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A B S T R A C T

Three-dimensional reconstruction technique plays a key role in understanding the characteristics of geomaterial
pore structures through computed tomography images. In this paper, multiple-point statistics and a marching
cube algorithm are integrated to reconstruct three-dimensional model to extract the pore structure, analyze
connectivity and predict the permeability of the pore structure. This method is applicable not only to two-
dimensional images to determine simple characteristics of geomaterials, but also to better understand inner pore
structure via the reconstructed three-dimensional models. The results obtained by the proposed reconstruction
method agree well with those obtained from the previous methods.

1. Introduction

The characteristics of pore structures of geomaterials plays a vital
role in analyzing petrophysical and transport parameters such as por-
osity, specific surface area, permeability and capillary pressure (Øren
and Bakke, 2003; Al-Raoush and Willson, 2005). 3D reconstruction
techniques offer efficient approaches for investigating such typical
parameters using high resolution CT images. With the development of
image processing technologies, computed tomography has been shown
to be superior in defining the 3D pore structure of geomaterials by
generating micron-scale 3D data sets (Knackstedt et al., 2004; Ohnishi
et al., 2014). The ability to visualize 3D pore structures accelerates the
reliability and understanding of calculation results based on the CT data
(Arns et al., 2004; Olafuyi et al., 2006). To generate a 3D pore network
model and describe the pore structure of geomaterials, a suitable
method should be considered due to the interference from the resolu-
tion of CT images. Generally, models representing the 3D models of
geomaterials have been classified into three types (Al-Kharusi and
Blunt, 2007; Rabbani et al., 2014). The first interprets sedimentary rock
processes using the measured distribution of grain centers. However, it
computes grain sizes inefficiently, and grain locations are difficult to
validate (Øren, and Bakke, 2003). The second represents 3D models
using the statistical properties of thin sections, and are divided into two
algorithms. One reconstructs the 3D realization using a two-point

correlation function (Ioannidis and Chatzis, 2000). However, its struc-
tural representation of sphere packing is poor. The other utilizes a
multiple-point statistical method. However, its applications still are
constrained, and the models are pseudo-3D images showing large dif-
ferences between the reconstructed model and original sample (Okabe
and Blunt, 2005). The third creates 3D realizations using the direct
outputs of 3D CT scanning tools. However, the microstructure re-
produced suffers from a high random access memory (RAM) usage and
high cost of computation time for large datasets (Ohnishi et al., 2014).
Fortunately, parallel computing (CPU/GPU) approach can accelerate
this procedure with sharing the cache and memory (Straubhaar et al.,
2013; Zhang et al., 2015). However, it inevitability suffers from high
economic cost for computing architecture of super computer and
complex multi-thread computing models.

Once 3D models are reconstructed, petrophysical and transport
parameters can be predicted. Recently, the prediction of such para-
meters has improved through the simulation of pore network extraction
(Øren and Bakke, 2003; Bashtani et al., 2016; Sharqawy, 2016). An
initial rigorous pore network extraction method was defined by
Lindquist et al. (1996), in which pore space distributions were quan-
titatively discussed by the defined medial axis. Several other methods
have also shown promise for determining the pore structure by the pore
space distances and maximally inscribed spheres (Sweeney and Martin,
2003; Silin and Patzek, 2006; Arand and Hesser, 2017), and by the
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extracted skeletonization models (Al-Raoush and Willson, 2005;
Homberg et al., 2012; Wildenschild and Sheppard, 2013). Although
both can provide reliable pore structure information, each is inevitably

affected by the digitization errors during pores and throats identifica-
tion (Byholm et al., 2006).

In this paper, multiple point statistics (MPS) and a marching cube
algorithm (MC) are integrated to reconstruct a 3D visualization model
of sandstone. The main purpose of this paper is to decrease the effect of
digitization errors of 3D spatial information of micro structure.
Moreover, we make efforts to decrease the computing time, RAM usage
and economic cost by using a strut array representation of datasets,
similar to the parallel computing approaches with CPU and GPU.
Compared with previous methods, the extraction of the pore network
structure is similar to the classes of methods mentioned above with pore
structure represented by pore space distances and maximally inscribed
spheres. However, the proposed method accurately simulates target
images organized into struct arrays, and has the following advantages:
(1) the classification and clustering of training image are not needed;
(2) the computing efficiency significantly improves due to the binary-
decimal transformation of the pattern library; (3) the retrieval of the
pattern library is streamlined by the utilization of a sub-pattern; (4) the
records of all patterns in each training image is replaced by the records
of the central location of each pattern, and RAM usage is decreased.

This paper is organized as follows. The MPS and MC algorithms are
integrated to reconstruct the 3D model as described in Section 2. The
reconstructed 3D model and extracted pore structure are described in
Section 3, and a brief summary and conclusions are given in Section 4.

2. Experiment and methodology

The 3D data were obtained from a Siemens-Somatom scope CT
scanner by rotating the Chongqing sandstone samples (Φ50 × 100 mm)
through a full 360° range at intervals of 0.2°. A total number of 100

Fig. 1. The flow chart of the whole methodology for 3D reconstruction and pore
network extraction.

Fig. 2. Data preparation process, (a) the original CT images with 10002 pixels, (b) the middle procedure and (c) the recognition of pore (color) and solid objects
(white), (d) the segmented 2D image, in which the sizes of pores are represented in different colors, (e) the 3D realization of single CT image. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 3. Probability distributions of pore and grain sizes of an CT image.

Fig. 4. The struct representation of pattern library.

Fig. 5. Demonstration of the scanning procedure using template; (a) 3D ×6 6 training image, (b) 3D template representation with yellow central node U, (c)
simplified 3D template in XOY plane, (d) simplified 2D ×3 3 template, (e) ×6 6 training image in XOY plane. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)

Z. Zhao, X.-P. Zhou Computers and Geosciences 123 (2019) 83–94

85



slices were produced and cropped at a scale of ×1000 1002 with a re-
solution of 3 μm per-pixel.

Furthermore, to reduce the digitization errors and identification dif-
ficulty of pores and throats, the methodology is divided into four steps:

(1) 2D image preprocessing is applied to reduce the identification diffi-
culty of pores or throats, and a quantitative analysis is implemented.

(2) The integrated method of MPS and MC algorithms is applied to
reconstruct the 3D model.

(3) The 3D solid and skeletonization models are reconstructed, and
used to extract the pore structure.

(4) The petrophysical parameters and transport properties are pre-
dicted by the extracted pore structure using MC algorithm.

2.1. Characterization of 2D CT slice

Data preparation step is firstly required to exclude excess pores and
throats, which are considered as noise in rock CT images. This proce-
dure is shown in the stage 1 (Fig. 1). Then, the histogram estimation
method, which belongs to the threshold-based segmentation method, is
applied to segment the CT images due to the unimodal distribution of
gray level of CT images (Jonassen et al., 2008), and these images are
converted to binary images with 0 (black) for voids and 1 (white) for
solid objects using threshold segmentation function

=f x y
f x y T
othrewise

( , )
1, ( , )
0,b

g

(1)

where f x y( , )b and f x y( , )g are the binary value and gray level of each
pixel, respectively, and T is the threshold value used in the pixel-based

binary conversion, which is the average value of f x y( , )g obtained from
the histogram estimation method.

Once the suitable threshold value (the average value) is determined
using the histogram estimation method, the images can be segmented
reasonably and reliably with considering the function of all pixels. In
addition, accurate pore network can be obtained based on the segmented
image. Finally, we excluded a few tiny irrelevant pixels while retaining
the primary structural information using median filtering function.

The methodology preparation in the stage 2 is crucial for the success
of the whole reconstruction scheme. For simplification, we classify this
stage into three steps: (1) the coordinate ID, porosity, pore and grain
sizes are extracted by simple 2D image analysis; (2) the integrated
method of MPS and MC algorithms is used to reconstruct the 3D model;
(3) the pore network is extracted from the reconstructed model.

In this work, to compute the pore and grain size distributions, the
Chan-Vese model (Chan and Vese, 2001) is used to recognize each pore
and solid object for given random CT images. Based on the Chan-Vese
model, the energy function of the object is written as

= + +E f f I f dxdy I f dxdy µL( , , ) ( )outside1 2 1
2

2
2

inside outside

(2)

where I x y( , ) are gray level intensities f x y( , ) with each coordinate ID,
L ( )denotes the contour line length of each object, is the contour line
in the original images, and f1 and f2 are the different average gray levels
inside and outside the contour line.

When the contour line is replaced by the level set function , Eq.
(2) can be rewritten as
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where H denotes the Heaviside function, denotes the Dirac function,
and the expressions of f1 and f2 are (Chan and Vese, 2001)
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Thus, reliable information on pores and solid objects can be acquired
efficiently from Eq. (2)-Eq. (4), and the results are shown in Fig. 2.

Once the pores and solid objects are separated, the probability
distribution of pores (PSD) and grain sizes (GSD) are estimated from

= ×PSD
N f x y

N f x y

[ ( ,

[ ( , )]
100%

b

color

color (5)

whereN is the pixel counter, f x y( , ) is gray level of a single color set,
f x y( , )b is the binary value of each pixel, and color is the pore or grain
subset represented by different colors.

Table 1
Struct array representation of the training image and template in XOY plane in
Fig. 5.

B-Pattern Counters Coordinate ID D-Pattern Counters Coordinate ID

0 1 0 1

1011 1 1 (1,1,m△z),
(1,3,m△z)

11 1 1 (1,1, m△z)

0100 1 0 (2,1, m△z) 4 1 0 (2,1, m△z)
1100 0 1 (3,1, m△z) 12 0 1 (3,1, m△z)
0101 1 1 (4,1, m△z),

(2,3, m△z)
5 1 1 (4,1, m△z)

0011 0 1 (1,2, m△z), 3 0 1 (1,2, m△z),
0001 1 1 (2,2, m△z),

(4,3, m△z)
1 1 1 (2,2, m△z)

1010 2 0 (3,2, m△z),
(4,2, m△z)

10 2 0 (3,2, m△z)

0110 0 1 (3,3, m△z) 6 0 1 (3,3, m△z)
1001 0 1 (1,4, m△z) 9 0 1 (1,4, m△z)
0111 1 0 (2,4, m△z) 7 1 0 (2,4, m△z)
1000 0 1 (3,4, m△z) 8 0 1 (3,4, m△z)
1111 1 0 (4,4, m△z) 15 1 0 (4,4, m△z)

Notice: B-Pattern is defined as binary pattern; D-pattern represents the decimal
pattern.

Fig. 6. The generation of sub-pattern library; (a) ×5 5 template, (b) a ×5 5 training image, (c) the struct array of sub-patterns.
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Considering the complicated internal pore structure, and the dif-
ference between the model and real sample, some simple assumptions
must be made to obtain accurate pore and grain sizes. Here, irregular
pores are assumed to be circles in 2D space. The assumed circle dia-
meters are considered to be the same as the real pore diameters. Thus,
the pore or grain radii (Fig. 3) can be calculated from the 2D cross-
sections by

= ×R P
N f x y[ ( , )]

resolution (6)

whereRis the radius of the pore or grain, and Presolution is the pixel re-
solution.

Although pore structure information can be obtained by a brief
analysis of 2D cross-sections for most porous media, some tiny pore
spaces are inevitably merged into adjacent larger pores or grains, which
decrease the accuracy of extracted pore and throat information.
Therefore, a 3D visualization model is introduced to improve estima-
tion accuracy.

2.2. Description of the integrated approach

The MC algorithm is the most prevalent method for reconstructing
3D visualization models of interesting objects in medicine and industry.
However, its applications in geotechnical engineering are rare, where
the 3D visualization model of geomaterials is constructed by geosta-
tistics techniques (e.g., MPS). Generally, the MC algorithm is efficient
for the bulk processing of large data sets, and in recognizing holes while
accurately estimating volume. However, its recognition of geometry
and topology remains a chief drawback, because of the typically ani-
sotropic data between slices. In contrast, the MPS algorithm is superior
for small-scale data processing, and reproduces curve features and re-
cognizes connectivity well between slices. Unfortunately, its fatal lim-
itations are its performance with large data and its difficulty in 3D re-
cognization despite plentiful faces in practical applications. Here, we
integrate these techniques making full use of their complementary ad-
vantages to obtain an accurate 3D model.

2.3. Recognition and reproduction of pattern library

During the recognition and construction of the pattern library, the
training image is initially prepared and defined as the set of gray levels
f x y( , ) with coordinate IDs, in which only two faces with black (0) and
white (1) are included. Then, the 3D scanning template T is specified
artificially, with the center node UandNt adjacent nodes, which is
written as

= + =U U x y z h x y z( , , ) , ( , , ; , , )y z0 0 0 x (7)

whereh is the 3D vector describing the geometry of the template.
Once the template is prepared, the template will collect the pattern

libraries at every center node U by scanning the training image along
x-, y-, and z-axes. The collection procedure of the pattern library at
every center node U is written as

= + =PL U f U f U h x y y( ) { ( ); ( )| , , ; , , }y zx (8)

where f U( ) denotes the faces at the center node U in the template and
PL U( ) is the collected pattern library.

The pattern libraries can be considered as a collection of Nt condi-
tion data. Each pattern library can confirm the value of a local under-
lying spatial connectivity variable by computing the occurrence prob-
ability of the replicated face in the pattern library of training image.
The probability is called conditional probability distribution function
(CDF). Based on Bayesian theory, the CDF of a pattern library extracted
from single training image in all planes are

=
=

=
=

CDF f U
prob f u k PL U

prob PL U
C C j N( ( ))

( ( ) )| ( ))
( ( ))

/ , 1j

j
k
j

k
k
j

t
0

1

(9)

whereCk
j is the replicated value of the jth pattern library with face kat

each center node.
Next, the pattern library can be reproduced by retrieving the CDF.

Finally, the image can be simulated by the pattern library.

2.3.1. Struct array representation of pattern library
The classical pattern library is stored in structured tree, which is

limited by computing efficiency, memory space, and recognition of
spatial information (Boucher, 2009; Mariethoz and Renard, 2010).
Therefore, an array representation (Xu et al., 2012) is introduced to
substitute for the tree structure. However, the retrieved image data
obtained from the Xu's method is limited to the 2D plane. Although 3D
spatial information is supplemented by the resampling data in the other
two planes, inevitable errors occur (e.g., the precise location and dis-
tribution probability) due to the stochastic retrieval of the target image.

In this paper, the location of target point in the training image is
initially determined. Then, the pattern libraries of the target points in
all planes are extracted synchronously. Finally, the extracted pattern
library information is stored in a struct array (Fig. 4) with 6 compo-
nents including the binary and decimal pattern library, counters of
replicated pattern in faces (0 or 1) and corresponding coordinate ID
information, respectively.

To clearly describe the procedure for constructing the struct array of
a pattern library, the training image and template in Fig. 5 are taken as
an example. First, a 3D multi-orthoslice is projected onto the XOY, XOZ

Fig. 7. (a) Demonstration of a formatted cube, (b) sketch map of Edge and Vertex index.
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and YOZ planes. Then, the scanning procedure is implemented from left
to right and top to bottom, as illustrated in Fig. 5(d) and Fig.5(e). Fi-
nally, the procedure is terminated until all the pixels in the training
image have been scanned (Table 1).

In the scanning procedure, the pattern library is considered as a vector
consisting of binary values, as shown in the first column of Table 1. The
library values are then converted to scalars, as shown in the fourth column
of Table 1, which is just a simple transformation between binary and
decimal numbers. By combing the binary and decimal patterns with the
statistical face counters (0 or 1) and the coordination ID in the second, the
third, fifth and sixth columns of Table 1, respectively, the struct array is
defined as

= =A {XOY (A ),XOZ,YOZ}Struct Sub pattern (10)

whereAStructis the struct array consisting of the XOY, XOZ and YOZ pattern
library, ASub pattern is the sub-pattern generated by scanning the training

image using the large-scale template. The sub-pattern can be written as

= =S

S S

A [ ( B pattern,Counters,Coordination ID,D

pattern,Counters,Coordination ID,), , , ]M

Sub pattern 1

2 (11)

whereM is the index of the sub-pattern.
In practice, there exist many pattern libraries for large-scale tem-

plate. Therefore, a sub-pattern is designed to deal with these cases, in
which large pattern libraries are considered as dynamic struct arrays
consisting of a series of small sub-patterns.

Fig. 6 demonstrates the generation of sub-patterns. A pattern is di-
vided into three sub-patterns, whose values can be converted to scalars
through the binary-decimal transformation. Points closer to the center
node Uhave a stronger effect on the center point. Thus, initially simu-
lating the sub-pattern near to the center point is crucial, and the target
image can be rapidly simulated.

Fig. 8. The 15 basic topology cubes with isosurface facet.
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2.4. Target image simulation

Since all the information of the training image is stored in the struct
array, the single normal equation simulation algorithm (SNESIM)
(Strebelle, 2000) is applied to simulate target images.

At first, a blank image is provided to simulate the target image. The
grids of the blank image are scanned randomly, and each unknown
pixel value is determined by the probability from the marginal dis-
tribution. Then, it encounters with neighbors that include previously-
known information. Meanwhile, a pattern library with the current un-
known node at its center and the previously-known encountered

neighbors are constructed. By comparing the struct arrays of the pattern
library extracted from the training image, the unknown node can be
determined by the simple retrieve of CDF. To interpret the retrieval
procedure of an unknown pixel point clearly, Fig. 5(d) and Fig. 5(e) are
taken as an example. Assume the binary values at the top (1) and
bottom (3) of Fig. 5(d) are 1. Then, the pattern library can be written as

=PL U( ) (1, ? , 1, ? ) (12)

where?is the unknown neighbor nodes, and the CDF can be calculated
by searching Table 1, where the counters of face 0 and 1 respectively
are

Fig. 9. CPU time and RAM consumption Comparison of different template size, (a)–(c) CPU time of simulated image at scale of 3002, 5002 and 10002, (d)–(f) the
corresponding RAM usage of struct array and tree structure for the simulated image in size of 3002, 5002 and 10002.
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= =C C4, 10
2

1
2 (13)

The conditional distribution probabilities in face 0 and 1 are 4/5
and 1/5, respectively. Thus, the unknown point should be 0 or 1 by
retrieving the CDF (4/5 and 1/5). This procedure is ultimately looped
until the simulated image is completely formed.

Generally, to produce 3D information, the whole procedures can be
simply summarized as follows:

(1) The struct array including pattern library, counters of replicated
faces (0 or 1), and corresponding coordinate ID is constructed by
scanning a 3D ortho-slice.

(2) The pattern library with an unknown center pixel point is re-
produced by scanning the simulated blank image.

(3) The value of unknown pixel point is determined by retrieving the

CDF until the simulated image is completely constructed.
(4) Through looping (1)–(3), all needed 2D simulated images are re-

produced, and are considered to be input parameters of the 3D
reconstruction model.

2.4.1. Visualization model of 3D reconstruction
The 3D visualization model is reconstructed using the MC algorithm

(He, 1987), in which the cube with slices Sk and +Sk 1 including eight
pixel points is shown in Fig. 7(a), and including edge and vertex indexes
is shown in Fig. 7(b). If the thickness between slices is represented by ID
information along z-axis direction, the cube represented by MC algo-
rithm can be written as

Fig. 10. The simulated image using different methods, (a) the original CT image, (b) the simulated image by struct array, (c) the simulated image by tree structure.

Fig. 11. The probability distribution of pore and grain sizes of a random origin CT image with corresponding simulation image by struct array and tree structure.

Fig. 12. Comparison of porosity distributions of the original image and the simulated images in different sizes (a) porosity distribution of the original image (b)
porosity distributions of the original image and the simulated images.
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where is the cube, f x y z( , , )0 0 0 is the gray level with spatial co-
ordination ID.

One assumption of the MC algorithm is that the volumetric scale
data are locally continuous, and each VI has two types (negative 0 or
positive 1) of voxels with eight pixel points each after comparison with
the given isovalue. If the value of vertex is larger than or equal to the
isovalue , it is assigned as 1, otherwise as 0. Thus, 256 (28) topology
cubes are possible. Considering reflection and rotation symmetry, this
can be further simplified to 15 basic topology cubes (Fig. 8).

After intersecting edge EI at each cube with , vertex types can be
assigned. In addition, using linear interpolation method, the location
and normal vector of intersecting points between the isosurface and
voxel edges can be respectively written as

= +P x y z P x y z
f

f f
P x y z P x y z( , , ) ( , , ) ( ( , , ) ( , , ))1

1

0 1
0 1

(15)

= +N x y z N x y z
f

f f
N x y z N x y z( , , ) ( , , ) ( ( , , ) ( , , ))1

1

0 1
0 1

(16)

where P x y z( , , ) and N x y z( , , ) are the coordinate and normal vector of
the assigned vertex, and f0 and f1 are the gray levels of assigned ne-
gative 0 and positive 1 points, respectively.

Once the location and normal vector of intersecting points are de-
termined, the 3D realization can be generated by collecting the trian-
gular facets of the cubes.

3. Results and discussion

3.1. Comparison of 2D size effect

Fig. 9 shows the time consumption and RAM usage versus different
template sizes using the struct array and tree structure representations.
Both representations are adopted to simulate the images with the sizes
of 3002, 5002 and 10002.

As shown in Fig. 9(a)–(c), time consumption increases with in-
creasing scale. Initially, the times consumed are nearly the same when
the struct array and tree structure representations are used. However,

Fig. 13. 3D visualization models reconstructed by simulated images in different sizes, (a) the reconstructed half-3D models with size of ×300 1002 using 50 simulated
images only containing XOY plane information and 50 simulated images containing all information, (b) the total 3D model with size of ×300 1002 , (c) the re-
constructed half-3D models with size of ×500 1002 using 50 simulated images only containing XOY plane information and 50 simulated images containing all
information, (d) the total 3D model with the size of ×500 1002
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the difference appears in template size of ×9 9. Moreover, a gradual
increase of the gap is shown between the two representations at scales
of 3002 and 10002, while the increase of difference is relatively stable at
a scale of 5002. For the scale of 3002, the time consumed by struct array
is more than that by tree structure, which is opposite of the situation
with scales of 5002 and 10002. Meanwhile, the increasing trend of time
consumption for struct array is relatively stable in an exponential
manner. However, this tendency changes at a scale of 10002.

Fig. 9(d)–(f) show the relationship between RAM usage and dif-
ferent template sizes. The struct array and tree structure representations

have nearly the same RAM usage with template sizes smaller than
×11 11, while the difference between these two representations in-

creases with larger templates. Moreover, the RAM usage for tree
structure increases dramatically with increasing template size, while it
keeps nearly constant for struct array, which benefits large-scale si-
mulation. Thus, the struct array can be a better substitute for tree
structure, especially for large-scale training images scanned by large
template.

Fig. 10 shows the quality of the original image, and the simulated
images using the struct array and trees. The image quality simulated by

Fig. 14. 3D models with the original size, (a) 3D model reconstructed by original images, (b) 3D realistic pore structure.

Table 2
Comparison of the parameters in the present work and the previous works.

Categories Scale 1 Scale 2 Scale 3 Previous works

Image size 3002 × 100 5002 × 100 10002 × 100 Øren & Bakkle (2003) Al-Kharusi & Blunt (2007)
Porosity (%) 19.5 20.5 21.4 14.8 13.7
Find balls 1373225 4281238 21709196
Invalid voxel 3344 3772 4470
Number of throats 1989 2557 2622 2419 8192
Number of pores 1179 1490 1660 848 4997
Permeability (mD) 433 457 471 545 423

Fig. 15. The extracted network, (a) the extracted network from 3D reconstruction model with the simulated size of 3002 (b) extracted network from 3D re-
construction model with the simulated size of 5002.
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struct array is better than that simulated by the tree, and closer to the
original image.

Fig. 11 shows the pore and grain probability distributions of the
original image and the images simulated by the struct array and tree
structure. The pore and grain probability distribution curves of the si-
mulated image agree well with those of the original image. Moreover,
the grain distribution curve obtained when using the struct array per-
forms better than that obtained when using tree structure.

Fig. 12 shows the porosity distributions of the original image, and
the simulated images using the struct array with sizes of 3002, 5002,
and 10002. Fig. 12(a) shows the porosity distribution of the original
image. Fig. 12(b) shows the porosity distribution of the simulated
image at different scales. As the simulation size increases, the porosity
distributions of the simulated images agree well with that of the ori-
ginal image. However, the porosity of the simulated image is less than
that of the original image, which may have been caused by the sto-
chasticity of the struct array-based MPS method for the retrieving of the
CDF. Moreover, when the simulated size is the same as the original, the
porosity of the simulated images is nearly the same as that of the ori-
ginal images.

3.2. Comparison of 3D reconstruction model

The 3D visualization model is reconstructed as the images are si-
mulated, which is followed by the extraction of pore structure. Fig. 13
shows the 3D models at the scales of × ×300 300 100, and

× ×500 500 100. Fig. 13(a) and (c) show the half-3D models using 50
simulated images only containing XOY plane information and 50 si-
mulated images containing all information. Fig. 13(b) and (d) show the
total 3D models at these two scales. The 3D model in the original scale
and its 3D realistic pore structure are plotted in Fig. 14, allowing
comparison of the pore structure extracted from simulated images by
MC algorithm.

From Figs. 13 and 14, we find Fig. 13(a) and (c) are pseudo-3D
models, losing the true 3D spatial information, because the pattern li-
brary is only extracted in XOY plane similar to the classical tree
structure. Fortunately, the proposed struct array is able to retrieve
complete 3D information, and so is a promising technique for simu-
lating the 3D models at engineering scales.

3.3. Comparison of permeability and coordination number

Table 2 shows the parameters extracted from the 3D reconstruction
models in this and previous studies. The average coordination number

is 4.76 with less than 0.2% invalid voxels excluded. The images are
investigated for different simulation sizes, and are larger than that in
the previous work, proving the superiority and flexibility of the struct
array for the bulk processing of larger data sets.

Based on the 3D models at scales of 3002, 5002 and 10002, the
permeability value is calculated using the Lattice Boltzmann method
(Jeong, 2010) as

=

= +
= +

{ }( )K D C C

C Kn Kn
C Kn Kn

exp ln

0.709 1.62 5.982
5.09 14.14 36.84

o o

o o

2
1 (1 ) 2

1
2

2
2

11/3
2

(17)

where K is the permeability, D is the equivalent diameter of gain and
Kno is the Knudsen number of overlapping porous structure, is the
porosity, C1 and C2 are the correlation coefficient determined by
Knudsen number.

The values obtained from each scale agree with those from previous
studies (Table 2) but with a little difference, which may be caused by
the CDF retrieval from the pattern library.

Fig. 15 represents the pore structure extracted from the re-
constructed 3D model with sizes of 3002 and 5002. By comparing these
models, we find that the extracted pore structure, in which the pores
and throats are simplified as spheres and cylinders with its realistic
sizes, agree well with the realistic pore structure Fig. 15(b). As the size
increases, the 3D model shows more details such as the boundary pore.
Moreover, the computing efficiency of reconstructing the 3D model
improves based on this integrated method.

Fig. 16 shows the coordination numbers of the original image,
and the simulated images with size of 3002, 5002, and 10002, which
are obtained from the 3D models reconstructed by the proposed in-
tegration method. The coordination numbers are similar to those
extracted from the original 3D model, demonstrating the reliability
and applicability of the integration method of the MPS and MC al-
gorithms.

4. Summary and conclusions

In this paper, 2D image analysis investigates pore and grain dis-
tribution. A struct array representation of a pattern library is then
proposed to simulate target images. The 3D visualization models are
reconstructed by the integrated method, and the permeability and co-
ordination number are calculated from the pore structure extracted.
The main conclusions can be drawn as follows:

(1) The time consumption and RAM usage when using a struct array are
lower than those when using a tree structure.

(2) The image quality simulated by struct array is better than that si-
mulated by tree structure. When the size of the simulated image is
closer to the original size, the porosity distributions of the simulated
image agree better with that of the original image.

(3) The pore and grain size distributions extracted from images simu-
lated by struct array and tree structures are coincident with those of
the original image. Moreover, the struct array performs better than
the tree structure.

(4) The coordination number and permeability agree well with those in
the previous studies, showing the reliability and applicability of the
proposed integration method.
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