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A B S T R A C T

For many geoscience applications, prediction requires building complex 3D surface models. Because of such
complexity, often only a single model is built, possibly with a small set of variants to represent the uncertainty.
Recent advancement in implicit modeling has made the construction of 3D geological models simpler; however,
automatic assessment and visualization of uncertainty constrained by input geological rules and data constraints
is still an active research topic. In this paper, we propose a new method that directly assesses and visualizes the
uncertainty of geological surfaces by the means of stochastic motion. We represent the geological surfaces as the
addition of stochastic implicit conceptual models and residual functions subject to the constraints of data and
geological age relationships. Two sampling approaches to create the stochastic motion are proposed: Monte
Carlo and Markov chain Monte Carlo (McMC). The uncertainty is assessed by independent realizations drawn by
Monte Carlo sampling. The uncertainty is visualized by a “smooth” movie of gradually evolving geological
surfaces that have the same stationary distribution as Monte Carlo, sampled by Markov chain Monte Carlo
(McMC). This idea is integrated into the level set equation. Level sets are an ideal way to represent mathema-
tically complex surfaces without explicit grid representations, thereby having the advantage of avoiding tedious
topological computations such as defining the connectivity of a surface. We illustrate this new idea with simple
synthetic 3D examples, taking the constraints of data and geological age relationships into consideration. Finally,
we illustrate the idea using a synthetic data set from a copper deposit, where dense drillholes constrain an ore
body with seven different lithologies. Our method provides a direct assessment and visualization of the un-
certainty of 3D geological surfaces.

1. Introduction and related work

Building 3D geological models is crucial in subsurface prediction
and risk assessment. Model building is widely applied in reservoir
forecasting (Thore et al., 2002), mining planning (Cowan et al., 2003),
groundwater assessment (Hassen et al., 2016) and civil engineering
(Hou et al., 2016). Many geological modeling exercises require building
3D surfaces of geological structures (e.g., ore bodies, reservoirs, faults).
Due to the sparsity and imprecision of geological data, as well as a lack
of geological understanding, uncertainty is an integral property of 3D
surface models (Caumon, 2010; Mallet, 2014; Wellmann et al., 2010).
Assessing and visualizing the uncertainty of these 3D surfaces have
been acknowledged to be important and challenging tasks (Caers, 2011;
Caumon, 2010; Lindsay et al., 2013; Scheidt et al., 2018).

Traditionally, uncertainty models are constructed with explicit

methods, but the topology is fixed for all realizations (Lecour et al.,
2001; Thore et al., 2002). This limitation is due to the fact that explicit
methods require tedious manual effort to define the topology, such as
the connectivity of a single surface and the spatial relationship among
multiple surfaces. Thus, with explicit methods, it is almost impossible to
edit the topology for every single realization. Implicit methods, which
use level sets to represent surfaces, were applied to model geological
structures as early as Lajaunie et al. (1997) and have since gained
considerable attention in geological modeling because little manual
intervention is required in the modeling process (Calcagno et al., 2008;
Caumon et al., 2013; Cowan et al., 2003; Gonçalves et al., 2017; Frank
et al., 2007; Vollgger et al., 2015). Although implicit methods usually
focus on interpolating a single deterministic model, they have the ad-
vantage of handling topological perturbations naturally, rendering fu-
ture work about the joint quantification of geometric and topological
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uncertainty a feasible and automatic task (Aydin and Caers, 2017;
Cherpeau and Caumon, 2015).

In general, two avenues have been explored for uncertainty as-
sessment on 3D surfaces. One is base-case reasoning, which involves
either estimating uncertainty based on the kriging variance (Chilès
et al., 2004; Tacher et al., 2006), or perturbing a reference (base) model
to generate multiple realizations (Caumon et al., 2007; Lecour et al.,
2001; Mallet, 2014; Røe et al., 2014; Thore et al., 2002). Some base-
case reasoning approaches specify an uncertainty boundary and perturb
the base model within that boundary (Caumon et al., 2007; Lecour
et al., 2001; Røe et al., 2014; Thore et al., 2002). Others consider the
“coherency” among realizations while perturbing the base model
(Mallet, 2014). The base-case reasoning approach has potential draw-
backs; for instance, the base model may be biased, and the uncertainty
of key prediction variables may be underestimated. However, for some
applications where dense data sets (e.g., numerous drillholes) are
available, such as mineral resources forecasting, the drawback may be
alleviated, and it has compuational advantages compared to the other
avenue, fully stochastic. A fully stochastic approach, on the other hand,
focuses on sampling multiple realizations, sometimes within a Bayesian
setting (Aydin and Caers, 2017; Cherpeau et al., 2010, 2012; Cherpeau
and Caumon, 2015; Holden et al., 2003; de la Varga and Wellmann,
2016; Wellmann et al., 2017; Grose et al., 2018). In order to address
uncertainty caused by the inaccuracy of input data sets, some re-
searchers propose sampling input data sets from user-defined distribu-
tions and using the implicit potential field method to directly simulate
multiple realizations (Wellmann et al., 2010; Lindsay et al., 2012). This
approach potentially ignores other sources of uncertainty, especially
uncertainty between data locations (Aitken et al., 2013). In some fully
stochastic approaches, usually geological structures (e.g., faults and
horizons) are stochastically modeled in a consistent way enforced by
specified rules (Holden et al., 2003; Cherpeau and Caumon, 2015).
Recently, in order to account for prior information, uncertainty quan-
tification of 3D geological structures using a Bayesian framework has
emerged (Aydin and Caers, 2017; Cherpeau et al., 2012; de la Varga
and Wellmann, 2016; Wellmann et al., 2017; Grose et al., 2018). The
advantage of using a Bayesian framework is that the uncertainty can be
reduced when new data or information becomes available, which is a
logical way of reasoning (Scheidt et al., 2018). However, constraining
the models with dense hard data within the Bayesian framework is still
challenging.

In addition to the use of level sets in implicit modeling and un-
certainty quantification in geosciences (Aydin and Caers, 2017;
Cherpeau and Caumon, 2015; Mallet, 2014; Moreno and Aanonsen,
2011; Xie et al., 2011), sophisticated techniques have also been de-
veloped for generating and evolving implicit interfaces (curves and
surfaces) in the fields of computer graphics and computer vision (Osher
and Fedkiw, 2002). In particular, dynamic level set methods, first
proposed in Osher and Sethian (1988), are a relatively simple yet
powerful way to implicitly represent and dynamically evolve complex
interfaces. Algorithms have been developed to reconstruct implicit in-
terfaces based on optimization (Juan et al., 2006; Zhao et al., 2001), or
to sample posterior interfaces (mostly curves) using Markov chain
Monte Carlo (McMC) (Fan et al., 2007; Iglesias et al., 2016). However,
few if any applications for assessing the uncertainty of complex surfaces
with dynamic level set methods have been reported in the literature to
the best of our knowledge.

In this paper, we propose a new idea to incorporate stochastic
motion with the level set methodology for assessing and visualizing the
uncertainty of geological surfaces. Considering sampling the realiza-
tions of geological surfaces in a time sequence, we make the simple link
that a surface that is unknown, except where the hard data is located,
can still “move” (assuming the measurement error in the data is neg-
ligible). In that sense, we create stochastic motion of the surfaces, re-
sulting in a “movie” of the surfaces. This idea is integrated with level set
methods. With the level set methods, independent complex geological

surfaces can be directly sampled by Monte Carlo and used for un-
certainty assessment. Dependent realizations of geological surfaces are
sampled by McMC and used to create a smooth movie to visualize the
uncertainty, thereby potentially increasing people's comprehension of
where and how large the spatial uncertainty is (Ehlschlaeger et al.,
1997).

The paper is structured as follows. First, the methodology is pre-
sented in Section 2. Then, in Section 3, several 3D examples are pro-
vided to illustrate the method with different parameters. Next, an ap-
plication of multi-lithology simulation constrained by dense drill-hole
data and a clear geological age relationship is shown in Section 4, along
with the associated uncertainty analysis. Finally, Section 5 discusses the
CPU runtime, and Section 6 concludes the paper. Produced movies for
all examples in Section 3 and Section 4 can be found at: https://github.
com/SCRFpublic/LevelSetMovies.

2. Methodology

Our methodology for assessing and visualizing uncertainty involves
applying stochastic velocity fields to level set representations of geo-
logical surfaces, and constraining this motion to data and geological
rules. We will therefore review the level set method first and then show
how this can be used to represent and initialize surfaces. Finally, the
notion of stochastic motion is explained.

2.1. Level set methods

With the level set method, an n-dimensional interface (e.g., a
curve in 2D, or a surface in 3D) is represented as the isocontour

=x c( ) of an +n( 1)-dimensional function x( ) called a level set
function. This implicit approach fundamentally differs from explicit
surface modeling (see Fig. 1). Varying the chosen isocontour allows
exploration of a family of geometries related by the geometry of the
underlying level set. In particular, if the underlying level set is con-
strained to be a signed distance function (SDF), i.e., satisfying the
special case =| | 1 of the Eikonal equation, then several useful
properties emerge. In this case, for an implicitly represented interface ,
points satisfying <x( ) 0 are inside , points satisfying are outside ,
and points satisfying =x( ) 0 lie exactly on ; moreover, for any point,

x( ) gives the signed distance to the nearest point on the surface,
useful for many algorithms. Interfaces represented with level sets
naturally support topological changes, such as merging and splitting,
that are often challenging operations with explicit representations (see
Fig. 2).

Level set methods often dynamically evolve level sets by para-
meterizing them in time, x t( , ), and solving the “level set equation,”

+ =x t
t

v x t x t( , ) ( , ) ( , ) 0. (1)

The level set equation advects x t( , ) according to an n-dimen-
sional velocity field v x t( , ), which in 3D we parameterize as v v v( , , )x y z .
Since only the component of velocity in the normal direction has an
effect on the level set equation, Equation (1) is equivalent to:

+ =x t
t

v x t x t( , ) ( , ) | ( , )| 0,n (2)

where v x t( , )n is the normal velocity. Temporally discretizing Equation
(2) with the forward Euler method yields

+ + =x t t x t
t

v x t x t( , ) ( , ) ( , ) | ( , )| 0.n (3)

Finally, we note that using the level set method allows certain
geometric quantities to be easily computed; for example, the normal N
to and mean curvature κ of a surface are given by
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= =N N
| |

, .
(4)

We use the open-source library PhysBAM1 for representing and
manipulating level sets.

2.2. Definition of the stochastic model

Let C x t( , ) be a signed distance function that represents an implicit
conceptual model of a geological surface, and R x t( , ) denote a residual
function that represents correlated variation made on that implicit
conceptual model, at time t. We define a geological surface's corre-
sponding level set function at time t, x t( , ), as the sum of C x t( , ) and
R x t( , ), i.e.,

= +x t C x t R x t( , ) ( , ) ( , ). (5)

Equation (5) has similarities to the usual geostatistical assumption
in random function theory of a mean plus a residual component (e.g.
universal kriging) (Chilès and Delfiner, 2012; Kyriakidis and Journel,

1999). This formulation has also been applied in the uncertainty as-
sessment of geological surfaces (Cherpeau et al., 2010; Cherpeau and
Caumon, 2015). However, here we suggest the use of a random mean
function, and not an unknown deterministic trend or mean function.
The stochastic mean is useful, for example, if some initial 3D surface
model x( )0 has been built that is too smooth and hence cannot be used
as an implicit conceptual model. Note that this approach has simila-
rities with a Bayesian geostatistical approach (Omre, 1999). To model a
random implicit conceptual model, we use

= +C x t x R x t( , ) ( ) ( , ),C0 (6)

where R x t( , )C is another residual implicit random function, possibly
with less variation than R x t( , ). One may of course opt for the (non-
Bayesian) traditional model, i.e., =C x t x( , ) ( )0 .

2.3. Level set implementation of the stochastic model

To implement the representation of Equation (5) in the level set
formalism, we set =C x x t t( ) ( , ) and

=R x t v x t t t( , ) | ( , )|n in Equation (5), which gives the following
level set equation:

Fig. 1. Level sets represent surfaces implicitly as isocontours of higher-dimensional functions, in contrast to explicit surface methods. Here we compare the re-
presentations for the 2D circle + =x y 42 2 . (Left) The zero contour of the level set paraboloid = +z x y 42 2 is the desired circle (several contours in the =z 0 plane
are drawn, with different colors indicating regions between contours). (Middle) An explicit (also called Lagrangian) representation of the circle is a collection of
points (red) and edges (thick black). (Right) Computationally, discrete samples (red) of the level set are stored in a uniform grid data structure; interpolation of these
values is used to identify a desired contour. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 2. Different isocontours (blue) of a level set function (red) result in different interfaces (blue lines). The implicit nature of level sets makes it natural to perform
topological operations like merging simply by shifting level sets or, with multiple level sets, via operations such as min( , )1 2 (union) or max( , )1 2 (intersection).
(Source (Gibou et al., 2018):). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

1 See http://physbam.stanford.edu.
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= +x t x t t v x t t t( , ) ( , ) | ( , )| ,n (7)

where t is always set to 1. To obtain v x t t| ( , )|n , at first, a Gaussian
realization is defined on the surface =C x t( , ) 0. This is achieved by
creating a Gaussian realization for the entire grid and extracting the
values on the mean surface, which themselves are also Gaussian. Then
the values on the mean surface are extrapolated in the normal direction
(Fig. 3), called “velocity extension” (Adalsteinsson and Sethian, 1999),
meaning we are creating velocities that satisfy:

=v x t x t| ( , )| ( , ) 0.n (8)

Velocity extension can be implemented by:

=v x t v x x t N t( , ) ( ( , ) , ).n n (9)

R x t( , )C in Equation (6) can also be created by this velocity extension
implementation. In contrast to directly adding a Gaussian random field
to an initial level set function, such as in Cherpeau et al. (2010) and
Cherpeau and Caumon (2015), velocity extension perturbs all iso-
contours consistently in order to avoid creating unexpected isolated
objects distant from the base surface =C x t( , ) 0 (see Fig. 4 for an
example). Velocity extension is useful since it ensures that x t( , ) re-
mains a SDF during evolution (Adalsteinsson and Sethian, 1999). The
SDF properties are hence preserved, without ad-hoc modifications.
Additionally, the velocity extension will be useful to create a random
walk of the surface that has microscopic reversibility (Fan et al., 2007).

2.4. Construction of the implicit conceptual model

To construct an implicit conceptual model, we need to initialize the
signed distance function x( )0 in Equation (6). In some applications,
analytic functions with uncertain parameters are enough to initialize
simple shapes such as planes, ellipsoids and channels. In complex ap-
plications, more sophisticated approaches are required to initialize an
implicit surface model. Data constraints are often placed on the gen-
eration of surface models. One efficient way to initialize the signed
distance function is the surface reconstruction method proposed by
Zhao et al. (2001). Zhao et al. (2001) reconstructs an interface from
data points by first initializing to be a rough initial guess of the final
surface (for instance, a bounding box such as the grid itself that encloses
all the data points. The fast tagging method described in (Zhao et al.,
2001) is then applied, which iteratively excludes from points that are
outside a radius of any data points. The fast tagging method runs in
O N N( log ), where N is the number of grid cells bounded by the initial
guess for . Finally, to obtain a smoother representation of , the
convection equation

=d
dt

d x( ) (10)

is integrated for several (fictitious) time steps, where d x( ) is the dis-
tance from a point x to the nearest data point. Thus, is attracted
towards the data set, creating a “shrink-wrapped” level set surface that
matches the data. The initialization procedure is illustrated in Fig. 5.
After initialization, the conceptual models are constructed by Equation

Fig. 3. Illustration of velocity extension. (a) shows a sphere (black circle) defined by its signed distance function x( ). (b) shows a Gaussian realization for the entire
grid. (c) shows the extended velocity field. Values (velocities) on the sphere are extracted and extended in the normal direction. For instance, the velocities at
locations x1, x2 and x3 are equal to the velocities at =x x x N( )1 1 1 , =x x x N( )2 2 2 and =x x x N( )3 3 3 .
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(6) and have larger variability than simply using 0.

2.5. Multiple level sets

For representing multi-category geological surfaces, each category
uses an independent level set function. Often, a geological age re-
lationship constraint is necessary when a prior age relationship is
known for multiple objects, such as stratigraphies, faults, and litholo-
gies (Cherpeau et al. (2010). The geological age relationship can be
expressed by the difference operation of level sets (Museth et al., 2003):
consider a binary case with categories A and B, if category A is older
than category B, then =A A B( ) min( ( ), ( )), and =B B( ) ( );
otherwise, =A A( ) ( ), and =B B A( ) min( ( ), ( )). In order to
enforce the geological age relationship, multiple level sets are in-
dependently initialized for each object at first (see Fig. 6). The initial
model should reflect the initial geological states, meaning that the older
level sets are not truncated by newer level sets yet. Then, the difference
operation is applied to the level sets according to the geological age
relationship.

2.6. Stochastic motion by Monte Carlo and McMC

For assessing and visualizing the uncertainty, stochastic motion is
defined for geological surfaces, in the sense that both the implicit
conceptual model and the residual function change with time. Two
sampling approaches, Monte Carlo and McMC, are proposed to draw
independent and dependent realizations, respectively.

2.6.1. Monte Carlo
In the Monte Carlo sampling, a new realization of the implicit

conceptual model and a new realization of the residual function are
drawn at every new time t independently. Hence the time t is simply a
counter for realizations. For conditional simulation, we first set the
values of conditioning data points to zero and then draw conditional
Gaussian realizations, so that the geological surfaces do not move away
from the conditioning data.

2.6.2. Markov chain Monte Carlo (McMC)
We can also define a McMC sampling of the uncertainty of geolo-

gical surfaces. McMC can be useful when needing to condition to more
complex data that require the definition of a likelihood function. In this
paper, however, we focus on using McMC for drawing from the same
distribution as with Monte Carlo, meaning drawing from a prior dis-
tribution. We propose to use the gradual deformation method (GDM)
(Hu, 2000), as a McMC method for sampling the surfaces. Note that we
do not use GDM in the classical sense as an optimizer. Instead, our
approach uses GDM to generate a random walk in the prior space. For
this random walk to converge to a stationary distribution, the Markov
chain generated by GDM needs to have detailed balance (microscopic
reversibility) (Green, 1995; Medhi, 1994; Mosegaard and Sambridge,
2002). In other words, the probabilities of going from x t( , ) to

+x t t( , ) needs to be the same as the probability of going from
+x t t( , ) to x t( , ). The time t is now equivalent to the iteration in

the chain. A proof that shows GDM provides a random walk in the prior
space is given in the Appendix. Additionally, defining the gradual de-
formation on the velocity extension, allows for the SDF properties to be
preserved during the random walk.

Fig. 4. Comparison of the results of using velocity extension (middle) and directly adding a Gaussian random field (right) to the implicit function of a base surface
(left). The same Gaussian realization is used for both methods in the test.

Fig. 5. Illustrates the surface reconstruction process of (Zhao et al., 2001), which we use for initial model generation. (Left) We randomly sample 1,000 points from
the surface of a 3D sphere of radius 10 centered at the center of the 1003 domain, a uniform Cartesian grid with resolution =x 0.5. The initial guess for a surface that
fits these points is a box that fills the entire domain (i.e., the grid itself). (Middle) The fast tagging method efficiently refines the initial guess to a coarse approx-
imation of a surface. (Right) After 30 steps of convection, the reconstructed surface appears quite smooth. The surface is not perfectly spherical due to the sparsity of
the input points and the limited grid resolution (there is inherent O x( ) error in the final result).
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McMC can then be used to visualize the uncertainty as a con-
tinuously evolving “movie” of the geological surfaces it generates.
Because of the properties shown in Appendix, this movie has equivalent
uncertainty as Monte Carlo sampling. Fig. 7 shows the gradual change
of a residual function R x t( , ).

3. Illustration cases

This section illustrates the method, studies the influence of para-
meters, demonstrates uncertainty assessment, and analyzes important
output statistics, using a synthetic 3D setting with a grid size of 100 ×
100 × 100. In order to show how the method works for diverse surface
types, the initial surfaces are three objects generated by three analytic
functions: a plane, a sphere and a cosine-type wave (see Fig. 8). The
plane and the wave are open surfaces and the sphere is a closed body.
To investigate the uncertainty affected by conditioning data, three drill-
holes are used as conditioning data, and they pass through the plane
and wave. A synthetic age relationship is assigned to three objects, so
that the plane is truncated by the other two objects and the wave

truncates the other two. The Gaussian realizations for defining the
mean function and the residual function are created using sequential
Gaussian simulation (SGS) with mean zero (Chilès and Delfiner, 2012;
Remy et al., 2009). A Gaussian variogram model is used in all of our
tests. Other variogram models, such as an exponential variogram, could
also be used, but they could create noisier surfaces that may be less
geologically plausible than a Gaussian model. For comparing the in-
fluence of parameters, three series of conditional Gaussian realizations
are generated, each series containing 100 realizations with sill 5 and
range 20, sill 5 and range 60, and sill 10 and range 20, respectively
(Fig. 8). These parameters have the same unit as the grid size. One
series of unconditional Gaussian realizations with sill 5 and range 20 is
also generated as a comparison. McMC by GDM is used to create a
smooth movie and each GDM cycle contains 10 deformation steps.

3.1. Simulation results and uncertainty assessment

The simulation results are compared and the uncertainty is assessed
in this section. Two realizations from the movie are selected and shown

Fig. 6. A geological age relationship example. (a) Four level sets are used to represent four lithologies, which have an age relationship indicated in the figure; (b)
Independent initialization of each level set without truncation.

Fig. 7. Illustration of the gradual deformation of the residual function. The residual function is a normal extension of the Gaussian realization defined on the sphere
in Fig. 3.
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in the first and the second columns of Fig. 9. Notice how the sill and
range contribute to the variability of the surfaces. The surfaces separate
the space into three domains (see the third column of Fig. 9 for the
sections of the domains with the truncation rule enforced). One quan-
titative way of assessing the uncertainty of 3D surfaces is using the
information entropy (Shannon, 1948) and has been applied in
geoscience as a quality measurement of geological models (Wellmann
and Regenauer-Lieb, 2012). As in Wellmann and Regenauer-Lieb
(2012), we consider that every surface separates the grid into two sub-
domains so the uncertainty of the surfaces is simply represented by the
entropy of every grid cell. Only the independent geological surfaces
sampled by Monte Carlo, (i.e., the first realization of every GDM cycle)
are retained to calculate the entropy. The last column of Fig. 9 shows
entropy maps of the stochastic motion. In the entropy maps, the blue
color indicates zero entropy (i.e., certainty), and other colors form a
“color band” that mirrors possible locations of surfaces. The width of
the “color band” reflects the variance of the Gaussian realization (i.e.,
the sill of the variogram). The larger the variance is, the wider the
“color band” is. Conditioning is also shown by the entropy maps: the
entropy values are zero on the drillholes and small near drillholes. The
entropy map of the unconditional stochastic motion in the last row is
shown for comparison. Most uncertainty lies in areas where multiple
surfaces have a high possibility intersecting each other (see the orange
and red regions in Fig. 9).

3.2. Output statistics: volume and surface roughness

This section shows how the parameters affect some important
output statistics of a geological structure model, such as the volume and
surface roughness (Mallet, 2014; Thore et al., 2002). We calculate the
volumes of the three domains separated by surfaces (see the third
column in Fig. 9 for the sections of the domains). Fig. 10 shows the
change of volume proportion during the conditional stochastic motion
with three parameter settings. It is shown that the initial volumes are
maintained for all cases. The effect of maintaining the volume is in fact
due to that the stationary isotropic Gaussian realizations are used,
which are divergence-free (Rogers and Williams, 2000). A divergence-
free velocity field is the condition for the conservation of mass (or
volume if the density is constant) in continuum mechanics (Osher and
Fedkiw, 2002). However, it should be noted that if the size of the mean
surface is so small that the Gaussian realization is not stationary on the
mean surface, the volume may no longer be maintained.

Fig. 9 suggests the surfaces are visually “rougher” with larger sills
and smaller ranges. This observation coincides with the consequence of
geostatistical simulation where larger sills and smaller ranges result in
more variability in realizations. In order to quantitatively compare the
surface roughness, the variance of the mean curvature: Variance ( ) is
used as the global indicator of surface roughness. Variance ( ) of the
three parameter settings in Section 3.1 are compared in Fig. 11. Fig. 11
shows a comparison of resulting Variance ( ) with respect to time step

Fig. 8. Initial surfaces and velocity fields. (a) The initial three objects and three drill-holes are visualized together. Realizations of velocities are generated using three
boreholes as conditioning data. Three realizations generated with (b) sill 5 and range 20, (c) sill 10 and range 20, and (d) sill 5 and range 60 are shown. The colors in
the realizations represent the velocity magnitudes. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this
article.)
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for the three parameter settings. The plots suggest that the surface
roughness is related to the roughness of the mean surface, the sill and
the range. Although some variations exist, there is a general trend of
roughness decrease when increasing the range, or decreasing the sill.

4. Case study: synthetic copper deposit

4.1. Data description

To evaluate the method's performance in a more realistic setting
where surfaces' geometry and topology are complex, and constrained by

dense hard data and a clear geological age relationship, we apply our
methodology with a synthetic data set motivated by a real copper de-
posit. In this case, approximately 50 drillholes are used as hard con-
straints, indicating seven lithologies (Fig. 12). An interpreted model
was built, constrained by these drillholes and geologists' understanding
of the geological age relationship in this case (Fig. 12) (this model was
given as is, hence one can consider it as a smooth deterministic inter-
pretation of the actual variability). The lithologies are named by their
age hierarchy, so Lithology Lithology Lith1 2

…ology Lithology3 7. The older lithologies are truncated by
younger lithologies. Although the geological age relationship is known

Fig. 9. Snapshots of surfaces at time 60 (first column) and at time 90 (second column), sections of geological domains (third column) and the entropy maps (fourth
column). The first three rows are the results of the conditional stochastic motion with sill 5 and range 20, sill 10 and range 20, and sill 5 and range 60, from top to
bottom. The last row shows the results of the unconditional stochastic motion with sill 5 and range 20.
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and fixed, the geometry and topology of each lithology are uncertain.
Drillholes are dense in the center and at the top, but are sparse at the
bottom and near the boundary of the grid.

4.2. Simulation

For sampling surfaces and maintaining the assumed geological age
relationships, we use an interpreted model to initialize the level sets
with the fast tagging method and convection equation (Equation (10))
and get x( )0 . To simulate, implicit conceptual models and residuals,
i.e., + RC0 and R, are sampled by both Monte Carlo and McMC to
generate geological surfaces. In order to maintain the age relationship
during stochastic motion, we use the same truncation rule at all time
steps. The simulation grid size is 120 × 120 × 100. Since no additional

information on surface roughness was made available to us for this
virtual case, we used an arbitrary variogram for RC and R with sill 10
and range 10 (same unit as the grid size). The output movies show a
gradual change in the geometry and topology (see accompanied movies
in https://github.com/SCRFpublic/LevelSetMovies). Fig. 13 (a) and (b)
show two copper deposit realizations drawn with Monte Carlo. One can
observe their differences in the geometry and topology. The sections
(Fig. 13 (c) and (d)) indicate that the geological age relationship is
maintained during the stochastic motion. Fig. 13 (e) and (f) show the
change of surface connectivity between two different realizations. It is
clear that the two realizations have different connectivity compared to
Fig. 12(c). Because of the higher density of drill-holes, the surface
variability is smaller in the center area and at the top, comparing to the
bottom area. The probability that any spatial location belongs to

Fig. 10. The change of volume proportion with three parameter settings. The horizontal axis shows time steps and the vertical axis shows the volume proportion of
the domains separated by three surfaces.

Fig. 11. The change of variance of mean curvature (vertical axis) w.r.t. time step (horizontal axis) with three parameter settings.
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Lithology 4 is shown in Fig. 14 (a). It is shown that the probabilities are
large near data points that indicate Lithology 4, and are small away from
those points. The entropy of all surfaces is shown in Fig. 14 (b). Notice
that larger entropies are seen at the bottom, because of the sparsity of
drillholes.

5. CPU runtime

In terms of the method's runtime, we discuss the runtime per time
step of the stochastic motion, referred to as the “unit runtime,” and the
runtime for a movie with 100 time steps, plus the initialization time,
referred to as the “total runtime.” The number of level sets and the grid
resolution are dominating factors for the unit runtime. Most of the
computation time is spent on creating the Gaussian realizations and
extending the velocity in the normal direction. We initialize the sur-
faces and create all the Gaussian realizations at the beginning. After
that, the unit runtime is linear in the number of level sets since we
update each level set independently. Table 1 lists both the unit runtime
and total runtime for the two cases in Section 3 and 4. All simulations
are run on a laptop with a Intel Core i7-7700HQ CPU with a frequency
of 2.80 GHz. We note that on a single CPU core, the present method's
efficiency is promising; moreover, much of our algorithm could be
easily parallelized in order to improve performance since each level set
is treated independently.

6. Conclusion

In this paper, we propose a new methodology for assessing and vi-
sualizing the uncertainty of 3D geological surface models using level
sets by the means of stochastic motion. The method takes advantage of
the level set methods and directly simulates geological surfaces with
complex geometries and topologies, subject to data and geological age
relationship constraints. Monte Carlo sampling of independent reali-
zations are retained for assessing the uncertainty. Markov chain Monte
Carlo sampling is used for generating a continuously evolving movie
that may enhance people's perception of the uncertainty, as suggested
by the growing body of work on building improved visualization sys-
tems for the geosciences as well as a recent survey showing the current
difficulty of communicating uncertainty for mineral resource geologists
(see Hyde et al. (2018) and the references therein). The uncertainty and
output statistics such as the volume and surface roughness are related to
the input parameters. The CPU runtime analysis shows the method is
efficient enough for the presented cases. What is not yet treated in this
paper is the specification of model parameters for both the mean and
residual functions. Our future work will focus on developing a Bayesian
inference framework that infers the parameters based on data. More-
over, we plan to extend to other types of objects, in particular, struc-
tural modeling of faults and folds. Level sets have been used to models
these types of geometries, as indicated in the introduction; therefore,
the method of stochastic motion can readily be applied to that setting.

With the same goal as other methods for stochastically simulating
geological structures mentioned in the introduction, the method is

Fig. 12. Synthetic copper data set. (a) shows 50 drillholes. (b) shows an interpreted model of the area. The interpreted model shows a complex shape. (c) a section
view of the interpreted model. (d) shows the geological age relationship (old to young from the top to the bottom). Seven colors in (d) correspond to seven lithologies
in the data. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 13. Realizations of the synthetic copper case. (a) and (b) are two realizations from the stochastic motion (Lithology 1 is made transparent). (c) and (d) are
sections of the models that show the geological age relationship. (e) and (f) are two realizations of Lithology 7. Note that all figures use the same color scheme as
Fig. 12 (d). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 14. Probability and entropy maps. (a) is the probability that any location belongs to Lithology 4 (probabilities below 0.4 are made transparent). (b) is the entropy
of all surfaces (entropies below 1.2 are made transparent).
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mostly applicable to model objects or domains where classical geosta-
tistical approaches become difficult to apply (Chilès and Delfiner, 2012;
Mariethoz and Caers, 2015). In real field applications, it will comple-
ment geostatistical methods by creating the domain wherein the more
classical approaches can proceed; often the geometry and topology of
these domains are the zero-th order uncertainty in practical applica-
tions (Jones et al., 2013; Mallet, 2014; Thore et al., 2002).
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Appendix. Gradual deformation as a Markov chain Monte Carlo sampler

In Hu, 2000, gradual deformation was proposed to solve non-linear inverse problems with Gaussian prior distributions. The main idea is to write
a Gaussian realization v t( ) as a linear combination of two independent Gaussian realizations vk and +vk 1, i.e.,

= + +v t t v t v( ) sin( ) cos( ) .k k 1 (11)

Then, a two-loop optimization on both k (outer loop) and t (inner loop) is used to optimize an objective function (difference between data and
simulated data), constrained to the stated Gaussian prior. Multiple solutions are obtained by starting from different initial samples. As pointed out in
Hansen et al. (2012), this form of sampling is not a Markov chain Monte Carlo since the method is dependent on the optimization algorithm and
hence on the initial model. As a result, sampling from a posterior (or prior) is only approximate. Here, we suggest the use of the GDM in a completely
different setting. Instead of optimizing, we use GDM to generate a Markov chain; we generate a chain of realizations by changing (not optimizing) k
discretely and t using a time step t in Equation (11). In this appendix, we provide a proof that GDM is a Markov chain Monte Carlo method
regardless of the time steps t . To do this, we need to show that gradual deformation has the property of detailed balance (microscopic reversibility,
see Green (1995), Medhi (1994) and Mosegaard and Sambridge (2002)). In other words, when

+ = +P v t v t t P v t t v t( ( ) ( )) ( ( ) ( )). (12)

If Equation (12) does not hold, then in order to adjust the balance, we need to add an acceptance/rejection step with a probability given by the
ratio

= +
+

P v t v t t
P v t t v t

( ( ) ( ))
( ( ) ( ))

.
(13)

To simplify notation, call =t x , + =t t y, =v vk 1 and =+v vk 1 2. Then

= +v x x v x v( ) sin( ) cos( )1 2 (14)

Then we have:

+ = + + + = + + = +v x y x y v x y v x y v y v x y v y v x v x v( ) sin( ) cos( ) sin( ) (cos( ) sin( ) ) cos( ) (sin( ) cos( ) ) sin( ) cos( )1 2 1 2 1 2 1 2 (15)

Note that v 1 and v 2 are independent random variables. Similarly, going back from + =x y z to x yields:

= +v z z v z v( ) sin( ) cos( )1 2 (16)

Similarly to Equation (15), we have:

= + = + + + = +v x z y v z y v z y v y v z y v y v z v z v( ) sin( ) cos( ) sin( ) (cos( ) sin( ) ) cos( ) ( sin( ) cos( ) ) sin( ) cos( )1 2 1 2 1 2 1 2 (17)

Since distributions of all variables are Gaussian, detailed balance entails that both the conditional mean and variance are equal, i.e.,

+ = +E v x y v x E v x v x y[ ( )| ( )] [ ( )| ( )] (18)

and

+ = +Var v x y v x Var v x v x y[ ( )| ( )] [ ( )| ( )] (19)

In terms of conditional expectation this then entails that:

=E v v E v v[ | ] [ | ]1 1 1 1

=E v v E v v[ | ] [ | ]2 2 2 2

A simple calculation shows that.

Table 1
Runtimes for the 3D object example and the copper case.

Cases Unit runtime
(1 time step)

Total runtime (initialization + 100
time steps)

Illustration case 3.9s 407.3s
Synthetic copper

case
19.4s 1994.5s
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= =E v v E v v y v[ | ] [ | ] cos( )1 1 1 1 1

= =E v v E v v y v[ | ] [ | ] cos( )2 2 2 2 2

Similarly, for the variance we get:

= =Var v v Var v v y[ | ] [ | ] sin ( )1 1 1 1
2

= =Var v v Var v v y[ | ] [ | ] sin ( )2 2 2 2
2

For small t , it is easy to show that using a Taylor expansion:

+ = + = +v t t v t t x v x v v t t v( ) ( ) (cos( ) sin( ) ) ( )1 2 (23)

In this case, detailed balance is trivial to show because of the addition of a random component with mean zero and standard deviation t . Caers
(2007) showed with examples that gradual deformation leads to divergence when the size of the random vector is small relative to the number of
perturbations made. This can now be understood as follows. Consider v to be a random vector with covariance matrix C. A simple way to generate
samples of v is using Cholesky decomposition, meaning:

= +v m L vT
0 (24)

with v0 is vector of independent Gaussian deviates and =C L LT . Because the vector v0 is of finite size, we have that v vT
0 0 is not necessarily exactly

equal to zero (spurious correlation). This also means that there is no detailed balance since for another sample v we have v vT
0 0, hence

=P v v v m C v m v v( ) exp( ( ) ( ) ) exp( )T T1
0 0 (25)

Likewise

=P v v v m C v m v v( ) exp( ( ) ( ) ) exp( )T T1
0 0 (26)

Hence GDM requires an acceptance/rejection probability of

= +v v v vexp( )T T
0 0 0 0 (27)

This probability is however close to 1 for high-dimensional problems, or problems where the sample size is orders of magnitude less than the
dimension of the problem, which is the case for large spatial problems. The implications here for stochastic motion is that McMC is possible using
GDM, and that the visualization, i.e. the “movie” of dependent realizations reflects the actual uncertainty sampled using Monte Carlo by independent
realizations.
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