state and even reach a chaotic one (Nield and Bejan 1992). In
all these cases, the steady-state equations are not relevant. However,
when the Rayleigh number of the hydrothermal system is just above the
minimum critical Rayleigh number of the system, the convective see-
page flow pattern associated with the fundamental mode can reach
steady-state and therefore, is independent of time if the thermodynamic
properties of the system remain unchanged. Since the convective see-
page flow, which takes place in most geological hydrothermal systems
within the upper crust of the Earth, is commonly associated with the
fundamental mode of the convective seepage flow pattern (Nield and
Bejan 1992; Zhao et al., 2008a), the main purpose of this study is to
consider this kind of convective seepage flow pattern. This indicates
that convective seepage flow can be analyzed mathematically and si-
mulated computationally through a steady-state analysis of the hydro-
thermal system. Based on this recognition, the steady-state approach
was commonly used to theoretically investigate the convective in-
stability of seepage flow in hydrothermal systems in fluid-saturated
rocks (Nield and Bejan 1992; Zhao et al., 2008a).

2. Mathematical description and solution method of the steady-
state convective seepage flow problem in fluid-saturated rocks

The convective seepage flow problem in fluid-saturated rocks is
usually viewed, from the geophysical point of view, as a coupled non-
linear problem involving the processes of heat transfer and seepage
flow processes in fluid-saturated (rigid) rocks. Based on the related
scientific principles and the mass conservation of the pore-fluid, the
governing partial-differential equations of the problem are ready to
write in a two-dimensional case (Nield and Bejan 1992; Zhao et al.,
2008a). Although the governing partial-differential equations of de-
scribing a steady-state convective seepage problem are different from
those of describing a transient-state convective seepage problem, the
main difference between them is that whether or not a time variable is
involved in deriving the corresponding governing partial-differential
equations. This means that the governing partial-differential equations
of describing a steady-state convective seepage problem in fluid-satu-
rated heterogeneous rocks can be directly obtained from those of de-
scribing the transient-state convective seepage problem, which has
been widely simulated by the FEM over the past years (Raffensperger
and Garven, 1995; Yang, 2006; Yang et al., 2006, 2010; Harcouet-
Menou et al., 2009; Ju et al., 2010; Pek and Malkovsky, 2016). For this
particular reason, the governing partial-differential equations of

describing a steady-state convective seepage problem in fluid-saturated
heterogeneous rocks are ready to write in a two-dimensional case as
follows (Zhao et al., 2008a):
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where is the crustal rock porosity; p is the pore-fluid pressure in the
pores of the crustal rock; u and v are the pore-fluid velocity components
in the horizontal and vertical directions; f is the pore-fluid density; T is
the crustal rock temperature; f 0 is the pore-fluid reference density;T0 is
the crustal rock reference temperature; µ is the pore-fluid dynamic
viscosity; Kx and Ky are the permeability of the crustal rock in the
horizontal and vertical directions; x

f and y
f are the pore-fluid thermal

conductivity coefficients in the horizontal and vertical directions, re-
spectively; cpf is the pore-fluid specific heat; is the pore-fluid thermal
volume expansion coefficient; x

s and y
s are the crustal (dry) rock

thermal conductivity coefficients in the horizontal and vertical direc-
tions, respectively; gx and gy are the components of gravity acceleration
in the x and y directions, respectively. Generally, it is assumed that
gravity is opposite to the positive direction of the y axis.

From the mathematical point of view, the steady-state convective
seepage problem in fluid-saturated heterogeneous rocks to be con-
sidered belongs to a boundary-value problem, instead of an initial-value
problem, as a result of neglecting the time-dependent process in the
hydrothermal system. Since the steady-state convective seepage pro-
blem can be treated as a nonlinearly-coupled problem between the
pore-fluid flow and heat transfer processes, it has theoretically two
kinds of solutions for the pore-fluid velocity (Nield and Bejan 1992;
Zhao et al., 2008a): a kind of zero solution (known as the trivial solu-
tion) and another kind of nonzero solution (known as the nontrivial
solution). Note that the trivial solution signifies immobile fluid and the
temperature distribution caused by purely conductive heat transfer,
while the nontrivial solution is a fully developed circulation pattern and
the associated temperature distribution where the heat is transferred by
both conduction and convection. Obviously, the convective seepage
flow belongs to the nontrivial solution for the steady-state convective
seepage problem in fluid-saturated heterogeneous rocks. To obtain such
a nontrivial solution by using the FEM, it is necessary to perturb the
system in some way or more specifically perform tilting the gravity
vector. Compared with using any other kind of artificial disturbance,
which may have different physical meanings, tilting the gravity vector
is of a specific physical meaning, so that it is used to establish the PAAP
associated with the finite element simulation of the steady-state con-
vective seepage problem in fluid-saturated heterogeneous rocks.

The basic idea of using the PAAP is to change the originally-defined
steady-state convective seepage flow problem into an artificially-mod-
ified problem by simply tilting the gravity acceleration with a small
angle. Due to this small perturbation, a nonzero velocity solution for
seepage flow is formed in the artificially-modified problem. This is the
first step of using the PAAP. In this step, we solve the first version of the
artificially-modified problem. Note that when the steady-state numer-
ical solver is used, we need an initial estimate of the input flow velocity
and temperature for solving the nonlinearly-coupled equations. Since it
is the first step of conducting the PAAP, we do not have any physically-
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meaningful estimate for the input flow velocity and temperature in the
nonlinearly-coupled equations (i.e. Equations (1)–(5)), so that we use
the zero flow velocity and associated temperature distribution (which
can be viewed as the purely conductive solution) as the initial estimate
in the nonlinearly-coupled equations for the steady-state numerical
solver. Although the nonzero velocity and associated temperature so-
lution obtained from solving the first version of the artificially-modified
problem is not the true solution for the originally-defined steady-state
convective seepage flow problem, it can be served as a good estimate
for the input flow velocity and temperature in the nonlinearly-coupled
equations when we use the steady-state numerical solver for solving the
second version of the artificially-modified problem. Theoretically, we
would set the tilted small angle of the gravity acceleration back to zero
in the second version of the artificially-modified problem, so as to ob-
tain the true solution for the originally-defined steady-state convective
seepage flow problem. However, in computational practice, as shown in
Fig. 1, if the tilted small angle of the gravity acceleration is too small in
the first version of the artificially-modified problem, the nonzero ve-
locity and associated temperature solution obtained from solving the
first version of the artificially-modified problem is not good enough to
guarantee that the true solution for the originally-defined steady-state
convective seepage flow problem could be obtained from solving the
second version of the artificially-modified problem, even if the tilted
small angle of the gravity acceleration is set back to zero. This means
that when we directly solve the originally-defined steady-state con-
vective seepage flow problem with 0= (i.e. without applying any
perturbation to the system) by using the conventional steady-state nu-
merical solver, we will obtain the trivial zero velocity and associated
temperature solution (which is in correspondence to the stationary
conductive transfer solution) for the seepage flow. This also means that
when we use the PAAP, the tilted small angle of the gravity acceleration
should be large enough in the first version of the artificially-modified
problem. Nevertheless, in this situation, if we directly set the tilted
(relatively-large) angle of the gravity acceleration back to zero in the
second version of the artificially-modified problem, we need more
iteration to solve the nonlinearly-coupled equations because of the poor
convergence of solution. To improve the solution convergence and
produce the true solution for the originally-defined steady-state con-
vective seepage flow problem, we need to gradually reduce the tilted
(relatively-large) angle of the gravity acceleration in the finite element
simulation of the artificially-modified problem through using several
versions. Once this tilted (relatively-large) angle of the gravity accel-
eration is reduced to zero in the final version of the artificially-modified

problem, we will obtain the true nontrivial solution for the originally-
defined steady-state convective seepage flow problem. This solution
process can be schematically shown in Fig. 1. In this figure, we can
define the following parameters:

N
k N, . ( 1, 2, .., )k k1 1= = =+ (7)

where denotes the tilted angle of the gravity acceleration away from
the vertical direction in the artificially-modified steady-state convective
seepage flow problem; N denotes the number of total steps in the case of
approaching zero; k denotes the specific value of the tilted angle of

the gravity acceleration, which is used in the kth version of the artifi-
cially-modified problem. Note that in the case of 0N 1 =+ ; the tilted
angle of the gravity acceleration is set back to zero in the (N+1)th
version of the artificially-modified problem, so that the true nontrivial
solution for the originally-defined steady-state convective seepage flow
problem can be obtained.

In summary, the workflow associated with using the proposed
steady-state numerical solver can be described as follows: (i) by using
the zero velocity and associated temperature distribution that corre-
sponds to pure conduction as the initial estimate for the input velocity
and temperature, the new velocity and temperature fields are obtained
numerically from simultaneously solving Equations (1)–(5) for the
gravity vector tilted relative to the vertical direction by angle 1. This
angle should be large enough in order that the steady-state numerical
solver yields a non-trivial solution; (ii) by using the obtained new ve-
locity and temperature fields as the modified estimate for the input
velocity and temperature, the updated new velocity and temperature
fields are obtained numerically from simultaneously solving Equations
(1)–(5) for the gravity vector tilted relative to the vertical direction by
angle 2; (iii) the procedure continues with progressively decreasing k ;
(iv) at 0N 1 =+ the steady-state numerical solver yields final velocity
and temperature fields.

Note that compared with using the traditional transient-state ap-
proach, the main advantages of using the PAAP-based steady-state ap-
proach is that: (1) since the convective seepage flow problem is
mathematically treated as a boundary-value problem, the initial con-
dition, which is usually associated with the past in the geological his-
tory, is not involved in a steady-state problem; (2) compared with using
any other kind of artificial perturbation, tilting the gravity vector is of
specific physical meaning. In addition, the use of the PAAP can ensure
that the initial perturbation caused by tilting the gravity vector can
develop only at Ra Racritical> + where Ra and Racritical are the

Racritical Ra0

1

2

1N

smalltoois

S(Ra, 

Fig. 1. Progressive asymptotic processes of the proposed PAAP.
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Rayleigh number and the critical Rayleigh number of the hydrothermal
system respectively; and is a positive number.

It is also known that a hydrothermal system at sufficiently large
Rayleigh numbers can develop various stable circulation patterns for
the same boundary conditions. We can attribute these patterns to dif-
ferent orders of convective seepage flow modes. Generally speaking, the
greater the Rayleigh number, the higher the orders of convective see-
page flow modes (Nield and Bejan 1992; Zhao et al., 2008a). In the case
of transient-state problems, one can attribute, at least in principle, these
structures to particular choice of the initial conditions. In the case of the
pure steady-state problem, which in this situation allows multiple
nontrivial solutions, one cannot see how to arrive to them in a natural
way. As mentioned previously, the main purpose of this study is to
consider the fundamental mode of the convective seepage flow pattern,
which takes place in most geological hydrothermal systems within the
upper crust of the Earth (Nield and Bejan 1992; Zhao et al., 2008a).
Tilting the gravity acceleration will lead to this kind of convective
seepage flow pattern, as demonstrated in the later numerical examples.
However, it may be desirable to investigate the possibility of using the
tilting gravity acceleration approach for obtaining other nontrivial
states of higher order modes in the future research.

3. Verification of the proposed steady-state numerical solver for
solving convective seepage flow problems in fluid-saturated
heterogeneous rocks

For the purpose of verifying the robustness and correctness of the
proposed steady-state numerical solver, steady-state convective seepage
flow in a benchmark testing problem, for which “the analytical solu-
tion” is available for the convective seepage flow pattern of the fun-
damental mode, is considered. The governing mathematical equations
of the benchmark testing problem are exactly the same as those ex-
pressed in Equations (1)–(4). The benchmark testing problem is for-
mulated for a rectangular domain that is composed of fluid-saturated
homogeneous rocks, so as to obtain “the analytical solution” (Zhao
et al., 2008a). Fig. 2 shows the geometrical shape of the benchmark
testing problem, where L 1.5= means that the length versus height
ratio of the computational domain is equal to 1.5. Note that due to the
nonlinear coupling between the temperature and pore-fluid flow (see
Equation (4)), it is impossible to derive analytical solutions for the
governing mathematical equations of the benchmark testing problem in
general cases. However, if we consider a special case, in which the
convective seepage flow pattern of the fundamental mode (associated
with the minimum critical Rayleigh number of the system) takes place
in the benchmark testing problem, then we can conduct a traditional
linear stability analysis to obtain the analytical solution (Zhao et al.,
2008a; Nield and Bejan 1992).

In the process of deriving the analytical solution, we converted the

dimensional governing partial-differential equations into the corre-
sponding dimensionless ones by using the following scaling relation-
ships (Zhao et al., 2008a):
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where x and y are the dimensionless coordinates; u and v are the
dimensionless velocity components in the x and y directions, respec-
tively; p and T are the dimensionless pore-fluid pressure and tem-
perature; K is the permeability coefficient of the homogeneous rock; e0
is the thermal conductivity coefficient of the homogeneous rock; µ is
the pore-fluid dynamic viscosity; f 0 is the pore-fluid reference density;
is the pore-fluid thermal volume expansion coefficient; g is the gravity

acceleration in the vertical direction; Ttop and Tbottom are the temperature
on the top and bottom boundaries of the rectangular domain; H is the
height of the rectangular domain; p0 is the static pore-fluid pressure.

Since the analytical solution for the convective seepage flow pattern
of the fundamental mode depends on the boundary conditions of the
benchmark testing problem, the following boundary conditions are
considered in the process of deriving the analytical solution (Nield and
Bejan 1992; Zhao et al., 2008a):

T v y H0, 0, (at 1)= = = = (11)

T v y1, 0, (at 0)= = = (12)

u T
x

x x L0, 0, (at 0 and )= = = = (13)

where L is the dimensionless length and H is the dimensionless height
of the rectangular domain. It should be pointed out that in order to
prevent two square convection cells from occurring in the rectangular
domain, the following relationship needs to be satisfied in the case of
deriving the analytical solution:

L1 1.5 (14)

Based on the traditional linear stability analysis (Nield and Bejan
1992; Zhao et al., 2008a), the analytical solution for the convective
seepage flow pattern of the fundamental mode can be expressed as
follows (Zhao et al., 2008a):

x*

0

y*

L*=1.5

H*=1.0

Fig. 2. Geometry of the benchmark testing problem.
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where Racritical is the minimum critical Rayleigh number associated with
the fundamental mode; is the dimensionless stream function; p is
the dimensionless pore-fluid pressure; C1 is a non-zero constant, which
can be determined at any reference point in the rectangular domain.

Equation (15) indicates that in the case of L 1.0= (i.e. a square
domain), the corresponding minimum critical Rayleigh number of the
benchmark testing problem is equal to 4 2, while in the case of L 1.5=
(i.e. the rectangular domain under consideration), the corresponding
minimum critical Rayleigh number of the benchmark testing problem is
equal to 169

36
2 (i.e. approximately 46.3). This means that if the Rayleigh

number of 169
36

2 is used in the computational simulation of the
benchmark testing problem, then the robustness and correctness of the
proposed steady-state numerical solver can be examined through
comparing the computational simulation result with the corresponding
analytical solution. Note that the analytical solution for the convective
seepage flow pattern of the fundamental mode was derived by using the
dimensionless governing partial-differential equations of the bench-
mark testing problem. Thus, except for using the dimensionless Ray-
leigh number, we do not need specific values of any physical

parameters in the computational simulation (Zhao et al., 2008a).
However, for the purpose of using the PAAP, 1 and N are set to be 5o

and 4 in the computational simulation.
Although there are many factors such as the discretization order,

resolution level, spatial discretization scheme and so forth, which may
affect the precision of numerical solutions, we can still find a way to
assess the overall accuracy of the numerical solution obtained from the
proposed steady-state numerical solver in this study. To evaluate the
accuracy of the computationally-simulated results in a quantitative
manner, we need to calculate the maximum relative error. For this
purpose, we define the maximum relative error at any nodal point of
the finite element mesh as follows:
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where ui and vi are the theoretically-derived solution for the di-
mensionless pore-fluid velocity components in the horizontal and ver-
tical directions at nodal point i of the finite element mesh;Ti , i and pi
are the theoretically-derived solution for the dimensionless tempera-
ture, dimensionless stream function and dimensionless pore-fluid
pressure at nodal point i of the finite element mesh; umax and vmax are
the maximum absolute values of the theoretical solution (at the nodal
points of the finite element mesh) for the dimensionless pore-fluid ve-
locity components in the horizontal and vertical directions; Tmax , max
and pmax are the maximum absolute values of the theoretical solution
(at the nodal points of the finite element mesh) for the dimensionless
temperature, dimensionless stream function and dimensionless pore-
fluid pressure; ũi and ṽi are the computationally-simulated results for
the dimensionless pore-fluid velocity components in the horizontal and
vertical directions at nodal point i of the finite element mesh; T̃i , ĩ and
p̃i are the computationally-simulated results for the dimensionless
temperature, dimensionless stream function and dimensionless pore-
fluid pressure at nodal point i of the finite element mesh; RE( )node i is the
maximum relative error at nodal point i of the finite element mesh; NN
is the total number of nodal points in the finite element mesh.

When we calculated the maximum relative error at all points of the
finite element mesh, we can evaluate the maximum relative error of the
whole system by using the following formula:

RE Max RE RE RE RE RE(( ) , ( ) , ( ) , ......, ( ) , ( ) )system node node node node NN node NN1 2 3 1=

(23)

where REsystem is the maximum relative error of the whole system.
Figs. 3 and 4 compare the computationally-simulated results with

the theoretically-derived solutions for dimensionless temperature and
stream functions respectively when we used the Rayleigh number of
46.5, which is almost equal to the corresponding minimum Rayleigh
number, in the benchmark testing problem. As clearly indicated by the
streamline distribution in Fig. 4, the nonzero flow velocities were ob-
tained in the computational model of the benchmark testing problem in
the case of the Rayleigh number being almost equal to the corre-
sponding minimum Rayleigh number. Generally, the computationally-
simulated results have very good agreement with the theoretically-de-
rived solutions for the benchmark testing problem. The maximum re-
lative error in the computationally-simulated results is 1.972%. This
demonstrates that the use of the proposed steady-state numerical solver
can produce the accurate computational simulation results for solving
steady-state convective seepage flow problems in fluid-saturated rocks.

It is also worthwhile to note that when a Rayleigh number of 48,

(Numerical solution)

(Analytical solution)

Fig. 3. Dimensionless temperature distribution of the benchmark testing pro-
blem.
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which is obviously greater than the minimum critical Rayleigh number
of 46.3, was used, the nonzero flow velocities were still obtained in the
numerical simulation of the benchmark testing problem. However,
when a Rayleigh number of 45, which is smaller than the minimum
critical Rayleigh number of 46.3, was used in the numerical simulation
of the benchmark testing problem, we only obtained the trivial zero
velocity solution (which is in correspondence to the stationary con-
ductive heat transfer solution) for the seepage flow. This demonstrates
that the nonzero flow velocities are obtained in the computational
model of the benchmark testing problem at Ra Racritical, but the flow
velocities are zero in the computational model of the benchmark testing
problem at Ra Racritical< .

4. Computational modeling of the steady-state convective seepage
flow in the Australia North West Shelf basin

We employ the proposed steady-state numerical solver, which has
been verified through the benchmark testing problem, for simulating
the steady-state convective seepage flow in a real geophysical and
geological system, which is located in the Australia North West Shelf
basin. In this situation, the portion of the upper crust to be simulated in
the computational model is comprised of different rocks and faults,
which are represented by their permeabilities. Although the individual
faults and rock blocks can have spatially uniform characteristics in-
cluding permeabilities, the simulation domain as a whole is hetero-
geneous. This means that the system itself is heterogeneous while its
elements are uniform. Fig. 5 shows the geophysical and geological
model of this basin. This geophysical and geological model is simulated
by the finite elements to form a computational model. It should be
pointed out that two different length-scales were used in the horizontal
and vertical directions of this figure, so that the considered geological
structures can be shown clearly and appropriately. In this figure, we use
layer A to represent post-rift, while we use layers B and C to represent
pre-rift. In addition, we use layer D to represent the syn-rift basin fill,

while we also use layer E to represent a source rock, in which the crude
oil may be generated. We use F to denote faults. The geometry of this
basin reflects a typical graben with footwall uplift relative to the
hangingwall of the major faults. The length and depth of the compu-
tational domain to be used in this example are equal to 110 km and
13 km respectively. We use the FEM (Zienkiewicz, 1977) to discretize
the computational domain into 3672 quadrilateral elements. To facil-
itate the forthcoming discussions, the rock of layer C is used as the
reference rock. Except for using different permeabilities in different
layers and faults, the following parameters have been used in the
computational simulation: the reference density and thermal expansion
coefficient of volume are respectively equal to kg m1000 / 3 and

C2.07 10 (1/ )o4× for the pore-fluid; dynamic viscosity is equal to
N s m10 /3 2 for the pore-fluid; specific heats are equal to J kg C4185 /( )o

and J kg C815 /( )o for the pore-fluid and rock respectively; porosity is 0.1
for the rock; thermal conductivity coefficients are respectively equal to

W m C3.35 /( )o and W m C0.6 /( )o for the rock and pore-fluid in both the
vertical and horizontal directions. For the sake of comparison, the
permeability of the reference rock in layer C is assumed to be m10 14 2 in
the computational domain.

To reflect geophysical and geological reality, the temperature at the
top of the basin is C20 o and the temperature at the bottom of the basin
is C150 o . On the vertical boundaries of the computational domain, we
need to prevent both mass and thermal energy from losing, so that we
apply both impermeable and insulation horizontal-boundary conditions
to them. In addition, on either the top or the bottom boundaries of the
computational domain, we need to prevent mass from losing, so that we
apply impermeable vertical-boundary conditions to them in the con-
sidered computational model.

A particular factor that greatly affects the convective seepage flow is
the characterization of the local fault structure, namely, whether or not
faults are acting as flow barriers or flow channels to the convective
seepage flow. Therefore, uncertainty in fault characterization can sub-
sequently lead to significant predictive uncertainty. For the purpose of
investigating different rock permeabilities effects on the convective
seepage flow within the Australia North West Shelf basin, we consider
three different scenarios in the simulation. In scenario one, it is as-
sumed that except for the two faults, all rock layers have the same
permeability, which is of the same value as the reference permeability
in layer C. This means that K K K K m10A B C r

14 2= = = = and
K K K m10D E r

14 2= = = , where KA, KB, KC , KD and KE are the perme-
abilities of layers A, B, C, D and E respectively; Kr is the reference
permeability. In this scenario, the permeabilities of the two faults are
assumed to be 10 times of the reference permeability, namely
K K/ 10f r = . Therefore, the first scenario is called the more permeable
fault scenario. In the second scenario, it is assumed that except for the
two faults, all rock layers have the same permeability, which is equal to
the reference permeability in layer C. In this scenario, we assume the
permeabilities of the two faults to be one tenth of the reference per-
meability, namely K K/ 0.1f r = . Thus, the second scenario is called the
less permeable fault scenario. In the third scenario, it is assumed that
K K/ 10f r = , K K/ 5B r = , K K/ 1A r = , K K/ 1C r = , K K/ 1D r = and K K/ 1E r = .
Consequently, the third scenario is called the more permeable fault and

(Numerical solution)

(Analytical solution)

Fig. 4. Dimensionless stream function distribution of the benchmark testing
problem.

Fig. 5. Geological model of the Australia North West Shelf basin.
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layer scenario.
Fig. 6 shows temperature, streamline as well as pore-fluid velocity

distributions in the considered computational simulation for the more
permeable fault scenario (i.e. the first scenario). Obviously, it can be
seen that the seepage flow of convective pattern predominates in the
two faults. Since the streamline distribution obtained in the case of the
more permeable fault scenario (as shown in Fig. 6) is obviously dif-
ferent from that obtained in the case of a homogeneous upper crust
(Zhao et al., 2008a), particularly in the vicinity of the two faults, it is
concluded that the more permeable faults can affect significantly
steady-state convective seepage flow in the Earth's upper crust. In ad-
dition, as shown in Fig. 6, the more permeable faults can also provide
remarkable impacts for temperature distributions in the computational
models.

Fig. 7 shows temperature, streamline as well as pore-fluid velocity
distributions in the considered computational simulation for the less
permeable fault scenario (i.e. the second scenario). It is noted that the
convective seepage flow becomes very weak within the two faults and
the basin. This phenomenon can be clearly identified by the streamline
distribution within the computational model. Since the streamline
distribution obtained in the case of the less permeable fault scenario (as
shown in Fig. 7) is obviously different from that obtained in the case of
the more permeable scenario (as shown in Fig. 6), especially in the
vicinity of the two faults, it is further demonstrated that the less

permeable faults can also have significant effects on the steady-state
convective seepage flow in the Earth's upper crust. By comparing the
temperature distribution obtained in the case of the less permeable
scenario (as shown in Fig. 7) with that obtained in the case of a
homogeneous upper crust (Zhao et al., 2008a), it is recognized that the
less permeable faults have little effects on the temperature distributions
within the computational model.

Fig. 8 shows temperature, streamline as well as pore-fluid velocity
distributions in the considered computational simulation for the more
permeable fault and layer scenario (i.e. the third scenario). Obviously,
it can be seen that the seepage flow of convective pattern predominates
in layer B (i.e. the more permeable layer) and the two faults. Since the
streamline distribution obtained in the case of the more permeable fault
and layer scenario (as shown in Fig. 8) is obviously different from that
obtained in the case of the more permeable fault scenario (as shown in
Fig. 6), particularly in the vicinity of the more permeable layer (i.e.
layer B), it is demonstrated that the more permeable layer can affect
significantly steady-state convective seepage flow in the Earth's upper
crust. Furthermore, temperature distributions can be considerably af-
fected by fault locations as well as the basin geometry in the compu-
tational simulation.

5. Conclusions

A numerical approach is presented for the solution of the problem of
fluid convection and heat transfer in heterogeneous porous rocks. This
has advanced a technique that permits to obtain directly a stationary
solution of the problem without considering the transient period from
an initial state to a developed steady-state flow pattern. The main idea
is to use perturbations that arise due to variations of the direction of
gravity forces. The use of the proposed steady-state numerical solver,
which is directly based on the FEM and PAAP, can have the following
advantages: (1) since the convective seepage flow problem is mathe-
matically treated as a boundary-value problem, the temperature-field
build-up process (that is a transient process) within the upper crust is
skipped; (2) there is no need to consider initial conditions of the pro-
blem, which are commonly difficult to be determined because the
convective seepage flow within the upper crust is a past event in
geology.

After the proposed steady-state numerical solver is verified by a
benchmark testing problem, for which analytical solutions are available
for comparison, it is further applied to simulate steady-state convective
seepage flow in the Australia North West Shelf basin, which is com-
posed of naturally-formed heterogeneous rocks. Through the simulated
numerical results, it can be found that in the Australia North West Shelf
basin, the steady-state convective seepage flow and temperature

(a) Velocity distribution of the pore fluid (Unit: )sm /

(b) Streamline distribution of the pore fluid (Unit: )sm /2

(c) Temperature distribution (Unit: )Co

Fig. 6. Simulation results from the geological model of the Australia North
West Shelf basin K K( / 10)f r = : (a) Velocity distribution of the pore fluid; (b)
Streamline distribution of the pore fluid; (c) Temperature distribution.

(a) Velocity distribution of the pore fluid (Unit: )sm /

(b) Streamline distribution of the pore fluid (Unit: )sm /2

(c) Temperature distribution (Unit: )Co

Fig. 7. Simulation results from the geological model of the Australia North
West Shelf basin K K( / 0.1)f r = : (a) Velocity distribution of the pore fluid; (b)
Streamline distribution of the pore fluid; (c) Temperature distribution.

(a) Velocity distribution of the pore fluid (Unit: )sm /

(b) Streamline distribution of the pore fluid (Unit: )sm /2

(c) Temperature distribution (Unit: )Co

Fig. 8. Simulation results from the geological model of the Australia North
West Shelf basin K K K K( / 10, / 5)f r B r= = : (a) Velocity distribution of the pore
fluid; (b) Streamline distribution of the pore fluid; (c) Temperature distribution.
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distribution patterns depend strongly on both the permeability contrast
of the faults and the basin geometry (including the layer structures and
fault locations) in the computational model.
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