
Contents lists available at ScienceDirect

Computers and Geosciences

journal homepage: www.elsevier.com/locate/cageo

Change of support using non-additive variables with Gibbs Sampler:
Application to metallurgical recovery of sulphide ores
Mauricio Garridoa,∗,1, Julian M. Ortizb,2, Francisco Villasecac,3, Willy Krachtd,4, Brian Townleye,5,
Roberto Mirandac,6
a ALGES Laboratory, AMTC, Universidad de Chile, Chile
b The Robert M. Buchan Department of Mining, Queen's University, Canada
c Codemining Consultant, Chile
dAdvanced Mining Technology Center (AMTC) and Department of Mining Engineering, Universidad de Chile, Chile
e ALGES Laboratory, AMTC and Department of Geology, Universidad de Chile, Chile

A R T I C L E I N F O

Keywords:
Metallurgical recovery
Additivity
Change of support
Gibbs sampler

A B S T R A C T

Flotation tests at laboratory scale describe the metallurgical behavior of the minerals that will be processed in
the operational plant. This material is generally composed of ore and gangue minerals. These tests are usually
scarce, expensive and sampled in large supports. This research proposes a methodology for the geostatistical
modelling of metallurgical recovery, covering the change of support problems through additive auxiliary vari-
ables. The methodology consists of simulating these auxiliary variables using a Gibbs Sampler in order to infer
the behavior of samples with smaller supports. This allows downscaling a large sample measurement into smaller
ones, reproducing the variability at different scales considering the physical restrictions of additivity balance of
the metallurgical recovery process. As a consequence, it is possible to apply conventional multivariate geosta-
tistical tools to data at different supports, such as multivariable exploratory analysis, calculation of cross-var-
iograms, multivariate estimations, among others. The methodology was tested using a drillhole database from an
ore deposit, modelling recovery at a smaller support than that of the metallurgical tests. The support allowed for
the use of the geochemical database, to consistently model the metal content in the feed and in the concentrate,
in order to obtain a valid recovery model. Results show that downscaling the composite size reduces smoothing
in the final model.

1. Introduction

The sample support of drillholes (whether geochemical grades,
geological logging, metallurgical testing, etc.) is often different. In the
case of geochemical grades, the drillholes are composited to a constant
length to perform conventional statistical and geostatistical analyses,
for example exploratory data analysis, variogram analysis, estimation
or simulation (eg. (Chiles and Delfiner, 2012), (Deutsch and Journel,
1998), (Goovaerts, 1997), (Isaaks and Srivastava, 1989)). In the case of
metallurgical variables, compositing methods can cause problems of

statistical bias given the non-additive nature of these variables
(Carrasco et al., 2008). In the particular case of the metallurgical re-
covery in the flotation process, it is calculated as the ratio between the
mass of metal in the concentrate and the mass of metal in the feed
(Mular and Barratt, 2002). The metal of the concentrate and feed are
additive variables from a statistical point of view (mass properties), but
the recovery is not (Carrasco et al., 2008).

Flotation tests are usually performed to describe the behavior of a
mineral in the metallurgical process plant. The metallurgical response
will depend mainly on two factors: the geological properties of the
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material and the operational parameters. There are different studies
where the relations between geology and the metallurgical response are
observed (Garrido et al., 2016), (Hu et al., 2009), (Hunt et al., 2011),
(Lund and Lamberg, 2014), (Solozhenkin et al., 2016), (Haga et al.,
2012). Clay minerals associated with alteration negatively affect the
process to recover copper (Bulatovic et al., 1999). Faced with these
materials, different operational responses can increase recovery by
improving the effectiveness of the process. Other sulphide minerals
such as pyrite also negatively affect the copper recovery (Mular and
Barratt, 2002). Usual recovery values range from 90% to 95%, but in the
face of these geological variations the recovery may decrease to 80% or
less (Metso, 2006).

Linear regression models are used to estimate the recovery of an ore
body (Weisberg, 2005). This methodology requires to find statistical
correlations between recovery and other variables such as total copper,
solubility ratio, analytical acid consumption, etc. Gaussian simulations
have been used to model metallurgical parameters since they do not
assume additivity of the study variable (Deutsch et al., 2015). The
methodology proposed in this research allows estimating/simulating
the recovery using samples of variable length/support, maintaining
basic statistics, the spatial variability and the physical conditions or
restrictions associated to the problem of additivity. The methodology
can be easily applied or adapted to other cases related to geome-
tallurgical performance.

Geostatistical modelling needs defining the estimation units (do-
mains) on which the study is being performed (Hunt et al., 2014). These
domains assume a constant statistical behavior of the variable within
the entire volume (second order stationarity) (Matheron, 1973).

In the case of recovery, domains are established on geological and
metallurgical information. Within these domains, variables are esti-
mated or simulated using classical statistical and geostatistical algo-
rithms such as multivariate regression and Gaussian simulation
(Deutsch, 2016). If the geological characteristics are constant in two
flotation tests, then the metallurgical response must have the same
behavior in both tests without making operational changes. This hy-
pothesis is debatable given the high variability of geological conditions
in the ore body, and many of these geometallurgical relationships have
not been exhaustively described yet.

Another complication associated with modelling the recovery is the
scaling problem going from laboratory small scale test to production
volumes (Truter, 2010). Many models have been created based on these
tests (Boisvert et al., 2013), (Coward and Dowd, 2015). The models
generated based on laboratory tests are used to determine the expected
behavior in the processing plant, and must be over-dimensioned on an
industrial scale (Suazo et al., 2009). Laboratory tests are performed as a
batch process. On the other hand, in industrial applications flotation is
performed through a continuous flow (serial and parallel Rougher,
Scavenger and Cleaner cells) (Mular and Barratt, 2002). These and
other problems complicate the correct modelling for the prediction of
the geometallurgical variables.

This research deals with the issue of downscaling the support of
geometallurgy tests done at the laboratory to match the support of
geochemical and mineralogical composites. Downscaling methodolo-
gies have been developed by different authors, where change of support
accounts for the statistical consequences (Pardo-Iguzguiza et al., 2006)
(Tran et al., 1999) (Deutsch, 2016). This article covers the problem of
downscaling integrating different sources of information through aux-
iliary variables (in the case of the flotation of sulphur minerals, the
metal in feed Wf and metal in concentrate Wc explained in section 2
Methodology. It is based on the Gibbs Sampler (Geman and Geman,
1984) and allows to estimate/simulate samples on a smaller support
consistent with the original data reproducing their basic statistics,
spatial variability and constraints associated to the nature of the vari-
able. The article is explained through a simulated synthetic case and
applied to a case study (exploratory drillholes).

The objective of applying this methodology is to reduce the support

of the metallurgical recovery variable in order to facilitate the appli-
cation of conventional geostatistics tools. The upscaling procedure is
not considered in this article because it generates a decrease in the
variance of data and, consequently, predictive models with low re-
solution. The objective of this research is the assimilation of small
support samples (eg, geochemical variables) with large support samples
(eg, geometallurgical variables) to generate high resolution models. To
find multivariate correlations usual statistical tools are correlation
coefficients, principal component analysis, cross variograms, scatter
plots, etc. (Wackernagel, 2003). These tools require that the data be
collocated (all variables measured in the same sample (Chiles and
Delfiner, 2012),) and at the same support, a condition that can be
achieved through this methodology without losing resolution of the
local variability. The proposed methodology is built on the hypothesis
that specific geometallurgical parameters and hence mineral behavior
in processing are a function of geological/mineralogical properties.
These properties may be identified on a much smaller scale, hence
improving resolution of geometallurgical properties and models.

2. Methodology

Samples with geological information are usually measured on sup-
ports different from the metallurgical tests. Metallurgical tests require
much larger sample volumes, in order to analyze the different attributes
and their operational characteristic ranges. To integrate geological and
metallurgical information, it is convenient to change the variable dif-
ferent supports to a standardized support for all measurements. For
non-additive categorical variables (e.g. lithology or mineralogy code),
the majority code can be assigned to the composite or the sample code
located in its center. In the case of continuous variables, there are dif-
ferent tools to increase or decrease the sampling support:

– Composite: method of up-scaling, is based on averaging an attribute
based on the sampling lengths. This is not recommended for non-
additive variables because it biases the result by using a linear
average.

– Gibbs sampling: down-scaling method, allows to simulate samples
with higher sampling density by scaling basic statistics and spatial
continuity. It also allows to consider mathematical restrictions in the
simulation.

A schematic example of down-scaling with 3 samples (Z1, Z2 and Z3)
is shown in Fig. 1.

The value of Z1 with support of 3m is downscaled to the values of
z11, z12 and z13 with supports of 1m respectively. These values are re-
lated through f ( ) which represents the physical constraints associated
with metallurgical processes, for example mass balance. The change of
support implementation considers the following aspects:

Fig. 1. Diagram of down-scaling for 3 samples Z1, Z2 and Z3.
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1. Scaling of basic statistics.
2. Scaling of spatial variability (smaller support implies increased

variability).
3. Integration of measured geochemical variables to small support.
4. Physical constraints of the problem (inequalities and relationships).

The methodology is now presented for the particular case of se-
parating a composite of length L into 2 composites of length L/2 subject
to the conditions described above. For the composite of length L, let Wf
be the mass of metal in the feed and Wc the mass of metal in the con-
centrate. Fig. 2 shows a diagram depicting the known variables, equa-
tions and constraints of the problem.

W f
(1) and W f

(2) are the mass of metal in the feed from the top and
bottom halves of the original composite. Similarly,Wc

(1) andWc
(2) are the

mass of metal in the concentrate. R(1) and R(2) are the corresponding
recoveries, which are not additive variables:
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Equation (2) is the expanded form of equation (1). Under unusual
conditions, the equality of equation (1) can be met, for example when
the sample has homogeneous behavior, i.e., = =R R R(1) (2) . The vari-
ables Wf and Wc are additive variables (mass). The methodology uses
these variables to calculate R in each sub-composite. The methodology
consists of the following steps:

1. Transformation. Given a set of data at support L, transform Wf
and Wc independently to standard Gaussian distributions yf and yc, re-
spectively. The anamorphosis functions are given by the equations:

=y x W x( ) ( ( ))f f f (3)

=y x W x( ) ( ( ))c c c (4)

where W x( )f and W x( )c are the mass of the metal in the feed and in the
concentrate, respectively, from composites at support L. f and c are
the transformation functions (anamorphosis) and y x( )f and y x( )c are the
transformed variables (also at support L). These variables are dis-
tributed as Gaussian distributions with mean of 0.0 and variance of 1.0.

2. Variogram analysis. The variograms of the transformed vari-
ables y x( )f and y x( )c are calculated and modelled to capture their spa-
tial continuity and anisotropy. The variogram models obtained for the
transformed variables at support L are used to simulate the same
variables at support L/2. This is a reasonable assumption when the
nugget effect is small, considering that the variance is normalized to
1.0, since we are considering the normal scores and we can assume the
shape of the variogram does not change significantly. The variance
reduction is corrected after back transformation, as explained later, to
account for the change of support. In cases of larger nugget effect, the
variable at support L/2 can be simulated with a variogram that includes

the increase on the relative nugget effect, as computed using the var-
iogram scaling approach (see, for example (Chiles and Delfiner, 2012)).

3. Simulation at support L/2 using a Gibbs sampler. The Gibbs
sampler to obtain the downscaled values of W x( )f and W x( )c , specifi-
cally the values W x( )f

(1) , W x( )f
(2) , W x( )c

(1) and W x( )c
(2) , which represent

the mass at support L/2, is implemented as follows (we illustrate the
process for W f

(1), but the four variables are simulated at every location
in order to check compliance with the constraints):

(a) Every location where a sample at support L exists is divided into
two simulation locations, representing the two downscaled values
at support L/2 (Fig. 3).

4. Backtransformation to calculate Wc
sim(1) , W f

sim(1) , Wc
sim(2) and.

W f
sim(2)

5. Calculation of the recovery at support L/2 through the empirical
formula of metallurgical recovery, for each sub-composite:

=R W
W

sim c
sim

f
sim

(1)
(1)

(1)
(9)

=R W
W
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sim

f
sim

(2)
(2)
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The condition R0 1 is verified by the rejection conditions im-
posed earlier.

Notice that the back transformations
c

1
sub( ) and f

1
sub( ) account for the

variance increase due to the smaller support of sub-composites. An af-
fine correction is applied over the distribution of the original compo-
sites, to account for the new support. In the case of small variance re-
ductions, an affine correction will do well. If larger variance corrections
are needed, a different model such as the Discrete Gaussian model could
be used, although this does not change the suggested approach. The
variance increase (used in the affine correction for the back transfor-
mation, step 4) is calculated using classic variance-support relation-
ships (for more information see (Chiles and Delfiner, 2012)). In parti-
cular, the scaling of the variance is given by the following relation:

= +C C V V V V(0) ( , ) ¯ ( , ) (11)

Where =C V V( , ) ( )V is the sill (or modelled variance) of the var-
iogram at support L before transformation to Gaussian units,

=C (0) ( ) is the sill of the variogram at point support and V V¯ ( , ) is
the average variogram value of vectors defined within the volume V. It
is given by the following relation:

=V V
V

x x dxdx¯ ( , ) 1
| |

( )
V V

2 (12)

In our case, it is easy to show that:

= L L L L( ¯ ( , ) ¯ ( /2, /2))L L
2

/2
2 (13)

The relationship can be graphically observed in Fig. 4.Where 2 is

Fig. 2. Diagram of variables, equations and physical restrictions of the change of support problem for recovery.
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the variance of the data Wc at point support (unknown), L
2 variance at

support L and L/2
2 variance at support L/2. More details in (Chiles and

Delfiner, 2012).
Rejection tests (conditions of inequality) are based on the physical

constraints in the recovery calculation. It can be observed that with
more rejection conditions, the variance of the data simulated at support
L/2 increases. Simulation using Gibbs sampler has been used in other
conditional simulation methodologies based on random fields with
Gaussian distribution (Geman and Geman, 1984). The simulation is
done sequentially (Gomez-Hernandez et al., 1993).

3. Synthetic case analysis

The change of support methodology was applied to a basic case
study in 2D. Statistical validations are presented.

3.1. Synthetic case study

Copper grades and metallurgical recovery values were simulated in
10 drillholes. The support used is =L m30 . Fig. 5 shows the simulated
values, the grade distribution of Wc and the variogram of this variable
transformed to Gaussian scores.

The 30m composites are uniformly spaced every 150m in the
horizontal and every 30m in the vertical direction. The distribution of
mass of metal concentrate is log-normal with a coefficient of variation
of 50%. The experimental variogram is calculated on the Gaussian va-
lues of the variable Wc at support of 30m. The distribution of Wf is
known at support 30m. From metallurgical tests, the recoveries R are
known over 30m samples. Thus, Wc can be inferred.

We apply the methodology previously described to obtainWc andWf
in sub-composites (support 15m) at composite locations (Fig. 6).

3.2. Statistical validations

Using the copper grade (Wf in mass) and metallurgical recovery, the
mass of recovered ore (Wc in mass) was calculated. Fig. 7 (A) shows the
statistical reproduction of Wc at a support of m15 and (B and C) shows
the multivariate reproduction of the relation W Wc f .

The quantile-quantile comparison of the distributions of Wc using
supports of L and L/2 is shown in Fig. 7, (A). The number of data points
was doubled, the mean of the data remained constant (Wc additive
variable) and the standard deviation increased (the decrease in support
implies an increase in the variance of the data). The relation W Wc f
with support at L/2 remained similar in comparison to this relation
with support L. A slight decrease in the correlation coefficient is ob-
served due to the increased variance at smaller support.

Estimated Wc was plotted at support =L m30 and =L m15 for two
of the drillholes (Fig. 8). In Fig. 9 the increase in the variance that
entails the decrease of the support can be observed. From 100 simula-
tions the variogram reproduction at support of =L 15 mwas checked in
Fig. 9.

4. Case study: application to drillhole samples

The following case study corresponds to a campaign with 50 real
drillholes where some samples have been selected for flotation analysis
calculating the metallurgical recovery of copper in sulphide minerals.
The samples for the flotation rougher test have different lengths with a

Fig. 3. Support L division to two sub-composites L/2.

(b) Downscaled simulation locations are visited in a random order.
(c) At every simulation location, perform simple kriging of the sub-composites

previously simulated to determine the mean and variance of the conditional
distribution at a new sub-composite location.
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(d) Simulate y x( )f
sim(1) (1) and y x( )c

sim(1) (1) by Monte Carlo simulation, from the
Gaussian conditional distribution with mean y x( )f

(1)* (1) , and variance
x( )SK

2 (1) for y x( )f
sim(1) (1) and with mean y x( )c

(1)* (1) , and variance x( )SK
2 (1) for

y x( )c
sim(1) (1) .

(e) yf
sim(1) is back-transformed to get W f

sim(1) and yc
sim(1) is back-transformed to

get Wc
sim(1) .

(f) Test 1: rejection condition W x W x( ) ( )c
sim

f
sim(1) (1) (1) (1) , where

=W x y x( ) ( ( ))c
sim

c sub c
(1) (1)

( )
1 (1) and =W x y x( ) ( ( ))f

sim
f sub f

(1) (1)
( )
1 (1) . If rejected,

return to d( ) and resimulate y x( )f
sim(1) (1) and y x( )c

sim(1) (1) .
(g) Calculate =W x W x W x( ) ( ) ( )f

sim
f f

sim(2) (2) (1) (1) and W x( )c
sim(2) (2)

= W x W x( ) ( )c c
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(h) Test 2: rejection condition W x W x( ) ( )c
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f
sim(2) (2) (2) (2) , where

=W x y x( ) ( ( ))c
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c sub c
(2) (2)
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f sub f

(2) (2)
( )
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return to d( ) and resimulate y x( )f
sim(1) (1) and y x( )c

sim(1) (1) .
(i) Once simulated values are accepted, add to conditioning information and

go back to c( ) until all nodes have been simulated.

Fig. 4. Schematic relationship between variances of the same variable at dif-
ferent supports.
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Fig. 5. Simulated case study, 10 drillholes with their statistical distribution and normal score variogram for mass of metal in concentrate.

Fig. 6. Resulting simulated 15m composites, their histogram and normal score variogram (only 1 simulation is shown).

M. Garrido et al. Computers and Geosciences 122 (2019) 68–76

72



Fig. 7. Statistical comparison of Wc and bivariate relations W Wc f using support of L and L/2.

Fig. 8. Reproduction of grades from two drillholes, length =L m15 and
=L m30 .

Fig. 9. Reproduction of spatial variability.
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mean of m40 . As a simplification (given the low variability in sample
length) these have been regularized to a nominal length of m40 . The
samples have similar geological conditions, and are part of the same
geometallurgical domain. Fig. 10 shows a graphical display of the
samples selected for the flotation analysis at laboratory scale.

The copper grades have been composited at a nominal length of
20m (block size of the estimation model) using the proposed metho-
dology. 99 simulations using the Gibbs sampler were performed at the
20m support. For each realization, the cooper recovery in each block of
the model was calculated as ratio between the sum of Wc divided by the

sum of Wf and the average/uncertainty expected were calculated. The
respective validations were done obtaining satisfactory results from a
statistical point of view.

Fig. 11 shows the quantile-quantile comparison for Wc using 20 and
40m composite length. The number of composites was doubled, the
mean remained constant and the variance increased as expected. The
graphs (B) and (C) show the bivariate relations between Wf and Wc to
the supports of 20 and 40m, evidencing notorious similarities and
conservation of the behavior W Wc f .

The next step is to estimate metallurgical recovery in the block
model with 40m composites (conventional methodology) and using the
20m composites obtained with the proposed methodology.

The estimates from 20m composites show greater variability.
Smoothing can be observed in Fig. 12. Fig. 13 shows a histogram of the
block-to-block estimation difference between estimated recovery with
20m and 40m composites.

The mean difference is close to 0.0 (−0.073) with a standard de-
viation of 0.9. Approximately 1% of blocks is estimated with a bias of 3%
(red box in histogram). This is explained by the difference of the change
of support using a non-additive variable. This bias is not statistically
significant with respect to the total of the blocks but locally it can
generate important differences on the ore which is recovered in short-
term planning.

Fig. 10. Graphical display using metallurgical recovery samples.

Fig. 11. Statistical validation of composites at 40m–20m.
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Fig. 14 shows a scatter plot between estimated values with 20m and
40m composites. Fig. 14 highlights the area with metallurgical re-
covery lower than 80% These values may generate operational problems
at the metallurgical process plant. The estimation using a support of
40m does not capture their range due to smoothing. This could be used
as an alarm from a predictive point of view to apply operational
modifications to the treatment of this material.

This result shows the difference in the estimate considering the size
of the sampling support. This affects the resolution of a predictive
model. The estimate with a larger support will not capture extreme data
(high or low metallurgical recovery) that are usually important results
from an operational point of view. Therefore reducing the sampling
support to perform an estimation or simulation allows generating
models of better resolution to capture small-scale variability, which
may help improving the performance of the mining project.

5. Conclusions

Modelling geometallurgical variables often causes problems when
conventional geostatistics tools are applied. The main causes are the
condition of heterotopic sampling and differences in the measurement
supports. This article provides a new compositing approach based on
simulations through a Gibbs Sampler. Statistical and geostatistical
characteristics are preserved with this methodology: global mean,
spatial variability and bivariate relations. The simulated values at
smaller support can be used as input for simulations, in order to account
for the uncertainty stemming from the variability of small support
samples, or they can be averaged for estimation purposes, as shown in
the case studies presented in this paper.

In this article, two advantages of the method were highlighted:

– Reduction of support allows data assimilation (geological samples
and metallurgical tests) for the application of conventional geosta-
tistics tools; for example search of multivariable correlations for
generation of geometallurgical predictive models.

– Reduction of support allows generating estimation models or si-
mulation models with higher resolution and less smoothing. These
models allow the description of local variability on a smaller scale,
identifying extreme value zones that are important from a me-
tallurgical point of view.

– The expected metal of the simulation is 28,263 ± 870 tons of Cu. If
the metal is calculated based on an estimate with 40m support, the
result is 28,484 tons of Cu.

The advantages of estimating metallurgical recovery using this
compositing methodology was illustrated through a case study. The
results were compared with the traditional methodology to estimate
recovery, with important local biases that can generate operational
problems in the mineral processing plant.

Reducing the size of the composite is associated with an increase in
local variability that was captured in the estimation. This information is
captured in the methodology through scaling the variance of the dis-
tribution. The methodology was applied to metallurgical recovery data
that fulfil the physical conditions associated to the non-additivity of this
variable.
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