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A B S T R A C T

A semi-analytical solution for one-dimensional transport of multiple species along a reaction chain is introduced.
The DECAY solution considers advection, dispersion, equilibrium sorption, and arbitrarily complex sequences of
first-order reactions. The treatment of branching accommodates transport that potentially involves multiple
parents and daughter products. The solution is general in that the individual species may have different dis-
persion and sorption coefficients and different decay rates specified in the dissolved and sorbed phases for each
species. Yield coefficients can be specified so that the calculations can be conducted in terms of concentrations
expressed in units of either mass or moles per unit volume of water. The DECAY solution accommodates Dirichlet
and Cauchy inflow boundary conditions with general influent concentration histories. The concentrations of
each species are evaluated by accurate and efficient numerical inversion of the Laplace-transform solutions. The
semi-analytical solution has been tested extensively and verified against existing analytical solutions and nu-
merical simulations.

1. Introduction

The fate and transport of species along a reaction sequence is of
considerable environmental interest. The original motivation for the
analysis of multiple species arose in the context of radionuclide trans-
port; in these applications the daughter products along a straight decay
chain may be more hazardous and longer-lived than the parent (Lester
et al., 1975; Higashi and Pigford, 1980). Attention has been focused
recently on the transport of fuels and chlorinated solvents and the
products of their biodegradation (see for example Suarez and Rifai,
1999; Hwang et al., 2015). At many contaminated sites it is the dis-
tribution and concentrations of daughter products that provide a pri-
mary line of evidence for the assessment of natural attenuation
(Wiedemeier et al., 1999). Two reaction chains of environment sig-
nificance, involving reaction sequences that are more complex than
straight chains are illustrated in Fig. 1a and b.

Several analytical, semi-analytical and numerical approaches have
been developed to support the analysis of multi-species transport along
straight reaction chains. Important analytical contributions include
those of van Genuchten (1985), Sun et al. (1999), Quezada et al. (2004)
and Srinivasan and Clement (2008a, b).

This paper has been prepared to document the derivation and im-
plementation of a semi-analytical approach for the simulation of one-

dimensional transport of multiple species along complex reaction se-
quences. The solution is evaluated by efficient and accurate numerical
inversion of the Laplace transform solutions for each species, im-
plemented in the code DECAY.

The theory underlying the DECAY solution is not new. The van
Genuchten (1985) solution for chain decay is the starting point for the
DECAY solution. The DECAY solution generalizes the analysis of van
Genuchten (1985) to consider arbitrarily complex first-order reaction
sequences. The DECAY solution extends the capabilities of the van
Genuchten (1985) solution for more complex reaction pathways. The
full development for three-dimensional transport is presented in
Sudicky et al. (2013). The Sudicky et al. (2013) solution considers
three-dimensional transport with uniform uni-directional groundwater
flow, but requires numerical inversion of a Laplace-transform solution
expressed in terms of an infinite, complex-valued integral containing an
infinite series. The capability to consider species-dependent dispersion
coefficients is particularly important when the Darcy velocity is low and
hydrodynamic dispersion becomes controlled by diffusion. For ex-
ample, as indicated on Table 1 below, the diffusion coefficients among
the chlorinated solvents reaction pathway from PCE to vinyl chloride
vary by about one order of magnitude (U.S. EPA, 1996). The differences
in the dispersion coefficients for relatively small groundwater velocities
are magnified when sorption is considered (as quantified by the organic
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carbon-water partitioning coefficient, Koc).
The solution approach described here results in the development of

solutions relatively general within a rigorous framework that is
straightforward to extend to arbitrarily complex reaction sequences.
The approach is relatively general in that it accommodates first-order
reactions along chains with complex branching, and incorporates

flexibility with respect to the specification of dispersion/diffusion
parameters, retardation factors, and reaction rates in the dissolved and
the sorbed phases. The solution also accommodates both Type I
(Dirichlet) and Type III (Cauchy) inflow boundary conditions with ar-
bitrary concentration histories.

The DECAY solution is evaluated by efficient and accurate numer-
ical inversion of the Laplace transform solutions for each species. The
solution is particularly useful for screening-level applications and to
support the interpretation of data for monitored natural attenuations. In
complex settings, the solution may be useful to support the design and
checking of numerical models. The DECAY solution has been tested
extensively. For this paper, benchmarking analyses have been selected
specifically to illustrate the simulation of reactions with branching.

The DECAY code is written in the FORTRAN language. DECAY is
freely accessible from the website www.sspa.com. The DECAY package
includes complete documentation that includes results for extensive
testing.

Fig. 1a. Example of a parallel reaction sequence (Alvarez and Illman, 2006).

Fig. 1b. Examples of a serial-parallel reaction sequence (Wiedemeier et al., 1999).

Table 1
Diffusion and partitioning coefficient for species along the PCE degradation
pathway.

Chemical Diffusion coefficient in
water (cm2/s)

Organic carbon-water partitioning
coefficient (L/kg)

PCE 8.2×10−6 155
TCE 9.1×10−6 166
1,1-DCE 1.04× 10−5 58.9
Cis-1,2-DCE 1.13× 10−5 35.5
Trans-1,2-DCE 1.19× 10−5 52.5
Vinyl chloride 1.23× 10−6 18.6
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2. Development of the DECAY solution

2.1. a. Conceptual model

The DECAY solution considers advection, mechanical dispersion
and molecular diffusion, equilibrium sorption, and first-order de-
gradation and production reactions. The solution can accommodate
both sequential and branching decay with no limitation on the number
of species. The DECAY code is currently limited to three levels of re-
actions, with the level referring to the sequential order of decay reac-
tions along a branching decay chain (for the starting species of a decay
chain, its LEVEL equals to zero). However, with the Laplace transform
approach it is straightforward to add more levels of reaction. The
treatment of branching accommodates the transport of species that may
have more than one parent and multiple daughter products. Yield
coefficients are included as input, to allow concentrations to be ex-
pressed in terms of either mass or moles per unit volume of water. The
branching ratios allow specification of the fraction of parent trans-
forming into particular daughter products.

Goode (1999) discussed the application of first-order reaction ki-
netics to represent chemical decomposition or biodegradation of or-
ganic species. The DECAY solution provides the flexibility to assign
different values of reaction rates in the dissolved and sorbed phases for
each species. The DECAY solution accommodates Dirichlet and Cauchy
inflow boundary conditions with general influent concentration his-
tories.

2.2. b. Governing equation

Assuming steady flow along a homogeneous aquifer, the statement
of mass conservation for the ith species along a decay chain, accounting
for one-dimensional advection, dispersion, sorption and a first-order
transformation reaction is written as:

= + +

+ +

( )
( )

R C
t

q C
x

D C
x

K C

Y K C

i
i i

i
i

d b d s i

j i j i d b d s j

2

2 i i i

j j j (1)

Here C is the dissolved concentration (ML−3), x is distance (L), t is time
(T), ϕ is the porosity of the porous medium (dimensionless), q is the
Darcy flux (LT−1), D is the dispersion coefficient (L2T−1), λd is the first-
order decay rate in the dissolved phase (T−1), λs is the first-order decay
rate in the sorbed phase (T−1), ρb is the bulk density of the porous
media (ML−3), and Kd is the equilibrium sorption coefficient (M−1L3).
The last term of Equation (1) represents the generation of species i from
the transformation of parent species j, with Yj i the yield coefficient
between parent j and species i. Further details on the interpretation of
the yield coefficient are presented in the demonstration analysis. The
parameter j i denotes the branching ratio, that is, the fraction of
parent j that transforms into species i. The retardation factor R and the
dispersion coefficient D for species i are defined as:

= +R
K

1i
b di

(2)

= +D v Di i (3)

Here α is the longitudinal dispersivity (L), v is the average linear
groundwater velocity (LΤ−1), and D* is the effective molecular diffu-
sion coefficient (LT−2). The hydrodynamic dispersion coefficient re-
flects the contributions of mechanical dispersion and molecular diffu-
sion. The dispersivity quantifies the effects of mechanical dispersion
due to variations in groundwater velocity along the flowpath. The
dispersivity is considered to be a characteristic of the porous medium
while the effective diffusion coefficient incorporates the properties of
each solute and the tortuosity of the porous medium.

2.3. c. Initial and boundary conditions

The DECAY solution assumes that the domain is initially devoid of
solute:

=C x( , 0) 0i (4)

The DECAY solution can handle a general inflow boundary ex-
pressed as:

+ ==D C
x

qC qC t( )i
i

i x i0
0

(5)

When = 0, Equation (5) collapses to a Type I (specified concentra-
tion) boundary condition:

=c t c t(0, ) ( )i i
0 (6a)

When = 1, Equation (5) becomes a Type III (specified mass flux)
boundary condition for a well-mixed reservoir:

+ =D c t
x

qc t qc t(0, ) (0, ) ( )i
i

i i
0

(6b)

The domain is assumed to be semi-infinite and the outflow
boundary condition is written:

=C
x

t( , ) 0i
(7)

2.4. d. Derivation and evaluation of the solution

The partial differential equation Eq. (1) is solved by applying the
Laplace transform with respect to time. The mathematical derivation of
the solution is presented in detail in Appendix A. The general solution
of the concentration of species i in the Laplace domain for a sequential
decay reaction can be written as:
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Here Ki i j1, is the coefficient of +Exp x{ }j 1 (j=1, …,i-1) in the general
solution of C̄i 1; C p¯ ( )i

0 is the initial concentration of species i at the
inflow boundary in the Laplace domain; µi can be expressed as,

= +µ
K

i d
b d s

i
i i

(9)

and ,i i are the general solutions for a homogeneous second order
ODE in the form of

= +C A Exp x B Exp x¯ { } { }i i i i iH (10)

The solution is in the Laplace domain and the final solution involves
retransforming to the time domain using an inverse Laplace transform
procedure. The inversion of the Laplace transform is accomplished
numerically using the algorithm of De Hoog et al. (1982). The solution
for branching decay reactions is obtained by tracking the reaction
history of a species. The run time varies with the number of species in
the decay chain. For a typical 4-species reaction, the execution time is
typically a few seconds.

3. Benchmarking analyses

The DECAY solution has been extensively tested and the test ex-
amples are provided in the user's guide (Wang and Neville, 2016).
Three examples have been selected to be presented here to illustrate
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branching pathways for which analyses have not been reported pre-
viously in the literature. The results of the DECAY solution are com-
pared against the numerical results from a solute transport model,
MT3D-USGS (Bedekar et al., 2016) for the three examples. It is assumed
that the reactions occur only in the dissolved phase. The values of Darcy
flux, porosity, bulk density and dispersion coefficient are identical for
the three examples and are presented on Table 2. The test example with
variable dispersion coefficients among different species is not presented
here, but has been provided in the user's guide (Wang and Neville,
2016).

3.1. a. Benchmark Analysis 1

This analysis is designed to demonstrate the capability of the
DECAY solution to handle reactions with multiple parents. The reaction
pathway for Analysis 1 is illustrated in Fig. 2. The input parameters for
this example are tabulated on Table 3.

The results obtained with the DECAY solution and MT3D-USGS are
shown in Fig. 3. In general, the results match closely; the slight mis-
matches at the ends of the profiles arise because the analytical solution
assumes a semi-infinite domain whereas the numerical model termi-
nates with a zero dispersive-flux boundary condition. The parent spe-
cies 1, 2 and 3 have decreasing concentrations over time. The daughter
species 4 first increases, then stabilizes after reaching a plateau, and
eventually decreases at the later time.

3.2. b. Benchmark Analysis 2

Four species are also considered in Analysis 2; however, the reaction
sequence is reversed with respect to Analysis 1. As shown in Fig. 4, one
parent is split into three daughter products. The input parameters for
the analysis are listed on Table 4.

The results obtained with the DECAY solution and MT3D-USGS are
shown in Fig. 5. The results obtained with the semi-analytical and nu-
merical solutions match closely. In this analysis, the concentration of
the parent species (1) decreases over time, and the concentrations of the
daughter products (2, 3 and 4) exhibit similar trends, initially in-
creasing, followed by a period of stabilization and then long-term de-
cline.

3.3. c. Benchmark Analysis 3

This decay reaction for Benchmark Analysis 3 is illustrated in Fig. 6.
The reaction sequence occurs at three levels and involves six species.
Species 1 and 4 have two daughter products with different fractions of
transformation; and species 2 and 3 have only one daughter product.
The input parameters for this example are presented on Table 5.

The results calculated from the DECAY program and MT3D-USGS
are plotted in Fig. 7. A logarithmic scale is selected for the concentra-
tion axis as the range of concentrations among the decay species is
wide, extending over four orders of magnitude. The figure again shows
a perfect agreement between the two results, but with a slight dis-
crepancy for each species at the end of the profile. Species 2 and 3 are
the daughter products of species 1; species 4 is the only daughter
product of species 2 and 3; and species 5 and 6 are the daughter pro-
ducts of species 4. The concentration profiles obtained with the semi-
analytical and numerical solutions are consistent.

4. Conclusions

The DECAY program is an extended semi-analytical solution for
contaminant transport involving advection, dispersion, equilibrium
sorption, and first-order straight-chain and branching decay reactions.
Numerical inversion of the Laplace-transform is applied providing an
accurate and efficient solution. The DECAY solution allows different
dispersion coefficients and sorption coefficients resulting in different
retardation factors for each species. Unlike van-Genuchten (1985) so-
lution, the solution accommodates the specification of different decay
rates for the dissolved and sorbed phases for each species, which is
usually the case for chemical decomposition or biodegradation of or-
ganic compounds given that the sorbed phase is present. Yield coeffi-
cients are implemented in the solution assisting in the calculations in
terms of converting concentrations expressed in units of either mass or
moles per unit volume of water. Branching ratio is introduced re-
presenting the fraction of parent species that transforms into daughter
species. The DECAY solution can handle general initial and boundary
conditions, including Dirichlet and Cauchy inflow boundary conditions
with Bateman-type source histories. The number species involved in
decay reactions is not limited in the DECAY solution, but a maximum of

Table 2
Common basic parameters for the three examples.

Parameters

Darcy flux q (m/day) 0.01
Porosity ϕ (−) 0.1
Bulk density ρb (g/cm3) 1.0
Dispersion coefficient D (m2/day) 0.18

Fig. 2. Decay pathways of Benchmark Analysis 1.

Table 3
Other input parameters for Example 1.

Parameters Species 1 Species 2 Species 3 Species 4

Sorption coefficient Kd (cm3/g) 0.0 0.0 0.0 0.0
Dissolved phase decay rate (day−1) 6.93×10−3 3.47×10−3 1.16×10−3 1.00×10−3

Yield coefficient (−) 0.0 0.0 0.0 {1.0,1.0,1.0}
Branching ratio (−) 1.0 1.0 1.0 {1.0,1.0,1.0}
Initial concentration (−) 1.0 1.0 1.0 0.0
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three reaction levels is implemented in the current version of the so-
lution. The use of the Laplace transform enables straightforward ex-
tension of reaction levels.

Extensive testing has been conducted to verify the DECAY solution.
The three examples presented in the paper are representative of

complex decay pathways and have not been reported previously. The
results generated by DECAY were compared against the numerical si-
mulations by MT3D-USGS. The results showed good agreements for all
three examples, which suggest a high performance and robustness of
the DECAY solution.

Because the DECAY solution is applicable to one-dimensional solute
transport calculation, the ideal application will be along the centerline
of a plume. Despite its limitation, DECAY is capable of mimicking

Fig. 3. Concentration profiles at 600 days for Benchmark Analysis 1.

Fig. 4. Decay pathway of Benchmark Analysis 2.

Table 4
Other input parameters for Example 2.

Parameters Species 1 Species 2 Species 3 Species 4

Dissolved phase
decay rate
(day−1)

6.93× 10−3 3.47× 10−3 1.16× 10−3 1.00× 10−3

Yield coefficient (−) 0.0 1.0 1.0 1.0
Branching ratio (−) 1.0 0.5 0.3 0.2
Initial concentration

(−)
1.0 0.0 0.0 0.0
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various complicated reactive pathways. The implementation is more
flexible and easier than numerical models. The DECAY program is
available to everyone via the website www.sspa.com. DECAY is an
excellent tool for making screen-level calculations for contaminant
transport involving advection, dispersion, sorption and first-order
decay reactions with branching.

Fig. 5. Concentration profiles at 600 days for Benchmark Analysis 2.

Fig. 6. Decay pathways of Benchmark Analysis 3.

Table 5
Other input parameters for Benchmark Analysis 3.

Parameters Species 1 Species 2 Species 3 Species 4 Species 5 Species 6

Dissolved phase decay rate (day−1) 5.0× 10−3 3.0× 10−3 1.5×10−3 2.0× 10−3 1.0× 10−3 5.0× 10−4

Yield coefficient (−) 0.0 1.0 1.0 {1.0,1.0} 1.0 1.0
Branching ratio (−) 1.0 0.6 0.4 {1.0,1.0} 0.6 0.4
Initial concentration (−) 0.0 0.0 0.0 0.0 0.0 1.0
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Appenix A. Mathematical Derivation

1 Governing equation

Assuming steady flow along a homogeneous aquifer, the statements of mass conservation for the species along a straight-decay chain, accounting
for one-dimensional advection, dispersion, sorption and a first-order transformation reaction are written as:

i. Species 1 -

=R C
t

D C
x

q C
x

C K Cd b d s1
1

1
2

1
2

1
1 11 1 1 [A1]

ii. Species 2 –

Fig. 7. Concentration profiles at 200 days for Benchmark Analysis 3.
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iii. Species i –
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where

j= i-1
Ci =dissolved concentration for species i (ML−3)
x =distance (L)
t =time (T)

= porosity of the porous medium (−)
q =Darcy flux (LT−1)
Di =dispersion coefficient for species i (L2T−1)

di = the first-order decay rate in the dissolved phase for species i (T−1)
si = the first-order decay rate in the sorbed phase for species i (T−1)
b =bulk density of the porous medium (ML−3)

Kdi =equilibrium sorption coefficient for species i (M−1L3)
Yj i =yield coefficient from species i to j
Ri = + K1 d

b
i

2 Simplification of the governing equations

Eqs. [A1], [A2], and [A3] are simplified as follows:
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Defining

= +µ
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i d
b d

si
i

i [A7]

and the governing equations can be re-written as
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3 ‘End members’ for decay in sorbed phase

It assumes that the first-order decay rate in the sorbed phase is considered to have two case values.

Case 1. The decay in sorbed phase proceeds at the same rate as in dissolved phase

=d si i

= + = + =µ
K K

R1i d
b d

s
b d

d i di
i

i
i

i i [A11]

Case 2. The decay in sorbed phase is zero

= 0si

=µi di [A12]
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4 Initial and boundary conditions

1) Inflow boundary conditions

+ ==D C
x

qC qC t( )i
i

i x i0
0

[A13]

= 0 Type I inflow boundary conditions: =C t C t(0, ) ( )i i
0 .

= 1 Type III inflow boundary conditions: + =D qC t qC t(0, ) ( )i
C t

x i i
(0, ) 0i .

2) Outflow boundary conditions

=C
x

t( , ) 0i
[A14]

3) Initial conditions
The solution assumes that the domain is initially devoid of solute:

=C x( , 0) 0i [A15]

5 Solution in the Laplace domain: Species 1

Apply the Laplace transform to the governing equation for species 1 (Eq. [A4]),
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Rearranging,
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The general solution for this equation is:

= +C A Exp x B Exp x¯ { } { }1 1 1 1 1 [A18]
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Subject to the inflow and outflow boundary conditions,

+ =D dC
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¯
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Since the solution is bounded, =A 01 .
Eq. [A21] can be rewritten as:
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Solving for B1 yields,

=
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¯ ( )
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1
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Substituting Eq. [A24] into Eq. [A18], we obtain

=
+

C qC p
D q

Exp x¯ ¯ ( ) { }1
1
0

1 1
1 [A25]

If Type I boundary condition is applied, = 0, the solution for species 1 is:

=C C p Exp x¯ ¯ ( ) { }1 1
0

1 [A26]

To simplify the solution, let us introduce a parameter K1,1 ,
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=
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K qC p
D q
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1,1
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Substituting Eq. [A27] into the solution, we get

=C K Exp x¯ { }1 1,1 1 [A28]

When =0, =K C p¯ ( )1,1 1
0 .

6 Solution in the Laplace domain: Species 2

Apply the Laplace transform to the governing equation for species 2 (Eq. [A5]),
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Rearranging,
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The transformed governing equation for C̄2 is a non-homogeneous, second-order ODE. The general solution is the combination of the com-
plementary homogeneous solution and the particular solution for the non-homogeneous part.

= +C C C¯ ¯ ¯H P2 2 2 [A31]

The solution for the complementary homogeneous equation is:

= +C A Exp x B Exp x¯ { } { }H2 2 2 2 2 [A32]

where

= + + +q
D

q
D D

R p µ
2

1
2

4 ( )2
2 2

2

2
2 2

[A33]

= + +q
D

q
D D

R p µ
2

1
2

4 ( )2
2 2

2

2
2 2

[A34]

The particular solution for the non-homogeneous part of the solution can be derived using the method of operators:

=C Exp p x Exp p Exp p Exp p f d d¯ { } { }[ { } { } ( ) ]P
x

2 1 1 2 2 [A35]

Here,
=p1 2

=p2 2

=f x
µ Y C

D
( )

¯1 1 2 1

2

Substituting Eq. [A28] into the equation, we have

=f x
µ Y

D
K Exp x( ) { }1 1 2

2
1,1 1 [A36]

The inner integral becomes

=Exp p f d Exp
µ Y

D
K d{ } ( ) { } Exp{ }2 2

1 1 2

2
1,1 1

=
µ Y

D
K Exp d{( ) }1 1 2

2
1,1 1 2

=
µ Y

D
K Exp

( )
{( ) }1 1 2

2 1 2
1,1 1 2 [A37]

The particular solution, Eq. [A35] is equal to

=

=

=

C Exp x Exp Exp K Exp d

Exp x Exp d

Exp x

¯ { } { } { } {( ) }

{ } {( ) }

{ }

P
x µ Y

D

µ Y K
D

x

µ Y K
D

2 2 2 2 ( ) 1,1 1 2

( ) 2 1 2

( )( ) 1

1 1 2
2 1 2

1 1 2 1,1
2 1 2

1 1 2 1,1
2 1 2 1 2 [A38]

The complete solution is therefore,
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= + = +C C C A Exp x B Exp x
µ Y K

D
Exp x¯ ¯ ¯ { } { }

( )( )
{ }H P2 2 2 2 2 2 2

1 1 2 1,1

2 1 2 1 2
1 [A39]

The boundary conditions for species 2 are:

+ =D dC p
dx

qC p qC p
¯ (0, ) ¯ (0, ) ¯ ( )2

2
2 2

0
[A40]

=dC
dx

p
¯

( , ) 02
[A41]

Since the solution is bounded, =A 02 .
Eq. [A40] becomes,

+ =D d
dx

B Exp x
µ Y K

D
Exp x q B

µ Y K
D

qC p{ }
( )( )

{ }
( )( )

¯ ( )2 2 2
1 1 2 1,1

2 1 2 1 2
1 2

1 1 2 1,1

2 1 2 1 2
2
0

Evaluating the derivative yields,

+ =D B
µ Y K

D
q B

µ Y K
D

qC p
( )( ) ( )( )

¯ ( )2 2 2
1 1 2 1,1 1

2 1 2 1 2
2

1 1 2 1,1

2 1 2 1 2
2
0

[A42]

Solving for B2 yields,

=
+

+B
D q

qC p µ Y
K

q
µ Y

D
K1 ¯ ( )

( )( ) ( )( )2
2 2

2
0

1 1 2
1 1,1

1 2 1 2

1 1 2

2

1,1

1 2 1 2 [A43]

Substituting B2 in the general solution for species 2,

=
+

+C
D q

qC p µ Y
K

q
µ Y

D
K

Exp x
µ Y K

D
Exp x¯ 1 ¯ ( )

( )( ) ( )( )
{ }

( )( )
{ }2

2 2
2
0

1 1 2
1 1,1

1 2 1 2

1 1 2

2

1,1

1 2 1 2
2

1 1 2 1,1

2 1 2 1 2
1

[A44]

If Type I boundary condition is applied, = 0, the solution for species 2 is:

= + = +C C p
µ Y K

D
Exp x

µ Y K
D

Exp x C p Exp x
µ Y K

D
Exp x¯ ¯ ( )

( )( )
{ }

( )( )
{ } ¯ ( ) { }

( )( )
{( ) }2 2

0 1 1 2 1,1

2 1 2 1 2
2

1 1 2 1,1

2 1 2 1 2
1 2

0
2

1 1 2 1,1

2 1 2 1 2
2 1

[A45]

To simplify the solution, let K2,1 be the coefficient on Exp x{ }2 , and let K2,2 be the coefficient on Exp x{ }1 .
The general solution, Eq. [A44] can be rewritten as,

= +C K Exp x K Exp x¯ { } { }2 2,1 2 2,2 1 [A46]

7 Solution in the Laplace domain: Species 3

The general solution in Laplace domain for species 3 according to Eqs. [A31] and [A32],

= + = + +C C C A Exp x B Exp x C¯ ¯ ¯ { } { } ¯H P P3 3 3 3 3 3 3 3 [A47]

with

= + + +q
D

q
D D

R p µ
2

1
2

4 ( )3
3 3

2

3
3 3

= + +q
D

q
D D

R p µ
2

1
2

4 ( )3
3 3

2

3
3 3

The particular solution of the non-homogeneous part for species 3 according to Eq. [A35] is,

=C Exp x Exp Exp Exp f d d¯ { } { } { } { } ( )P
x

3 3 3 3 3
[A48]

where

=f
µ Y C

D
( )

¯2 2 3 2

3 [A49]

Substituting for f ( ) and C̄2, the inner integral is,
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=

= +

= +

= +

Exp f d Exp d

Exp K Exp K Exp d

K Exp x K Exp x d

Exp Exp

{ } ( ) { }

{ } ( { } { })

( {( ) } {( ) })

{( ) } {( ) }

µ Y C
D

µ Y
D

µ Y
D

µ Y
D

K K

3 3
¯

3 2,1 2 2,2 1

2,1 2 3 2,2 1 3

2 3 1 3

2 2 3 2
3

2 2 3
3

2 2 3
3

2 2 3
3

2,1

2 3

2,2

1 3 [A50]

Substituting into Eq. [A48],

= +

= + =

= + =

= +

C Exp x Exp Exp Exp d

Exp x Exp Exp d

Exp x Exp x Exp x

Exp x Exp x

¯ { } {( ) } {( ) } {( ) }

{ } {( ) } {( ) }

{ } {( ) } {( ) }

{ } { }

P
x µ Y

D
K K

µ Y
D

x K K

µ Y
D

K K

µ Y
D

K K

3 3 3 3 2 3 1 3

3 2 3 1 3

3 ( )( ) 2 3 ( )( ) 1 3

( )( ) 2 ( )( ) 1

2 2 3
3

2,1

2 3

2,2

1 3

2 2 3
3

2,1

2 3

2,2

1 3

2 2 3
3

2,1

2 3 2 3
2,2

1 3 1 3

2 2 3
3

2,1

2 3 2 3
2,2

1 3 1 3 [A51]

The full solution for species 3 is therefore,

= + +C A Exp x B Exp x
µ Y

D
K

Exp x
K

Exp x¯ { } { }
( )( )

{ }
( )( )

{ }3 3 3 3 3
2 2 3

3

2,1

2 3 2 3
2

2,2

1 3 1 3
1

[A52]

The boundary conditions for species 3 are:

+ =D dC p
dx

qC p qC p
¯ (0, ) ¯ (0, ) ¯ ( )3

3
3 3

0
[A53]

=dC
dx

p
¯

( , ) 03
[A54]

Since the solution is bounded, =A 03 , Eq. [A53] becomes,

+

+ + =

D d
dx

B Exp x
µ Y

D
K

Exp x
K

Exp x

q B
µ Y

D
K K

qC p

{ }
( )( )

{ }
( )( )

{ }

( )( ) ( )( )
¯ ( )

3 3 3
2 2 3

3

2,1

2 3 2 3
2

2,2

1 3 1 3
1

3
2 2 3

3

2,1

2 3 2 3

2,2

1 3 1 3
3
0

+ + + =D B
µ Y

D
K K

q B
µ Y

D
K K

qC p
( )( ) ( )( ) ( )( ) ( )( )

¯ ( )3 3 3
2 2 3

3

2 2,1

2 3 2 3

1 2,2

1 3 1 3
3

2 2 3

3

2,1

2 3 2 3

2,2

1 3 1 3
3
0

+ + + + =D q B D
µ Y

D
K K

q
µ Y

D
K K

qC p( )
( )( ) ( )( ) ( )( ) ( )( )

¯ ( )3 3 3 3
2 2 3

3

2 2,1

2 3 2 3

1 2,2

1 3 1 3

2 2 3

3

2,1

2 3 2 3

2,2

1 3 1 3
3
0

[A55]

Solving for B3,

=
+

+ + +B
D q

qC p µ Y
K K

q
µ Y

D
K K1 ¯ ( )

( )( ) ( )( ) ( )( ) ( )( )3
3 3

3
0

2 2 3
2 2,1

2 3 2 3

1 2,2

1 3 1 3

2 2 3

3

2,1

2 3 2 3

2,2

1 3 1 3 [A56]

The general solution for C̄3 is:

=
+

+ + +

+

C
D q

qC p µ Y
K K

q
µ Y

D
K K

Exp x

µ Y
D

K
Exp x

K
Exp x

¯ 1 ¯ ( )
( )( ) ( )( ) ( )( ) ( )( )

{ }

( )( )
{ }

( )( )
{ }

3
3 3

3
0

2 2 3
2 2,1

2 3 2 3

1 2,2

1 3 1 3

2 2 3

3

2,1

2 3 2 3

2,2

1 3 1 3
3

2 2 3

3

2,1

2 3 2 3
2

2,2

1 3 1 3
1

[A57]

If Type I boundary condition is applied, = 0, the solution for species 3 is:

= + + +C C p
µ Y

D
K K

Exp x
µ Y

D
K

Exp x
K

Exp x¯ ¯ ( )
( )( ) ( )( )

{ }
( )( )

{ }
( )( )

{ }3 3
0 2 2 3

3

2,1

2 3 2 3

2,2

1 3 1 3
3

2 2 3

3

2,1

2 3 2 3
2

2,2

1 3 1 3
1

[A58]
To simplify the solution, let K3,1 be the coefficient on Exp x{ }3 , K3,2 be the coefficient on Exp x{ }2 , and let K3,3 be the coefficient on Exp x{ }1 .
The general solution, Eq. [A57] can be rewritten as,

= + +C K Exp x K Exp x K Exp x¯ { } { } { }3 3,1 3 3,2 2 3,3 1 [A59]
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8 Solution in the Laplace domain: Species 4

The general solution for species 4 is

= + = + +C C C A Exp x B Exp x C¯ ¯ ¯ { } { } ¯H P P4 4 4 4 4 4 4 4 [A60]

with

= + + +q
D

q
D D

R p µ
2

1
2

4 ( )4
4 4

2

4
4 4

= + +q
D

q
D D

R p µ
2

1
2

4 ( )4
4 4

2

4
4 4

The particular solution of the non-homogeneous part for species 4 is,

=C Exp x Exp Exp Exp f d d¯ { } { } { } { } ( )P
x

4 4 4 4 4
[A61]

where

=f
µ Y C

D
( )

¯3 3 4 3

4 [A62]

Substituting for f ( ) and C̄3 using Eq. [A59], the inner integral is,

=

= + +

= + +

= + +

Exp f d Exp d

Exp K Exp K Exp K Exp d

K Exp K Exp K Exp d

Exp Exp Exp

{ } ( ) { }

{ }( { } { } { })

( {( ) } {( ) } {( ) })

{( ) } {( ) } {( ) }

µ Y C
D

µ Y
D

µ Y
D

µ Y
D

K K K

4 4
¯

4 3,1 3 3,2 2 3,3 1

3,1 3 4 3,2 2 4 3,3 1 4

( ) 3 4 ( ) 2 4 ( ) 1 4

3 3 4 3
4

3 3 4
4

3 3 4
4

3 3 4
4

3,1

3 4

3,2

2 4

3,3

1 4 [A63]

Carrying out the outer integration:

= + +

= + +

= +

C Exp x Exp Exp Exp Exp Exp d

Exp x Exp Exp Exp d

Exp x Exp x

¯ { } { } { } {( ) } {( ) } {( ) }

{ } {( ) } {( ) } {( ) }

{ } { }

P
x µ Y

D
K K K

µ Y
D

x K K K

µ Y
D

K K

4 4 4 4 ( ) 3 4 ( ) 2 4 ( ) 1 4

4 ( ) 3 4 ( ) 2 4 ( ) 1 4

( )( ) 3 ( )( ) 2

3 3 4
4

3,1

3 4

3,2

2 4

3,3

1 4

3 3 4
4

3,1

3 4

3,2

2 4

3,3

1 4

3 3 4
4

3,1

3 4 3 4
3,2

2 4 2 4 [A64]

The full solution in Laplace domain for species 4 is:

= + + +C A Exp x B Exp x
µ Y

D
K

Exp x
K

Exp x
K

Exp x¯ { } { }
( )( )

{ }
( )( )

{ }
( )( )

{ }4 4 4 4 4
3 3 4

4

3,1

3 4 3 4
3

3,2

2 4 2 4
2

3,3

1 4 1 4
1

[A65]

The boundary conditions for Species 4 are:

+ =D dC p
dx

qC p qC p
¯ (0, ) ¯ (0, ) ¯ ( )4

4
4 4

0
[A66]

=dC
dx

p
¯

( , ) 04
[A67]

Since the solution is bounded, =A 04 , Eq. [A66] becomes,

+ + +

+ +

=

D B Exp x Exp x Exp x Exp x q B Exp x

Exp x Exp x Exp x

qC p

{ } { } { } { } { }

{ } { } { }

¯ ( )

d
dx

µ Y
D

K K K

µ Y
D

K K K

4 4 4 ( )( ) 3 ( )( ) 2 ( )( ) 1 4 4

( )( ) 3 ( )( ) 2 ( )( ) 1

4
0

3 3 4
4

3,1

3 4 3 4
3,2

2 4 2 4
3,3

1 4 1 4

3 3 4
4

3,1

3 4 3 4
3,2

2 4 2 4
3,3

1 4 1 4

+ + + +

+ +

=

D B µ Y qB

q

qC p¯ ( )

K K K

µ Y
D

K K K

4 4 4 3 3 4 ( )( ) ( )( ) ( )( ) 4

( )( ) ( )( ) ( )( )

4
0

3 3,1

3 4 3 4
2 3,2

2 4 2 4
1 3,3

1 4 1 4

3 3 4
4

3,1

3 4 3 4
3,2

2 4 2 4
3,3

1 4 1 4

[A68]
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Solving for B4,

=
+

+ +

+ + +

B
D q

qC p µ Y
K K K

q
µ Y

D
K K K

1 ¯ ( )
( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

4
4 4

4
0

3 3 4
3 3,1

3 4 3 4

2 3,2

2 4 2 4

1 3,3

1 4 1 4

3 3 4

4

3,1

3 4 3 4

3,2

2 4 2 4

3,3

1 4 1 4 [A69]

Substituting for B4 in the general solution:

=
+

+ +

+ + +

+ +

C
D q

qC p µ Y
K K K

q
µ Y

D
K K K

Exp x
µ Y

D
K

Exp x

K
Exp x

K
Exp x

¯ 1 ¯ ( )
( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )
{ }

( )( )
{ }

( )( )
{ }

( )( )
{ }

4
4 4

4
0

3 3 4
3 3,1

3 4 3 4

2 3,2

2 4 2 4

1 3,3

1 4 1 4

3 3 4

4

3,1

3 4 3 4

3,2

2 4 2 4

3,3

1 4 1 4
4

3 3 4

4

3,1

3 4 3 4
3

3,2

2 4 2 4
2

3,3

1 4 1 4
1

[A70]

If Type I boundary condition is applied, = 0, the solution for species 4 is:

= + + +

+ +

C C p
µ Y

D
K K K

Exp x

µ Y
D

K
Exp x

K
Exp x

K
Exp x

¯ ¯ ( )
( )( ) ( )( ) ( )( )

{ }

( )( )
{ }

( )( )
{ }

( )( )
{ }

4 4
0 3 3 4

4

3,1

3 4 3 4

3,2

2 4 2 4

3,3

1 4 1 4
4

3 3 4

4

3,1

3 4 3 4
3

3,2

2 4 2 4
2

3,3

1 4 1 4
1

[A71]

To simplify the solution, let K4,1 be the coefficient on Exp x{ }4 , K4,2 be the coefficient on Exp x{ }3 , K4,3 be the coefficient on Exp x{ }2 , and let K4,4
be the coefficient on Exp x{ }1 .

The general solution, Eq. [A70] can be rewritten as,

= + + +C K Exp x K Exp x K Exp x K Exp x¯ { } { } { } { }4 4,1 4 4,2 3 4,3 2 4,4 1 [A72]

The solution coefficients for species 1–4 are summarized:

=
+

K qC p
D q
¯ ( )

1,1
1
0

1 1

=
+

+K
D q

qC p µ Y
K

q
µ Y

D
K1 ¯ ( )

( )( ) ( )( )2,1
2 2

2
0

1 1 2
1 1,1

1 2 1 2

1 1 2

2

1,1

1 2 1 2

=K
µ Y K

D ( )( )2,1
1 1 2 1,1

2 1 2 1 2

=
+

+ + +K
D q

qC p µ Y
K K

q
µ Y

D
K K1 ¯ ( )

( )( ) ( )( ) ( )( ) ( )( )3,1
3 3

3
0

2 2 3
2 2,1

2 3 2 3

1 2,2

1 3 1 3

2 2 3

3

2,1

2 3 2 3

2,2

1 3 1 3

=K
µ Y

D
K

( )( )3,2
2 2 3

3

2,1

2 3 2 3

=K
µ Y

D
K

( )( )3,3
2 2 3

3

2,2

1 3 1 3

=
+

+ +

+ + +

K
D q

qC p µ Y
K K K

q
µ Y

D
K K K

1 ¯ ( )
( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

4,1
4 4

4
0

3 3 4
3 3,1

3 4 3 4

2 3,2

2 4 2 4

1 3,3

1 4 1 4

3 3 4

4

3,1

3 4 3 4

3,2

2 4 2 4

3,3

1 4 1 4

=K
µ Y

D
K

( )( )4,2
3 3 4

4

3,1

3 4 3 4

=K
µ Y

D
K

( )( )4,3
3 3 4

4

3,2

2 4 2 4

=K
µ Y

D
K

( )( )4,4
3 3 4

4

3,3

1 4 1 4

Noting that when =0,
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=K C p¯ ( )1,1 1
0

= +K C p
µ Y K

D
¯ ( )

( )( )2,1 2
0 1 1 2 1,1

2 1 2 1 2

=K
µ Y K

D ( )( )2,2
1 1 2 1,1

2 1 2 1 2

= + +K C p
µ Y

D
K K¯ ( )

( )( ) ( )( )3,1 3
0 2 2 3

3

2,1

2 3 2 3

2,2

1 3 1 3

=K
µ Y

D
K

( )( )3,2
2 2 3

3

2,1

2 3 2 3

=K
µ Y

D
K

( )( )3,3
2 2 3

3

2,2

1 3 1 3

= + + +K C p
µ Y

D
K K K¯ ( )

( )( ) ( )( ) ( )( )4,1 4
0 3 3 4

4

3,1

3 4 3 4

3,2

2 4 2 4

3,3

1 4 1 4

=K
µ Y

D
K

( )( )4,2
3 3 4

4

3,1

3 4 3 4

=K
µ Y

D
K

( )( )4,3
3 3 4

4

3,2

2 4 2 4

=K
µ Y

D
K

( )( )4,4
3 3 4

4

3,3

1 4 1 4

9 Solution in the Laplace domain: Species 5 and beyond

The general solution for species i in the Laplace domain is:

= + + + + +C K Exp x K Exp x K Exp x K Exp x K Exp x¯ { } { } { } { } { }i i i i i i i i i i i,1 ,2 1 ,3 2 , 1 2 , 1 [A73]

where

= + +…+

+ + +…+

=

=

=

=

+K qC p µ Y

K

K

K

K

¯ ( )i D q i i i i
K K K

qµ Y
D

K K K

i
µ Y

D
K

i
µ Y

D
K

i i
µ Y

D
K

i i
µ Y

D
K

,1
1 0

1 1 ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

,2 ( )( )

,3 ( )( )

, 1 ( )( )

, ( )( )

i i

i i

i i i i

i i

i i i i
i i

i i

i i i
i

i

i i i i
i

i i i i
i i

i i

i i i
i

i

i i i i

i i i
i

i

i i i i

i i i
i

i i

i i

i i i
i

i i

i i

1 1,1

1 1

2 1,2

2 2

1 1, 1

1 1

1 1 1,1

1 1

1,2

2 2

1, 1

1 1

1 1 1,1

1 1

1 1 1,2

2 2

1 1 1, 2

2 2

1 1 1, 1

1 1

In summary, the general solution for the ith species is:

=
+

+
= = =

C
D q

qC p µ Y
K qµ Y

D
K

Exp x
µ Y

D
K Exp x¯ 1 ¯ ( )

( )( ) ( )( )
{ }

{ }
( )( )i

i i
i i i i

j

i
i i j j

j i j i

i i i

i j

i
i i j

j i j i
i

i i i

i j

i
i i j j

j i j i

0
1 1

1

1
1, 1 1

1

1
1, 1 1

1

1
1,

[A74]

10 Solution for branching decay chain

A new parameter, j i, is introduced that denotes the branching ratio, that is, the fraction of parent j that transforms into species i. If species i has
n parents, the simplified governing equation of Eq. [A6] becomes

= + + +
=

R C
t

D C
x

q C
x

K
C

K
Y Ci

i
i

i i
d

b d
s i

j

n

d
b d

s j i j i j
2

2
1

i
i

i j
j

j
[A75]

The general solution of species i with branching reactions is the same as the solution for straight-chain decay, Eq. [A74], except replacing Yj i
with Yj i j i and accounting for all the straight-chain paths that yield species i.
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