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A B S T R A C T

The use of a computer to automatically pick the first-arrival of a seismic signal is an operation that involves
picking and screening the first arrival of the wave according to the criteria established in the manual picking
process. To increase the picking accuracy for data with low-to-moderate signal-to-noise ratio (SNR), we propose
a new single-trace boundary detection algorithm. This algorithm includes three steps: (1) calculate the first-
arrival characteristic values through multi time windows; (2) take the times corresponding to the maximum
characteristic values given by different time windows as intermediate results; (3) compare the intermediate
results: if the difference is too large, it is marked the time is abnormal, otherwise the average time of the
intermediate results is taken as the first-arrival time. Using this energy boundary detection method, the char-
acteristic values obtained are bi-directionally expanded to allow the use of the trace connectivity algorithm
which is improved from the region growing method. Determining the connectivity between the first-arrival
characteristic values is a way to simulate how the human eye discriminates true first arrivals. This method
significantly improves the elimination of false or abnormal first-arrivals. Next, a small-step fitting algorithm is
applied to the remaining first-arrival characteristic values to complete the calculation of the final characteristic
values. Based on the retained first-arrival characteristic values, the missing values are assigned by interpolation.
The characteristic values are mapped on the original record and finally the first-arrival picking is completed
using a small time window. Theoretical results as well as the results obtained from real data demonstrate that the
proposed automatic first-arrival picking method effectively improves the accuracy of the first-arrival picking.
Finally, the new picking algorithm is presented more efficient than the energy ratio method, as well as cross-
correlation method.

1. Introduction

Manual first-arrival picking may be of quality but of low efficiency,
by which the use of a computer instead of manual picking is an “ulti-
mate goal” in the context of the research of an automatic picking al-
gorithm. The picking of a qualified first-arrival provides the basis for
static correction and subsequent data processing. Many researchers
have advanced different methods for the automatic first-arrival picking.
In an early stage and based on the similarity of adjacent seismic traces,
Peraldi and Clement (1972) proposed cross-correlation of adjacent
traces to obtain the time-lag between the first-arrival onset and the
peak of the signal. But this method is not very effective when there is a
large difference in the waveforms of adjacent seismic traces or when

some trace is missing. Hatherly (1980) proposed a method for de-
termining the quality of the first-arrival based on the time difference
between the initial onset and the peak of the wave. However, this
method provides poor performance when the similarity between the
seismic traces is low, apart from the fact that the calculations involved
in this algorithm are quite complicated. Gelchinsky and Shtivelman
(1983) combined association methods with statistical methods and used
the first-arrival time-distance curve to constrain the results of picking.
With this method, similar results can be achieved to those offered by
manual first-arrival picking in the case of signals with a high signal-to-
noise ratio (SNR), but also large errors when SNR is low. Coppens
(1985) was the first to propose the “energy ratio method”, which uses
the ratio between the energy of the signal in one cycle and the energy of
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the entire time window as the criterion for determining the first arrival.
This method is comparatively more noise-resistant and many scholars
conducted more research based on it. Baer and Kradolfer (1987) used
an envelope function and a non-linear amplifier for automatic phase
picking. Murat and Rudman (1992) and McCormak et al. (1993) used a
neural network approach for the automatic first-arrival picking. The
detection algorithms became more “intelligent” with the improvement
of the calculation resources. Boschetti (1996) proposed a fractal-based
algorithm for detecting first arrivals on seismic traces. Liao et al. (2011)
proposed an automatic first-arrival picking method based on time-fre-
quency analysis using minimum uncertainty wavelets. Mousa et al.
(2012) proposed a first-arrival enhancement method using the −τ p
transform on energy-ratio seismic shot records, thus obtaining an in-
crease in SNR. Senkaya and Karsli (2014) used the cross-correlation
technique for automatic first-arrival detection. Tan et al. (2014), based
on the difference in amplitudes, polarizations and statistical char-
acteristics between ambient noise and seismic signal, used the SLPEA
algorithm for the automatic microseismic event detection and first-ar-
rival picking.

Sheng-Pei et al., (2015) have proposed the combination of ultra-
virtual interferometry for ground-scattered waves with traditional
ultra-virtual interferometry for refracted waves as a means of enhan-
cing the energy of the first-arrivals. Maity and Salahi (2016) have de-
veloped a neuro-evolutionary event detection technique for downhole
microseismic surveys of low SNR. Recently, Chi-Durán et al. (2017)
have conducted new strategies based on the Fourier transform and the
fractal method for the automatic detection of P- and S-wave arrival
times. These methods offer certain advantages for the automatic first
arrival picking, but still present some application problems. The main
issue is that these methods do not meet expectations in cases of low
energy level and low SNR.

In this paper, we use for the first time the connectivity between first
arrivals as an important criterion to determine the first-arrival of the
wave. Abnormal first arrivals are identified and removed when ex-
amining its connectivity with the first arrivals in the adjacent seismic
traces. To use the connectivity feature effectively in the determination
of the first arrival, we develop a search algorithm based on the ex-
pansion of the first-arrival characteristic values. Also, the multi time-
window energy ratio method is modified to improve the accuracy of the
procedure with low SNR signals.

2. Binary image connectivity algorithm

The image connectivity algorithm is widely used in areas including
medical, transportation, surveying and mapping research. Martin-
Herrero (2007), Wu et al. (2009) and He (2009) used connected-com-
ponent labeling algorithms in digital images. Commonly used image
labeling methods include pixel labeling, linear labeling and block
scanning. Pixels that are adjacent to each other form what are called
connected components.

There are two common adjacency modes of 4 and 8 connected
components. Fig. 1 shows the matrices for 4 and 8 connected compo-
nents: For the mode of 4 components the central component is 1, while
any other outer component is marked 1 if it is adjacent to the previous
one. In the following we use the 8 connected-component search algo-
rithm. The connected-component labeling algorithm scans the data

from left to right and from top to bottom, searches for points of interest
and determines whether a component keeps connectivity with the
neighbor component. To reduce the number of scans and improve the
labeling efficiency, we use the region growing method to label con-
nected components (Pavlidis and Liow, 1990). The steps of this pro-
cedure are described below:

• Step 1: Input of the two-dimensional data set D(x,y) to be labeled
and definition of the labeling matrix M(x,y) that has the same size as
D(x,y), a queue L and label count N.

• Step 2. Scanning of D(x,y) from left to right and from top to bottom.
When an unlabeled point is scanned, N increases by 1 and the cur-
rent point is properly labeled in M(x,y). Scanning of the 8 points
connected to the current point. If unlabeled points are found, then
they are labeled in M(x,y) and put into L as seeds for growing.

• Step 3. If L is not empty, a point from L is taken as seed for growing
and the 8 points that are connected with the seed point are scanned.
Unlabeled points that are found will be labeled in M(x,y) and put
into L.

• Step 4. Repetition of step 3 up to L is empty, so that the labeling of a
connected component is completed.

• Step 5. Go back to step 2 up to the entire picture is scanned to obtain
the label matrix M(x,y) and the number N of connected components.

To better understand the previous algorithm, Fig. 2 shows the flow
chart illustrating the operations involved by the region growing
method. All field data analyzed here come from the Zhungeer basin
survey conducted in 2012 (data provided by courtesy of SINOPEC).
Although the first arrivals may be visually connected, this does not
mean that they are well connected from the perspective of image pro-
cessing. The characteristic values of visually well-connected first arri-
vals include many empty blocks in the pixel matrix. This makes difficult
to distinguish the valid values from noise if the connectivity algorithm
is used directly. For this reason, the first-arrival characteristic values
must be preprocessed before applying the connectivity algorithm.
Fig. 3a shows the raw seismic traces and Fig. 3b the input data, i.e. the

Fig. 1. Matrices for 4 (left) and 8 (right) connected components.
Fig. 2. Flow-chart illustrating the operations involved by the region growing
method.
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first-arrival characteristic values calculated from the previous data.
Fig. 3c shows the expansion operator matrix: the black circles represent
the positions of the values involved in the calculation of the current
value whose position is highlighted in red. The result of the expansion
algorithm is shown in Fig. 3d.

Each seismic trace provides only one characteristic value and
therefore the connectivity in conventional image processing needs to be
modified and adapted for first-arrival picking. So, to better determine
the connectivity between first arrivals, we refer to the concept of trace
connectivity: if there is connected points between the current trace and
the next one then we can say the current trace is connected to the next
trace. The number of connected traces will be used to determine the
connectivity of the first arrivals, instead of the number of connected
points. The connectivity between valid first arrivals is much greater
with real data than with noise.

3. Calculating first-arrival characteristic values

The energy ratio method allows improve the performance of the
first-arrival picking. In particular, the single-trace boundary detection
algorithm is more noise-resistant. It can be described as follows:
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where Si is the boundary characteristic value obtained for the ith
sample point; A is the sum of the amplitudes of n points before the
current point in the same trace and B is the sum of the amplitudes of n
points after the current point in the same trace. For this type of algo-
rithm, the choice of the time window plays a crucial role in the picking
result. Different time windows have significant different sensitivities to
first arrivals. A large time window embraces the general characteristics
of the signal, while a small time window provides a more accurate
description of the details. A single time window has strong limitations.
Fig. 4a shows a trial seismic trace with a weak first arrival. The first
arrival occurs at about 400ms. The first-arrival characteristic values are

Fig. 3. (a) Raw seismic traces (data provided by courtesy of SINOPEC). (b)
Input data: first-arrivals characteristic values calculated from the above traces.
(c) Representative 3*3 matrix of the structure expansion operator: the black
circles represent the positions of the values involved in the calculation of the
current value whose position is highlighted in red. (d) Output data: result of the
expansion algorithm.

Fig. 4. (a) A trial seismic trace with a weak first arrival (data provided by
courtesy of SINOPEC). (b) First-arrival characteristic values calculated from the
above data using increasingly time windows of 5ms, 25ms, 45ms and 65ms.
(c) Same initial trace after having added random noise. (d) First-arrival char-
acteristic values calculated from the data contaminated by noise.
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calculated by equation (1) as the time window is opened more and
more to times of 5ms, 25ms, 45ms and 65ms. The results can be seen
in Fig. 4b that the 25ms time window is better than other time win-
dows. The same initial trace after having added random noise is shown
in Fig. 4c. In this case the results obtained by following the same pro-
cedure are shown in Fig. 4d. It can be observed that, the first arrival is
annihilated by noise, even with 25ms time window a much larger
characteristic value is observed much away from the true first arrival.
In addition, the results calculated by different windows are differ
greatly. So the selection of time windows is a difficult task in such data
with weak first arrival signal or low SRN.

Repeating the process in the search for characteristic values from
seismic data with high SNR (Fig. 5a), using time windows of 25ms,
45ms, 65ms and 85ms, the results reveal that the characteristic values
appear basically in the same place (Fig. 5b), i.e. the results of the au-
tomatic first-arrival picking are highly reliable. On the contrary, when

dealing with seismic data with low SNR (Fig. 6a) (the correct first ar-
rival position is marked by red line.), the results are no longer sa-
tisfactory because the location and the magnitude of the characteristic
values vary greatly (Fig. 6b), in spite of using time windows with si-
milar opening. It is difficult to choose the first arrival accurately re-
gardless of the size of the time window or the type of determination
criterion that is used for processing. In fact, the first arrival is buried in
noise and cannot be picked accurately. In this case the automatic
picking offers poor reliability and should be discarded. Even so, the
greater or lesser reliability in the determination of first arrivals in traces
with high or low SNR can be easily discerned according to the dis-
tribution of the characteristic values calculated using different time
windows.

After several tests, we propose to use a formula to detect the single-
trace energy boundary with the help of multi time windows to obtain
the first-arrival characteristic values, as well as to eliminate the noise
interference. The calculation is as follows:

= × −X B A B Amax(|( / ) ( )|)k k k k k (2)

=I pos X( )k k (3)

=
⎧
⎨
⎩

− <

− ≥

∑ + + ⋯

pos final I I w

I I w
( ) ceil( ) , max( ) min( )

0 ,max( ) min( )

I I I
K k k

k k

K1 2

(4)

In these expressions Xk is the maximum characteristic value once
calculated using the kth time window of size nk (the index k is the

Fig. 5. (a) A trial seismic trace with high SNR (data provided by courtesy of
SINOPEC). (b) First-arrival characteristic values calculated from the above data
using increasingly large time windows of 5ms, 25ms, 45ms, 65ms and 85ms.

Fig. 6. (a) A trial seismic trace with very low SNR (data provided by courtesy of
SINOPEC). (b) First-arrival characteristic values calculated from the above data
using increasingly large time windows of 5ms, 25ms, 45ms, 65ms and 85ms.

Fig. 7. Example of common-shot gather taken as reference for subsequent
calculation (data provided by SINOPEC).

Fig. 8. First-arrival characteristic values (highlighted in color) obtained by
applying different single time-windows (10ms, 20ms, 30ms, 40ms and 50ms)
to the record section shown in Fig. 7.

Fig. 9. First-arrival characteristic values (highlighted in color) obtained by
applying increasingly time windows (10ms, 20ms, 30ms, 40ms and 50ms)
and the single-trace energy boundary detection method to the record section
shown in Fig. 7.
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sequential window number); the index i indicates the current point;
pos X( )k is the position of Xk in the corresponding trace; pos final( ) is the
final first-arrival position, given by the rounded average value of all
previous positions if the difference between characteristic values ob-
tained using different time windows does not exceed w ms; otherwise, if
the difference is greater than w ms, the first arrival is marked as ab-
normal. After a large number of tests with real data, we concluded that
the value w is given by half of the wavelet of the first-arrival wave. Take
the peak frequency as the frequency of the first-arrival wave. If it were
50 Hz, the length of the wavelet can be calculated to be 20ms, then the
value of w would be 10ms.

Fig. 7 shows an example of common-shot gather that is taken as a
reference for the subsequent calculation. Fig. 8 shows the first-arrival
characteristic values (highlighted in color in the illustration) de-
termined by applying different time windows (10ms, 20ms, 30ms,
40ms and 50ms) to all traces of the original seismic record. Most of
their respective positions mapped directly on the record are overlapped
to the first arrivals due to the relatively high SNR. This example reveals
that for those traces affected by a high noise level, the differences be-
tween the positions of the first arrivals and those determined using
different time windows are large. Fig. 9 shows the final result of
mapping first-arrival characteristic values (highlighted in color in the
illustration) obtained by applying the single-trace energy boundary
detection (STEBD) method and increasingly large time windows (10ms,
20ms, 30ms, 40ms and 50ms) to all traces of the record section shown
in Fig. 7. The traces with first arrivals at time zero are abnormal traces.
A simple comparison of the picking results (Figs. 8 and 9) indicates that
the STEBD method is able to effectively overcome the biased informa-
tion due to first arrivals with low SNR and eliminate abnormal first
arrivals. The eliminated first arrivals can be re-picked again by inter-
polation and searching for local peaks to obtain the definitive picking
result (Fig. 10a). The comparison with the results obtained by cross-
correlation and energy ratio reveals the better performance of the

STEBD method against the two previous ones (Fig. 10b) due to the use
of multiple time windows. The improved STEBD method effectively
avoids the wrong picking and, through interpolation and local optimi-
zation, provides more stable and reliable results.

4. Connectivity treatment and refinement of characteristic values

In practice the reality can be very different and we can meet with a
seismic record with low SNR or some ambiguity or difficulty to dis-
tinguish the first arrivals of energy, if not all at least some of them
(Fig. 11a). The first-arrival boundary is much weaker than the energy
boundary of a refracted or reflected wave at a certain depth. In such
cases, the STEBD algorithm may not accurately recognize the limits of
the first-arrivals. This is clear in Fig. 11b where we show the result of
applying STEBD and multi time windows. Some first arrivals provided
by erroneous picking (highlighted in color and enclosed by an ellipse)
are clearly below their correct positions. The use of linear adjustment

Fig. 10. (a) Final result obtained after re-picking the traces shown in Fig. 9. (b)
Results picked by the cross-correlation and energy ratio methods.

Fig. 11. (a) Record section with low SNR seismic traces showing unclear first
arrivals (courtesy of SINOPEC). (b) Result obtained using single-trace energy
boundary detection and multi time windows (see red dotted line). Some first
arrivals provided by erroneous picking (all enclosed by an ellipse) are clearly
below their correct positions. (c) First-arrival characteristic values in binary
format. (d) Values given by the expansion algorithm applied to the signals. (e)
Values obtained by the connectivity processing of the signals shown in (d). (f)
New record in binary format obtained after the connectivity processing of the
signals previously treated. (g) Values obtained by automatic picking after re-
moving abnormal points. (h) Best first-arrival positions obtained by time
picking and interpolation (see red dotted line).

S. Pan et al. Computers and Geosciences 123 (2019) 95–102

99



methods to correct these abnormal first arrivals can easily cause the
erroneous elimination of nearby correct first-arrivals, thus affecting the
overall picking and making more difficult the re-reading of the ab-
normal first arrivals in the subsequent processing.

Continuing with the example, Fig. 11c shows the result of applying
the “binarization” procedure to the first-arrival characteristic values
processed by the improved STEBD method (section 3). The workflow
was as follows: the characteristic values were put in binary format, i.e.
the amplitude at the point corresponding to a first arrival was set to 1,

while the amplitude at any other point was set to 0. The values given by
the expansion algorithm (section 2) applied to the signals are shown in
Fig. 11d. The (labeled) values obtained by connectivity processing of
the signals are shown in Fig. 11e, and the number of connectivity of
each connected component was counted. Connected components with
less than 50 traces were considered as abnormal components and zero
amplitude was assigned to each of these components. The dot product
of the result of this process (Fig. 11e) and the original binary record
(Fig. 11c) resulted in the new record in binary format (Fig. 11f). If the

Fig. 12. (a) Seismic velocity model with a complex geometry (the shot point is marked by a red arrow on top). (b) Record section obtained from the previous model
by forward modeling. (c) First arrivals determined with the method proposed in this study. (d) Results obtained in the same way from data contaminated by random
noise (with moderate SNR). (e) Results obtained in the same way from data contaminated by coherent noise (with low SNR). In all cases the first arrivals are
highlighted by red dotted lines.
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difference between the times of the current and adjacent first-arrival is
too large, the current first-arrival is removed (Fig. 11g). Lastly, we
obtained the missing arrivals by time picking and interpolation (for this
last operation, 10 points before and after the missing point are selected
and the linear fitting is performed using the current first-arrival time
and the relative offsets of these points). The final result is the one shown
in Fig. 11h, where the best first-arrival positions at points (with am-
plitude 1) determined by local optimization appear mapped on the
original seismic record. The final result is indeed satisfactory compared
to the situation at the beginning.

In order to test the proposed algorithm, we considered an indeed
complex seismic velocity structure (Fig. 12a). The spatial dimensions of
this 2D model are 80 km (length) x 7 km (depth). The shot point is
marked by a red arrow on top. Fig. 12b shows the shot data obtained by
forward modeling, while Fig. 12c shows the first arrivals determined
with the method proposed in this study. Adding random noise and
coherent noise to the data completed the seismic experiment, so we
could obtain new results in the same way from data both with moderate
SNR ((Fig. 12d) and low SNR (Fig. 12e). It can be seen that the random
noise has little effect on the picking results (Fig. 12d). However, the
coherent noise has a somewhat more pronounced effect, even giving
rise to a lack of first arrival (Fig. 12d).

To appreciate the advantage of the automatic first-arrival picking
method that we proposed, next we present an application example
based on the data collected on the occasion of the 2D survey line across
the Wulungu depression in the northern margin of the Junggar basin.
The maximum offset distance is 6650m, and the number of traces
reaches 660 with horizontal spacing between traces of 20m. For com-
parison purposes, first arrivals were automatically picked using the
method proposed in this paper and alternatively the energy ratio
method using commercial software. The static correction was calcu-
lated using the tomographic static correction technique. After data
processing, we obtained the results plotted in Fig. 13. In the two cases
the same portion of record section is highlighted to easily see the im-
provement in the information achieved by the new method (Fig. 13c)
versus the energy ratio method (Fig. 13a) and the cross-correlation
method (Fig. 13b). A simple visual inspection allows to see that the
seismic markers found through the implementation of the new first-
arrival picking method appear better reconstructed, which result in
more accurate information for exploratory practice.

5. Conclusions

Starting from a single-channel boundary detection algorithm, we
propose a new STEBD method based on the fact that time windows of
different sizes reveal different boundary detection sensitivities. In this
method, the connectivity algorithm in image processing is applied to

first-arrival picking. To reduce the number of scans and thus improve
the labeling efficiency, we use the region growing method to label
connected components. The STEBD algorithm is implemented using the
energy ratio method, which improves the picking performance, since it
is more resistant to noise. Several time windows of different sizes are
used for single-trace energy boundary detection and so obtain the first-
arrival characteristic values. This allows us to avoid the instability
caused by the manual setting of the time-window width and to greatly
mitigate the noise influence as well. The improved algorithm is able to
effectively eliminate abnormal first arrivals in signals with low SNR.

The joint application of the trace connectivity algorithm and multi
time-window boundary detection comes to effectively solve problems
associated to data with low SNR and to the automatic picking of low-
energy first arrivals. After performing a variety of tests with real data,
the results prove to be clearer and more reliable than those obtained
with standard software, which is of great interest for exploratory
practice. However, choosing the connected parameter is an important
step in the proposed algorithm, and the characteristics of the data
should be considered. In some cases, this parameter is difficult to adjust
by experience, which will inevitably lead to repeated tests.
Consequently, it is worth further studying to find an algorithm that can
automatically select the connected parameters.
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