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A B S T R A C T

Time series derived from paleoclimate archives are often irregularly sampled in time and thus not analysable
using standard statistical methods such as correlation analyses. Although measures for the similarity between
time series have been proposed for irregular time series, they do not account for the time scale dependency of the
relationship. Stochastically distributed temporal sampling irregularities act qualitatively as a low-pass filter
reducing the influence of fast variations from frequencies higher than about 0.5 −Δt( )max

1, where Δtmax is the
maximum time interval between observations. This may lead to overestimated correlations if the true correlation
increases with time scale. Typically, correlations are underestimated due to a non-simultaneous sampling of time
series.

Here, we investigated different techniques to estimate time scale dependent correlations of weakly irregularly
sampled time series, with a particular focus on different resampling methods and filters of varying complexity.
The methods were tested on ensembles of synthetic time series that mimic the characteristics of Holocene marine
sediment temperature proxy records. We found that a linear interpolation of the irregular time series onto a
regular grid, followed by a simple Gaussian filter was the best approach to deal with the irregularity and account
for the time scale dependence. This approach had both, minimal filter artefacts, particularly on short time scales,
and a minimal loss of information due to filter length.

1. Introduction

Variations in past climate and environmental conditions have been
recorded in many forms, including sediment and ice cores, from which
they can be extracted as paleoclimate time series data. Analysing these
data sets provides valuable insights into the drivers affecting both cli-
mate and the ecosystem on regional and global scales. One obstacle that
complicates the analysis of paleoclimate proxy records using standard
statistical methods is the temporal irregularity of the available data.

This patchiness and resulting temporal irregularity may have dif-
ferent reasons. For instance, the physical sampling of the archive might
be irregular due to a lack of analysable material. In the case of sedi-
mentary archives, sedimentation or accumulation rates generally vary
over time, thus a regular spatial sampling of the core may lead to an
irregular temporal sampling of past conditions.

Time series data often contain several processes acting on different
time scales (e.g. monthly, decadal, centennial) and one approach to

identify these processes is to compare different data sets and analyse
their relationship at different time scales. This can be achieved by es-
timating the coherency, although robustly determining the phase and
the relationship as a function of frequency requires long time series.

A simpler statistic that describes the similarity between two time
series is the linear correlation. By definition, the correlation estimate
includes information about the shared variability from the Nyquist
frequency (half the sampling rate −Δt 1) to the reciprocal length of the
record.

For many applications, a time scale dependent estimate of the cor-
relation would be useful.

For example, two time series containing the same low frequency
signal, but different uncorrelated (white) noise, would exhibit a higher
correlation if the correlation estimate was restricted to long time scales
(i.e., low frequencies), because at short time scales (i.e., high fre-
quencies) the signal is largely masked by the noise (Fig. 1). Thus, it is
necessary to specify for which frequency range the correlation is
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estimated.
Standard routines for estimating the correlation of time series do not

usually provide a possibility to make these estimates frequency de-
pendent. Furthermore, it is impossible to apply these routines directly
to irregular time series data. Instead, irregular data is typically re-
sampled at a constant rate before applying the standard statistical
routines. However, depending on the resampling method this may bias
the analysis as spectral estimates may be affected by the resampling or
interpolation method whose impact strongly increases with frequency
(Broersen et al., 2000). Depending on the resampling frequency, this
approach may add power on short time scales due to aliasing, which
can only be diminished by using a higher resampling frequency
(Broersen, 2009). Nearest neighbour interpolation results in a bias due
to shifting the observation times to regular sampling (Broersen, 2009).
Linear interpolation causes a variance reduction toward high fre-
quencies of the spectrum (Schulz and Stattegger, 1997). Thus, inter-
polation acts as a low-pass filter which causes a reddening of the ori-
ginal signal (Schulz and Stattegger, 1997; Schulz and Mudelsee, 2002).
This bias not only affects spectral analyses, but also time-domain
methods (Schulz and Stattegger, 1997).

There are a few types of techniques (mainly developed for spectral
analyses) that can be directly applied to irregularly sampled data. Three
approaches are shortly summarized by Broersen et al. (2000): (1) direct
transform methods like the Lomb-Scargle method (Lomb, 1976; Scargle,

1989), (2) slotting methods (Edelson and Krolik, 1988; Tummers and
Passchier, 1996), and (3) model-based estimators (van Maanen and
Oldenziel, 1998; Müller et al., 1998). Rehfeld et al. (2011) tested these
techniques for estimating the correlation of irregularly sampled time
series including different kernel methods in the time domain such as
slotting and non-rectangular kernels. While these techniques enable
correlation estimates directly from irregularly sampled data, they do
not consider possible time scale dependencies of the correlation.

In this study, we investigate methods to estimate the time scale
dependent correlation of weakly irregularly sampled time series. As fast
Fourier transform based estimators have been shown to be inferior for
these kinds of analyses (Rehfeld et al., 2011), we focus on methods in
the time domain and two aspects in particular: (i) the time scale de-
pendency, and (ii) how best to handle the sampling irregularity.

While the first part focuses on finding methods that are sensitive to
the time scale dependency in general, the second part evaluates their
applicability to irregularly sampled time series. This is accomplished
through surrogate time series that show the same characteristics as
Holocene marine sediment temperature proxy records.

2. Methods

2.1. Time scale dependency

Since the correlation of time series is generally a function of time
scale (i.e. the frequency range), we applied linear response filters to the
data in the time domain before estimating the correlation.
Mathematically, the filter process is defined as the convolution of an
input time series with the impulse response function of the filter. In the
frequency domain, a filter is defined by its transfer function given by
the Fourier transform of the impulse response function. Commensurate
with the filter effect in the time domain, the power spectrum of a fil-
tered time series is given by the product of the power spectrum of the
input time series and the squared transfer function.

In the following, the correlation at time scale Tc is defined as the
correlation obtained from the low-pass filtered data with cut-off fre-
quency = −f T( )c c

1 . Specifically, we tested finite response filters of
varying complexity: (A) a moving average (boxcar) filter, common in
paleoclimate research; (B) a Gaussian filter, as a compromise of a short
filter both in the time and frequency domains; and (C) a finite response
filter with a sharp cut-off in the frequency domain. The frequency re-
sponse of the moving average filter depends on the filter length which
we defined as half of the length of the time scale for which we analysed,
and the statistical filter weights were set to the reciprocal filter lengths.
The width parameter σ in the Gaussian filter, commonly known as the
standard deviation of the Gaussian function, was set to

=σ
f π

1 ,
c

2
ln(2) (1)

which ensures that the squared transfer function of the filter decreases
to 0.25 at the cut-off frequency fc. We set the filter length to σ6 as filter
weights beyond ± σ3 are sufficiently close to zero and thus negligible.

The finite response filter consisted of the low-pass filter from
Bloomfield (1976), where the weights depend on both the cut-off fre-
quency and the filter length that defines the filter sharpness. A wider
time window of the filter will cause the frequency response of the low-
pass to converge toward a perfect cut-off filter in the frequency domain.
The filter length was set to five times the time scale for which we
analysed. An example of all three filter types is shown in Fig. 2.

2.2. Irregularity

We define an irregularly sampled time series of length N as a se-
quence of observations xi

irr( ) whose observation times ti
irr( ) increase

monotonically with variable inter-observation time steps

Fig. 1. Time scale dependent correlation of an irregularly sampled time
series pair (A) and spectrum of the signal and white noise (B). The time
series 1 and 2 (red and black) contain the same signal, generated as red noise
with =β 1S and independent white noise components. Both time series are
filtered with three cut-off frequencies fc and the resulting time series are shown
(A). The time series containing most frequencies ( fc = 1/10y) is basically un-
correlated while slow variations are positively correlated as seen after filtering
with fc = 1/2000y.
This can be also understood in the spectral domain (B). The power spectral
density of the signal (solid black line) increases towards lower frequencies
whereas the power spectral density of the noise (dashed black line) is constant.
For high cut-off frequencies such as fc = 1/10y the variance of the noise is
higher than the variance of the signal as given by the integrated spectra of the
signal and the noise up to fc (area between axes, fc and the power spectral
density). For decreased fc the integrated spectrum of the signal becomes more
dominant relative to the noise. The higher amount of the signal compared to the
noise component results in higher correlations for time series filtered with
lower fc.

M. Reschke et al. Computers and Geosciences 123 (2019) 65–72

66
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1
( ) and a mean sampling interval.

The time domain filters were applied at regular output positions
tj

reg( ) and different filtering procedures were tested: (1) direct filtering of
the irregular time series, (2) an integrand interpolation method that
interpolates the integrand of the convolution integral of the filter, and
(3) an interpolation method that interpolates the irregular time series
onto a regular sampling grid before filtering. The first approach filtered
and resampled the irregular time series without interpolation and
produced a filtered time series, x̃j, at the regular sampling points tj

reg( ) as
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where W t( ) are filter weights of our tested symmetric filters. The in-
tegrand interpolation method used the procedure from Eng and
Gustafsson (2008), by which the irregular time series was filtered at
regular positions tj

reg( ) and the integrand of the filter-specific convolu-
tion integral Ii

irr( ) interpolated. We applied a linear interpolation,
yielding a filtered time series
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with the integrand of the convolution integral being

= −I W t t x( )i
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(4)

Particularly in the geosciences, irregularly sampled time series data
are commonly interpolated using linear or nearest neighbour inter-
polations to produce a regular time series, xi

reg( ) at ti
reg( ), which is then

filtered at the regular positions tj
reg( ) to yield
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To identify the best method for estimating time scale dependent
correlations between irregularly sampled time series, we tested each
method on surrogate time series data (with known correlations) that
were modelled on Holocene marine sediment temperature proxy re-
cords. We employed a Monte Carlo approach with 10 000 repetitions to
generate pairs of irregularly sampled surrogate time series with a pre-
defined correlation. They were resampled and filtered at regular posi-
tions with a sampling interval well below the mean sampling interval,
before calculating the Pearson correlation with standard routines and
comparing the result with the known correlations.

2.3. Surrogate data

2.3.1. Construction of surrogate signals
Climate signals are often dominated by low frequencies

(Hasselmann, 1976). The variability in climate proxy time series on
interannual to multimillennial time scales can be described as a power-
law process whose power spectral density (PSD) is given by = −PSD f β,
with frequency f and spectral slope β (Huybers and Curry, 2006). For
temperature related paleoclimate signals, typical values for β are in
range of red noise between 0.3 and 1.6 (Huybers and Curry, 2006) with

≈β 1 for the Holocene (Laepple and Huybers, 2014). Due to various
non-climate-related factors such as a varying sedimentation rate or
different sampling protocols, each proxy record contains an unknown
noise component (Laepple and Huybers, 2013), which, to a first degree,
can be described as an uncorrelated white noise, equivalent to a power-
law process with =β 0.

Our surrogate data was therefore constructed from pairs of annually
resolved time series X and Y of length =N 10 000, each containing a
superposition of a climate signal S with a spectral slope βS and in-
dependent random noise components ϵx and ϵy with a spectral slope βϵ:

= +X S cϵx (6)

= +Y S cϵy

where c is a scaling factor. All components of both time series are un-
correlated, i.e. = = =cor S cor S cor( , ϵ ) ( , ϵ ) (ϵ , ϵ ) 0x y x y , and the asso-
ciated variances σs, σϵx and σϵy are equal to 1.

The Pearson correlation of two time series is defined as their stan-
dardized covariance given by

=ρ cov X Y
σ σ
( , )

XY
X Y
2 2 (7)

As signal and noise are uncorrelated, the covariance of X and Y is
equal to the variance of the signal component. In addition, the char-
acteristics of the noise components are identical which yields identical
scaling factors. This simplifies the correlation of the time series to

=
+

ρ
σ

σ σ cXY
S

S

2

2
ϵ
2 2 (8)

The scaling factor c is used to scale the amplitudes of the noise
components and thus to set the true correlation ρorig . To get an analy-
tical expression of c, the correlation coefficient from Eq. (8) has to be
solved for the scaling factor

= −c
σ
σ ρ

( 1 1)S

orig

2

ϵ
2

(9)

Finally, we normalize the time series by multiplying them with
ρorig to get a unit variance.
Typical correlations between pairs of Holocene marine proxy re-

cords are low because the true climate signal is masked by strong non-
climatic noise. Laepple and Huybers (2014) obtained mean correlations

Fig. 2. Characteristics of the filters used in this study. Upper panel: Filter
weights in the time domain. Lower panel: Squared transfer function in the
frequency domain with marked cut-off frequency (dashed line). The low-pass
filter is characterized by a sharp cut-off in the frequency domain, the moving
average by its short length in the time domain. The Gaussian filter has the same
simple shape in the time and the frequency domain. These examples are for a
time scale of 200y.
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of 0.18 (for Mg/Ca proxy records) and 0.08 (for Uk37 proxy records) for
marine sediment proxy record time series data collected less than
5000 km apart and for time scales greater than 500y.

2.3.2. Construction of irregular sampling
To obtain a realistic distribution of inter-observation time steps we

characterized the properties of 56 marine temperature proxy time series
from the Holocene dataset of Marcott et al. (2013). The inter-observa-
tion time steps of each time series were normalised by their respective
means. The result was found to be gamma distributed and, using the
method of moments, with both the shape and rate parameters equal to
2.225. The overall mean inter-observation time step between samples
was 108.56y.

To mimic the irregular sampling in our surrogate time series X and
Y , we generated gamma distributed individual sequences of inter-ob-
servation time steps for each time series, using the above shape and rate
parameters, and multiplying the result with a mean sampling interval of
100y (Fig. 3). Each observation time ti

irr( ) corresponds to the sum of all
previous inter-observation time steps Δtj: = ∑ =

t Δti
irr

j
i

j
( )

1 . The sub-

sampling of the annually sampled time series at a position ti
irr( ) was

accomplished by block averaging observations between −t Δt( /2)i
irr

i
( )

and + +t Δt( /2)i
irr

i
( )

1 . We consciously chose to use averages rather than
to interpolate because particularly for marine data, samples often in-
clude adjacent depths or the sample distance is smaller than the typical
mixing depth in the sediment (Berger and Heath, 1968).

2.4. Evaluation of the estimation methods

Our methods were evaluated by comparing the correlation of our
irregularly sampled surrogate time series with the known true corre-
lation using two types of targets: (i) the true time scale dependent
correlation (that would be obtained from a perfect filter), and (ii) the
filter-specific time scale dependent correlation (to account for a non-
perfect frequency response of the actual filter). The true time scale
dependent correlation can be determined by considering ρXY as a ratio
of variances [cf., Eq. (8)]. To account for the time scale dependency, the
variances of the power-law processes of both the signal and noise
components can be calculated by integrating the power spectral density
of the filtered power-law processes

∫= −

−

σ f G df
N

f
β2

Ny

1 (10)

The lower and upper boundaries of the integral are the lowest de-
tectable frequency, i.e., the inverse time series length −N 1, and the
Nyquist frequency, respectively. For a perfect cut-off filter, G is a step

function, defined as: =G 1 ( ≤f f )c and =G 0 ( >f f )c . In the filter-specific
case, G is equal to the squared transfer function which is the squared
absolute value of the Fourier transform of the impulse response func-
tion of our tested filter (Fig. 2). In this study, we solved the above in-
tegral numerically.

The standard deviation and bias of the deviation from the targets
was used to evaluate the quality of the estimators. Since the estimated
time scale dependent correlation depends on the applied filter, we fo-
cussed on the bias relative to the filter-specific true time scale depen-
dent correlation. For practical reasons we limit our analysis on time
scales smaller than 1000y (1/10th of the time-series length). On longer
time scales, the standard deviation of the correlation estimates is al-
ready higher than half of the correlation estimate which is caused by a
small number of independent samples used for estimating the correla-
tion.

3. Results

3.1. Correlation of red signal - white noise time series

We first analyse the case consisting of a red signal =β( 1)S and white
noise =β( 0)ϵ with predefined correlation ρorig so that the time scale
dependent correlation (for time scale > 200y) is =ρ 0.1XY . In this
case, the true time scale dependent correlation increases for longer time
scales (Fig. 4) as the relative influence of the noise is smaller at long
time scales. Since the filters do not have a perfect cut-off in the fre-
quency domain, the filter-specific true time scale dependent correla-
tions slightly differ from the true time scale dependent correlation.
While the moving average filter underestimates and the Gaussian filter
overestimates the correlation for all analysed time scales, the low-pass
filter produces correlations that are almost identical to the true time
scale dependent correlation (Fig. 4). All methods exhibit an increase of
the correlation estimates for longer time scales similar to the true cor-
relations (Fig. 4), but differences between the estimated and the filter-
specific true correlation remain.

On time scales shorter than 200y, all estimators overestimate the
correlation, except for the direct filtering method using a low-pass filter
which creates a strong bias. At these shorter time scales, the integrand
interpolation method produced very similar results that are almost
identical with the filter-specific true correlations, and only the moving
average overestimated the true correlation (Fig. 4).

On longer time scales, the estimated correlations generally converge
to the filter-specific true correlation as indicated by the decreasing
absolute bias as the time scales are increased (Fig. 4), with the

Fig. 3. Examples of sampling irregularity. The sampling times of two typical
marine sediment cores KY07-04-01 (Kubota et al., 2010) and ODP 984 (Came
et al., 2007) are shown in the upper two rows. The lower two rows show ex-
amples of surrogate sampling times generated using gamma-distributed inter-
observation time steps as described in the Method section.

Fig. 4. Performance of the different estimation methods for a red signal
( =β 1S ) with white noise component ( =β 0ϵ ). Top row: True correlation
(grey, black) and estimated correlation (colours) as a function of time scale.
Middle row: Standard deviation of the estimators. Bottom row: Bias of the es-
timators relative to the filter-specific true correlation. The dashed vertical line
marks the time scale corresponding to the mean sampling interval.
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exception of the low-pass filter and the direct filtering approach which
both maintain a negative bias.

In general, the standard deviations of the estimators, describing the
uncertainty of estimating the correlation from a pair of finite time
series, are higher than the filter-specific biases. Due to the higher un-
certainties of estimating the correlation on long time scales from short
datasets, the standard deviations increase for longer time scales. With
the exception of the moving average method on short time scales, all
methods exhibit higher standard deviations and biases when inter-
polating compared to the direct filtering and integrand interpolation
approach. The different uncertainties are mainly due to different filter
lengths. In general, longer filters have higher standard deviations and
lower filter-specific biases (except for parts of the low-pass based pro-
cedures) than short filters.

3.2. Correlation of white signal - white noise time series

To further investigate the properties of the estimators, we analyse
the superposition of two white noise signals = =β β( 0)S ϵ with a pre-
defined correlation =ρ 0.25orig . There is no predominance of one com-
ponent at any frequency, so that the true correlation is time scale in-
dependent, which also holds for the filter-specific true correlations
(Fig. 5). For all tested methods, the estimated correlations exhibit a
negative bias that appears independent of both the procedure that
handles the irregularity and the time domain filters used. The mismatch
was high for short time scales and vice versa (Fig. 5).

The interpolation approach, and in particular the linear interpola-
tion vis-à-vis the nearest-neighbour, yielded the best approximation of
the true correlation.

On long time scales, the estimated correlations of the interpolation
and the integrand interpolation procedure are similar (except for the
moving average filter), while on short time scales the integrand inter-
polation method underestimates the filter-specific true correlation
(Fig. 5). This behaviour stands in direct contrast to the results obtained
for the red signal and white noise (see above).

With regard to the uncertainties in agreement with the results from
the red signal with white noise, the standard deviations typically in-
creased for longer time scales in all tested methods except the moving
average filter on short time scales using the direct filtering and in-
tegrand interpolation approach.

The standard deviation of an estimator tends to be larger than the
filter-specific bias. With longer filters and for long time scales, the bias

was typically lower while those values were nearly equal for short time
scales. The observed high absolute bias of the integrand interpolation
method for short time scales stands in direct contrast to the low bias
observed for the red signal plus white noise scenario.

4. Discussion

We focussed on three particular aspects: (1) how does temporal ir-
regularity in sampling affect the time scale dependency of correlations,
(2) what is the best procedure to handle this irregularity, and (3) which
is the best filter to account for the time scale dependence of the cor-
relation. We tested three different approaches to find correlations in
irregularly sampled time series data, namely: (i) direct filtering of ir-
regular time series, (ii) an integrand interpolation method that inter-
polates the integrand of the convolution integral of the filter, and (iii)
an interpolation that interpolates the irregular time series onto a reg-
ular sampling grid before filtering. The approaches were combined with
three finite response filters: (A) a moving average (boxcar) filter, (B) a
Gaussian filter, and (C) a finite response filter with a sharp cut-off in the
frequency domain. While all tested approaches yielded similar results,
there were some notable differences.

4.1. Effect of irregularity and non-simultaneousness in sampling

The irregularity of the sampling affects the correlation estimate in
two ways: (i) they shift the correlation toward estimates related to
longer time scales due to different inter-observation time steps; and (ii)
the non-simultaneous sampling of time series introduces a general bias
that leads to an underestimation of the true correlation. Fig. 6 illus-
trates these effects in case of a time scale dependent ( =β 1S , =β 0ϵ ) as
well as a time scale independent ( =β 0S , =β 0ϵ ) correlation.

The sampling rate, −Δt 1, of a time series acts qualitatively as a first

Fig. 5. Performance of the different estimation methods for a white noise
signal ( =β 0S ) with white noise component ( =β 0ϵ ). Top row: True corre-
lation (grey, black) and estimated correlation (colours) as a function of time
scale. Middle row: Standard deviation of the estimators. Bottom row: Bias of the
estimators relative to the filter-specific true correlation. Vertical dashed lines
mark the time scale corresponding to the mean sampling interval. As the
spectrum of the white noise signal and noise is constant, the true correlation is
time scale independent.

Fig. 6. Effect of irregular and non-simultaneous sampling on the correla-
tion estimates. Correlations are estimated by applying a Gaussian filter on
regularly (top), irregularly but simultaneously (mid), and irregularly but non-
simultaneously (bottom) sampled time series as a superposition of a red signal
and white noise (left), and white noise signal and white noise (right). The
vertical dashed lines mark the time scale corresponding to the mean sampling
interval. The simultaneous, irregular sampling is affected by a shift of the
correlation estimates toward longer time scales, which is not visible in case of
the white signal and noise (right). Sampling that is irregular but non-simulta-
neous will underestimate the correlation.
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low-pass filter with a smoothed cut-off. Since it is necessary to have at
least two observations per detectable oscillation, the sampling-related
cut-off (i.e., Nyquist) frequency is = −f Δt0.5Ny

1. To analyse the time
scale dependency of the correlation, we filtered the time series a second
time to remove information about oscillations smaller than the con-
sidered time scale. If the first filtering process has a smaller cut-off
frequency than the second one, there is an additional loss of informa-
tion at frequencies >fNy (Fig. 6, top left). In the presence of a red signal,
the time scale dependent correlation of a pair of time series would thus
be overestimated while a white noise signal would exhibit the expected
time scale independency of the correlation (Fig. 6, top right).

For two time series that were sampled at irregular intervals but si-
multaneous times, the short time scale correlation estimates are shifted
toward those for longer time scales, which is a direct result of the ir-
regular sampling intervals and the sampling-related cut-off becomes
roughly = −f Δt0.5( )Ny max

1. Therefore, the shift only affects time scales
< Δt2 max . If >f fc Ny, the correlation is overestimated for red signals
while remaining unchanged for white noise (Fig. 6, middle row).

Sampling two irregular time series at non-simultaneous times re-
moves information at different time scales and different time windows
from each data set. The correlation estimate of such time series is af-
fected by both the shift of short time scale related correlations toward
the estimate at a time scale of Δt2 max and an underestimation that af-
fects all time scales. White data sets are only affected by the non-si-
multaneity in sampling. The shift of short time scale related correlations
toward those observed for longer time scales we did not observe as the
correlation of a white noise signal is time scale independent (Fig. 6,
bottom right). Both effects are seen for the data set containing the red
signal (Fig. 6, bottom left). In this case, the good approximation of the
estimated correlation of the integrand interpolation on the filter-spe-
cific true correlation is an artefact which is caused by the error-pro-
neness of the method in application on time series with a low resolution
and non-simultaneous sampling.

4.2. Choosing the best method

A procedure that should handle irregularity and account for time
scale dependencies must above all be robust and reliable.

4.2.1. Handling irregularity
If Δtmax exceeds the applied filter length, the filter integral becomes

unreliable and the fewer observations we have within the filter range
the higher the associated error. Direct filtering is similar to the nu-
merical solution of the filter integral for a high resolution regularly
sampled time series which is equal to the sum of the products of the
filter weights with their corresponding observations. Due to the irre-
gular sampling combined with a low mean sampling rate, there are only
a few observations left which are used for the sum. There is thus a
systematic error, caused by the application of this procedure on irre-
gularly sampled time series. This error affects all time scales, but
especially shorter ones. This effect was clearly visible with time series
pairs whose correlation was time scale independent (Fig. 5).

The filter integrand interpolation procedure commonly reduces the
errors caused by direct filtering, because it also works directly on the
irregularly sampled time series, but uses additional interpolated values
during the summation of the products of the filter weights with their
corresponding observations. Again, a higher number of observations
per filter window reduces the systematic error of this approach because
of less over- or underestimated interpolated values of the filter integral.
Hence, the error is lower on longer time scales. On short time scales,
there is a high bias despite filter integrand interpolation (Fig. 5).

4.2.2. Accounting for time scale dependency
The applied filters cause artefacts based to their length as well as

their cut-off behaviour. For Δt greater than the applied filter length,
gaps occurred in the filtered result. According to the filter weights,

which are related to the cut-off behaviour of the applied filter, there
were artefacts like overshooting and steps within the filtering results
(Fig. 7).

The moving average filter had the shortest length of all tested filters.
There were less observations within the filter window so that the
standard deviation of the estimated time scale dependent correlations
was lower than for the other filters (Fig. 4). Higher standard deviations
on short time scales which are related to the direct filtering and in-
tegrand interpolation procedures are the result of gaps within the fil-
tering results. These gaps occur if the filter length is shorter than the
inter-observation time steps. Especially on short time scales, this hap-
pened frequently (Fig. 7, top). Since the weights of the moving average
filter were equal, the filtering result appeared step-like. This is in-
dependent of the analysed time scale (Fig. 7).

The low-pass filter was the longest tested filter and contained po-
sitive and negative filter weights. Both properties can lead to artefacts.
The underestimation of the correlation related to longer time scales
might be the consequence of the long filter length as well as the finite
length of the time series itself. Especially short time series would suffer
from a significant loss of information due to filtering with low cut-off
frequencies, so that the filtered time series would be much shorter than
the original data (Fig. 7, bottom left).

In addition, this caused a high standard deviation of the correlations
for the low-pass filter. On short time scales, the low correlation esti-
mates related to the direct filtering and integrand interpolation proce-
dures resulted from filter artefacts (overshooting) due to less observa-
tions as well as positive and negative filter weights. Especially in parts
of the time series where the inter-observation time steps were larger
than the mean sampling interval, the filtered time series was affected by
overshooting (Fig. 7, top left). The overshooting can be reduced by
increasing the number of observations per filter window or through a
more regular sampling.

The Gaussian filter had nearly the same characteristics as the low-
pass filter from Bloomfield (1976) with a filter length of one-time the
analysed time scale because both filters only contain positive filter
weights. Therefore, here the main artefact of the low-pass filter – the

Fig. 7. Filter artefacts related to different time scales caused by filtering
an irregularly sampled time series. Short time scales (top) are affected by
gaps (moving average filter) for filter lengths shorter than the inter-observation
time steps. They also tend to overshoot when there are fewer observations
covered by positive and negative filter weights (low-pass). The analysis of
longer time scales (bottom) minimizes the occurrence of artefacts due to a
higher number of observations covered by the filter windows.

M. Reschke et al. Computers and Geosciences 123 (2019) 65–72

70



overshooting which is caused by negative filter weights – was limited or
non-existent (Fig. 7, top right). Sometimes, slight overshooting (not
shown) was possible on short time scales when Δt was close to the
Gaussian filter length.

4.3. Example application to observed proxy records

As a final example, we applied one combination of our tested pro-
cedures and filters to data from two marine sediment cores which
consisted of sea surface temperature records, based on Mg/Ca measured
in planktonic foraminifera (Nürnberg et al., 1996). The Morotai Basin
core MD98-2181 (Stott et al., 2007), located in the westernmost Pacific
Ocean (6.3°N, 125.8°E), and the Timor Sea core MD01-2378 (Xu et al.,
2008), located in the easternmost Indian Ocean (13.1°S, 121.8°E), were
collected 2190 km apart, have a high mean resolution (MD98-2181:
50y, MD01-2378: 130y) and overlap in time between 730 and 11 660y
BP (Fig. 8).

We use the combination of a linear interpolation followed by
Gaussian filtering to estimate the correlation related to different time
scales, as this method produced the fewest artefacts. To test the sta-
tistical significance of the correlation estimates, we compared the es-
timates against the null hypothesis of uncorrelated time series with a
noise with power-law scaling with =β 1 (Appendix A).

The correlation of the time series pair increased for longer time
scales. Given the relatively high noise level in Mg/Ca records (Laepple
and Huybers, 2013), this suggests that the common (climate) signal is
masked on short time scales. Filtering the time series led to a greater
reduction in the noise component compared to the common climate
component and resulted in statistically significant correlation estimates
(p = 0.05) for time scales> 500y (Fig. 8).

5. Conclusion

In this study, we investigated different methods to estimate the time
scale dependent correlation of weakly irregularly sampled time series.
Each method was restricted to the time domain and overcame the
sampling irregularities by interpolation or direct filtering. Each method
also had to account for the time scale dependency of the correlation
which was achieved through filtering. As data sets we used surrogate
time series that mimicked the characteristics of Holocene marine se-
diment temperature proxy records.

The irregularity in sampling causes problems during the correlation
analyses as it qualitatively acts as a low-pass filter with a cut-off fre-
quency of roughly −Δt0.5( )max

1. Thus, estimates for time scales < Δt2 max
exhibited a bias in addition to a time scale independent under-
estimation of the correlation which we attributed to the non-simulta-
neous sampling of time series.

Both the linear and nearest neighbour interpolations were the best
performers in terms of handling the sampling irregularity and neither
was prone to artefacts which occur if some Δt are much larger than the
mean sampling interval. Although the bias and the standard deviation
were both higher for the interpolation method than for the integrand
interpolation, we suggest the application of the interpolation method
due to more reliable estimates as the integrand interpolation method
failed on short time scales due to the existence of artefacts.

The tested low-pass filter with a length five times the analysed time
scale provided the best approximation to the analytical solution for a
perfect cut-off filter. However, the filtering result was affected by ar-
tefacts due to the long filter length as well as negative filter weights.
Both aspects limit the applicability of this filter.

The Gaussian filter was a compromise between the low standard
deviation of the moving average filter and the cut-off behaviour of the
low-pass filter. The cut-off behaviour and filter weights were compar-
able to the properties of a shorter version of the low-pass filter of the
same definition, but with a length of one-time the analysed time scale.
By reason of a smoother filtering result without gaps (moving average
filter) and overshooting (low-pass filter), we suggest the application of
the Gaussian filter.

Irrespective of the applied method and filter, there was the tendency
for most artefacts to occur when analysing short time scales if there
were less observations due to a low mean sampling rate. Therefore, it is
meaningful to restrict the estimation of the time scale dependent cor-
relation to time scales which are obviously larger than the mean inter-
observation time step of the analysed time series.

Computer code availability

The code used in this paper is based on R (≥3.2.2). It can be
downloaded as the R package ‘corit’ from the public git repository at
https://github.com/EarthSystemDiagnostics/corit. The main functions
allow a time scale dependent estimation of the Pearson correlation
based on three methods resampling irregular data to an equidistant
spacing before or during filtering the time series, a significance test of
the estimate based on surrogate records as well as an output of the
filtered time series. All main functions are provided with a simple ex-
ample in the R Documentation.
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Fig. 8. Filtering results and time scale dependent correlation for two
marine sediment temperature proxy records. The upper panel shows the raw
and filtered data of both time series using a cut-off frequency of 1/200 and 1/
800 −y 1. The lower panel shows the time scale dependent correlation (black
line) as well as the 90% (grey polygon) and 95% (light grey polygon) quantiles
of the null hypothesis of noise with =β 1. The vertical dashed line marks the
time scale corresponding to the maximum mean sampling interval of both time
series.
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Appendix A. Significance test for time scale dependent correlation
estimates

To test the significance of the time scale dependent correlation es-
timates, we resort to a Monte Carlo procedure. We generate surrogate
records on an annual scale, subsample the records at the same resolu-
tion as the analysed time series and then apply our estimators. Finally,
we provide the 90% and 95% quantiles of the correlations obtained
from the surrogate data.

As null-hypothesis we assume uncorrelated time series, thus time
series that only consist of noise. The statistical significance will depend
on the temporal correlation of the noise, i.e., its power spectrum. Let us
assume a power-law spectrum, either with a prescribed slope, or with a
slope estimated from the datasets to be tested.

For the latter, we estimate the spectral slopes of our time series by
linearly interpolating the time series onto an equidistant grid and es-
timating the power spectrum from the detrended time series. Finally,
we estimate the slope from the power spectrum by a linear regression in
the frequency range of the reciprocal half of the length of the over-
lapping time window of the time series as well as the inverse twofold
maximum mean resolution of both time series. Our choice of the fre-
quency range minimized the impact of the detrending as well as the
impact of the irregular sampling and the linear interpolation. However,
especially for short time series, the estimates of spectral slopes are very
uncertain.

For Holocene sea surface temperature paleoclimate time series, we
suggest to prescribe a spectral slope of 1 (Laepple and Huybers, 2014)
as this estimate is based on analysing a large number of sediment re-
cords and thus more robust than noisy estimates based on single time
series.
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