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A B S T R A C T

The recognition and classification of the multi-channel microseismic waveform are important for mine hazard
prediction. It is widely used to design the corresponding waveform feature for recognition and classification of
the microseismic waveform by hand. The process of designing features manually is arduous and the results of
recognition and classification are not ideal. In this paper, we propose a method combining Deep Convolutional
Neural Networks (DCNN) with Support Vector Machine (SVM) for identifying the microseismic waveform au-
tomatically. We constructed a DCNN structure to train the optimal weight model named the DCNN-Model. The
DCNN-Model is used as a tool for extracting features from multi-channel waveforms. After combining the ex-
tracted features, we used SVM to classify multi-channel waveforms. We compared the outputs of other classifiers,
such as Random Forest and k-Nearest Neighbor (KNN). To extend the dataset of DCNN training and extract the
essential characteristics of waveform images more accurately, we pre-process the raw data by means of filtering
and de-nosing. The experiment shows that the recognition and classification method is of practical value, and the
accuracy rate can reach as high as 98.18%.

1. Introduction

In deep mining, the problem of safety in mine production is be-
coming more and more serious. To ensure safe production, the micro-
seismic monitoring system was used to monitor the seismicity dyna-
mically in the mine, and real-time monitoring of rock mass stability is
realized through analysis of the microseismic waveform during pro-
duction activities. Due to the complexity of the mine geological en-
vironment, monitored microseismic signals are often subject to inter-
ference from background noise. It is therefore difficult to recognize the
seismic waveform effectively.

Owing to the complexity of the application of mine field, it is still
difficult to classify microseismic signals, blasting signal and noise au-
tomatically. At home and abroad, researchers have performed many
practical studies for recognition and classification in the field. Quan-jie
et al. (2012) used an algorithm involving the range and scale-free
fractal box dimensions that addressed the fractal characteristics of mi-
croseismic signals, and identify mechanical vibration waveforms,
blasting waveforms and rock burst waveforms based on SVM. Tan et al.
(2010) used the microseismic data from Cold Lake, Alberta provided by
Imperial Oil Ltd. to research and develop new methods such as fre-
quency filtering, event length detection and statistical analysis, and
they were used to accurately and automatically classify microseismic

event signals, respectively. The test proved that the statistical analysis
algorithm and the principal component analysis method are combined
and the classification is optimal. Dong et al. (2016) used logarithmic
logic and generalized logic distribution to establish the origin time
difference (ODT) probability density model of the adjacent explosion
zone, and employed 7 parameters as discriminant indicators and lo-
gistic regression to construct a discriminant model, which was applied
to the classification of two mines, and the accuracy rates were 96% and
95%, respectively. Bui Quang et al. (2015) first used the progressive
multi-channel correlation (PMCC) detector to detect the coherent wa-
vefront of the sensor array, and converted the detected signal into a
feature vector sequence to train and test the hidden Markov model
(HMM), which was used to classfy the seismic events.The antecedent
researchers have performed much prospective work for extraction and
classification of microseismic waveform features. However, these
methods designed associated features from the relevant waveform by
hand, and classify the designed features by a certain method. Typically,
manual design of features is troublesome and time consuming, and
professional knowledge is necessary to determine the proper method. In
this paper, Deep Convolutional Neural Networks (DCNN) was used for
training the optimal weight model named the DCNN-Model which ex-
tracted features of multi-channel waveforms automatically; then, all
channel features of the multi-channel waveform were combined as the
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input data of Support Vector Machine (SVM) for microseismic wave-
form recognition and classification.

The outline of the paper is as follows. In Section 2, according to the
characteristics of the microseismic signals, we prepared two data sets
for the microseismic recognition and classification. The first data set
was used to train and test the optimal weight model, the DCNN-Model.
The other data set was used to train and test the SVM classifier. In
Section 3, the DCNN structure was constructed to train the DCNN-
Model with massive image data, and automatic classification of the
multi-channel waveform was designed by SVM. Meanwhile, we com-
pared SVM with other classifiers such as Random forest and k-Nearest
Neighbor (KNN). Our experiment, combining DCNN with SVM, is pre-
sented in Section 4 and trained and tested on real data. Based on the
experimental results, we analysed the DCNN model and compared the
classification results of classifiers. Finally, conclusions are drawn in
Section 5.

2. Data preparation

In this paper, the microseismic monitoring data are from the
Dongguashan Copper Mine in Tongling City, Anhui Province, China,
which uses the Institute of Mine Seismology (IMS) microseismic mon-
itoring system from South Africa. The Dongguashan Copper Mine is a
typical deep buried ore body with high in situ stress, so the possibility
of pressure damage and bump burst hazard is very high.

When a microseism event occurs in a mine, it usually triggers an
array of sensors, and the microseismic monitoring system will collect
and store the corresponding multi-channel waveform. Fig. 1 shows 8
waveforms of one event; the distance between the sensors and the
source is different or the signal-to-noise ratio is variable, and thus the
waveforms received by the sensor can change dramatically.

We prepared two data sets for recognition and classification mi-
croseismic events. The first data set consists of the images of all chan-
nels and was used to train and test the DCNN model. According to the
characteristics of the waveforms, all images were classified into three
types: microseismic image, blasting image and noise image. To ensure
the amount of data required for DCNN model training and to ensure its
extraction to the essential characteristics of the waveform image, the
first data sets are processed by denoising and filtering, and the

processed data are added to the first data set to extend the number of
the first data set(Chen and Lin, 2014). The second data set is composed
of a single event multichannel waveform image. Each event contains
the waveform images of the number of triggered sensors to train and
test the SVM classifier, including blasting events, microseismic events
and noise events. Two data sets were divided into a training set and test
set according to a certain proportion for training and testing DCNN and
SVM, respectively. The data processing procedure is shown in Fig. 2.

2.1. Artificial recognition method

At present, according to the characteristics of the waveform
(Abdelwahed, 2012) detected by the microseismic monitoring system,
the technicians of the Dongguashan Copper Mine analyze the mor-
phological characteristics of the waveforms, and manually classify and
identify its waveform types. Fig. 3 shows that the morphological
characteristics of artificial recognition waveforms, including wave
amplitude, rise time, duration, interval time, and trigger threshold.

In addition, artificial recognition distinguishes signal types through
mining vibration mechanisms: (1) Typically, the generation of the
waveform is related to blasting methods, such as deep hole blasting,
medium deep hole blasting and drilling blasting. There are many peaks
in the waveform detected by millisecond blasting, and the energy of
blasting increases continuously, and the amplitude of the latter is larger
than that of the preceding one. (2) The waveform types are identified
and classified by the characteristics of wave energy released by the
damage mechanism of the rock mass. There are two types of mechan-
isms for rock mass damage, which refers to shear failure and tensile
failure. Shear failure releases pressure waves (P-wave) and shear waves
(S-wave), and the propagation velocity of the P-wave is faster than that
of S-wave, while tensile failure generates only the P-wave. Therefore,
the waveform type can be distinguished by the principle whereby there
exists an S-wave or the P-wave arrival is faster than the S-wave.

2.2. Image de-noising and filtering

The microseismic signals will be seriously disturbed during the
transmission process due to the complicated underground environment
conditions. The interference signals include motor vehicle noise,

Fig. 1. The multi-channel waveform display.
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machinery, equipment noise, and electromagnetic interference. Most
monitoring data are composed of a variety of effective signals and in-
terfering signals. Therefore, to expand the data set of DCNN model
training and to extract the essential features of the waveform image
more accurately, this paper uses the wavelet threshold denoising
method to denoise and filter the original waveform image data.

Wavelet threshold de-noising is a method to address nonlinear sig-
nals. In the process of denoising and filtering, the amplitude of the ef-
fective signal does not vary with the increase in the scale of wavelet
analysis, but the interference signal can be attenuated rapidly to
eliminate the excessive interference signal in the effective signal
(Xuelong et al., 2015). Formula (1) represents a one-dimensional model
containing noise signals.

s(k) f(k) e(k) (k 0,1, , n 1)= + = (1)

where s(k) , f(k) , , e(k) are, respectively, the signal with containing
noise, a stationary signal of low frequency, the amplification factor of
noise and white Gaussian noise. The process of wavelet de-noising is
shown in Fig. 4.

In this paper, Sym8 is selected as the wavelet basis function of
wavelet threshold denoising (Chavan et al., 2011), the decomposition
layer number is selected as 5 layer decomposition, and the threshold
function selects the heuristic SURE fixed threshold for signal denoising.
The contrast between the de-noising waveform and the original wave-
form is shown in Fig. 5.

Raw data are discrete points, and they can be described in a two-
dimensional axis, where the horizontal axis stands for time and the
vertical axis represents the amplitude. Because the depth of the sensor
is different, the distance from the signal source is different, and the
propagation process is disturbed by noise and obstacles, it usually
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Fig. 2. The process of data preparation.

Fig. 3. Characteristic of artificial recognition signal.

Fig. 4. Wavelet de-noising process.

B. Lin et al. Computers and Geosciences 123 (2019) 111–120

113



triggers a number of sensors, and the amplitude of the received signal is
not consistent. Therefore, the amplitude of different channels is dif-
ferent, and the difference is greater than 102. Due to the large difference
in image size, it is necessary to zoom in to a certain scale (see Fig. 6) to
prevent the image size from affecting the accuracy of feature extraction.

In this paper, the wavelet threshold de-noising method is used to
denoise the original waveforms, and thus the total amount of the first

data set is nearly doubled to improve the generalization ability of the
DCNN weight model and prevent overfitting of the network. In addi-
tion, wavelet threshold denoising can also enhance the effect of the
effective signal and suppress the influence of noise interference to ex-
tract the essential feature of the waveform image data more accurately.

3. Multi-channel recognition and classification based on DCNN
and SVM

3.1. Building the DCNN structure to extract features

In recent years, the development of deep learning(LeCun et al.,
2015) has been extremely rapid, DCNN has been successfully applied in
some fields, such as behavior recognition and handwritten recognition
(Ciresan et al., 2010; Lawrence et al., 1997; LeCun and Bengio, 1995;
Wang et al., 2012). In 2016, Hinton et al. (Krizhevsky et al., 2012;
Srivastava et al., 2014) applied it in the NIPS2012 to the largest data-
base ImageNet in the field of image recognition, achieving good results.
Ji Shuiwang(Ji et al., 2013) and other researchers extended the DCNN
from the original 2D CNN to 3D CNN for human action recognition and
video surveillance of the airport; the recognition results show its su-
perior performance.

Traditional image recognition methods require features (f1,f2, …fn)
to be designed by hand and use a certain classifier to classify the de-
signed features, as shown in Fig. 7(a); the manual design of waveform
characteristics requires a good professional knowledge background and
is difficult and time-consuming. Therefore, in this paper, the deep
convolutional neural network (DCNN) is used to extract the waveform
feature automatically, and identify and classify single event multi-
channel microseismic events.

DCNN is a type of neural network with supervised learning. In the
hidden layer, the convolution and pooling layers are the core module of
the DCNN. To accelerate convergence or prevent over fitting, the
hidden layer also uses a number of other network layers, such as the
normalized layer or the dropout layer. Forward propagation is used to
drive network abstraction and abstraction features, and the back pro-
pagation algorithm is used to optimize network weights (Jin et al.,
2000). Due to the avoidance of manual design features, as shown in
Fig. 7(b), the waveform image data can be directly input and calculated
and output calculation results, that is, it is an end-to-end learning
process and has a good recognition effect.

To extract the image feature effectively, the 3×3 and 5×5 types
of convolution kernels of DCNN model were used as the basic compo-
nents of convolution operations. The whole network structure of DCNN
is 13 layers deep, including an input layer, 7 convolution layers, 3 max

Fig. 5. Comparison of the original waveform and the de-noising waveform.

Fig. 6. Comparison of the amplitude for different waveforms.

Fig. 7. Comparison of traditional and DCNN image pattern recognition (a) Traditional image pattern recognition; (b) DCNN image pattern recognition.
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pooling layers, 1 average pool layer and 1 output layer. The overall
structure of DCNN is shown in Fig. 8.

The convolutional layer is to extract features of input feature maps
(or images) with the operation of convolution, which uses a certain
learnable convolution kernel which stands for extracting a certain
feature of the input maps. The convolution kernels are randomly in-
itialized and optimized by the backpropagation algorithm. The output
of the convolutional layer is defined as:

( )y Relu x k bj
l

i M
ij
l

ij
l

j
l

j

= +
(2)

where Relu represents the activation function, xij
l denotes the i-th input

of the j-th neuron of the layer l, kij
l represents the size of the convolution

kernel between neuron j of the layer l and neuron i of layer l−1, *
denotes a convolution operation, Mj represents a selection of input
maps, and bj

l is an additive bias of neuron j of layer l.
The first convolution layer of the DCNN network structure is ob-

tained with a 7×7 convolution kernel, followed by the max-pooling
layer, followed by two convolution layers obtained with the 3× 3 and
5× 5 mixed convolution kernel, followed by the max-pooling layer,
where a total of 6 stacked convolution layers and 3 max-pooling layers
are used. The mixed convolution kernel (3×3 and 5×5) can extract
features of different sizes in the convolution layer and reduce the
connection parameters between neurons. As shown in Fig. 9(a) and
Fig. 9(b), all feature maps of the third convolutional layer and the
second max-pooling layer are visualized. Fig. 9 (a) is a feature map
using a convolution operation with a 3×3 convolution kernel, and
Fig. 9 (c) indicates a feature map that uses a 5×5 convolution kernel
to carry out the convolution operation. It can be seen that the output
size of the feature map depends on the stride of the move and the size of
the convolution kernel. In this paper, in addition to the stride of the first
convolution layer and the first max-pooling layer being set to 2, the
stride for the other convolution layers and pooling layer of the DCNN
structure is 1. The step size of the first convolution layer and max-
pooling layer of the DCNN structure used in this paper is 2, while the
other convolution layer and the pool level step size is 1. Therefore, to

maintain consistency of the output feature maps in the convolution
layer, all of the convolution layers with a 5× 5 kernel need to be filled
with the 2× 2 size of padding.

The parameters of each layer are shown in Table 1, including weight
and bias parameters. As seen from Table 1, in this paper, all convolution
layers follow Relu, which improve nonlinearity and introduce sparse-
ness for the network. In addition, the effect of the pooling operation is
to reduce the influence of the resolution of the feature map and the
precise location of the feature map to prevent the network from over-
fitting and influencing the effect of the network recognition. The
pooling effect is shown in Fig. 9(b). The output of the pooling layer is
formally defined as manifest in formula (3):

y Relu pooling x b( ( ) )j
l

j
l

j
l

j
l1= + (3)

where pooling () represents a max or average pooling function. is a
multiplicative bias (Lin et al., 2013).

Since the full connection layer occupies 80% of the overall network
layer parameters and the number of neuron connections, the global
average pooling layer can significantly reduce network parameters to
prevent network overfitting and improve network performance.
Therefore, the full connection layer of the DCNN model adopted in this
paper is replaced by the global average pooling, and the multi-dimen-
sional features become a one-dimensional vector through the global
average pooling layer. Finally, Softmax regression(Hinton and
Salakhutdinov, 2009) is employed as the output layer of the DCNN for
classification,and its function is to output features that are highly ab-
stracted through the hidden layer as probability values that describe the
classification to which the original input image belongs.

Because the image of the multi-channel waveform is simpler than
the natural image, the deeper level of the neural network will increase
the burden of computation and have little impact on the accuracy of the
model. Meanwhile, a shallow network would not contribute to ex-
tracting features of the image effectively, which makes the recognition
accuracy rate decrease, thereby reducing the generalization ability of
the network applications. Therefore, the deep convolutional neural
network structure shown in Fig. 7 is designed to train a large amount of

Fig. 8. (a) The BaseLayer of DCNN; (b)The overall structure of DCNN. Conv represents the convolution layer; Conc represents the concatenate layer; Maxp is the max
pooling layer; Avep4 is the average pooling layer; 3, 5 represent 3 x 3, 5 x 5 size of convolution kernel.
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waveform image data, and the optimal weight model named DCNN-
Model is selected to extract features of the multi-channel waveform.

3.2. Recognition and classification of the multi-channel waveform

Microseismic signal detection instruments often bury multiple sen-
sors underground, and an event often triggers multiple sensors. Because
of the location of each sensor, the depth of the embedding is different,
the number of triggered sensors is different, and the signal is often
disturbed by all kinds of noise in the process of transmission, which
leads to the same signal source as well as different signals received by
each sensor. Therefore, judging an event requires a comprehensive
analysis of each channel waveform (sensor receiving waveform).
However, the DCNN network model can only classify single waveform
images and can not satisfy the classification and recognition of single
event multi channel waveform images.

To solve these problems, this paper proposes using DCNN and SVM
to classify and identify microseismic events. First, the optimal weight
model (DCNN-Model) is selected as a tool for extracting multi-channel
waveform characteristics through the DCNN model structure. Second,
the feature of the last global pooling layer of each channel waveform is
extracted by DCNN-Model for the single event multi-channel waveform
image. Then, all the extracted waveform features are sorted according

to the order of each channel waveform input to the DCNN model in the
event. Finally, the combined multi-channel waveform image features
are used as the input data of SVM, and then the final feature classifi-
cation is carried out by SVM. The whole process of joint classification
and recognition of microseismic events by DCNN and SVM is shown in
Fig. 10.

SVM is a type of machine learning proposed by Vapnik (Cortes and
Vapnik, 1995) in the 1990s. The core idea of SVM is to map the sample
space in the input to a high-dimensional space and obtain the optimal
classification hyper plane in the high dimension space. The goal of SVM
is to find a hyper plane that minimizes the average loss in the training
data, so the following optimization problems can be derived:

w w( , ) 1
2

w CT

i

N

i
1

= +
= (4)

where ξ, w, c respectively represent the relaxation variable, weight
vector and punishment coefficient, which denotes the punishment de-
gree of SVM. Applying the Lagrange multiplier method to solve the
hyper plane of the optimal classification, it can be translated into the
following constrained optimization problem:

Q a a a y y K x x( ) a 1
2
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i
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i j i j i j
1 1 1

=
= = = (5)

Constrained optimization is as follows:

a y a i N0, 0, 1,2, ,
i

N

i i i
1

= = …
= (6)

where a{ }i i
N

1= represent the Lagrange multiplier, the value of most ai was
0, and the sample corresponding to whose value is not 0 what is called
support vector. K x x( , )i j denotes a kernel function which meets the
Mercer 'Theorem. There are commonly 4 types of kernel function, in-
cluding linear kernel (Linear), polynomial kernel (Polynomial),
Sigmoid kernel and Gauss radial basis kernel (RBF). In this paper, we
selected RBF, and the formula is as follows:

K x x
x x

( , ) exp(
2

)i j
i j

2

2= (7)

where is a free parameter, and is determined as follows:

gamma 1
2 2= (8)

We select the best parameter c and by experiment, which can op-
timize the SVM model.

Fig. 9. Visualization of features of convolutional and pooling layers. (a) The convolutional layer of the 3× 3 kernel; (b) The pooling layer; (c) The convolutional
layer of the 5× 5 kernel.

Table 1
Parameter of each layer. Conv2_1, Conv2_2 denote the second convolution layer
of the 3×3 kernel and 5× 5 kernel, respectively.

Layer Output Kernel/stride Pad Parameters

Conv1 115×115×96 7×7/2 0 14.2k
Maxp 57×57×96 3×3/2 0
Conv2_1 55×55×128 3×3/1 0 110.7k
Conv2_2 55×55×64 5×5/1 1 153.7k
Conv3_1 53×53×192 3×3/1 0 147.6k
Conv3_2 53×53×96 5×5/1 1 153.8k
Maxp 26×26×288 3×3/2 0
Conv4_1 24×24×256 3×3/1 0 663.8k
Conv4_2 24×24×128 5×5/1 1 921.7k
Conv5_1 22×22×256 3×3/1 1 590k
Conv5_2 22×22×128 5×5/1 2 409.7k
Maxp 11×11×384 3×3/2 0
Conv6_1 9× 9×128 3×3/1 0 442.5k
Conv6_2 9× 9×64 5×5/1 1 614.5k
Conv7_1 7× 7×64 3×3/1 0 73.8k
Conv7_2 7× 7×32 5×5/1 1 51.2k
Avrp 1× 1×96 7×7/1 0
Linear 1× 1×3 0.288k
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It is concluded that the number of sensors triggered by an event is
5–11 (11 is the total number of sensors) by analyzing the monitoring
data of the Dongguashan copper mine. Since the number of channels of
a single event is different, the final feature dimension of a single event
multi-channel is 1× 1×96xN (N is the number of channels), resulting
in inconsistent total combined feature dimensions of micro-seismic
events of different channel numbers; thus, such features cannot be used
as input data for the SVM model. Therefore, multiple different SVM
models need to be trained for different sensor channel numbers. In this
paper, we took the 7 channel waveform as an example. The forward
calculation of the DCNN model is performed for each waveform to
extract the last global average pooling layer features of the waveform
image, and then the features extracted by each channel waveform are
arranged and combined, which is used as the input data for training and
testing the SVM classifier. The dimensions of the 7-channel waveform
feature vectors extracted by the DCNN model are 1×1×96×7; the
feature dimension is then converted to 7× 96. Finally, the features of
each multi-channel waveform are transformed into 1×672 dimen-
sions. To see the representation of the feature maps clearly, we visua-
lized the feature maps for the 7 channel waveform, as shown in Fig. 11.
Each row matrix represents a feature map corresponding to a channel.

4. Experiment and analysis

4.1. Experimental platform and data processing

The hardware platform of the experiment is GTX TITAN X GPU
GeForce. In addition, the software platform is Caffe(Jia et al., 2014),
which is a deep learning framework. To construct a multi-channel mi-
croseismic event recognition and classification model, this paper ana-
lyzes the data collected by the IMS microseismic monitoring system of

the Dongguashan Copper Mine to construct the DCNN model and SVM
training and test dataset. The data set is divided into two classes: the
first data set consists of a single waveform image, including micro-
seismic images, blast images and noise images, each of which has
10,000 samples, for a total of 30,000 samples used to train and test the
DCNN model; the second data set consists of single event 7-channel
waveform images, each of which contains 7 waveform images, in-
cluding blast events, microseismic events, and noise events. Each event
has 1320 samples for a total of 3960 event samples used to train and
test SVM classifiers. Further, the waveform image of the first data set is
marked; 0 represents a microseismic image, 1 represents a blast image,
and 2 represents a noise image. Finally, the data in the first data set and
the second data set are put into the training set and the test set with a
ratio of 3:1.

The first data set contains wavelet threshold denoising and filtered
images. Wavelet threshold denoising not only can double the number of
original images, to ensure that the DCNN model has enough data for
training and testing, but can also obtain high-quality waveform images,
which can greatly suppress noise interference. The impact makes the
effective information input into the DCNN model larger than the useless
information, and the learned features are more convenient to identify
and classify. At the same time, the original image without wavelet
threshold denoising and filtering in the first data set can prevent the
effective information loss of the filtered image to solve the incomplete
problem of the DCNN model learning feature.

To increase the randomness of the sample, improve the general-
ization ability of the DCNN network model, and make the feature ex-
traction more accurate, the denoised processing and the labeled wa-
veform image are randomly divided into 10 graphs. As shown in
Fig. 10, we do not perform forward calculation directly on the image,
but perform forward calculation on the 10 cropped images formed from
the original image to extract features, and obtain the feature mean of 10
cropped images extracted by the DCNN model. To avoid the adverse
effects caused by the migration of images, In this paper, the image size
of 256× 256×3, is randomly cut into 10 cropped images of size
235× 235×3. Among them, 256×256 represents the length and

Fig. 10. Multi-channel waveform classification design.

Fig. 11. Visualization of a sample of the classifier.
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width of the image, and 3 represents the number of channels of the
image.

In this paper, the maximum number of iterations of the DCNN
network is set to 9000 times, the learning rate in the training progress is
set to 0.0001, and the momentum factor u is set to 0.9 to make weight
updates smooth, stable, and fast. In addition, all training sample values
are subtracted from their mean values in order to improve and speed up
convergence.

4.2. Experimental results and comparative analysis of DCNN network
structure construction

To prove the good recognition and classification ability of the DCNN
network structure, we have performed a series of comparative ex-
periments.

1) A deep convolutional neural network is constructed with a 3× 3
convolution kernel, That is, except for the 1st layer using the 7× 7
convolution kernel, the remaining convolutional layers all use the
3× 3 convolution kernel, which is recorded as the DCNN-3 model.
Parameters such as the number and size of the image features of
each layer of the DCNN-3 model are the same as the DCNN model;
see Table 1.

2) All 3× 3 convolution kernels of the DCNN-3 model are replaced
with 5×5 convolution kernels, which are recorded as DCNN-5
models. To ensure the same size as the DCNN output image features,
all 5× 5 convolution kernels are filled with the 2× 2 size. The
other parameters of the DCNN-5 model are the same as the DCNN
model parameters; see Table 1.

3) The seventh convolutional layer in the hidden layer of the DCNN
model is removed, and the kernel size of the global average pooling
is changed to 9× 9, which is recorded as the DCNN-reduce model.
The DCNN-reduce model is equivalent to reducing the convolutional
layer in the DCNN model, and the other parameters are the same as
the DCNN model; see Table 1.

4) After the seventh convolutional layer in the hidden layer of the
DCNN model, the 1 maxpool layer and the 2 convolutional layers
are sequentially added, and the global pooling layer is removed,
which is recorded as the DCNN-increase model. The 3×3 con-
volution kernel image feature output size of the DCNN-increase
model is 64, and the 5×5 convolution kernel feature map output
size is 32, so the dimension of the last convolutional layer has be-
come 1×1×96. The other parameters of the DCNN-increase
model are the same as the DCNN model; see Table 1.

The DCNN model, DCNN-increase model, DCNN-reduce model,
DCNN-3 model and DCNN-5 model were tested by experiments. The
relationship between the accuracy of the test and the number of itera-
tions is shown in Fig. 12. The relationship between the loss rate and the
number of iterations of the training is shown in Fig. 13. The relationship
between the loss rate and the number of iterations is shown in Fig. 14.

It can be seen from Fig. 12 that with respect to the classification of a
single waveform image, the DCNN model has a maximum accuracy of
94.13% compared with other models, followed by the DCNN-increase
model and the DCNN-5 model. It can be seen that the DCNN model has
better expression ability, which combines the characteristics of 3× 3
and 5×5 convolution kernels. First, the larger receptive field can make
more use of the regional information of the image context, and has
stronger expression ability; second,the use of a smaller convolution
kernel can reduce the number of weight connections to reduce com-
putation and improve the efficiency of the model.

Fig. 13 shows the fitting effect of the network on the training data,
and Fig. 14 shows the fitting effect of the network on the test data to
show the generalization ability of the model. By analyzing Figs. 12 and
13, the training loss of the DCNN-increase model is the lowest, and the
model fitting training data are the best, but the loss rate and accuracy of
the test are higher than the DCNN model, meaning that the deeper the

network level, the better the fitting of the training data, but the ability
of the model to migrate to other datasets is lacking and there is a risk of
overfitting. By analyzing Figs. 13 and 14, compared with the DCNN-3

Fig. 12. Relationship between test accuracy and number of iterations for each
model.

Fig. 13. Relationship between training loss rate and the number of iterations of
each model.

Fig. 14. Relationship between test loss rate and number of iterations for each
model.
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model, the DCNN-5 model can obtain enough receptive fields to
maintain good network recognition.

In summary, the following conclusions can be drawn: (1)the deeper
the network level, the better its expression ability, but the network that
is too deep is prone to over-fitting, and the deep network connection
parameters are relatively large; (2) the 5×5 convolution kernel has a
slightly stronger expression than the 3× 3 convolution kernel, but the
large convolution kernel has a larger weight parameter. Therefore, this
paper adopts the DCNN model constructed by 3× 3 and 5× 5 con-
volution kernels and 13-layer network, which not only enhances the
expressive power of the convolutional neural network and reduces the
parameters of the network but also ensures accurate extraction of the
features of the microseismic waveforms and prevents the risk of over-
fitting on the network.

To better demonstrate the relationship between the test accuracy
and loss rate in the DCNN model test, both are displayed on Figs. 12 and
13. It can be seen from Fig. 12 that the overall trend of the test accuracy
of the DCNN network model is first increased rapidly, then the speed is
slowed down, and finally, reaches a steady state. The corresponding
loss rate is such that the overall trend first drops rapidly, then slowly
declines, and finally, it reaches a steady state. Therefore, its classifi-
cation accuracy, stability and convergence speed can better meet the
needs of the joint recognition and classification of DCNN and SVM.

4.3. Automatic recognition and classification results and analysis of
microseismic waveforms

4.3.1. Automatic recognition and classification of single event multi-channel
waveform images

Since the number of sensors triggered by each event collection and
data collection is inconsistent, it is difficult to use the DCNN model for
end-to-end training. Therefore, this paper proposes using the classifier
to classify the high-level features extracted by DCNN. In the classifi-
cation experiment of the multi-channel waveform, we will randomly
crop each image (256×256 x 3) into 10 patches, and the size of each
patch is 235×235 x 3. The features of each image patch are extracted
by the DCNN model, and then the feature values of the 10 image pat-
ches are averaged. According to the above method, the average value of
all waveform image features in 7 channels of a single event is calculated
as the input data of the SVM classifier. To improve the classification
effect of SVM classifier, this paper searches the optimal parameters (the
penalty factor C of SVM and the radius G of the kernel function)
through the grid parameter optimization method (grid search method)
(Huang et al., 2007), where C and G are meshed within a certain range,
and all points in the grid are traversed, and the optimal values are
obtained by cross-validating the determined C and G.

The SVM classification accuracy and the experimental results of the
grid search method for selecting the optimal parameters are shown in
Fig. 15. It can be seen from Fig. 15 that when the radius of the SVM
kernel function and the penalty factor C are constantly changing, the
classification accuracy is changed by approximately 80% first, and then
the accuracy is slowly rising, and the final accuracy reaches a stable
state of approximately 98%. The experimental results show that the
accuracy of the event classification test of the two dataset reaches
98.18%, and the values of the optimal parameters C and G obtained by
the grid search method are 77 and 195, respectively.

4.3.2. Performance comparison of each classifier
The k-Nearest Neighbor (KNN) classification algorithm is a non-

parametric method for classification and is also a type of instance-based
learning or lazy learning. KNN has the following characteristics
(Altman, 1992): (1) the input of the KNN is the feature vector of the
instance, that is, the point on the corresponding feature space, and the
output is the category of the instance; (2) KNN does not have an explicit
learning process, which determines the type of classification by a voting
mechanism based on k nearest neighbors; (3) the three basic elements

of KNN include the selection of K values, distance metrics, and classi-
fication decision rules.

Random Forests (RF) (Ho, 1995) is a statistically based combination
classification algorithm that combines resampling and decision tree
methods, its essence is composed of multiple Classification And Re-
gression Tree (CART). RF uses reciprocal sampling for each tree in the
training set; that is, some samples in the total training set may appear in
the training set of a tree multiple times, or may never appear in the
training set of a tree (Gao et al., 2009). In addition, because the algo-
rithm integrates multiple single classifiers, it effectively improves the
classification performance of the classifier and is widely used in various
types of classification screening and prediction (Min et al., 2015).

To further verify the accuracy and efficiency of joint recognition and
classification of single event multi-channel waveform images using DCNN
model and SVM, this paper combines the DCNN network model with
KNN, random forest classifier and SVM to identify the same set of wa-
veform image data. This includes comparing the accuracy of the classi-
fication of each classifier with the time required to classify the sample. In
this paper, the DCNN model is respectively combined with KNN, random
forest classifier and SVM to identify and classify the same dataset of the
waveform image, and the accuracy and the time required of each classi-
fier classification are compared. As a result of several experiments, the
most ideal parameter factor k of KNN is 3. The random forest can effec-
tively improve the classification performance by increasing the number of
trees, but it will greatly increase the calculation time of the classifier. The
number of trees in the random forest experiment is 1000, 2000 and 3000,
respectively. The experimental results are shown in Table 2.

The experiment demonstrates that the accuracy of the SVM is the
best when the parameter of C is 77 and the parameter of G is 195, the
accuracy rate of which reaches 98.18%. Followed by random forests,
the accuracy rate can reach approximately 94%, but its calculation time
is too long; it is not suitable for the practical application of mine mi-
croseismic waveform classification and recognition. While KNN has a
running time similar to SVM, its accuracy is only 92.8%. According to
the comprehensive consideration above, we conclude that the perfor-
mance of SVM is perfect.
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Fig. 15. SVM classification accuracy and parameter. Choice parameters of
GridSearch (3D View); Best c= 77 g=195.

Table 2
Comparison with three algorithms for accuracy rate and taking times.

Classifier Classifier parameters Accuracy rate times

KNN K=3 92.80% 3.64s
SVM C=77; G=195 98.18% 3.63s
Random forest Tree= 1000 94.17% 87.09s

Tree= 2000 94.62% 175.80s
Tree= 3000 94.55% 265.49s
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5. Conclusion

In this paper, we propose a new method for mine micro-seismic
pattern recognition and classification. This method combines DCNN
with SVM for classification of the multi-channel waveform. DCNN-
Model learns and recognizes the feature of multi-channel waveforms
automatically, and automatically classifies them using SVM by com-
bining the feature of all channels waveforms, and the accuracy of
classification reaches 98.18%. The method does not require designing
features by hand, which guarantees accuracy, realtime application and
intelligence in recognition and classification. The method is of practical
value in the industry.
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