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A B S T R A C T

The accumulation of serial remote sensing images provides plentiful data for discovering sequential spatial
patterns in various fields such as agricultural monitoring, urban development, and vegetation cover. Otherwise,
traditional sequential pattern-mining algorithms cannot be directly or efficiently applied to remote sensing
images. In this study, we propose a pixel clustering-based method to improve the efficiency of mining spatial
sequential patterns from raster serial remote sensing images (SRSI). Firstly, the images are compressed by using
the Run-Length coding schema. Then, pixels with identical sequences are clustered by means of the Run-length
code-based spatial overlay operation. Finally, a pruning strategy is proposed, to extend the prefixSpan algorithm
to skip unnecessary database scanning when mining from pixel groups. The experimental results indicate that
the method presented in this paper could extract spatial sequential patterns from SRSI efficiently. Although
accurate support rates for the patterns may not be obtained, our method could ensure that all patterns are
extracted with a lower time cost.

1. Introduction

The progress of earth observation technology boasts a continuous
accumulation of spatial data. Among such data, owing to their spatial
and temporal features, serial remote sensing images (SRSI) provide the
potential to keep track of environmental change, urban expansion, and
agricultural development, etc. Much research has been carried out, with
a focus on mining knowledge from SRSI (Zhang et al., 2016) (Molijn
et al., 2016). Spatial sequential patterns are one of the most meaningful
types of knowledge that are hidden in SRSI, and they attract great in-
terest among researchers (Helmi and Banaei-Kashani, 2016) (Obulesu
and Rama Mohan Reddy, 2016).
Sequential pattern mining (SPM), which is the technical base of

spatial sequential pattern mining (SSPM), mainly aims to extract fre-
quent patterns from transaction databases. This is different from its
predecessor, SSPM, which tries to discover spatio-temporally frequent
sequences from geospatial databases. The complexity of structures, the
huge volumes, and the specific features of the geospatial data, such as
spatial autocorrelation and spatial relationships among objects, prevent
the algorithms of SPM from being effectively applied for mining spatial
sequential patterns (Shekhar et al., 2011).
In this paper, we present a pixel-clustering-based method for ex-

tracting spatial sequential patterns from SRSI. SRSI can be defined as a

set of remote sensing images within different periods aiming for the
same area. Some events that are reflected by SRSI occur frequently and
periodically, and they are potential sequential patterns to be found. For
example, deciduous forests are luxuriant in summer, and will defoliate
in winter every year. This phenomenon can be easily captured from
SRSI. However, according to the definition of a sequential pattern, only
those events with sufficient numbers of occurrences that are higher
than a user-defined threshold can be chosen as frequent sequences. In
SRSI, these events are related to pixels, and they are indicated by their
colors or other attributes. Each pixel represents a certain acreage of
land. Therefore, in order to find the spatial sequential pattern, it is
necessary to scan all of the pixels in SRSI several times, by using the
current sequential pattern mining methods. Otherwise, a typical SRSI
may contain billions of pixels, especially high-resolution ones, which
will lead to low performance. According to Tobler's First Law of
Geography, we can observe that neighbor pixels of SRSI always have
similarly changing patterns, as depicted in Fig. 1. An SRSI with three
images is shown in Fig. 1, and the colors in the images denote the
different crops that are planted. It can be seen that the color of most of
the pixels in the area labeled A shift from yellow (corn) in 2010, to
green (soy bean) in 2011, and then to yellow in 2012. The other areas
have similar phenomena. Intuitively, if we want to find the planting
pattern hidden in Fig. 1, we can compute this by using area level
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instead of pixel level. Hence, it is possible to reduce the computation
overhead by clustering pixels that share the same changing patterns,
and then to perform SSPM on the basis of the clusters.
Based on the idea presented above, in this paper, we extend the

current SSPM methods by two aspects:
Firstly, we propose a pixel cluster algorithm to compress the raw

dataset of SRSI. For the sake of efficiency, the pixels of SRSI are en-
coded by run-length coding (RLC). On the basis of RLC representation,
to cluster pixels that share the same changing pattern, images of SRSI
are intersected with each other at the line level. Afterwards, the SRSI
will be combined into one file, which only contains information on the
clusters. Finally, the same clusters can be merged, to compress the data
volume further.
Secondly, we extend the PrefixSpan algorithm to deal with mining

sequential patterns from clusters. The number of pixels in a cluster not
only denotes the size of the cluster, but it also represents the number of
sequences. We alternate the method of how to calculate the support of a
sequence that is defined in PrefixSpan (Han et al., 2001), by considering
the size of the cluster. A pruning strategy is also proposed.
The rest of the paper is organized as follows: Section 2 discusses the

recent progress of SPM and SSPM. The related concepts and the pro-
blem statement are presented in Section 3. Details of the cluster-based
mining method and its extension to PrefixSpan are presented in Section
4. Experiments and results are discussed in Section 5. Section 6 draws
the conclusion.

2. Related work

The aim of SSPM is to find frequent event sequences from a spatial
database that has specific spatial and temporal features. SSPM derives
from SPM and extends it from the transaction space to the spatio-
temporal space. Research on SPM has produced many useful methods
and algorithms since Agrawal and Srikant first introduced the problem
of sequential pattern mining in 1995 (Agrawal and Srikant, 1995).
Therefore, related SSPM research can be simply classified into two fa-
milies: spatial and non-spatial (SPM). In actual fact, most problems of
SSPM can be converted to SPM by dealing with the spatial properties
properly.
As SPM attempts to determine frequent sequential patterns from

transaction databases such as shopping databases, similar to the ex-
traction of frequent patterns as in association rule mining, a priori-like
methods were firstly proposed. Popular algorithms such as GSP (Srikant
and Agrawal, 1996) and SPADE (Zaki, 2001) are examples of these.
However, these methods encounter performance bottlenecks when they
run through large databases, due to the fact that they need to scan the
database many times. Correspondingly, project-based methods pre-
sented in (Han et al., 2001) (Ayres et al., 2002) improve the efficiency
by shrinking the database on each iteration by projection, which will

reduce the number of records that need to be scanned. To meet the
needs of actual applications, Pei et al. explored constraint-based SPM,
and proposed a set of monotonic and anti-monotonic constraints (Pei
et al., 2007) (Pei et al., 2002). These constraints could be used for
pruning the searching space, and for greatly improving the efficiency of
SPM. Based on these approaches, many studies have been carried out to
resolve problems in specialized fields (Wright et al., 2015; Xue et al.,
2016; Fan et al., 2016; Cao et al., 2016; Desai and Ganatra, 2015;
Hassani et al., 2015; Kemmar et al., 2015). However, the SPM focuses
on transactional or text-based data, and ignores the location and inner
spatial relationships of events, which are dealt with by SSPM instead.
As for SSPM, there are two typical applications: one is trajectory

mining, and the other one is spatial event mining. The SSPM for tra-
jectory mining tries to dig out movement patterns from massive con-
stant trajectory data. For example, most tourists’ order of sightseeing is
“view spot A → view spot B → view spot C”, and then such routes can
be extracted by applying SSPM (Tsai and Lai, 2015). More complicated
applications of trajectory mining include human mobility in a me-
tropolis, the migration of wild animals, and natural disasters, etc.
(Campisano et al., 2016; Geetha and Ramaraj, 2016; Cao et al., 2005;
Shaw and Gopalan, 2014). Trajectory data are usually collected from
GPS or IOT sensors at any time and frequency, which makes it difficult
to precisely relate the trajectory data to a specific location. In such
circumstances, the models and algorithms of trajectory mining are quite
different from those used in spatial event mining, where the dataset
usually contains discrete spatiotemporal events. Tsoukatos et al. pre-
sented a Depth-First-Search-like approach to discover long sequential
patterns rapidly under different spatial granularities (Tsoukatos and
Gunopulos, 2001). Huang et al. proposed a novel sequence index to
measure the density of event co-occurrences in a spatiotemporal con-
text, and two corresponding algorithms, named STS-Miner and Slicing-
STS-Miner (Huang et al., 2006) (Huang et al., 2008). Julea et al. pre-
sented a concept named “group-frequent sequential pattern (GFS-Pat-
tern)” to extract sets of connected pixels sharing a similar temporal
evolution for agricultural monitoring from satellite images (Julea et al.,
2011) (Julea et al., 2012). Although the idea of GFS-Pattern could be
useful for the pruning searching space, it is still too time-consuming,
due to it requiring calculation support for sequential patterns on eight-
neighbors of pixels.

3. Problem definition

In this section, we formally define the problem of mining spatial
sequential patterns from serial remote sensing images. Firstly, the re-
lated concepts in the problem context are explained, which include
SRSI, image, pixel, spatial sequence, and spatial sequential pattern.
Then, the problem definition is given formally.

Fig. 1. The pixels in a certain neighborhood tend to share similarly changing patterns.
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3.1. Related concepts

Definition 1. SRSI. SRSI refers to a set of remote sensing images that
cover the same area at different timestamps, and with uniform
resolutions and dimensions. Let = …image image imageSRSI { , }k1 2 ,
where imagei is an image at timei. In general, the time gaps between
the images are equidistant. According to the application, the
measurement units of the time gaps may be the day, month, quarter,
or year.

Definition 2. Image. An image is a set of pixels that reflects on the
status of the land about a certain theme. The structure and information
determine how and what can be mined from the images. Without a loss
of generality, the image contains raster data, and then we can let

= …line line lineimage { , }m1 2 , where = …line pixel pixel pixel{ , }i i i in1 2 . So,
each image of SRSI has m rows, n columns, and ×m n pixels.
Usually, the image needs a preprocessing procedure, such as image
classification, before it can be fed into the SSPM algorithm. In this
paper, we assume that the image for SSPM is the product of the raw
remote sensing images, rather than a raw remote sensing image itself.

Definition 3. Pixel. The pixel is the elementary unit of the image, and
it represents a certain acreage of area, according to the resolution of the
image. After remote sensing image preprocessing, such as image
classification, each pixel shall contain a value to indicate the state of
its corresponding land. The value usually will be represented by the
color of the pixel after interpretation. A function =event value(color)
can map the color of the pixel to a certain value, which can denote an
event that happened to the pixel at timei.

According to the definition presented above, the images in Fig. 1
can be illustrated as follows:
From Fig. 2, we can see that the same pixels in different images may

hold different values on different timestamps. This means the event
happening on an area of specific land can change overtime. For ex-
ample, we suppose that the color yellow of pixel21 denotes corn that was
planted in t1(2010) and t3(2012), and that the green color denotes soy
bean that was planted in t2(2011). These events relating to the same
pixel form a spatial sequence.

Definition 4. Spatial Sequence. The spatial sequence is a list of events
that happened at different times, and that relate to identical land
(pixel). Let = …pixel event t event t event tS( ) {( , ), ( , ), ( , )}ij k k1 1 2 2 denote a
spatial sequence of pixelij, where ti is the timestamp, and < … <t t tk1 2 .
In general, the length of the sequence is less than or equal to the
number of images in SRSI. According to Fig. 2, the spatial sequences of
pixel21 are: yellow{(value( ), 2010)}, {(value(green), 2011)},
{(value(yellow), 2012)}, yellow{(value( ), 2010), (value(green), 2011)},

yellow{(value( ), 2010), (value(yellow), 2012)},
{(value(green), 2011), (value(yellow), 2012)} and yellow{(value( ), 2010),

(value(green), 2011), (value(yellow), 2012)}.

The number of sequences related to a pixel is = Ci
k

k
i

0 , where k is the
number of images in SRSI (also the longest length of sequences), then
the entire quantity of sequences in SRSI is × × =m n Ci

k
k
i

0 , where m
and n are the heights and widths of the image, respectively.

Definition 5. Spatial Sequence Pattern. The spatial sequence pattern
refers to a spatial sequence that occurs in SRSI frequently enough,
which will usually be larger than a user-defined threshold H . The
threshold means the minimum occurrence of the sequence, so that the
value of H shall be < ×H m n0 ( ). Let |S| be the number of sequences
S in SRSI, and then S is a spatial sequence pattern, if and only if H|S| .

3.2. Problem statement

Base on the above definition, the problem of spatial sequential
pattern mining from serial remote sensing images can be defined as
follows: given a = …image image imageSRSI { , }k1 2 and the threshold H ,
how to find all frequent sequences that H|S| .
Obviously, it is easy to convert this problem into transaction-based

sequential pattern mining, as we treat pixels as customers (or objects)
and the value of the pixels as transaction events. Following this idea,
the SRSI can be described as the following example table (see Table 1):
This table is a vertical-style transaction dataset, and it can be simply

mined by SPM algorithms such as SPADE and prefixSpan, etc. However,
considering the big data volume of SRSI, it would occupy too much time
in converting the images to a vertical data table, and executing SPM
algorithms on it directly.

4. Methods

With the aim of tackling the problem presented in Section 3, in this
section, we propose a pixels-clustering-based sequential pattern mining
method. This method attempts to take advantage of the property that
adjacent pixels always share the same sequential patterns. This means
that it is unnecessary to compute every pixel, as long as we can group
pixels to clusters that have common patterns. Following this idea,

Fig. 2. The pixel view of serial remote sensing images.

Table 1
Example of table-style serial remote sensing images (SRSI).

Object Timestamp Events

Pixel11 2010 value(yellow)
Pixel11 2011 value(white)
Pixel11 2012 value(white)
Pixel12 2010 value(yellow)
… … …
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firstly, we introduce the concept of the Pixels Group. Secondly, we
present a method for clustering pixels on the basis of Run-Length
Coding. Finally, the extended prefixSpan algorithm for finding a se-
quential pattern is described.

4.1. Pixels Group

The Pixels Group is a group of neighboring pixels that have identical
spatial sequences, and it can also be said that spatial sequences cover
this group of pixels. The neighborhood can be defined as the 4-neigh-
bors of pixels. If the neighbor pixels have the same values at each
timestamp (or in each image), then they can be grouped into the same
Pixels Group. For example, considering the four pixels (A, B, C, and D) in
Fig. 3, the neighbor pixels A, C, and D have the same changing se-
quences from (yellow, t1) → (red, t2) → (yellow, t3), so that pixels A, C,
and D can be arranged in the same Pixels Group. Only pixel B has a
distinct sequence that makes it unable to belong to that group.
To find the Pixels Group, a simple approach is to test each pixel's

neighbors, to find whether they have the same spatial sequences, and
then to expand from the neighbor pixels in the Pixels Group iteratively
until there are no new neighbor pixels to be found. This approach is
simple but exhaustive. Here, we present a Run-Length Coding-based
method to efficiently find the Pixels Group.

4.2. Run-length coding-based pixels clustering method

Run-length coding is a widely-used coding technology in tele-
communication and image compression, since it was first introduced in
1967 (Robinson and Cherry, 1967). RLC is a line-based encoding
schema that is suitable for compressing SRSI since the Pixels Group
exists. There are many pixels in a line of SRSI that have same values, as
we can see in Fig. 1. After encoding by RLC, each image of SRSI will be
converted to a text dataset in the following example schema (see
Table 2).
As depicted in Table 2, the image is encoded by line, and each line

consists a series of items (sequence–number pairs). The item (value

(color), number) depicts that number of successive pixels that have the
same value (sequence). This also can be viewed as the Pixels Group with
1-length sequence in line. In order to find a Pixels Group with k-length,
we need to combine all of the RLC data of the images in SRSI. The
process of the combination is similar to the spatial overlay analysis,
except that the combination is working on a line level. There are two
steps in the combination: 1) to intersect the images one-by-one on the
line level; 2) to merge the same sequence–number pair items in the RLC
image.
To describe the process of intersection between images on the line

level, considering the example shown in Fig. 4:
Supposing that the jth line of imagei-1 and imagei is to be inter-

sected. As depicted in the above figure, imagei-1 and imagei are 1-se-
quence images. Let the operator be the intersection operation. When
item intersects with item’, where item belongs to imagei-1 and item’
belong to imagei, if item.number is equal to item’.number, then they
will directly produce a new item, as

=item item (item. value, item . value, item'. number)' ' ; if item.number
is larger than item’.number, then item

=item (item. value, item . value, item'. number)' ' , and the rest of
=item (item. value, item. number item . number)' will intersect with

next item of imagei, and vice versa. For example,
=v v v v( , 4) ( , 2) ( , , 2)1 2 1 2 , the rest of the former item v( , 2)1 needs to

intersect with the other items. When the intersection of the two images
is finished, a new RLC data containing a longer sequence item will be
produced. Then, the new RLC data will intersect with next image of
SRSI until all of the images have been combined.
After step 1, the k images of SRSI would be combined into one file

that contains k-sequence items. However, up until now, we have only
clustered the neighbor pixels in the same line into a Pixel Group. In step
2, we will merge items with the same sequence in adjacent lines, to
make sure that the neighbor pixels in different lines can be clustered
into the same Pixel Group. However, it can be observed that the pixels
that are not in the neighborhood also can have same sequence, even
they are far away. So, we can merge these pixels into the same Pixel
Group, to further compress the data volume. To fulfill this task, we
create a< key, value> structure, namely Map, where the sequence
will be the key, and the number will be the value. Then, we can simply
scan the output of step 1 only once, from the first item to the last item.
Each item will be decomposed into two parts; one is the sequence and
the other is the number. The number of the same sequences will be
accumulated to the same< key, value>pair.
After step 2, all of the pixels of k images would be clustered into the

Pixels Group. In actual fact, the Pixels Group only preserves information
about what the sequence is, and how many times it occurs in the SRSI.
The accurate position of the pixel, and the pixel itself are longer re-
quired. Thus, the data volume of the SRSI is compressed.
Here, we present the algorithm for clustering the pixels into a Pixels

Group (see Tables 3–6).

4.3. Extracting a spatial sequence base with an extension to prefixSpan

As mentioned in Sections 4.1 and 4.2, pixels and their related events
in varying timestamps will be clustered into multiple Pixels Groups. The
set of Pixels Groups can be easily stored in a vertical-style table, which is
the most popular data format used in SPM. Table 7 demonstrates an

Fig. 3. An example of a Pixels Group.

Table 2
Example of run-length coding (RLC) data of an image.

Line number Data of the line

1 (value(yellow),15),(value(white),6) … (value(green),20)
2 (value(yellow),26),(value(green),3) … (value(yellow),8)
…
m (value(green),20),(value(white),13) … (value(yellow),12)

Fig. 4. An example of line intersection.
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example.
The table contains Pixels Groups. The table rows store items (event,

timestamp) of the Pixels Group. The items belonging to same Pixels
Group would be arranged in adjacent rows, and sorted by ascending
timestamps. The rows have the same value of the GroupID column,
indicating that they are items that belong to the same Pixels Group.
Compared to Table 1, Table 7 has an additional column, Size, which
determines how many pixels exit in a Pixels Group. Upon the new
column, we can make extensions to prefixSpan to accelerate the speed
of finding sequence patterns, and we call the extended prefixSpan
group-prefixSpan.

The Apriori-like algorithms will produce explosive candidate se-
quences, and scan the database many times, which will lead to low
performance. To avoid drawbacks, prefixSpan will not generate a can-
didate sequence. Instead, it uses projection technology to shrink the
database, and to confine the search and the growth of subsequent
fragments. Here, we present the related definitions, and briefly describe
the procedure of prefixSpan.

Definition 6. Subsequence. Given two sequences: = …e e e{ , }n1 2
and = …e e e n m{ , } ( )m1 2 , if there were integers

…j j j m1 . n1 2 such that e e j1 1 , e e j2 2…e en jn , then is a

Table 3
Algorithm for clustering the pixels into a Pixels Group

Table 4
Pseudo code of function convert2RLC().
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subsequence of .

Definition 7. Prefix. A sequence = …e e e{ , }m1 2 is a prefix of another
sequence = …e e e{ , } ( m n)n1 2 , if and only if (1) =e ei i for ( i m 1),
(2) e em m, (3) all of the items in e e( )m m are after those in em. In our
case, the condition shall be =e ei i for ( i m), because there is only one
item in ei and ei .

Definition 8. Projection. Given two sequences: and , is a
subsequence of . A subsequence a of is a projection of w.r.t. ,
if and only if (1) is the prefix of a , (2) a is the longest subsequence
of that meets the above requirements.

Definition 9. Postfix. Given that sequence = …a e e e{ , }n1 2 is the
projection of w.r.t. prefix = …e e e e m n{ , , } ( )m m1 2 1 , a sequence
= …+e e e{ , }m m n1 is called the postfix of w.r.t. prefix , where

=e e e( )m m m .
The main steps of prefixSpan are as follows:

(1) Scan the sequence database once to find all length-1 sequential
patterns.

(2) For each length-1 sequential pattern si, use it as a prefix, and con-
struct its projection database by finding projections of sequences
w.r.t. si.

Table 6
Pseudo-code of function intersectLines().

Table 5
Pseudo-code of function intersectImags().
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(3) For each projection database, repeat steps (1) and (2) recursively
until no length-1 sequential patterns can be found. The length-1
sequential patterns that are produced from the projection database
would be appended to the corresponding prefix to grow sequential
patterns.

We found that the prefixSpan algorithm spends most of its time in
scanning and constructing a projection database. It would encounter a
performance problem if prefixSpan runs on a large database. Hence, if
we can reduce the volume of the database and the times of scanning,
the performance can be improved. Here we present two extensions to
prefixSpan.
Firstly, we simply revise the counting method of the sequences’

occurrence. As we can see from Table 7, the volume of the database has
been already compressed, due to pixels that were clustered into Pixels
clusters. When searching the length-1 sequential patterns, we can use
the size of the Pixels Groups as an occurrence number to save the
searching cost. In other words, if it is without the Pixels Group, prefix-
Span shall scan at least n rows in order to find a length-1 sequential
pattern if it occurs n times in a database. On the contrary, only one row
of scanning is needed with the Pixels Group. So, compared to running
the algorithm on the original database, our method can speed up the
procedure of searching for patterns.
Secondly, we use the size of the Pixels Group to avoid some un-

necessary row scanning. In the original prefixSpan algorithm, to find a
length-1 spatial sequence, at least n rows need to be scanned when the
threshold =H n, and in the worst case, all rows need to be scanned.
This is a time-consuming process. However, it can be observed that

most of the sequential patterns only exist in some big Pixels Groups. If
we can find the sequential patterns from a few top big Pixels Groups,
then those small ones can be ignored, which are a large majority in the
database. Following the idea, firstly, we sorted the database in des-
cending order according to size of the Pixels Group, and then a pruning
strategy was applied:
Let m be the total number of sequences in a database; n i[ ] is the

occurrence number of the ith length-1 sequence up to the present, k is
the number of sequences that have been scanned.
During the search for length-1 sequential patterns, we started from

the biggest Pixels Group, and the search was terminated when there was
no length-1 sequence that had been found that could meet one of the
termination criteria:

< + >n i H n i m k H[ ] && ( [ ] ( )) (1)

>n i H m k H[ ] && ( ) (2)

If there is no length-1 sequence that satisfies the criteria (1), this
means that those non-frequent sequences have no opportunity to be
frequent, because their occurrence number n i[ ], plus the rest of the
number of sequences m k( ) is less than the threshold; (2) all se-
quences that have been found are frequent ones, and it is unnecessary to
scan the rest of the sequences, due to the number of un-scanned se-
quences m k( ) being less than the threshold, that is, no new frequent
sequences can be found. So, if there are no sequences that satisfy the
two conditions, there would be m k( ) sequences that can be skipped
safely.

Table 7
Example of the vertical table of the Pixels Groups.

GroupID Timestamp Events Size

1 2010 value(yellow) 940
1 2011 value(white) 940
1 2012 value(white) 940
2 2010 value(yellow) 25
2 2011 value(yellow) 25
… … …

Fig. 5. The first data source for the experiment: Cropland Data Layer (CDL).

Table 8
The details of the first experimental datasets.

Dataset ID Region Number of Pixels Time Range Data Volume

D1 A small region of
Butler County

2756 2010–2016 0.21MB

D2 Butler County 1,783,404 2010–2016 11.9MB
D3 ASD_1910 21,101,514 2010–2016 141MB
D4 IOWA State 161,936,666 2010–2016 1090.7MB
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5. Experiments

To verify the efficiency and effectiveness of our method, in this
section, we will report the experiments and the results analysis. Firstly,
the information of the dataset for the experiments is described. After
that, experiments are carried out, and the results are discussed. All of
the experiments are performed on a laptop with an Intel I7-7500 CPU
and 8 GB RAM.

5.1. Dataset description

5.1.1. Dataset1: Cropland Data Layer
The dataset used in the experiments was downloaded from the

Cropland Data Layer (CDL), which is hosted on CropScape (https://
nassgeodata.gmu.edu/CropScape/). The CDL is a raster, geo-refer-
enced, crop-specific land cover data layer that is created annually for
the continental United States, using moderate resolution (30m) satellite
imagery and extensive agricultural ground truth (Boryan et al., 2011).
Fig. 5 demonstrates a sample of CDL. The color of the map indicates the
type of crops that are planted in the particular year.
CropScape allows users to download the CDL dataset at various le-

vels from counties, ASD (Agricultural Statistic District), to states. We
retrieved four datasets from CropScape from 2010 to 2016. Each da-
taset is a typical SRSI that contains seven TIFF images. Table 8 shows
the details of these datasets:
The data volume of the four datasets ranges from small, medium, to

large, which can be used to test the stability of the method presented in
this paper. These datasets are all related to Iowa State, which is one of
the largest agricultural states of USA. The acreage of Iowa is about
145,743 km2, and one pixel of the images represents about 900m2. By
applying the SSPM algorithm onto these datasets, we expect to find the
typical crop planting patterns.

5.1.2. Dataset2: MCD12Q1.051
The second dataset used in the experiments was a subset of the

MODIS Land Cover Type product (Short Name: MCD12Q1.051) which
provides global land cover types with temporal coverage from 2001 to
2013 (NASA LP DAAC, 2014). MCD12Q1.051 contains five classifica-
tion schemes, which describe land cover properties derived from ob-
servations spanning a year's input of Terra- and Aqua-MODIS data
(Friedl et al., 2010). We used the primary land cover scheme, which
identifies 17 land cover classes as defined by the International Geo-
sphere Biosphere Program (IGBP).
The subset of MCD12Q1.051 used in this paper was scene number

h26v05, which covers several provinces of China, such as Shanxi, Inner
Mongolia, and Beijing, etc. The spatial resolution is 500m, and the
image dimensions are 2400× 2400 pixels. Table 9 shows the details of
the dataset:
The time range of dataset D5 is from 2001 to 2013, which means

that D5 contains 13 images, and the longest sequence length is 13.

Table 9
The details of the second experimental dataset.

Dataset ID Region Number of Pixels Time Range Data Volume

D5 MCD12Q1.h26v05 5,760,000 2001–2013 214MB

Table 10
A comparison of the sequence databases produced by RLC-based pixel clustering and the direct method.

Dataset ID Produce Directly RLC-based Pixel Clustering Compression Ratio

DV RowNum DV RowNum

D1 0.14MB 11,959 0.009MB 667 94.42%
D2 141MB 9,645,660 0.97MB 64,263 99.33%
D3 1.86 GB 121,672,826 4.46MB 284,121 99.76%
D4 6.91 GB 900,367,862 120MB 1,307,880 99.85%
D5 1.17 GB 74,880,000 77.3MB 4,684,810 93.74%

Fig. 6. Evaluation of time consumption on the test datasets: a) D1, b) D2, c) D3,
d) D4, e) D5, f) acceleration ratio.

Fig. 6. (continued)
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5.2. Experiments and results analysis

To demonstrate the effectiveness of the RLC-based pixels clustering
method, we produced a sequence database directly from the experi-
mental datasets, and then the volume of the output sequence database
was compared. To produce a sequence database directly from the
experimental datasets, we read every pixel's value from each image of
the dataset, and wrote it to a row of the output sequence database, as
in the format of Table 1. The total sequence number of the
sequence database equaled to the number of pixels in one image, and
the overall number of rows of the sequence database was

×number of pixels number of images( ) ( ). The sequence database pro-
duced by the RLC-based pixels clustering method had the same format
as Table 7. The comparison is shown in Table 10.
The DV column and the RowNum column, respectively, represent

the data volume and the number of rows in the sequence database. Due
to each sequence item being stored in one row, the data volume will
increase rapidly when the sequence database contains a large number
of sequences, such as D3 and D4. As a sharp contrast, the RLC-based
pixels clustering method could substantially lower the row number and

the data volume. The compression ratio indicates how many rows are
merged, by clustering pixels to the Pixels Group. Obviously, the
shrinking database would greatly reduce the cost of mining sequential
patterns from SRSI.
To evaluate the efficiency of group-prefixSpan, we ran the

prefixSpan and group-prefixSpan algorithms, respectively, on the five
datasets produced by RLC-based pixels clustering. The original
prefixSpan algorithm was also extended to handle the Pixels Group. In
this experiment, the value of H was set in a range of [0.1%, 0.8%], and
the increment was 0.1%.
As Fig. 6 (a)-(e) illustrates, the execution time of both of the two

algorithms on the five datasets decrease as the grown of threshold H ,
but the group-prefixSpan algorithm outperformed the prefixSpan al-
gorithm in most situations, although there are some exceptions, in that
group-prefixSpan would spend more time in mining patterns, such as
D1 (H=0.8%) and D4 (H=0.6%). The reason is that the time for
examining the termination criteria (1) and (2) was longer than the time
saved by skipping the row-checking. For example, when running group-
prefixSpan on D4 at =H 0.6%, group-prefixSpan would test the

Fig. 6. (continued)

Fig. 6. (continued)

Fig. 6. (continued)

Fig. 6. (continued)
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terminating criteria 14318 times, while only 12309 rows could be
skipped. To analyze the impact of parameter H on the performance of
group-prefixSpan, we used the formula =speedupratio

time time time( )/prefixSpan group prefixSpan prefixSpanto calculate the speedup
ratio of group-prefixSpan to prefixSpan. After testing on the five data-
sets, the average speedup ratio according to threshold H from 0.1% to
0.8% is exhibited in Fig. 6 (f). It was observed that the average speedup
ratio slowly decreased with the increase of threshold H . The major
reason lies in that a lower H value made it more possible for the group-
prefixSpan to check fewer rows to find sequential patterns. However, it
can be found that the average speedup ratio declined suddenly at

=H 0.6%. Obviously, this was due to the poor performance of group-
prefixSpan on D2 at =H 0.6%.
Furthermore, we compared group-prefixSpan with the GFS-pattern

algorithm that was proposed in (Julea et al., 2011) (Julea et al., 2012).
The main idea of the GFS-pattern was to partially push the pixel con-
nectivity constraint into a sequence pattern-extracting process, to prune
the searching space. Otherwise, it is a time-consuming operation to
check the pattern's average connectivity (Julea et al., 2011). For the
sake of fairness, we also integrated the group-prefixSpan algorithm with
the pixel connectivity constraint, and named this new algorithm as
group-prefixSpan-AC. To perform the comparison, a sub-dataset with

×1000 1000 pixels was randomly extracted from dataset1. As in (Julea
et al., 2012), the average connectivity threshold k was set to be 4, 5, 6,
and 7. The comparison result is illustrated in Fig. 7. The experiment
shows that group-prefixSpan-AC could reduce the execution time sig-
nificantly from 12% (H=0.6%, k=7) to 42% (H=0.6%, k=4).
What needs to be pointed out is that the group-prefixSpan algorithm

may not obtain the accurate support of the sequential patterns, due to it
skipping some unnecessary row scanning. For example, there are 15
patterns that would be extracted from D2 at H=60% (the details of the
patterns are listed in Table 11, and explained in Section 5.3). Fig. 8
shows that the group-prefixSpan algorithm and the prefixSpan algo-
rithm can produce all of these patterns. Otherwise, the support of some

Fig. 7. (continued)

Fig. 7. (continued)

Fig. 7. (continued)

Table 11
Sequential patterns extracted from D2 (1 denotes corn and 5 denotes soy bean).

P1: 1 (support= 84.2%) P9: 1→ 5 → 1→1 (support= 61.1%)

P2: 1→ 1 (support= 80.7%) P10: 5 (support= 77.1%)
P3: 1→ 1 → 1 (support= 78.1%) P11: 5→ 1 (support= 73.4%)
P4: 1→ 1 → 1→5 (support= 60.3%) P12: 5→ 1 → 1 (support= 67.9%)
P5: 1→ 1 → 5 (support= 69.5%) P13: 5→ 1 → 5 (support= 63.7%)
P6: 1→ 1 → 5→1 (support= 64.9%) P14: 5→ 5 (support= 65.2%)
P7: 1→ 5 (support= 73.4%) P15: 5→ 5 → 1 (support= 60.9%)
P8: 1→ 5 → 1 (support= 70.5%)

Fig. 7. Comparison of group-prefixSpan with the GFS-pattern algorithm on
mining time.
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patterns produced by group-prefixSpan would be less than that which
was produced by prefixSpan. The difference was the price of skipping
scanning to accelerate the pattern mining process. Despite that, Fig. 8
also indicates that group-prefixSpan could produce all of the sequential
patterns above the threshold, as in prefixSpan.

5.3. Explanation of spatial sequential patterns mining from SRSI

Spatial sequential patterns mining from SRSI aims to reveal the law
of development in certain areas. The experiments conducted in this
paper for mining on CDL could determine crop planting patterns. For
instance, considering the following patterns extracted from D2
(H=60%):
The pattern P1 showed that from 2010 to 2016, 84.2%

(1147.91 km2) of the cultivated area of Butler County, Iowa State, had

corn crops. Pattern P7 shows that 73.4% (1001.05 km2) of the culti-
vated area had planted corn after planting soy bean. If we lower the
threshold H to 10%, more interesting patterns could be found, such as
“1→5 → 1→5 → 1→5 → 1”, which reveals that some areas plant
corn and soy bean alternately, and that this is useful for crop yield
prediction. Obviously, the longer patterns provided more information.
Fig. 9 (a) and (b) presents a map of the areas covered by pattern “1” and
“1→5 → 1→5 → 1→5 → 1”.

6. Conclusions

Mining spatial sequential patterns from big-volume and high-re-
solution remote sensing image sets is a big challenge. This paper pro-
posed a pixel clustering-based method for spatial sequential pattern
mining. The proposed method is highly efficient, as it compresses re-
mote sensing images set by the concept of the Pixels Group. To cluster
pixels into a Pixels Group rapidly, images are converted to the Run-

Fig. 8. Comparison of the support of sequential patterns that are produced by prefixSpan with group-prefixSpan.

Fig. 9. (a) Map covered by pattern “1” (b) Map covered by pattern “1→5 →
1→5 → 1→5 → 1”.

Fig. 9. (continued)
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length coding schema, from which images can be overlaid with each
other efficiently, to produce pixels with a sequence list. By sorting a
sequence database according to the size of the Pixels Group, we show
that a portion of records could be ignored while scanning the database.
Following this idea, the group-prefixSpan algorithm was proposed,
which extends from the prefixSpan algorithm. Experiments showed that
even with big data sets, the method can generate all sequential patterns
in reasonable times.
Future research will focus on mining local sequential patterns with

various local thresholds. Current studies only use a global support
threshold, so that only global-frequent sequences can be found.
Otherwise, there are some sequential patterns that are frequent enough
at local areas, although they may not be frequent globally. These pat-
terns are meaningful to the local area, but they will be ignored, due to
only a global support threshold being used. Therefore, it is interesting
to conduct future research on mining local sequential patterns.
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