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A B S T R A C T

Multibeam bathymetric data, acquired along mid-ocean ridges (MORs), provide critical information for the
modeling of seabed terrains and the understanding of related geology. An automated detection of geological
features, such as fault structures, helps to elucidate the structural characteristics of MORs and quantify e.g., the
magnitude and spatial variability of geological phenomena such as faulting. For this purpose, this research
presents a developed cross-sectional methodology where continuous elevation data are (1) collected across a
MOR from individual transect lines at various spatial resolutions (50–150 m), and then (2) analyzed with a
supervised learning algorithm to discriminate fault structures. An artificial neural network (ANN) is applied for
the detection and classification of fault scarps which have either an east or west tilt orientation; the classification
uses attributes of elevation data calculated from surface derivation, simulated relief shading and statistical
analyses of transects. Results indicate an average detection accuracy of 92%, which is dependent on the data
sampling resolution, the terrain complexity and the predictor variables considered. Both the variance and re-
gression slope variables played a key role in the training phase for identifying and classifying the tectonic features.
The cross-sectional learning method presented in this research finally evidences the possibility to achieve an
automated quantification system for different landform types and emphasizes the need for complementary
classification methods to deepen the interpretation of landform complexities and related geological processes at
MORs.

1. Introduction

Fault detection has been treated as a recurrent problem in quanti-
tative geomorphology (e.g., Goff, 1991; Shaw, 1992; Shaw and Lin,
1993; Little and Smith, 1996; Carbotte et al., 2003). Popular techniques
used to reveal fault signatures usually consist of segmenting landscapes
based on selected ranges of values for given morphometric terrain
parameters (e.g., slope, aspect and curvature; Olaya, 2009). At given
thresholds, these parameters can filter steep features (Jordan et al.,
2005) most often specific to normal slip tectonics responsible for dis-
rupting reliefs at e.g., slow-spreading mid-ocean ridges (MORs) (e.g.,
Paulatto et al., 2015). At these settings, low spreading rates involve
significant tectonic extension and large-throw abyssal hill scarps de-
veloping in the flanking tectonic province of the ridge (Whitmarsh and
Laughton, 1976; Searle and Laughton, 1977; Macdonald, 1982; Goff,
1991; Shaw and Lin, 1993). These scarps are usually comparable to
reliefs produced by vertical fault offsets (e.g., Bates and Jackson, 1987;
Escartin et al., 1999) which come with various angles of emergence at

the seafloor (Smith et al., 2008; Lavier et al., 1999), and their char-
acteristic steepness makes them reliable geomorphic indicators of tec-
tonic disruption (Jordan et al., 2005).

A quantitative characterization of these disruptions, with the help of
adequate predictor variables, provides early constraints for automated
detection. As demonstrated in the literature, fault identification at
MORs usually involves thresholding techniques on terrain attributes
that are evaluated from large-scale multi-beam bathymetry maps and/
or side-scan sonar data (e.g. Searle, 1984; Shaw, 1992; Shaw and Lin,
1993; Carbotte and Macdonald, 1994; Alexander and Macdonald, 1996;
Gill, 1998; Scheirer et al., 2000; Carbotte et al., 2003) and, sometimes
in conjunction with other imagery data (side-scan backscatter data,
videos and photographs), used to map different types of morphologies
(e.g., Micallef et al., 2012). While some constrained subsets of slopes
(e.g., Shaw and Smith, 1987; Smith and Shaw, 1989) or curvatures
(e.g., Shaw, 1992; Shaw and Lin, 1993) as fault indicators, other pro-
posed wavelet-based analyses to infer steep reliefs (Little and Smith,
1996). Because these attempts generally use selective threshold limits
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to understand the variation of the bathymetry, they identify features in
a deterministic way with various degrees of accuracy and recover in-
complete geometric information. For example, the upper fault edges of
scarp flanges are more likely to be detected, among other steep struc-
tures (e.g., volcanic and mass-wasting features), while the downslope
reliefs at the scarp end, i.e. where the surface rupture is evidenced by a
lineament, usually remain poorly constrained because gravitational
collapses move rocks and sediments downslope during faulting
(Allerton et al., 1996). These issues are especially pronounced for image
processing techniques which rely only on grey-scale images (Jordan
et al., 2005), and tend to persist as much of fault extraction is based on
relatively low-resolution maps (i.e., from multibeam or side-scan sonar
data).

Using elevation data and corresponding derivatives, an experienced
geologist can readily recognize the characteristics of disrupted seafloor
features being exposed. Visual inspection of fault scarps may be
straightforward, even for subtle topographic changes, with the help of
e.g., hill-shading techniques (e.g., Horn, 1981; Thelin and Pike, 1991).
Unfortunately, most of these scarps have variable exposures which
depend essentially on both the geometry of faults and related surface
expression. The latter is, however, generally affected by depositional
records due to e.g., mass wasting and sedimentation which can lead to
subjective assumptions in the traditional hand-picking process of tec-
tonic features. Rather, a more objective approach needs to consider a
more profound measure of terrain variability describing the fault ex-
posures. These outcrops have measurable properties (e.g., vertical and
horizontal displacements, and dip separation or fault width) which
allow to e.g., make statistical analyses of fault populations for esti-
mating regional extensions (tectonic strain) (e.g., Carbotte and
Macdonald, 1994; Cowie et al., 1994; Alexander and Macdonald, 1996;
Escartin et al., 1999; Parnell-Turner et al., 2016) and, thus, understand
the development of MORs.

Machine learning solutions, such as artificial neural networks
(ANNs), can solve the general drawbacks generated from the conven-
tional semi-automatic methods cited above. Instead of taking determi-
nistic assumptions, a learning model performs probabilistic evaluations
of input data representing the geomorphic surfaces which are generally
understood through expert knowledge. In this context, this research
proposes (1) to capture relevant (synthetic) data structures, obtained

from surface derivation, relief shading and statistical description of the
bathymetry of an ultraslow-spreading MOR, i.e. the Mohns Ridge
(71–73°N), and (2) to develop an ANN classifier for learning data pat-
terns related to fault scarps, so that (3) tectonic features can be iden-
tified, and subsequently classified given their tilt orientation. Once
trained, the classifier discriminates fault scarps, i.e. those facing away
from the ridge axis (outward type) and facing toward the ridge axis
(inward type); the latter can be affected to some degree by sedi-
mentation and mass wasting events, while the outward type often
consists of hummocky-textured lava terrains that formerly erupted at
the rift valley floor and were subsequently faulted and rotated outward
(Smith et al., 2008). The scarps analyzed in this paper were shown to
have relatively unique signatures that distinguish them from plain areas
which are generally of sedimentary origin and/or derived from smooth
lava flows. To capture and investigate the scarp properties, cross-sec-
tional samplings of elevation data, taken orthogonally to the ridge, are
employed. Since the sampling process is made along the entire ridge
trend, the synthetic data, representing the structural trends of the
Mohns Ridge, are stored into a matrix that will be exploited by the
classifier. The relative importance of synthetic data in this matrix will
be ranked given their discrimination performance, while potential
classification errors, inherent to landform complexities, will be evi-
denced.

2. Background information

The Mohns Ridge is an ultra-slow spreading MOR that can be
described as a deep rifted axial zone with low spreading rates
(15–16 mm a−1; Mosar et al., 2002). The ridge trend is orientated
approximately N060° (Dauteuil and Brun, 1996) and extends for
about 510 km along its axis (Fig. 1). In the axial rift valley, isolated
topographic highs, i.e. axial volcanic ridges (AVRs), are separated by
deep basins and marked by characteristic morpho-structures (e.g.,
dome-shaped axial volcanic ridges, grabens, horsts and tilted blocks;
Géli et al., 1994; Dauteuil and Brun, 1996), describing the interplay
between magmatic supply variations and tectonism. These AVRs
often split with large ongoing fault offsets transporting pieces of
crust onto the ridge flanks during amagmatic periods when tectonism
is the dominant form of spreading (Parson et al., 1993; Searle et al.,

Fig. 1. Location of the study area where multibeam
data have been collected (black polygon). The mid-
axis of the ridge trend, some examples of transects
used as training data and the spreading direction are
indicated by a dashed line, straight lines and arrows
respectively. The white line corresponds to in-situ
investigations (see Fig. 2). Seafloor terrains are
analyzed on either side of the ridge axis over 510 km
of distance along the ridge. The basemap with
shaded relief was taken and modified from GEBCO
bathymetry data (http://www.gebco.net/data_and_
products/gridded_bathymetry_data/).
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2010). The destruction period of AVRs participates in the develop-
ment of abyssal hills as crust moves away from the ridge axis through
faulting occurring at the median rift valley (e.g., Parson et al., 1993;
Macdonald et al., 1996). The rift typically consists of normal faults
operating at variable extents (Dauteuil and Brun, 1996; Bruvoll et al.,
2009) and triggering mass movements, as shown in the MarMine
cruise report describing the western axial valley wall of the Mohns
Ridge (Ludvigsen et al., 2016). Sometimes, a large-offset normal fault
(detachment fault) accommodates a part of the plate separation
along one of the ridge flanks (Escartin et al., 2008; Smith et al., 2008,
2014). This asymmetric configuration is recurrent along the Mohns
Ridge since its western ridge flank often presents larger scarp ex-
posures in contrast to the small-offset and sediment-covered faults of
the eastern tectonic provinces (Juliani and Ellefmo, 2018).

Bathymetric data of the Mohns Ridge have been collected by the
Norwegian Petroleum Directorate in collaboration with the
Geological Institute of the Russian Academy of Sciences. Data col-
lection was done in 2000 and 2001 by Fugro-Geoteam using a hull-
mounted Simrad EM 120 echo sounder. A multibeam bathymetry
map was compiled from it and stored in a regular grid network
(square grid) of 50 m cells resolution, using GIS-based software.
Because the map resolution is relatively limited, only fault offsets at
scales of kilometers and more were evaluated. In addition, as sedi-
mentation, mass movements and volcanism make fault outcrops ra-
ther difficult to discriminate, small-scale faults (with offsets <
100 m) were not considered in this study; this reduces the statistical
significance of fault trends and related distributions. Besides this, the
relief model still provides an exploitable regional morphotectonic
view of the study area because this study attempts to solve a large-
scale prediction problem.

3. Methodology

3.1. Transect definition

The proposed methodology analyzes geomorphic data through
multiple linear profiles (transects) throughout the Mohns Ridge trend
(Fig. 1). Transects have the advantage to capture the essential topo-
graphic and tectonic information of the contrasting spreading beha-
viors throughout MORs (e.g., Shaw and Lin, 1993) when drawn par-
allel to the spreading direction. In this study, however, this direction
often deviates locally from the normal of the ridge trend due to some
obliquity (i.e. about 30°; Dauteuil and Brun, 1993), and thus, fault
exposures do not always face orthogonally to the ridge trend. To
handle this problem, the transects are defined at an angle between the
normal to the rift trend and the spreading direction (about 110° from
North, at least halfway to the Mohns Ridge; Dauteuil and Brun, 1993).
This angle was defined after examining manually the approximate
centerline of (i) neo-volcanic zones, given the extent of observable
volcano-tectonic features such as hummocky ridges and eruptive fis-
sures along the valley floor, the direction of axial high propagation
and related small-offset normal faults, and (ii) deep basins between
the neo-volcanic zones, given the delineated ridge valley floor, i.e. the
deep and spreading terrains limited by major east-west ridge flanks
(see Juliani and Ellefmo, 2018 for details). For the latter, the center-
line is calculated automatically with the Thiessen Polygon Method
(Thiessen, 1911).

The extent of transects does not exceed 25 km on either side of the
centerline (∼1.6 million year old crust at most); at this distance, faults
still present measurable offsets. The distance interval between two
transects is 0.3 km, and the vertices, i.e. the sample points where ele-
vation data are collected along each transect, have an interspacing of
100 m. This interspacing tends to simplify the landform and eliminates
small-scale features that may interfere with scarps morphologies (e.g.,

minor volcanic constructions, fault blocks and/or wasted materials). In
total, 1750 transects cover the 510-km-long ridge trend analyzed,
which represents about 874,300 sampled elevation data points.

3.2. Classification procedure

Probabilistic models, such as artificial neural networks (ANNs),
can be designed to find and exploit patterns from input data, and make
informative decisions correspondingly (see Bishop, 2006 for details).
An ANN model assimilates and recognizes characteristics from a
training dataset, i.e. a number of representative examples selected for
classification, so that when data from new situations (i.e. unknown or
unseen data) are processed, an appropriate classification is made de-
pending on how the patterns found match with those learnt from the
training set. In this study, the model decides to classify input data that
either distinguish fault scarp morphologies or plain areas. The training
set consists of exemplar transects for which elevation data were
manually classified by interpreting various topographic cross-sections
in map-view. Scarps are identified based on representative input
variables (13 for this study; see section 3.3.2) which are given a
weight value (positive or negative) depending on their relevance for
the identification and classification tasks. After being trained, the
network analyzes new examples (testing set) to ensure that the trained
network does not fit only the training data. The accuracy of feature
classification is quantified during training and testing of the network
by calculating the estimation errors generated by the model (see
section 3.5).

3.3. Variables and feature selection

3.3.1. Subsets of features for training
To avoid biasing the analysis of the classifier toward the selected

data, a consistent set of transects were taken at nearly even distance
intervals along the ridge axis (i.e. 4 ± 3 km) to ensure that in-
formation learned by the network is representative of the broad
morpho-structures and not to specific tectonic features of unique
landform. Note that scarps at MORs are affected by various types of
mass movements (e.g., Allerton et al., 1996; Goff and Tucholke, 1997;
Tucholke, 1992; Tucholke et al., 1997; Mitchell et al., 2000; Cannat
et al., 2013), which are comparable to rockfalls in onshore environ-
ments where fragments of rock break away from cliffs due to weath-
ering, or landslides where rock debris mobilize downhill under the
influence of gravity (Korup, 2012). Because no minority class exists in
the classification problem of this study, the selection method used to
build the training set does not affect the knowledge generalization of
classes.

About 9% of the overall dataset (78,687 data points) was used for
training and testing, and partitioned into a training set (60%), vali-
dation set (20%) and testing set (20%). The validation set identifies
the performance of the network after successive repeated process of
training and testing to avoid the effect of preferential sampling.
Batches of 100 randomly taken transect data were used for each
training step; 1 cycle of training is reached after several steps once all
the training data have been used by the network. The training ex-
periments were stopped when no further decrease in the prediction
error rate improved the learning accuracy (generally occurring over
60 cycles in this study).

3.3.2. Ranking relevant variables
The discrete tendency of elevation data is informative enough to

distinguish a specific scarp from its neighboring landform.
Description of such tendency is possible after transforming elevation
data by e.g., derivation, which allows describing the slope gradient
and aspect of landforms, and simulated shading of terrains (Olaya,
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2009); the derivation, roughness and shaded relief were calculated in
map-view using a GIS software package (see Appendix A). In addi-
tion, descriptive statistics of transect vertices (e.g., variance, p-value
and regression slope) have been calculated to discretize local land-
forms by using a fixed-size sliding window. At every point, the
window evaluates the statistical significance of a subset of points
comprising xi, the vertex of interest, and the neighboring ones falling
into the interval +x[ i n, x ]i n , with n being the window size. Resulting
statistical values, given to each xi, represent new transformed data.
They tend to describe both the vertical extent and the geometry of
major tectonic disruptions. For such matter, the choice of a window
size is critical because if it is chosen too large (or too small), it can
misrepresent the geometry of the landforms. To handle this issue,
multiple window sizes have been tested through iterative proce-
dures, and the most satisfactory one for data representation was
chosen (i.e. n = 3 in this study) after visual inspection. An example
of an evaluated transect is provided in Fig. 2.

The trends of the transformed data can be studied, first to identify
scarp and non-scarp morphologies (S0 and non-S0 respectively) and then
for classifying scarps depending on their tilt orientation, i.e. either
westward or eastward (S1 and S2 respectively). An overview of useful

predictor variables is presented in Table 1 and their broad correlation is
shown graphically through two-dimensional diagrams in Fig. 3. A se-
lective choice on the most relevant variables for the classification task is
done in the ANN model during the learning process by weighting
(Bishop, 2006). Some variables can have better performance in separ-
ating data into distinct categories, i.e. S1, S2 and non-S0 (e.g., the var-
iance to identify and the coefficient of correlation to classify, as inferred
visually on Fig. 3), while others may enhance the data clustering by
adding new information once taken with other more “useful” variables
(Guyon and Elisseeff, 2003).

3.4. Network setup

Setting up the network required (1) selecting a model architecture,
(2) training the network, and (3) evaluating the predictive perfor-
mance. Prior to being sent as inputs to the network, synthetic data are
normalized to make all units roughly comparable to each other. Output
variable of the analysis is expressed in ternary format with respect to
the presence (S1 and S2) or absence of scarps (non-S0).

Selecting the number of neurons and hidden layers is critical as it
affects the quality of predictions (e.g., Shibata and Ikeda, 2009;

Fig. 2. Example of (a) a transect cross-cutting the spreading ridge between the end of an AVR and a deep basin (white line on Fig. 1); sampled data points have a
separation interval of 100 m at distinct depths below sea surface (dbsf) and (b) regression slope calculated from statistical analysis along the transect. The ridge axis is
situated at around 25 km of distance from the western transect tip.

Table 1
Synthetic variables generated from terrain attributes and statistical measures of elevation data.

Variable Description Task

Roughnessa Ratio between a surface area (landform) sampled locally and the planar area of that surface. Identify
Slope gradienta Squared maximum rate of change in depth values. Identify
Variance b Measures how far data set is spread out or how much the values vary from one another (variability of the observations). Identify
p-value b Two-sided p-value for a hypothesis test whose null hypothesis is that the slope is zero. Identify
Standard Error b Measure of the accuracy of prediction, i.e. the average distance that the observed values deviate from the true mean (variability of the

estimator).
Identify

Aspect a Downslope direction of the maximum rate of change (measured clockwise from North). Classify
Coefficient of correlation b Amount of variability relative to the mean. Classify
Regression slope b Slope of the regression line of the standardized data points. Classify
Intercept b Regression slope intercept. Classify
Hillshade (N315°) a Shaded relief from a surface raster by considering the illumination source angle (from North) and shadows c. Classify
Hillshade (N135°) a

Hillshade (N225°) a

Hillshade (N045°) a

a Calculated in map-view using a GIS-based software.
b Calculated from linear regressions on data in discrete sliding windows across transects.
c The lighting is at an elevation angle of 45°.
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Karsoliya, 2012). Because this study solves a multi-class classification
problem (i.e., 3 possible outputs) and, considering the high di-
mensionality of the dataset being used (13 variables), both the pre-
dictive accuracy and cost function error of the network were estimated
iteratively using various numbers of hidden layers (up to 3) and
neurons. To decide on the number of hidden layers and neurons, a
cross-validation method was applied (Moody, 1994) where networks
of different size are trained and evaluated iteratively using a dataset

divided in two parts, namely the training set and the validation set.
The rule of thumb method was used (Boger and Guterman, 1997;
Berry and Linoff, 1997) to choose the number of hidden neurons es-
timated being in the range between the size of the input layer and the
size of the output layer. The number of hidden layers and neurons was
finally decided given the estimated model errors obtained from the
iteration process.

The training was done using the back-propagation method for

Fig. 3. Examples of scatter plots indicating the relevance of variables for (a) identification and (b) classification tasks.

C. Juliani Computers and Geosciences 124 (2019) 27–36

31



optimization task, with a learning rate of 0.3. The learning rate controls
how much we are adjusting the weights of our network in order to
minimize the network's loss function (Bishop, 2006). Its value was
decided based on the minimum estimation error calculated after suc-
cessive training tests. The logistic function rectifier linear unit (ReLU)
(Nair and Hinton, 2010) was taken as an activation function to increase
the non-linear properties of the network. For the classification task, the
softmax activation function was used (Bridle, 1990) to assign prob-
abilities to each class of the output and, then, the algorithm was opti-
mized by minimizing the cross-entropy loss (Rubinstein, 1999, 2001).
The training procedure has been repeated multiple times to capture the
highest average accuracy over a subset of samples taken randomly in
the main dataset. For this purpose, a number of transects was selected,
then their characteristic data were shuffled and partitioned among the
training and validation sets. To avoid overfitting, a regularization term
was applied to penalize the large weights (i.e., using the L2-norm so-
lution; Chen and Haykin, 2002) in the neural network. An independent
evaluation of the performance was done by presenting the testing data
to the network to compute an average accuracy. The entire dataset was
finally presented to the trained network to predict fault scarps (S1 and
S2) separated from the plain terrain (non-S0). The predicted seafloor
structures were finally inspected visually on the bathymetry.

3.5. Metrics and parameters

Evaluating the classification performances requires informative
measures such as accuracy, but also specificity and recall. These me-
trics are commonly used to test capabilities of classification algorithms
to detect true and false positives (e.g., the proportion of true and false
scarps S0 recognized respectively) and negatives (e.g., the proportion
of true and false non-S0 terrains recognized respectively) (Sokolova
and Lapalme, 2009). The accuracy measures the number of correct
predictions, i.e. the total proportion of true positives and true nega-
tives, from all predictions made. Alone, this measure is not enough to
make clear judgment on how well the classifier performs as, if the
negatives largely overcome the positives in a dataset, a classifier that
underestimates the dataset may effectively predict the negatives but
not the positives. This tends to increase the overall accuracy of the
predictions without yielding the relevant information sought. For this
reason, the recall and specificity are also calculated. While the former
measures how good the classifier is at detecting the positives, i.e. the
occurrences of scarps S1 and S2 in this study, the latter measures the
proportion of negatives correctly identified by the classifier, i.e. the
non-scarp landform S0. These evaluation metrics are applied during
the training and testing phases. They are expressed as follows
(Sokolova and Lapalme, 2009):

= +
+ + +

Accuracy TN TP
TP FN TN FP

=
+

Recall TP
TP FN

=
+

Specificity TN
TN FP

with TN, TP, FN, FP as true negatives, true positives, false negatives
and false positives respectively

4. Results and discussion

4.1. Training and testing

The simplest form of network that generated the smallest general-
ization error (i.e., 0.217) through the cross-validation method was one
hidden layer with 8 neurons. Adding more layers made negligible dif-
ference to the prediction accuracy. The average accuracies for the
training and testing were 92% and 93% respectively; the former was
achieved after 60 cycles of training and did not improve over further
training cycles.

Different network adjustments have been tested to obtain a fra-
mework that captures the scarps with the highest accuracy. Because
the classifier tends to discriminate landforms for fixed vertex sets,
transects with increased and decreased vertex intervals (i.e., 150 and
50 m, instead of the 100 m originally applied; see section 3.1) were
also analyzed by the trained network to check how spatial resolution
affects the resulting classification. Results can be found in Table 2 for
the three types of metrics. A clear decline in the average accuracy
happens when the distance between vertices differs by ± 50 m
(85–93%). Furthermore, recall and specificity have slightly distinct
behaviors. While the classifier effectively identifies negative classes up
to 100 m interval (> 93%), it declines for a higher vertex interval
(< 85%) such that a negative correlation exists between the degree of
landform complexity and the non-scarp features (false positives) de-
tected. Recall, on the other hand, presents a different pattern: the
determination of relevant information (false negative) increases while
morphological details decrease (83–95% for 50- to 150-m interval
respectively). This balance between the level of detail and conciseness
of scarp identification suggests that the depiction of terrain variation
not only depends on terrain attributes but also on spatial resolution.
This dependence is corroborated by the contrasting performance
shown between specificity and recall at 50-m and 150-m intervals
(Table 2).

The learning gap (8%) can be seen as the changing landforms re-
maining to be learnt, or as the missing information that may improve
the predictions. A major issue is the considerable structural control on
debris generation in the study area that locally complicates the topo-
graphy, and thus, induces incomplete identifications of fault scarp
morphologies (Fig. 4b). The recall and specificity, calculated for dif-
ferent vertex intervals (Table 2), illustrate this complexity in the to-
pography: too detailed (50-m distance), the model tends to under-
estimate the observations, i.e. with higher specificity and lower recall,
while simpler landform makes the classifier overestimate its analysis,
i.e. with higher recall and lower specificity, because larger vertex dis-
tances (> 100 m) effectively reduce the influence of spatial hetero-
geneity present in the landform. The 100-m vertex interval has the
advantage to reduce the processing time needed for data integration
and classification. To avoid any overestimation, however, a topographic
smoothing with appropriate filters may also be suggested prior to ex-
tracting the datasets, at the expense of losing the details of scarp ends,
because a smoothing would attenuate the fine variations of the eleva-
tion data.

4.2. Classification and limitations

Fig. 4 shows heatmap visualizations of the target scarps gener-
ated from the neural network model, and classified escarpments are
shown in Fig. 5. Even though the overall scarps are correctly iden-
tified, the performance of the identifier differs depending on the
vertex interval chosen. The identification accuracy declines toward
50% or below with low terrain detailing (150 m) (Fig. 4d) while

Table 2
Metrics for identification task of classifier during the training and testing phases
at different vertex intervals of individual transects.

Metrics Training Testing

100 m 50 m 150 m 100 m 50 m 150 m

Accuracy (%) 92.02 85.94 85.41 93.39 87.30 85.69
Specificity (%) 96.87 93.63 82.41 96.82 93.30 80.68
Recall (%) 89.92 83.15 93.77 91.67 84.86 95.00
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higher resolution (50 m) provides better discriminations (> 90%;
Fig. 4b). For the latter, scarps are more precisely distinguished, but
such distinction sometimes makes a partial identification of the
scarp-related reliefs (see Fig. 4b), notably usually those modified by
mass wasting events (e.g., Tucholke, 1992; Tucholke et al., 1997) or
hidden by long-term pelagic sedimentation and talus accumulation
(e.g., Searle et al., 1998). These terrains are not markedly dis-
criminated from the descriptive statistics and derivatives of the
elevation data as the landform tends to flatten. The use of higher
vertex intervals, however, reduces these irregularities because as
sampled data points are more distanced, their statistical description
tends to disregard smaller landform details. While this may con-
tribute to detect the wasted materials of scarps, it may also include

some false positives, notably volcanic structures, which are generally
more preponderant in the ridge valley and can be treated falsely as
tectonic offsets. For these reasons, post-processing corrections are
necessary to reduce general errors related to landform variabilities.
For example, identified fault scarp extents can be individually ana-
lyzed in terms of geometry (e.g., length, heave, vertical throw and
tilt angle) and compared with a neighboring scarp population (from
neighboring transects) or with statistical measures of the overall
detected scarps, so that uncommon fault offsets in a given region may
be considered for removal.

In addition, tectonic features such as well-rotated large-offset
detachment faults generally develop curved oceanic core complexes
(OCCs) with low-angle fault offsets (Smith et al., 2008). These are

Fig. 4. Visual comparison of discriminated
scarps from (a) a section of the bathymetry
located in the northern region of the Mohns
Ridge. Probabilities of identified scarps are
shown for (b) 50-m, (c) 100-m, and (d) 150-
m spatial resolutions, and corresponding
classification is presented on Fig. 5. The
white arrows indicate the transect direction
in (a) and examples of unidentified fault
exposures in (b) where local structuration is
more complex. The ridge axis was taken on
the basis of the bathymetric data, given the
approximate centerline of the AVR and/or
the centerline of the ridge valley delimited
by the western and eastern major fault
edges (see section 3.1 for details). Interval
of the depth contours is 150 m. AVR: axial
volcanic ridge.

Fig. 5. Examples of 100 transects with classified
scarps shown in a 3-dimensional view. Observation is
made at an elevation of 50° from the horizontal plan
and toward the north-east (NE) at an azimuth of 220°
from North. The ridge axis is at around 25 km of
distance from the westernmost border of the topo-
graphy. The ridge valley is delimited by its two high-
relief flanks (west and east) and consists of two axial
volcanic ridges (AVRs).
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not completely depicted along the Mohns Ridge by the cross-sec-
tional learning method presented in this study as this method re-
lates mostly on outcrops displaying more or less straight (non-
curved) escarpments. Therefore, new informative data, possibly
with other sampling-based classifiers, should be considered to re-
cognize these exposed detachment faults.

4.3. Relevance of variables

To determine the relevance of the variables, one can investigate
how the trained network attributes weight to each of the destination
neurons (Fig. 6). The connection weight matrix of the input layer
shows more emphasis on the variance and the regression slope variables
through very distinct maxima (−10 to 11; Fig. 6a) and summed po-
sitive and negative weights (above 10 and below −10 respectively;
Fig. 6b and c) among the destination neurons. These two variables
thus seem to capture the overall relevant information for scarp iden-
tification and classification. On the other hand, the slope and the
pvalue, and to some extent the coefficient of correlation and the
roughness, complement this tendency with positive and negative con-
nection weights of a distinct order of magnitude (up to 5 and down to
−4 respectively) (Fig. 6a). Among these variables, one observable
aspect of the distributed synaptic weights is the complementarity
between the slope, the roughness and the variance (Fig. 6a) through
which a positive correlation may be implied. Although these corre-
lated variables can be identified as redundant information for the
learning process, the classifier here selectively eliminates or empha-
sises some of the given inputs by weighting. Other elements, with less
influence on the output neurons (e.g., the standard error, the intercept
and the shaded relief data), have a tendency to be linked with minor
weight variations which assume that they have complementary roles
rather than being determinant in the predictions. The above-men-
tioned variables have thus a tendency to be linked with excitatory or
inhibitory connections in the trained network which suggests con-
nection neurons of distinct functions reserved for either identification
and/or classification tasks.

5. Conclusion

A cross-sectional methodology, combined with a supervised
learning algorithm, was applied to discriminate fault segments along a
MOR, at different resolutions (50, 100 and 150 m). Results showed that
classification errors relate mainly to both (1) the morphological com-
plexity of bathymetric data due notably to mass movements and/or
fault geometries, and (2) the choice of sampling scale which depends on
both the resolution of survey data and the size of the features sought.
Characteristic variables, such as the variance and the regression slope,
made the classification process readily accurate (92%) with the help of
complementary data described by e.g., the slope, the coefficient of cor-
relation, the pvalue and the roughness.

The cross-sectional method used in this research allows flexible
manipulation of bathymetric data. These data could be processed to
(1) quantify seafloor structures, such as fault scarp components (e.g.,
the width, heave and vertical throw, and the dipping angle) from
which the regional extension (tectonic strain) can be deduced, and (2)
understand the importance of these structures for seafloor spreading
throughout a MOR. The detection of other types of geological features
(e.g., volcanic structures and fault-related mass-wasting deposits) with
detection algorithms complementing the method presented in this
study, may also help refining our understanding of spreading pro-
cesses at MORs.
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Appendix A. Terrain analysis

Fig. A1. Examples of (a) grey-scale shading of terrain with a lighting azimuth of 315° and an altitude of 45°, (b) slope gradient, (c) roughness and (d) aspect
calculated for a segment of the northern region of the Mohns Ridge (characterized in Fig.4). Dark lines indicate the major fault edges at the ridge valley flanks.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cageo.2018.12.010.
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