
Contents lists available at ScienceDirect

Computers and Geosciences

journal homepage: www.elsevier.com/locate/cageo

Accelerating geostatistical seismic inversion using TensorFlow: A
heterogeneous distributed deep learning framework

Mingliang Liu∗,1, Dario Grana2

Department of Geology and Geophysics, University of Wyoming, 1000 E. University Ave, Laramie, WY, 82071, USA

A R T I C L E I N F O

Keywords:
Seismic inversion
Geostatistics
TensorFlow
GPU

A B S T R A C T

Geostatistical seismic inversion is one of emerging technologies in reservoir characterization and reservoir un-
certainty quantification. However, the challenge of intensive computation often restricts its application in
practical studies. To circumvent the computational limitation, in this work, we present a distributed parallel
approach using TensorFlow to accelerate the geostatistical seismic inversion. The approach provides a general
parallel scheme to efficiently take advantage of all the available computing resources, i.e. CPUs and GPUs: the
computational workflow is expressed and organized as a Data Flow Graph, and the graph can be divided into
several sub-graphs which are then mapped to multiple computing devices to concurrently evaluate the opera-
tions in them. The high-level interface and the feature of automatic differentiation provided by TensorFlow also
makes it much easy for users to implement their algorithms in an efficient parallel manner, and allows em-
ploying programs on any computing platform almost without alteration. The proposed method was validated on
a 3D seismic dataset consisting of 600×600×200 grid nodes. The results indicate that it is feasible to the
practical application and the computational time can be largely reduced by using multiple GPUs.

1. Introduction

The objective of seismic reservoir characterization is to estimate
elastic and petrophysical properties of interest from seismic and well
log data (Doyen, 2007). In the last decades, a variety of seismic in-
version methods have been proposed, including deterministic and sto-
chastic algorithms (Tarantola, 2005; Aster et al., 2011). In deterministic
approaches to seismic inversion, the aim is to find a set of reservoir
properties that minimize the synthetic-to-seismic misfit by using nu-
merical optimization techniques, such as gradient-based methods. The
deterministic approaches are generally easy to implement and compu-
tationally fast, but provide only a single estimate of subsurface para-
meters that is unrealistically smooth and might exaggerate the reservoir
connectivity. However, the misfit functions of geophysical inverse
problems are not necessarily monotonically convex, and thus determi-
nistic solutions might fall into local optimums and fail to describe the
subsurface reservoir accurately. In addition, due to the limited band-
width of measured data (in particular, the absence of low frequencies)
and the low signal-to-noise of seismic data, solutions of seismic inverse
problems are inherently non-unique, which implies that theoretically
there are an infinite number of reservoir realizations that honor the

available measurements. Alternatively, stochastic inversion schemes
allow generating multiple plausible highly-detailed realizations con-
ditioning on the measurements and investigating the associated model
uncertainties through the empirical covariance matrix. Stochastic in-
version algorithms include simulated annealing (Sen and Stoffa, 1991),
genetic algorithms (Mallick, 1995), gradual deformation (Hu, 2000),
probability perturbation method (Caers and Hoffman, 2006; Grana
et al., 2012), and ensemble-based methods (Gineste and Eidsvik, 2017;
Thurin et al., 2017; Liu and Grana, 2018).

Geostatistical seismic inversion is an inversion method in which
multiple prior reservoir models are simulated using geostatistical al-
gorithms, and then updated to honor geophysical observations by de-
terministic or stochastic optimization methods (Bortoli, 1992; Haas and
Dubrule, 1994; González et al., 2007; Bosch et al., 2010; Azevedo et al.,
2015; Azevedo and Soares, 2017). The posterior reservoir realizations
can be used not only for model uncertainty quantification, but also as
starting models in history matching to be further refined by assimilating
production data or/and time-lapse seismic. However, due to the size of
seismic data and the large number of reservoir realizations in the
geostatistical seismic inversion, this method becomes computationally
prohibitive for real datasets, which largely limits its application in

https://doi.org/10.1016/j.cageo.2018.12.007
Received 29 April 2018; Received in revised form 1 October 2018; Accepted 20 December 2018

∗ Corresponding author.
E-mail address: mliu4@uwyo.edu (M. Liu).

1 Mingliang Liu developed the methodology, implemented the code, and applied it to a real dataset.
2 Dario Grana supervised the research project and contributed to the preparation of the manuscript.

Computers and Geosciences 124 (2019) 37–45

Available online 21 December 2018
0098-3004/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00983004
https://www.elsevier.com/locate/cageo
https://doi.org/10.1016/j.cageo.2018.12.007
https://doi.org/10.1016/j.cageo.2018.12.007
mailto:mliu4@uwyo.edu
https://doi.org/10.1016/j.cageo.2018.12.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2018.12.007&domain=pdf

practice. Therefore, it is necessary to accelerate the inversion method to
make it computationally efficient for practical applications. With the
recent advent of high-speed multi-core CPUs and GPUs, specialized
parallel algorithms for geostatistical seismic inversion have been de-
veloped for the high-performance parallel computing platforms. Vargas
et al. (2007) proposed to parallelize the sequential simulation algorithm
by subdividing the study area into small spatial domains, and then in-
dependently simulating on different processors. Since the simulation of
each node does not consider the currently simulated nodes, the result is
not exactly the same as the original sequential algorithm. Alternatively,
Nunes and Almeida (2010) proposed a parallelization scheme by using
a functional decomposition to split the simulation algorithm into single
sub-tasks, and then implement parallelly using multi-threads with
multi-cores CPUs. Tahmasebi et al. (2012) exploited the graphics
computational units (GPU) to reduce the execution time using the
Compute Unified Device Architecture (CUDA). Huang et al. (2013)
improved the computational performance of Direct Sampling method
for multiple-point geostatistics simulations with the use of GPUs.
Ferreirinha et al. (2015) introduced a generic strategy based on OpenCL
to efficiently use multiple computational devices (CPUs and GPUs) for
stochastic seismic inversion. Similar parallel algorithms have been
presented by Mariethoz (2010) and Peredo et al. (2014).

In this paper, we propose a distributed parallel method to accelerate
the geostatistiscal seismic inversion using TensorFlow, an open-source
heterogeneous distributed deep learning framework developed by
Google and first released to the public at the end of 2015. Although
TensorFlow is designed with the hopes of speeding up deep learning by
providing a simple-to-use and computationally efficient infrastructure,
its generic architecture and extensibility make it applicable to any
numerical problems that can be expressed as a Data Flow Graph. One of
the advantages of TensorFlow is that it efficiently and easily exploits
heterogeneous distributed computational devices, i.e. CPU, GPU and
TPU (Tensor Processing Unit developed by Google to specifically speed
up tensor calculations). It provides an extremely efficient and user-
friendly platform for compute-intensive applications. With such plat-
form programs can be easily deployed to a scalable computing en-
vironment with a uniform Application Programming Interface (API). In
TensorFlow, underlying computing devices are transparent to users,
and computational tasks are scheduled by the dedicated distributed
execution engine. In contrast with MPI and CUDA, users no longer need
to explicitly handle data transmission, memory management and mes-
sage passing between devices: the algorithms are expressed in terms of
Data Flow Graph and the underlying operations are completely implicit.
Other frameworks, i.e. PyTorch and MXNet, could also be applied, al-
ternatively to TensorFlow.

Seismic inversion, geostatistical simulations and uncertainty quan-
tification in reservoir modeling generally require a large computational
effort due to the size of seismic datasets and the dimension of the model
space. The proposed reservoir characterization workflow requires the
generation of a large number of geostatistical realizations of the re-
servoir model and the optimization of the models to match the mea-
sured seismic data. The simulations are obtained using geostatistical
algorithms and the optimization is performed using gradient-based
methods but could also be obtained using stochastic perturbation al-
gorithms. The implementation using stochastic optimization methods
generally allows avoiding local minima of the objective function;
however, the proposed gradient-based inversion method using multiple
initial models allows exploring the model space with a smaller com-
putational effort thanks to the parallelization approach. Indeed, with
the advent of TensorFlow, it becomes simple and flexible to accelerate
the geostatistical seismic inversion in three parallel strategies. First,
geostatistical simulation and seismic inversion typically involve many
large-scale matrix operations that can be massively parallelized, and
thus computed on GPUs; secondly, as multiple reservoir realizations are
used in the geostatistical inversion, we can utilize multiple CPUs or
GPUs to simulate and invert the models simultaneously (model

parallelism); thirdly, 3D seismic measurements generally include en-
ormous volumes of data (tens or hundreds of gigabytes), which might
be beyond the capacity of a single computing device. In this case, we
can subdivide the 3D seismic data into several small sub-volumes and
process them across multiple CPUs or GPUs (data parallelism). The new
contribution is in the parallelization of the seismic inversion problem
and the computational advantage of the proposed workflow.

One of the advantages of TensorFlow is its fast auto-differentiation
ability that allows computing the gradients and Jacobians of any vari-
ables without analytically deriving the necessary partial derivatives
that is usually time-consuming and error prone. Therefore, any gra-
dient-based method can benefit from this feature. Combining auto-dif-
ferentiation with the set of first-rate optimizers implemented in
TensorFlow, model parameters can be automatically and iteratively
updated according to the selected objective function. It is also possible
to apply other user-defined or optimizers from third-party libraries.

Overall, with the advantages of distributed computation and auto-
differentiation, TensorFlow allows us to implement the geostatistical
seismic inversion algorithm in parallel in a simple and accessible way.
At present, TensorFlow provides a high-level API for building and ex-
ecuting a Data Flow Graph in various languages, including Python, C+
+, Java and Go, among which the Python API is the most complete and
easiest one to use due to the advantages of multi-platform compat-
ibility, readable syntax, and easy integration with other scientific
computing libraries implemented via C, C++ or Fortran. The backend
and core modules of TensorFlow are written in C/C++, therefore,
independently from the API used for Data Flow Graph in the geosta-
tistical seismic inversion, the code will be converted to C/C++ and
then compiled to machine code transparently, hence boosting the per-
formance.

2. Overview of TensorFlow

TensorFlow is currently the most widely used deep learning fra-
mework. It was initially designed to simplify the construction of deep
neural networks and speed up the learning process with a hetero-
geneous distributed computational environment, and then became a
more generic library for numerical computation, making easy large-
scale numerical optimization problems, i.e. inverse problems and so-
lutions of partial differential equations. Different with the traditional
numerical libraries, TensorFlow adopts Data Flow Graph, which is a
common programming model in the fields of cloud computing and
machine learning, to express and organize the computation workflow,
and then map the mathematical operations in the graph to different
computational devices (CPUs, GPUs, and TPUs). As illustrated in Fig. 1,
the design of TensorFlow is highly modular: users build the Data Flow
Graph by the front end, i.e. Python, C++, Java and Go, and the core
and distributed execution engine is responsible for dispatching different
computing operations in the Data Flow Graph to the underlying com-
puting devices. Corresponding to the three layers in Fig. 1, there are
three important roles in a TensorFlow program, client, master and

Fig. 1. Architecture of TensorFlow.

M. Liu, D. Grana Computers and Geosciences 124 (2019) 37–45

38

worker. As illustrated in Fig. 2, the client builds the computation graph
and creates a session to send the defined graph to the master. Then, the
master prunes and partitions the graph into multiple pieces so as to
delivers them to worker services for execution. In the standalone mode,
client, master and worker are located in the same machine, while in the
distributed mode, the three roles can be located in different machines
and the communication between them is through gPRC, a high per-
formance, open-source universal remote procedure call framework
(Abadi et al., 2015). This architecture provides a uniform API to make
low level modules and devices transparent to users, which not only
frees us from the cumbersome and challenging tasks of parallel pro-
gramming, but also make it possible to migrate the application from
one computing platform to others almost without modification. For all
these strengths, both the development and maintenance costs of ap-
plications could be greatly reduced.

In TensorFlow, the Data Flow Graph models a program as a directed
graph in which nodes represent mathematical operations and edges
represent the multidimensional data arrays (tensors) that flow between
the nodes (Martin and Estrin, 1967; Yourdon and Constantine, 1979).
For example, Fig. 3 depicts the Data Flow Graph that represents a
simple linear regression model

= ∗ +Y W X b (1)

where X and Y represent the input and output respectively; W and b
represent the weights and bias that we want to estimate. The matrix
multiplication in the Data Flow Graph corresponds to a single node that
connects two inputs (W X,) and an output (the result of W X*); simi-
larly, the add operation corresponds to a node with two inputs
(W X b* ,) and an output (Y). To better understand, debug, and optimize
programs, TensorFlow also provides a suite of visualization tools,
namely TensorBoard, to visualize the Data Flow Graph and plot quan-
titative metrics about the execution of the graph.

The mechanism of Data Flow Graph brings several advantages to
TensorFlow. First, constructing Data Flow Graph is like building blocks,
which makes the model very flexible to be modified and extended by
adding or removing components in the graph. Secondly, this me-
chanism is inherently parallel and distributed, and can work well in
large-scale numerical problems: it is easy for TensorFlow to identify
operations that can execute in parallel, and we can also explicitly
subdivide the Data Flow Graph into several sub-graphs to execute them
on different devices simultaneously. Thirdly, the Data Flow Graph is a
language-independent representation of models. One can easily build
the model in Python or other languages, and then deploy it to a variety
of computing platforms. This “code one and run everywhere” nature
provides a high scalability across computing machines.

Once the Data Flow Graph is built and gets started in a session, the
TensorFlow core and distributed execution engine will map operations
in the graph that are actually needed to the underlying computing
devices to fetch the variables of interest. Thanks to the built-in feature
of auto-differentiation, the variables can be updated automatically and
iteratively by minimizing the pre-defined objective function through
the backpropagation algorithm (Rumelhart et al., 1986) which is the
workhorse of learning in neural networks.

3. Geostatistical seismic inversion

The estimation of elastic properties from seismic data is a common
inverse problem in geophysics, which can be written in the following
general form

= +fd m e() (2)

where d represents the seismic data, m represents the set of elastic
attributes, f represents the seismic forward model mapping m into d;
and e is the measurement error. The goal of seismic inversion is to
estimate the unknown model variables m from d assuming that the
forward model f is a good approximation of the physical relations
between model properties and data.

Machine learning and inverse theory methods are tools for para-
meter estimation (Kappler et al., 2005). Indeed, we can apply the fra-
mework and optimization methods of machine learning to solve inverse
problems. In this work, we aim to introduce a state-of-the-art hetero-
geneous distributed computing framework for the acceleration of
seismic inversion. To evaluate the computational performance, we
focus on a geostatistical post-stack inversion application to compare the
execution times on different computing environments. The inversion
can be extended to pre-stack inversion, full waveform inversion, re-
servoir history matching and any other model-based inverse problems.

In post-stack seismic inversion, the model parameter of interest is
acoustic impedance and the forward operator is generally a convolu-
tional model of the form

= ∗ + = ∗ +d w r e w g I e()p (3)

where w is the wavelet estimated from well logs and seismic, r re-
presents the reflection coefficients calculated from the acoustic

Fig. 2. Execution mechanism of TensorFlow program: (a) Standalone mode and
(b) distributed mode (Abadi et al., 2015).

Fig. 3. Data Flow Graph of the linear regression model described as Equation
(1).

M. Liu, D. Grana Computers and Geosciences 124 (2019) 37–45

39

impedance Ip through the function g. In the paradigm of machine
learning, Equation (3) can be modeled as a two-layer neural network,
including an input layer (model variable including Ip) and output layer
(seismic response d) without hidden layers (Fig. 4). Different from ty-
pical neural networks, in this model, the input variables (Ip) are un-
know variables to be estimated rather than the weights (wavelet w).

More specifically, the geostatistical seismic inversion is a mathe-
matical approach consisting of three steps: simulation, inversion, and
uncertainty evaluation. In geostatistical simulation, an ensemble of
initial reservoir models is built from the prior geological knowledge and
spatial correlation parameters through a chosen geostatistics simulation
algorithm, i.e. Fast Fourier transform with moving average (FFT-MA; Le
Ravalec et al., 2000) probability field simulation (PFS; Srivastava,
1992; Froidevaux, 1993), sequential Gaussian simulation (SGS; Doyen,
2007) and multiple-point statistics (MPS; Mariethoz and Caers, 2014).
These prior reservoir simulations are then updated to assimilate seismic
data and other geophysical measurements to provide a better descrip-
tion of the true reservoir behavior. Finally, we collect all inversion re-
sults of the reservoir realizations to evaluate the associated model un-
certainty, which could make the decision-making in exploration and
production more robust.

3.1. FFT-moving average and probability field simulation

In this paper, we use probability field simulation (Srivastava, 1992;
Froidevaux, 1993), which is a fast-conditional simulation method and
computationally efficient for large grids with millions of nodes, to
generate the prior reservoir models. Unlike constructing the local
probability density distribution (PDF) at every grid cell to incorporate
previously simulated samples in sequential simulation methods, the
local PDF in probability field simulation are estimated through kriging
analysis of well data. Once the local PDF is obtained, we use a corre-
lated probability field to draw samples from the PDF to simulate re-
servoir models that account for spatial correlation (Doyen, 2007). In
particular, a reservoir simulation is the sum of the local mean and a
spatially correlated Gaussian noise field scaled by the local standard
deviation

= +z m σ εu u u u() () () () (4)

where z u() is the simulated value at location u; m u() is a deterministic
function that represents the local mean; σ u() is the local standard de-
viation; and ε u() is the spatially correlated Gaussian noise field.

The simulation of Gaussian noise field is obtained by the FFT-
moving average (FFT-MA) method. A spatially correlated Gaussian
noise field is simulated by convolving a Gaussian white noise with the
spatial correlation structure of the random field, namely moving
average (Equation (5)). To speed up this procedure, we apply the FFT to
perform the convolution in the frequency domain.

= ∗ε n Gu u u() () () (5)

where n u() is the Gaussian white noise and G u() represents the spatial
correlation structure of the random field.

We can apply the same simulation procedure many times using
different noise fields as input to generate multiple plausible reservoir
realizations honoring the well data and spatial correlation. In this
geostatistical post-stack seismic inversion, we use probability field si-
mulation in conjunction with FFT-MA to build a set of acoustic im-
pedance models as prior for the following seismic inversion.

3.2. Seismic inversion

The prior AI models are only conditional to well log data, but not
honor seismic data. To provide a more accurate description of the
subsurface model, we should update the models according to the misfit
between the synthetic and measured seismic data. To make the solution
more stable, we adopt the Tikhonov regularization method to control
the complexity of the models. Therefore, the objective function is

= − + −J λm d d m m() || || || ||syn true
2

2 true
2

2 (6)

where dsyn and dtrue represent the synthetic seismic and true seismic
respectively; mprior represents the prior model. The first term in the
objective function represents the data misfit, and the second term re-
presents the model misfit, namely regularization term. The parameter λ
is a hyper-parameter that controls the balance between model misfit
and data misfit. With the advantage of auto-differentiation underlying
TensorFlow, it is simple to add any regularization term, such as L1
regularization and constraint of space smoothing, to the objective
function.

The objective function is also called loss function and it measures
the quality of model parameters based on how well the synthetic
seismic consist with the real seismic data. The best estimate of model
parameters m is defined to be the model that minimizes the loss
function

= Jm marg min ()
m (7)

Many optimization algorithms have been developed to find the
optimal model: gradient descent (steepest descent) is the most common
one and it extensively applied in the field of inverse problems. It
minimizes the loss function by updating the model parameters in the
direction opposite to the gradient, as described in Equation (8). By
iteratively performing the gradient descent until the desired misfit is
reached, we can obtain the optimal solution.

= −+ ηm m gl l l1 (8)

where l is the iteration index, ml is the model parameters at the l th
iterate, = ∇ Jg m()l l

m denotes the gradient of loss function with regard
to model parameters evaluated at the l th iterate, and η is the learning
rate.

In practice, the learning rate is the most important hyper-parameter
that controls the step size to guide us how to optimize the model
parameters according to the loss function. If the learning rate is too
small, gradient descent can be very slow and take more time to con-
verge; however, gradient descent with a large learning rate might

Fig. 4. Two-layer neural network corresponding to the convolution forward
model in seismic inversion.

M. Liu, D. Grana Computers and Geosciences 124 (2019) 37–45

40

overshoot the minimum and fail to converge or even diverge. To deal
with the aforementioned challenges, we apply a more efficient algo-
rithm, Adaptive Moment Estimation (Adam - Kingma and Ba, 2014), to
perform the optimization. Adam combines the advantages of two re-
cently popular optimizers proposed in machine learning, namely Ada-
Grad (Duchi et al., 2011), RMSProp (Tieleman and Hinton, 2012) and
AdaDelta (Zeiler, 2012), and the numerical experiments show that
Adam is computationally efficient for optimization problems with high-
dimensional parameter space, because it only uses the first and second
moments of the gradients without Hessian matrix to compute adaptive
learning rates for each model parameter (Kingma and Ba, 2014). Like
gradient descent, the model parameters are updated iteratively by the
following equation

= −

+

+
η

ε
m m

v
u

ˆ
ˆl l

l
l1

(9)

with

=
− β

u uˆ
1

l
l

1 (10)

=
− β

v vˆ
1

l
l

2 (11)

= + −−β βu u g(1)l l l
1

1
1 (12)

= + − ∘−β βv v g g(1)()l l l l
2

1
2 (13)

where ul and v l are referred to as the first moment (the mean) and the
second moment (the uncentered variance) of the gradient respectively;
ûl and v̂ l are the corresponding biased-corrected first and second mo-
ment estimates to avoid the raw moments biased towards zero during
the initial updating; the symbol ∘ denotes the Schur product; the hyper-
parameters β1 and β2 control the exponential decay rates for the mo-
ment estimates, defaulting to 0.9 and 0.999 respectively; ε is equal to

−10 .8

Overall, the workflow of geostatistical seismic inversion in this
paper is as illustrated in Fig. 5. We first generate a set of prior acoustic
impedance models through FFT-MA and probability field simulation
algorithms, and then convolve the wavelet estimated from seismic well
tie with the reflectivity coefficients computed from these acoustic im-
pedance models to generate the synthetic seismic responses. According
to the misfit between the synthetic and the observed seismic data, we
update the initial ensemble of reservoir models iteratively until con-
vergence through the backpropagation algorithm.

4. Implementation with TensorFlow

In this section, we focus on the implementation of the geostatistical
seismic inversion introduced in Section 3 in a parallel manner under the
framework of TensorFlow.

4.1. Implementation with a single GPU

The simplest parallel scheme is to perform the inversion using a
single GPU. In this scheme, reservoir realizations are updated sequen-
tially: the inversion of one realization starts running until the previous
one is totally completed. Fig. 6 shows the corresponding Data Flow
Graph of one specific realization exported from TensorBoard. In the
graph, each node, i.e. Simulation, Reflectivities, Synthetic, Misfit and
Optimization, includes a set of operations, but for the sake of concise-
ness we use the technique of name scope to hide the unnecessary de-
tails. We can dive into those nodes of interest in by clicking to expand
them.

Once the Data Flow Graph is built, we can start the program by
feeding the seismic data, wavelet and geostatistical parameters into the
graph. Then, the necessary operation nodes to compute the error

defined in Equation (6) would be evaluated automatically. In this for-
ward stage, the partial derivatives of any operations would also be
automatically computed using the chain rule and implicitly added to
the graph as new operation nodes. In the backward stage, the

Fig. 5. Workflow of the geostatistical seismic inversion.

Fig. 6. Data Flow Graph of the geostatistical seismic inversion with single GPU.

M. Liu, D. Grana Computers and Geosciences 124 (2019) 37–45

41

predefined optimizer would update the acoustic impedance to minimize
the loss function using the back-propagation algorithm. By running the
forward and backward step in an alternation manner, we can update
the reservoir models iteratively until their seismic response con-
vergence to the measured seismic data.

4.2. Implementation with multiple GPUs

To further reduce the inversion time, we can deploy the TensorFlow
program on a GPU cluster in which each node is equipped with one or
more GPUs. In this scheme, there are two parallel strategies, namely
model and data parallelism, to perform the inversion of multiple re-
servoir realizations concurrently using multiple GPUs.

In the sense of model parallelism, each reservoir realization would
be divided into a sub-graph and mapped to a specific GPU for inversion.
For example, as illustrated in Fig. 7, eight reservoir realizations are
evenly allocated to 4 GPUs. In this case, 4 reservoir realizations would
be updated simultaneously at a time, and it would take two-round to
accomplish the inversion of all reservoir realizations. In fact, operations
in each GPU is identical, and we thus can scale up the inversion to tens
or even hundreds of reservoir realizations across more machines.

When the size of seismic data is beyond the capacity of a single
machine, we can also adopt the scheme of data parallelism. In this
scheme, we split the seismic data into several small chunks that are then
concurrently inversed on multiple GPUs. As illustrated in Fig. 8, a
seismic data is divided into 4 sub-datasets and processed in 4 different
GPUs concurrently. It is easily extensible and scalable to more com-
puting devices and larger seismic data size. However, one limitation of
data parallelism is that transition artefacts might exist between the sub-
datasets, such as discontinuity at the boundaries of the sub-volumes.

5. Results

In this study, we use a 3D seismic dataset consisting of
600×600×200 grid nodes as the benchmark to evaluate the feasi-
bility and the computational performance of the proposed schemes. The
trace spacing of the seismic survey is 25m in both inline and crossline

directions, and the time sample interval is 1 ms. For the geostatistical
inversion, we generate 1000 realizations of acoustic impedance models
using the probability field simulation method. We assume that the
spatial correlation is stationary and characterized by an exponential
autocorrelation function (Equation (14)) with correlation range of
1250m in both inline and crossline directions (=a 1250m, =b 1250m),
and 5ms in the vertical direction (=c 5ms).

= − + +r x y z x
a

y
b

z
c

(, ,) exp[()]
2

2

2

2

2

2
1/2

(14)

To analyze the computational performance of the proposed parallel
schemes in Section 4, we adopt Google Cloud Platform (GCP) to build
the computing environments. The CPU used in the following experi-
ments is Intel's Xeon Scalable Processor Skylake and the GPU is NVIDIA
Tesla K80. The detailed specifications can be queried from the official
websites of Intel (https://ark.intel.com/products/codename/37572/
Skylake) and Nvidia (https://www.nvidia.com/en-us/data-center/
tesla-k80). For optimal CPU performance, we compiled TensorFlow
with the Intel-optimized Math Kernel Library (MKL) and Math Kernel
Library for Deep Neural Networks (MKL-DNN). However, when
building a cluster on GCP, it is generally not very clear about the spe-
cific hardware configuration, for example, whether the nodes are on the
same rack. More importantly, we cannot configure the network band-
width, which is the typical bottleneck in the distributed computing. For
these reasons, we only evaluate the performance of multi-core CPU and
multi- GPU on a single machine in this paper.

5.1. Quality of the inversion results

Fig. 9 compares the performance of different optimizers, including
Adam, AdaDelta, AdaGrad, RMSProp and stochastic gradient descent
(SGD). We can figure out that the Adam Optimizer has a great ad-
vantage in the convergence rate and accuracy over other optimizers: the
Adam Optimizer takes much less iterations to converge asymptotically
toward a smaller misfit between the synthetic and real seismic data,
which means that the proposed optimization method can obtain more
accurate reservoir models that are consistent with the seismic data in
less computational time.

To evaluate the feasibility of the proposed workflow, we first per-
formed the inversion at Well A and B. Fig. 10 shows 1000 inverted
acoustic impedance realizations as well as their mean and synthetic
seismic response. As we can see, the mean inverted results and the
synthetic seismic data have a good agreement with the actual well logs
and the true seismic traces respectively. Moreover, the model un-
certainty can be evaluated by the 1000 posterior realizations. It in-
dicates that the proposed workflow is feasible, and therefore, we then
applied it to the entire seismic volume.

Fig. 7. Data Flow Graph of the geostatistical seismic inversion with multiple
GPUs in model parallelism.

Fig. 8. Data Flow Graph of the geostatistical seismic inversion with multiple
GPUs in data parallelism. Fig. 9. Performance of different optimization methods.

M. Liu, D. Grana Computers and Geosciences 124 (2019) 37–45

42

https://ark.intel.com/products/codename/37572/Skylake
https://ark.intel.com/products/codename/37572/Skylake
https://www.nvidia.com/en-us/data-center/tesla-k80
https://www.nvidia.com/en-us/data-center/tesla-k80

An inline section cross Well A of the seismic dataset is shown in
Fig. 11. The inversion results in the scheme of model parallelism and
data parallelism are shown in Fig. 12 and Fig. 13, respectively, in-
cluding the mean and standard deviation of the inverted 1000 reali-
zations, and 2 specific realizations randomly selected from the en-
semble. In the scheme of data parallelism, the 600×600×200
reservoir model is evenly divided into 8 sub-volumes with size of
300× 300×100. From the results we can observe that all of the set of
posterior realizations are conditioning on the seismic data but with
small-scale heterogeneities, while the average model is relatively
smooth and theoretically corresponding to the deterministic inversion
result. It is also worth noting that both the inverted models from model
parallelism and data parallelism can recover the major characteristic of
the subsurface, but as mentioned in the preceding section, there exists
obvious transition artefacts at the boundaries of the sub-volumes.

5.2. Performance of multicore CPU

We first test the performance using different number of CPU cores in
terms of speed-up ratios. In TensorFlow, a multicore CPU is regarded as
a whole device, but multithreading will be turned on by default to make
full use of the computing resource. In this experiment, the corre-
sponding Data Flow Graph is as illustrated in Fig. 6, and the speed-up
ratio is defined as the ratio of the execution time using multi-core CPU
to the execution time taken by the single-core CPU. Table 1 lists the
absolute computational time with 1, 2, 4, 8 and 16 CPU cores, and their
speed-up ratios are shown in Fig. 14. As we can see, the execution time
is reduced with the increasing number of CPU cores. However, the
improvement of computational efficiency is not linear to the number of
CPU cores. By analyzing the execution time of each operation using
Timeline, a tool built in TensorFlow, the major cause for this problem is
that all the CPU cores share the same host memory with limited
bandwidth, therefore, much time is spent on data reading and writing.

Fig. 10. Inversion results at Well A (a) and Well B (b). Left: inverted Ip models
(the black curve represents the actual Ip, the dash black cure represents the
prior mean, the light gray curves represent 1000 posterior Ip realizations and
the red curve represents the posterior mean); Right: synthetic seismic response
(the dash black curves represent the real seismic trace and the red curves re-
present the synthetic seismic response of the posterior realizations). (For in-
terpretation of the references to colour in this figure legend, the reader is re-
ferred to the web version of this article.)

Fig. 11. Inline section of seismic data cross Well A.

Fig. 12. Inline section of the inverted Ip models cross Well A in the scheme of
model parallelism. (a) the mean of 1000 inverted realizations; (b) the standard
deviation of 1000 inverted realizations; (c) and (d) two randomly selected prior
realizations; (e) and (f) the updated realizations corresponding to the two prior
realizations above.

Fig. 13. Inline section of the inverted Ip models cross Well A in the scheme of
data parallelism. (a) the mean of 1000 inverted realizations; (b) the standard
deviation of 1000 inverted realizations; (c) and (d) two randomly selected prior
realizations; (e) and (f) the updated realizations corresponding to the two prior
realizations above.

Table 1
The absolute computational time with different number of CPU cores.

Number of CPU cores 1 2 4 8 16

Computational time (hours) 647.78 483.33 263.33 144.31 100.90

M. Liu, D. Grana Computers and Geosciences 124 (2019) 37–45

43

5.3. Performance of multiple GPUs

We then exploit multiple GPUs to further accelerate the inversion
algorithm and analysis their performance. The video memory of
NVIDIA Tesla K80 GPU used in this experiment is 12 GB, which is en-
ough to handle the 600× 600×200 test model, so we are able to
adopt the scheme of model parallelism to execute the same computa-
tional graph on different GPUs. The corresponding Data Flow Graph is
as Fig. 7 illustrated. However, this is often not case in practical studies
of reservoir characterization, and thus have to be split into several small
chunks to be processed sequentially.

Fig. 15 shows the computational performance with different
number of GPUs: a single GPU is over 20 times faster than a single-core
CPU and the speed-up of 4 GPUs is about 70. It can conclude from the
absolute computational time in Table 2 that the geostatistical inversion
of 1000 realizations can be reduced from a couple of weeks to one day
using a single GPU or even several hours using 4 GPUs, which would
make the geostatistical seismic inversion method more available to
practical applications. In addition, because each GPU card has its own
device memory with a larger bandwidth than the host memory, the
speed-up is approximately linear to the number of GPUs, which is not
the case in the scheme of multiple-core CPU.

5.4. GPU performance with different grid sizes

In high performance computation, GPU is typically used to

numerical problems involving large matrix operations. In theory, the
algorithm based on GPU has an increasing speed-up compared to that
based on CPU with the size of matrix increasing. Fig. 16 shows the
speed-ups of a single GPU for different grid size compared to a single-
core CPU. As expected, GPU typically has a better improvement on the
larger size of seismic data.

6. Summary and future work

This work investigates the acceleration of geostatistical seismic in-
version using TensorFlow in a heterogeneous distributed manner,
which allows taking advantage of GPUs and the cloud computing
platform. To efficiently exploit multiple computing devices, i.e. CPUs
and GPUs and process seismic data with large size, we proposed two
multi-device parallelization schemes, namely model and data paralle-
lism, to perform the inversion on multiple devices simultaneously. As
shown in the numerical experiments, the GPU-based distributed system
can offer a large computational speed-up with nearly two orders of
magnitude over the CPU in the test case.

Although this study focuses on the geostatistical seismic inversion
problem, the generic architecture and extensibility of TensorFlow make
it applicable to many gradient-based numeric optimization problems in
geophysics, such as full waveform inversion and seismic history
matching. Our future work will focus on the development of a general
parallel library based on TensorFlow for geophysical inverse problems.

Computer code availability

Source code of the proposed parallel geostatistical seismic inversion
approach is available from the first author and can be downloaded from
https://github.com/theanswer003/SeisFlow.

Name of Code: SeisFlow
Developer: Mingliang Liu
Contact address: 1000 E. University Ave. Laramie, WY 82071, USA

Telephone number: 307-343-6599
E-mail: mliu4@uwyo.edu
Year first available: 2018
Hardware: GPU recommended
Software: Python 3.6; TensorFlow, version r1.0 or later
Program language: Python
Program size: about 30 kb

Fig. 14. Speed-ups with multicore CPU.

Fig. 15. Speed-ups with multiple GPUs.

Table 2
The absolute computational time with different number of GPUs.

Number of GPUs 1 2 3 4

Computational time (hours) 23.61 12.92 9.17 7.36

Fig. 16. Speed-ups with different grid size.

M. Liu, D. Grana Computers and Geosciences 124 (2019) 37–45

44

https://github.com/theanswer003/SeisFlow
mailto:mliu4@uwyo.edu

Acknowledgements

Authors acknowledge the School of Energy Resources, and the
Department of Geology and Geophysics of University of Wyoming for
the support. We also thank the editor and anonymous reviewers for
their critical review of the paper and constructive comments.

References

Abadi, M., Agarwal, A., Barham, P., et al., 2015. TensorFlow: large-scale machine
learning on heterogeneous systems. arXiv preprint arXiv. 1605.08695.

Aster, R.C., Borchers, B., Thurber, C.H., 2011. Parameter Estimation and Inverse
Problems. Academic Press.

Azevedo, L., Nunes, R., Soares, A., Mundin, E.C., Neto, G.S., 2015. Integration of well data
into geostatistical seismic amplitude variation with angle inversion for facies esti-
mation. Geophysics 80 (6), M113–M128.

Azevedo, L., Soares, A., 2017. Geostatistical Methods for Reservoir Geophysics. Springer.
Bortoli, L.J., 1992. Constraining Reservoir Models with Seismic Information. Master’s

thesis. Stanford University.
Bosch, M., Mukerji, T., Gonzalez, E.F., 2010. Seismic inversion for reservoir properties

combining statistical rock physics and geostatistics: a review. Geophysics 75 (5),
75A165–75A176.

Caers, J., Hoffman, T., 2006. The probability perturbation method: a new look at
Bayesian inverse modeling. Math. Geol. 38 (1), 81–100.

Doyen, P.M., 2007. Seismic Reservoir Characterization: an Earth Modelling Perspective.
EAGE.

Duchi, J., Hazan, E., Singer, Y., 2011. Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res. 12 (Jul), 2121–2159.

Ferreirinha, T., Nunes, R., Azevedo, L., Soares, A., Pratas, F., Tomás, P., Roma, N., 2015.
Acceleration of stochastic seismic inversion in OpenCL-based heterogeneous plat-
forms. Comput. Geosci. 78, 26–36.

Froidevaux, R., 1993. Probability field simulation. Geostat. Troia 92, 73–83.
Gineste, M., Eidsvik, J., 2017. June. Seismic waveform inversion using the ensemble

Kalman smoother. In: 79th EAGE Conference and Exhibition 2017.
González, E.F., Mukerji, T., Mavko, G., 2007. Seismic inversion combining rock physics

and multiple-point geostatistics. Geophysics 73 (1), R11–R21.
Grana, D., Mukerji, T., Dvorkin, J., Mavko, G., 2012. Stochastic inversion of facies from

seismic data based on sequential simulations and probability perturbation method.
Geophysics 77 (4), M53–M72.

Haas, A., Dubrule, O., 1994. Geostatistical inversion-a sequential method of stochastic
reservoir modelling constrained by seismic data. First Break 12 (11), 561–569.

Hu, L.Y., 2000. Gradual deformation and iterative calibration of Gaussian-related sto-
chastic models. Math. Geol. 32 (1), 87–108.

Huang, T., Li, X., Zhang, T., Lu, D.T., 2013. GPU-accelerated Direct Sampling method for

multiple-point statistical simulation. Comput. Geosci. 57, 13–23.
Kappler, K., Kuzma, H.A., Rector, J.W., 2005. A comparison of standard inversion, neural

networks and support vector machines. In: 2005 SEG Annual Meeting. Society of
Exploration Geophysicists.

Kingma, D.P., Ba, J., 2014. Adam: a method for stochastic optimization. arXiv preprint
arXiv. 1412.6980.

Le Ravalec, M., 2005. Inverse Stochastic Modelling of Flow in Porous Media, Application
to Reservoir Characterization. Editions Technip.

Liu, M.L., Grana, D., 2018. Stochastic nonlinear inversion of seismic data for the esti-
mation of petroelastic properties using the Ensemble Smoother and data re-para-
meterization. Geophysics 83 (3), 1–60.

Mallick, S., 1995. Model-based inversion of amplitude-variations-with-offset data using a
genetic algorithm. Geophysics 60 (4), 939–954.

Mariethoz, G., Caers, J., 2014. Multiple-point Geostatistics: Stochastic Modeling with
Training Images. John Wiley & Sons.

Mariethoz, G., 2010. A general parallelization strategy for random path based geosta-
tistical simulation methods. Comput. Geosci. 36 (7), 953–958.

Martin, D., Estrin, G., 1967. Models of computations and systems—evaluation of vertex
probabilities in graph models of computations. J. ACM 14 (2), 281–299.

Nunes, R., Almeida, J., 2010. Parallelization of sequential Gaussian, indicator and direct
simulation algorithms. Comput. Geosci. 36, 1042–1052.

Peredo, O., Ortiz, J.M., Herrero, J.R., Samaniego, C., 2014. Tuning and hybrid paralle-
lization of a genetic-based multi-point statistics simulation code. Parallel Comput. 40
(5–6), 144–158.

Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning representations by back-
propagating errors. Nature 323 (6088), 533.

Sen, M.K., Stoffa, P.L., 1991. Nonlinear one-dimensional seismic waveform inversion
using simulated annealing. Geophysics 56 (10), 1624–1638.

Srivastava, R.M., 1992. Reservoir characterization with probability field simulation. In:
SPE Annual Technical Conference and Exhibition, pp. 4–7 (October,
Washington, D.C).

Tahmasebi, P., Sahimi, M., Mariethoz, G., Hezarkhani, A., 2012. Accelerating geostatis-
tical simulations using graphics processing units (GPU). Comput. Geosci. 46, 51–59.

Tarantola, A., 2005. Inverse Problem Theory. SIAM.
Thurin, J., Brossier, R., Métivier, L., 2017. June. Ensemble-based uncertainty estimation

in full waveform inversion. In: 79th EAGE Conference and Exhibition 2017.
Tieleman, T., Hinton, G., 2012. Lecture 6.5-rmsprop: divide the gradient by a running

average of its recent magnitude. COURSERA: Neural networks for machine learning 4
(2), 26–31.

Vargas, H., Caetano, H., Filipe, M., 2007. Parallelization of sequential simulation pro-
cedures. In: Proceedings of Petroleum Geostatistics. European Association of
Geoscientists & Engineers, Cascais, Portugal.

Yourdon, E., Constantine, L.L., 1979. Structured Design: Fundamentals of a Discipline of
Computer Program and Systems Design. Prentice-Hall, Inc.

Zeiler, M.D., 2012. ADADELTA: an adaptive learning rate method. arXiv preprint arXiv.
1212.5701.

M. Liu, D. Grana Computers and Geosciences 124 (2019) 37–45

45

arxiv:1605.08695
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref2
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref2
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref3
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref3
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref3
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref4
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref5
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref5
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref6
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref6
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref6
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref7
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref7
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref8
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref8
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref9
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref9
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref10
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref10
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref10
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref11
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref12
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref12
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref13
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref13
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref14
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref14
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref14
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref15
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref15
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref16
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref16
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref17
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref17
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref18
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref18
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref18
arxiv:1412.6980
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref20
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref20
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref21
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref21
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref21
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref22
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref22
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref23
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref23
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref24
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref24
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref25
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref25
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref26
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref26
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref27
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref27
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref27
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref28
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref28
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref29
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref29
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref30
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref30
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref30
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref31
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref31
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref32
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref33
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref33
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref34
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref34
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref34
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref35
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref35
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref35
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref36
http://refhub.elsevier.com/S0098-3004(18)30426-6/sref36
arxiv:1212.5701

	Accelerating geostatistical seismic inversion using TensorFlow: A heterogeneous distributed deep learning framework
	Introduction
	Overview of TensorFlow
	Geostatistical seismic inversion
	FFT-moving average and probability field simulation
	Seismic inversion

	Implementation with TensorFlow
	Implementation with a single GPU
	Implementation with multiple GPUs

	Results
	Quality of the inversion results
	Performance of multicore CPU
	Performance of multiple GPUs
	GPU performance with different grid sizes

	Summary and future work
	Computer code availability
	Acknowledgements
	References

