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A B S T R A C T

In this paper, we propose a new hierarchical clustering analysis method (HCA) that uses Kullback–Leibler di-
vergence (DKLS) of pairwise geochemical datasets of geo-objects (e.g., lithological units) as a measure of
proximity. The method can reveal relationships among geo-objects based on geochemistry. This capability is
verified through an application with geochemical exploration data from regolith that overlies the Dalaimiao
region in China. DKLSM and DKLSC, two parts of DKLS , respectively describe the differences on the mean and the
differences on covariance and are also used as measures of proximity. DKLSM characterizes rock type and DKLSC
describes spatial relationships and component similarities between geo-objects. This contribution not only
provides a tool that can reveal relationships between geo-objects based on geochemical data, but also reveals
that DKLS and its two parts can characterize geochemical differences from different perspectives. These measures
hold promise in the enhancement of methods for recognizing geochemical patterns.

1. Introduction

Hierarchical clustering analysis (HCA) is a method that builds a
hierarchy of clusters of variables (R-mode) or observations (Q-mode)
according to the proximity between pairwise variables or observations.
This method is commonly used in geochemical data processing such as
environmental assessment and mineralization exploration (Grunsky,
2010; Hernandez et al., 2004; Li et al., 2014; Mokhtari et al., 2014;
Nezhad et al., 2015; O'Shea and Jankowski, 2006; Templ et al., 2008).
However, in the instance of geochemical data most cases of the appli-
cation of Q-mode HCA focus on the classifications of individual speci-
mens but not on datasets or groups of samples. That is because mea-
sures of proximity such as the Manhattan Distance (Mumm et al., 2012;
O'Shea and Jankowski, 2006), D-value (Kremer et al., 2012), and Eu-
clidian distance (Fatehi and Asadi, 2017) are based on pairwise com-
parisons of specimens (data points). In regional geochemical data,
many sites are sampled over a common geo-object (e.g., lithology unit,
alteration zone, structural belt and other objects that occupy geo-
graphic space). When we focus on the relationships between those geo-
objects, the HCA, based on the proximity between pairwise geochem-
ical data points, may not perform well, as it can result in a large and
complex dendrogram with many leaves, which is complicated and
difficult to explain.

Based on the extent of the geo-objects the entire dataset can be
divided into several sub-datasets, each containing sites collected over
the same geo-objects, which characterize the geo-objects more precisely
than at a single data point. Pairwise differences between sub-datasets as
the measure of proximity in HCA, make it possible to design a new HCA
algorithm that reveals relationships among the geo-objects. In this
paper, the Kullback–Leibler divergence (KL-divergence) as a measure of
proximity, is used to develop the HCA method, which is then applied to
a geochemical data in the Dalaimiao district.

2. KL-divergence based HCA

2.1. Measure of proximity

HCA builds models based on proximity. For Q-type clustering, its
proximities represent distances or dissimilarities between observations.
When observations are datasets (groups or populations), it is necessary
to measure the distance or dissimilarity between groups. For example,
we can use a measure of dissimilarity (or metric) such as the Euclidian
or Aitchison distances (Aitchison et al., 2000) between the centroids of
the groups as a proximity measure for HCA, but it will lose the in-
formation on the “shape” of the groups in the variable space (feature
space). The measure of dissimilarity considers the “centroid” and
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“shape” of the data, which is more informative.
There are many measures of dissimilarity such as the

Kullback–Leibler divergence, Bhattacharyya distance, Hellinger dis-
tance and Wasserstein metric, which can characterize the dissimilarity
(difference) between two probability distributions (the term “distance”
does not mean that the measure is a metric in the strict sense). For
distributions P and Q of continuous random variables, those measures
and their properties are given in Table 1. Where p x( ) and q x( ) are the
probability density functions (PDF) of P and Q, k is the number of
variables, tr( )and det( ) are the trace and the determinant of matrix

, N (µ , )0 0 0 and N (µ , )1 1 1 are two multivariate normal distributions,
µ0 and µ1 are the corresponding mean vectors, 0 and 1 are the cor-
responding covariance matrices.

To get the values of dissimilarities between two datasets, a kernel
density estimation can be used to obtain the PDFs of the two datasets
and then calculate the dissimilarities according to the formulae in
Table 1. However, based on knowledge about the distribution of geo-
chemical data, those dissimilarities can be estimated more simply.
Previously, many distributions were used to model element con-
centration data including the normal, log-normal, and power-law dis-
tributions, but none of them fit perfectly in practical data applications
(Grunsky, 2010; Reimann and Filzmoser, 2000). Typically, a dataset
consists of multiple populations from different sources and different
processes (Reimann et al., 2002; Zhang et al., 2005, 2008). Therefore,
hybrid models of the aforementioned distributions are proposed, and
after some preprocessing steps including log transformation, log-ratio
transformation (Pawlowsky-Glahn and Buccianti, 2011) and local sin-
gularity analysis (Cheng, 2007; Liu et al., 2014). Those models can
approximate normal distributions or mixtures of normal distributions.
For example, because power-law distribution can be explained as a
mixture of lognormal distributions based on a geometric distribution
(Allen et al., 2001; Mitzenmacher, 2004), a hybrid model of a log-
normal body with a power-law tail proposed by Cheng and Agterberg
(2009), followed by a log-transform the distribution will result in a
mixture of normal distributions. For geochemical data, the simplest and
most conservative assumption is that after proper pre-processing steps,
groups of concentration values from the geo-objects approximate a fa-
mily of normal distributions. Therefore, we can use the divergence
between two multivariate normal distributions to roughly measure the
dissimilarity between two datasets. The dissimilarities of measures for
two multivariate normal distributions µN ( , )0 0 0 and µN ( , )1 1 1 are
given in Table 1.

From Table 1 it can be observed that the Wasserstein Metric, KL-
divergence, and Bhattacharyya distance between to multivariate normal
distributions can be further divided into two parts, one describes the
differences between means, and the other measures the differences be-
tween the corresponding covariances. For example, KL-divergence can be
separated into tr k det det( ( ) ln( ) ln( ))/1

1
0 1 2+ 2 and

µ µ( )T
1 0 1

1 µ µ( )/21 0 (Kullback, 1978). In this way, the data can be
observed from two perspectives. Besides, KL-divergence, the Bhatta-
charyya and Hellinger distances belongs to the family of f-Divergences
that have the property of scale invariance (Basseville, 2013). This is an
important property for geochemical data processing, because element
concentrations (transformed or not) might be at a different scale, and this
property removes the necessity of standardizing the data.

Table 1 shows that the Hellinger distance and the Wasserstein me-
tric follow the triangle inequality (Clement and Desch, 2008;
Steerneman, 1983), but the KL-divergence and Bhattacharyya distance
violate this property (Kailath, 1967; Kullback, 1978). However, the
triangle inequality is not a necessary property for the dissimilarities
used in HCA (Jain et al., 1999). For example, HCA using a single,
compete, average or weighted average linkage does not require a metric
(Everitt et al., 2011). Therefore, although some measures in Table 1 are
not metric, they can be still used in HCA with limited linkage methods.

Among the measures listed in Table 1, the KL-divergence is a special
one, because it belongs to many divergence families including f-,Ta
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Alpha-, Beta-, Gamma- and Bregman-divergences (Amari and Cichocki,
2010; Cichocki and Amari, 2010), and the KL-divergence benefits from
the properties of those families such as affine invariance (Kanamori and
Fujisawa, 2014). This means after a linear transform such as principal
component analysis, the KL-divergence between two groups does not
change. Moreover, the KL-divergence is one of the most widely known
and used measures of dissimilarity in the field of machine learning.
Therefore, it is reasonable to start with KL-divergence with a test using
HCA and then extend to measures of other families.

The measure of proximity used in cluster analysis should be sym-
metrical. However, the KL-divergence is not. We can take the sym-
metric form of KL-divergence, D (N , N )KLS 0 1 =
D D(N ||N ) (N ||N )KL KL0 1 1 0+ , which also is called J-divergence (Jeffreys,
1946), that is:

D µ µ µ µ r

tr k

(N , N ) 1
2

( )( ) t ( )

( ) 2

KLS

T

0 1 1 0 1
1

0
1

1 0 1
1

0

0
1

1

= + +

+
[1]

According to the separation of KL-divergence, DKLS also can be di-
vided into two parts:

D µ µ µ µ(N , N ) 1
2

( )KLSM

T

0 1 1 0 1
1

0
1

1 0= +
[2]

D tr tr k(N , N ) 1
2

( ( ) ( ) 2KLSC 0 1 1
1

0 0
1

1= +
[3]

where DKLSM measures the differences between means in terms of
Mahalanobis distance, and DKLSC characterizes the differences between
the corresponding covariances. Because the measure DKLS is not a me-
tric, DKLS and its two parts (DKLSM and DKLSC) will be called “dissim-
ilarity” in the remainder of the manuscript. It must be emphasized
again that the equations of symmetric KL divergence and its parts are
based on an assumption that each dataset approximate a multivariate
normal distribution. It is also possible to assume that the data follow
two skew normal distributions to match the practice data more accu-
rately, but it results in a significant cost of complexity (Contreras-Reyes
and Arellano-Valle, 2012).

2.2. Hierarchical clustering

Strategies for hierarchical clustering methods are typicalyl ag-
glomerative or divisive. The agglomerative method is the most popular
and is used here. In the agglomerative strategy, each observation (or
variable) starts in its own cluster (leaf node), and pairs of clusters that
have the smallest distance are merged progressively in a hierarchical
process. For example in a forest of observations (forest) or variables,
when two clusters, s and t , are combined into a single cluster u, s and t
are removed from the forest, and u is added to the forest. When only
one cluster remains in the forest, the agglomerative algorithm stops,
and this cluster becomes the root. A wide range of agglomerative
hierarchical clustering algorithms have been proposed, and they gen-
erally fall into three categories: the linkage method, the center specified
method, and others (Murtagh and Contreras, 2012). As proposed in the
previous section, only linkage methods are available for the HCA that
uses DKLS, DKLSM and DKLSC as the measure of dissimilarity. In the
linkage method, at each iteration, the dissimilarity (or distance) matrix
is updated according to a linkage criterion to reflect the dissimilarity
between a newly formed cluster u with the remaining clusters in the
forest of observations (Murtagh, 1983). Four available linkage criteria
for updating the dissimilarity d s t( , ) between two clusters s and t are
given in Table 2. In the table, where cluster s and cluster t are combined
to form cluster u, there are n original observations u1, u2…, un in
cluster u, v is any remaining cluster in the forest that is not u, and there Ta
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are m original objects v1, v2…, vm in cluster v.
The single linkage method has the drawback of the “chaining” effect

which may mask geochemical structures, and the average linkage or
weighted average linkage requires additional assumptions. However,
the complete linkage method overcomes these limitations and is applied
in the following data processes.

In general, the proposed method has the following steps:

(1) Partition the geochemical data based on the unique classes of geo-
objects. That is, extract the data points falling in the same geo-ob-
ject class (e.g., the “Join” operation for point feature or the “Extract
by Mask” operation for raster data in ArcGIS);

(2) Calculate the mean vectors and covariance matrices of every geo-
object class sub-dataset and then according to the results, calculate
the DKLS (or DKLSC, DKLSM) matrix of sub-datasets

(3) Combine the two clusters that have the minimum dissimilarity into
a new cluster.

(4) Update the dissimilarities between the new cluster and the other
clusters according to the linkage method (complete linkage is used
here).

(5) Return to Step 3 until all observations are assigned to a cluster.
(6) Draw dendrogram.

In this paper, the Python module NumPy (Walt et al., 2011) is used
in Step 2, SciPy (Jones et al., 2001) is used to compute Steps 3–5 and
Matplotlib (Hunter, 2007) is used in Step 6.

3. Geology and geochemical data

3.1. Geology

The study area of 2952 km2 is in the Inner Mongolia Autonomous
Region of China. The area overlies a Neopaleozoic accretion complex,
the Uliastai active continent margin, the subduction zone of the
Siberian plate and the North China platform. Most of the area is covered
by a thin layer of wind-transported sand and soil. The underlying li-
thology is recognized by saprolite (rock debris) and a few outcrops
scattered over the surface. Quaternary regolith sediments cover 41% of
the area (Fig. 1). The geological structure and faults are inferred from
geophysical and remote sensing data.

Most intrusions, strata, and faults have been influenced due to
subduction during the Paleozoic and exhibit northwestern trending
structures. The volcano-sedimentary strata are divided into seven for-
mations: Ordovician Bayanhushu Formation of shale, siltite, sandstone
and limestone mainly exposed in the middle belt of the study area.
Resting unconformably on the Ordovician Bayanhushu Formation is the
Devonian Niqiuhe Formation consisting of siltite, clastic rocks, lime-
stone and tuff exposed in the southeastern corner of the study area. The
Carboniferous-Permian Baoligaomiao Formation is the most widely
exposed strata and has an unconformable contact with the underlying
Niqiuhe Formation. The Baoligaomiao Formation consists of andesite,
tuff, quartz sandstone, shale, siltite, and glutenite. The Jurassic
Baiyingaolao Formation is comprised of tuff and rhyolite and lies un-
conformably on the Baoligaomiao Formation and is commonly exposed
in the southwestern part of the area. The Cretaceous Damoguaihe
Formation is composed of glutenite and mudstone and rests con-
formably on the Baiyingaolao Formation and occurs primarily in the
southeastern part of the region. Outcrops of the Paleogene
Yierdingmanha Formation comprised of mudstone and sandstone occur
in the western part of the study area. A few outcrops of the Quaternary
Abaga Formation comprised of basalt occur in the southern and
northern parts of the area. The weathering process in the Dalaimiao
district is primarily mechanical through intensive wind erosion, trans-
portation, and deposition. As a result, the soil profile is poorly devel-
oped, and the near-surface soils are mixtures of wind-deposited sand,
silt with some saprolite from nearby outcrops.

Quartz-rich felsic intrusions are exposed extensively in the
Dalaimiao district. Most of these intrusions were emplaced in the
Carboniferous to Permian periods, and a few are Cretaceous in age.
Carboniferous-Permian magmatic activities formed batholiths or plu-
tons, whereas the Jurassic magmatic events formed small dikes or veins.
The Carboniferous-Permian intrusions consist of monzogranite, alkali
feldspar granite, biotite monzogranite, biotite granite, granodiorite,
quartz diorite, and diorite. The Jurassic intrusions consist of quartz
porphyry, granite porphyry, granite, alkali-feldspar granite and biotite
granite. Most of the Jurassic intrusions located on the boundaries of
Carboniferous-Permian intrusions are more acid and finer grained. In
the study area, five Mo ore deposits occur within, inside or on the
boundary of Carboniferous-Permian intrusions. Four of these are asso-
ciated with Jurassic magmatic activities, and the fifth is related to
Carboniferous-Permian magmatic activities.

3.2. Geochemical data

Soil samples were collected from 17,610 sites in the Dalaimiao area
(Fig. 2). The following elements (lower limits of detection in brackets)
were determined: Ag (50 ppb), As (1 ppm), Au (1 ppb), Bi (0.3 ppm), Cu
(2 ppm), Co (1 ppm), Hg (50 ppb), Mo (1 ppm), Ni (1 ppm), Pb
(10 ppm), Sb (0.3 ppm), Sn (2 ppm), W (1 ppm), Zn (20 ppm). Con-
centration values of these elements were determined by inductively
coupled plasma-mass spectrometry (ICP-MS) or atomic absorption
spectroscopy (AAS) according to Chinese Geochemical Survey Specifi-
cation (DZ/T 0011–91). All element concentration values of samples
were reported to be higher than the lower limits of detection.

3.3. Geo-objects and their geochemical datasets

There are 20 lithology units (geo-objects) of significant areal extent,
which are fully covered by geochemical samples (Fig. 3 and Table 3).
However, within, or on the peripheries, of the geo-objects, there are
several deposits, mineralization occurrences, alteration zones and
contact zones. Because they are related to mineralization events, their
element concentration values follow power-law distributions (Cheng
et al., 1994). We can select areas that are further from mineralization
and select elements that are not significantly associated with miner-
alization events to make the concentration values more log-normally
distribution. Thus, 18 smaller geo-objects (selected areas in Fig. 3) were
extracted from the 20 geo-objects. Each of these objects has the same
lithology and contain large numbers of sample sites far away from
potential mineralization. Moreover, some areas (geo-objects) are lo-
cated in same lithology units, for example SOC1, SOC2, and SOC3 are
three geo-objects in the Bayanhushu Formation. We can use them can to
test the performance of HCA method as they should form clusters first,
followed by a merge with other clusters.

A logarithmic transformation was applied to the concentration va-
lues to overcome the non-normal distributions and large positive
skewness. HCA was also applied to the data after a centered log-ratio
transform, it yielded proximity matrices that only have tiny differences
to proximity matrices generated from log-transformed data, but the
dendrograms from those two different data sources are nearly identical.
The similarity of the results is because the log-ratio transformation is a
linear transform on log-transformed variables and the KL divergence
has the affine invariance property. The proximity matrices are not
identical because a dimension is lost in the linear transform. Therefore,
for the remainder of this study only a log-transform was used.

The Kolmogorov–Smirnov test was used to test the normality of
individual elements on the log-transformed datasets of the 18 geo-ob-
jects. p-values are given in Table 4 p-values that higher than 0.05 are
highlighted in bold, and generally means that the null hypothesis
cannot be rejected and the log-transformed concentration values follow
a normal distribution. The column “NO” and row “NE” shows the
number of cases that the null hypothesis is rejected for the geo-objects

J. Yang et al. Computers and Geosciences 123 (2019) 10–19

13



Fig. 1. Locations and Geology of Dalaimiao district. (a) The location of the study area; (b) Geological map of the study area. The map is modified from Tao (2009).

Fig. 2. Locations of soil geochemical samples (Tao, 2009). 17,610 samples collected from nine map sheets at 1:50,000 scale, the average sampling density is four
samples per square kilometer.
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and elements respectively. It shows that igneous rock geo-objects gen-
erally have higher “NO” values (the average value is 7.6) than strata-
based geo-objects (the average value is 4.2). This implies that element
concentration values in the igneous rock tend to not follow log-normal

distributions. The occurrence of hydrothermal events likely causes the
non-log-normality happened in the intrusions. Additionally, the row
“NE” shows that Mo, W, Sb, Bi, Au, and Sn concentration values do not
follow log-normal distributions (NE > 8). This is due to the fact Mo,

Fig. 3. Map of geo-objects. Color patterns stand
for lithology units (the 20 geo-objects), symbols
for mineral deposits, hollow polygons for se-
lected areas (the 18 smaller geo-objects). Geo-
objects are named in the form of code CeYeP-X,
where C represents lithology, Y represents age, P
represents Position, X represents the number of
geo-object: For lithology code, I = Intrusion, S
= Strata, Q = Quaternary regolith; For age
code, P = Permian, O =Ordovician,
J = Jurassic. The ages of intrusions and regolith
are Carboniferous-Permian and Quaternary, the
age codes for intrusion and regolith are omitted;
for position code, C = center, CW = West of
Center, N = North, NE = Northeast, etc. For the
number of geo-object, the code only exists in the
case of eighteen-geo-objects and when there are
several geo-objects in a same lithological unit.
(For interpretation of the references to color in
this figure legend, the reader is referred to the
Web version of this article.)

Table 3
Details about the geo-objects.

TWENTY
GEO-OBJECTS

DESCRIPTIONS SELECTED EIGHTEEN GEO-
OBJECTS

IN A batholith of coarse grain syenogranite at the northwest corner, with several Mo mineralization occurrences. IN1 and IN2
INW A northeast-trending intrusion with a Mo deposit and a belt-shape MoeCu geochemical anomaly on its edge. None
ICN An intrusion of fine grain biotite adamellite with Mo deposits on its edge ICN
ICW An intrusion of coarse grain biotite adamellite with Mo deposits on its edge ICW
ICC An intrusion of biotite granodiorite ICC
INE An intrusion of biotite adamellite INE
IE A northeast-trending intrusion of monzogranite IE1 and IE2
ISE A complex intrusion of syenogranite and biotite adamellite ISE
SPNW A geo-object of Baoligaomiao Formation I consists of quartz sandstone, shale, siltite, and glutenite, with a Mo deposit and a

belt-shape MoeCu geochemical anomaly on its edge
None

SPCE A geo-object of Baoligaomiao Formation I consists of quartz sandstone, shale, siltite, and glutenite SPCE1, SPCE2
SPCN A geo-object of Baoligaomiao Formation consists of quartz sandstone, shale, siltite, and glutenite SPCN
SPCW A geo-object of Baoligaomiao Formation I consists of quartz sandstone, shale, siltite, and glutenite, with two Mo deposits on

its edge
SPCW1, SPCW2

SOC A geo-object of Bayanhushu Formation consists of shale, siltite, sandstone and limestone SOC1, SOC2, and SOC3
SPSE A geo-object of Baoligaomiao Formation II consists of andesite and tuff SPSE1, SPSE2
SPS A geo-object of Baoligaomiao Formation II consists of andesite and tuff None
SJSW Baiyingaolao Formation consists of andesite, tuff, quartz sandstone, shale, siltite, and glutenite None
QW Quaternary regolith, some outcrops of Baoligaomiao Formation occur in QW None
QSE Quaternary regolith, located between SPS and SPSE, some outcrops of Baoligaomiao Formation and biotite adamellite

occur inside.
None

QC Quaternary regolith None
QSW Quaternary regolith None
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W, Bi, Sn, and Sb are involved in the ore-forming process of Mo de-
posits; Au tends to aggregate in exogenic processes. Those processes
tend to generate concentration values that follow power-law distribu-
tions but log-normal distributions (Cheng, 2012).

The table shows that eight elements of Cu, Zn, Ni, Pb, Ag, Co, As and
Hg pass the log-normal test, therefore we can use datasets of 18 geo-
objects with those 8 elements to test the method. It is important to note
that they only pass a single variable normal test but do not pass any
multivariate normal distribution test. The number of elements can be
extended to 14 along with 20 geo-objects to test the method under si-
tuations where the data are non-normal. Thus, there are four available
datasets for assessing the KL-Divergence method: 18 geo-objects with
eight elements (G18E8), 18 geo-objects with 14 elements (G18E14), 20
geo-objects with eight elements (G20E8), 20 geo-objects with 14 ele-
ments (G20E14). The datasets in G18E8 approximate normal distribu-
tions, the datasets in G18E14 and G20E8 are moderately normal, and
the datasets in G20E14 are highly non-normal.

4. Data analysis

4.1. Results using dataset G18E8

The results of the new method using dataset G18E8 are shown in
Fig. 4. Fig. 4a shows the results of HCA based on DKLSM . It can be ob-
served that 18 geo-objects are divided into two clusters which re-
presents the stratigraphy and intrusions respectively. Also, there are
some small clusters with the geo-objects that have a similar composi-
tion or a close spatial connection. For example, IN1-INE-IN2 are the
intrusions located in the north; SOC2eSOC3 are geo-objects belong to
Bayanhushu Formation; SOC1-SPCE2 are two adjacent geo-objects.

Fig. 4b shows the results of HCA based on DKLSC with the eight-
element datasets. In the dendrogram, geo-objects that have similar
compositions or have a close spatial relationship tend to form clusters.
For example: in clusters SPSE1-SPSE2, SPCW1-SPCW2 and IE1-IE2, the
geo-objects have the same components that form clusters. The cluster
SPCN-SPCE-SOC1-SPCE2-SOC2-SOC3 consists of geo-objects having
close spatial relationships, and the cluster can be further divided into
three small clusters SPCN-SPCE1, SOC1-SPCE2 and SOC2eSOC3, with
each of them consisting of two adjacent geo-objects.

Fig. 4c shows a dendrogram based on DKLS, which is a hybrid of
results that uses DKLSC and DKLSM . In the figure, the intrusion geo-ob-
jects and strata geo-objects are generally well separated (except SPSE2).
As well, there are many small clusters consisting of geo-objects that
have similar compositions or spatial relationships, such as IN1-INE-IN2,

IE1-IE2, SPCW2-SPCW1, SOC2eSOC3, SPCE1-SOC1-SPCE2.

4.2. Results using dataset G18E14

The results of HCA using dataset G18E14 are shown in Fig. 5. By
comparing Figs. 5a and 4a, it is observed that for the dissimilarity
DKLSM , the dendrogram using fourteen elements is similar with the
dendrogram using eight elements; the strata and intrusions are well
separated into two clusters. Moreover, in Fig. 5a, there are more small
clusters that present geo-objects with strong associations: IN1-INE-IN2,
SPCW2-SPCW1, SOC1-SPCE2, SPCE1-SOC2-SOC3. For DKLSM , the den-
drogram using fourteen-element datasets (Fig. 5b) is similar to the
dendrogram using eight-element datasets (Fig. 4b), but it loses the
cluster of IE1-IE2. With respect to DKLS, the fourteen-element datasets
yield a better dendrogram (Fig. 5c); the strata and intrusion are cor-
rectly separated into two clusters, and there are several small clusters
that correctly show the strong associations between the geo-objects,
including SPSE1-SPSE2, SOC2eSOC3, SPCE1-SOC1-SPCE2, SPCW2-
SPCW1.

By observing the results from the G18E8 and G18E14 datasets, it is
apparent that some geo-objects are similar. However, there are some
cases where the clusters to not form as expected (e.g., SOC1 combines
with SPCE1 but not SOC2 and SOC3). More significantly, some intrusive
rocks do not group together (e.g., IE1-IE2, IN1-IN2). This may be due to
hydrothermal events that have changed the geochemical composition
of some of the geo-objects.

4.3. Result using dataset G20E8 and G20E14

The results using DKLS on dataset G20E8 are shown in Fig. 6a. It is
observed that the strata and intrusions are correctly separated, and
many adjacent geo-objects form small clusters such as QSW-SJSW,
SPSE-QSE-SPS. Although the Mo mineralization associated elements are
not in the dataset, the Mo deposit-associated geo-objects still forms
clusters (e.g., INWeICN, SPNW-SPCN). Moreover, the strata geo-objects
cluster according to their geospatial locations and two clusters are
formed; one is located in the south, and the other is for the geo-objects
located in the north.

The results using DKLS on dataset G20E14 are shown in Fig. 6b.
There are many small clusters that represent adjacent geo-objects and a
cluster that represents geo-objects associated with mineralization. The
corresponding dendrogram based on 14 elements has less structure than
the dendrogram that uses 8 elements (Fig. 6b). The geo-objects of the
intrusion INW are misclassified and cluster with geo-objects associated

Table 4
p-values of log-transformed element concentration of 18 geo-objects.

Cu Zn Ni Pb Ag Co Mo W As Sb Bi Hg Au Sn NO

ICC 0.671 0.058 0.713 0.235 0.000 0.444 0.007 0.000 0.125 0.003 0.051 0.002 0.000 0.024 7
ICW 0.415 0.007 0.493 0.721 0.096 0.258 0.000 0.000 0.162 0.000 0.023 0.618 0.000 0.153 6
IE1 0.091 0.029 0.722 0.145 0.268 0.083 0.000 0.000 0.044 0.035 0.133 0.317 0.206 0.000 6
IE2 0.062 0.116 0.006 0.443 0.779 0.045 0.000 0.000 0.042 0.109 0.071 0.012 0.253 0.081 6
IN1 0.007 0.454 0.004 0.776 0.001 0.691 0.000 0.000 0.438 0.004 0.000 0.083 0.014 0.001 9
IN2 0.005 0.162 0.213 0.210 0.001 0.823 0.000 0.014 0.011 0.012 0.030 0.015 0.034 0.959 9
INE 0.183 0.259 0.492 0.448 0.035 0.368 0.000 0.000 0.313 0.002 0.338 0.022 0.000 0.018 7
IS 0.035 0.007 0.099 0.001 0.001 0.012 0.000 0.000 0.590 0.079 0.006 0.002 0.000 0.001 11
SOC1 0.528 0.000 0.056 0.010 0.974 0.138 0.013 0.071 0.528 0.027 0.000 0.185 0.000 0.000 7
SOC2 0.093 0.184 0.848 0.686 0.196 0.626 0.004 0.251 0.734 0.189 0.000 0.772 0.007 0.378 3
SOC3 0.468 0.333 0.347 0.322 0.513 0.004 0.017 0.052 0.635 0.052 0.202 0.524 0.000 0.298 3
SPCE1 0.321 0.353 0.065 0.113 0.386 0.947 0.065 0.431 0.003 0.350 0.428 0.974 0.042 0.747 2
SPCE2 0.547 0.501 0.475 0.886 0.961 0.457 0.072 0.362 0.773 0.235 0.009 0.140 0.033 0.107 2
SPCN 0.164 0.685 0.102 0.669 0.812 0.029 0.537 0.005 0.014 0.029 0.254 0.498 0.007 0.223 5
SPCW1 0.906 0.525 0.887 0.133 0.414 0.828 0.617 0.699 0.996 0.823 0.603 0.131 0.241 0.002 1
SPCW2 0.024 0.164 0.366 0.004 0.513 0.034 0.263 0.690 0.019 0.857 0.002 0.661 0.021 0.033 7
SPSE1 0.728 0.037 0.033 0.053 0.007 0.801 0.007 0.911 0.396 0.931 0.153 0.954 0.064 0.058 4
SPSE2 0.030 0.001 0.004 0.305 0.011 0.000 0.091 0.008 0.355 0.429 0.465 0.543 0.000 0.001 8
NE 5 6 4 3 7 6 12 10 6 8 8 5 14 9
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with strata.
By comparing the results using different datasets, it is apparent that

1) when the geo-objects are less influenced by mineralization processes,

adding elements that failed to pass the normality test, there is little
impact on the results, although in some cases it yields better results
(e.g., Fig. 5a vs. Fig. 4a); 2) When the variables close to being normally
distributed, the extent of the area of the geo-objects might result in a
more interpretable dendrogram and, 3) When the geo-objects are in-
fluenced by processes related to mineralization events, adding miner-
alization associated elements might lead to worse results. This implies
that the “normal distribution” requirement on data is not a very strict
condition.

Fig. 4. Results of HCA using DKLSM , DKLSC and DKLS as the dissimilarity measure
with G18E8. (a) DKLSM is applied, (b) DKLSC is applied, (c) DKLS is applied. In
each subplot, the matrix on the right represents the dissimilarity between 18
geo-objects, a darker color means more differences, the dendrogram on the left
was constructed from the matrix, and under the matrix is the color bar for the
dissimilarity value. The adjacent geo-objects are highlighted with red box,
cluster have specific meanings are highlighted in the matrix. (For interpretation
of the references to color in this figure legend, the reader is referred to the Web
version of this article.)

Fig. 5. Results of HCA using DKLSM , DKLSC and DKLS as the dissimilarity measure
with G18E14. (a) DKLSM measure, (b) DKLSC measure, (c) DKLS measure.
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4.4. Comparison with euclidean distance and aitchison distance

The Euclidean distance and Aitchison distance between mean vec-
tors of datasets can also be used as a measure of dissimilarity in HCA.
Fig. 7a shows a dendrogram using the Euclidean distance based on the
log-transformed and standardized dataset G18E8. The dendrogram is
very similar with the dendrogram using DKLSM in Fig. 4a. The strata and
intrusions are correctly separated into two clusters, and there are a few
clusters that represent geo-objects, which have close relationships such
as IN1-INE-IN2, SPCW1eSOC1-SPCE2-SPCE1-SOC2-SOC3.

The dendrogram using the Aitchison distance and dataset G18E8 is
shown in Fig. 7b. This dendrogram has similar features, but the features
show less contrast than the dendrogram using the Euclidean distance
(Fig. 7a). It is worth noting that the geo-object SPSE2 is an isolated leaf,
does not belong to any main cluster represents intrusions or strata.

A comparison of the different proximity measures including the
Euclidean distance, Aitchison distance and DKLSM generate similar
dendrograms since they are based on the mean. Although the Aitchison
distance is scale invariant, it does not perform any better than the
Euclidean distance, which is not scale invariant. Although the Aitchison
and Euclidean distances are metrics (Aitchison et al., 2000), the results
are not better than the measure of DKLSM . Moreover, measures based on
the KL-divergence are scale invariant and can provide a new perspec-
tive (DKLSC) on the observed patterns of the data.

5. Conclusion

The application of the HCA method shows that measures of KL-

divergence can describe the dissimilarity of pairwise geochemical da-
tasets based on geo-objects, and the HCA method can give a compre-
hensive view of geo-object associations. Additionally, the decomposi-
tion components of DKLS, DKLSC and DKLSM , can further characterize
dissimilarity in two aspects: the rock types that are reflected via DKLSM ,
and the spatial relationships and component similarities of geo-objects
that are revealed via DKLSC . This indicates that the information about
rock type is mainly explained by the mean (center of the dataset), and
the information about the spatial and component characteristics is
likely explained by the covariance (shape of dataset).

Although the method presented here requires a hypothesis of a
normally distributed dataset the results show that strict normality is not
essential. Similar phenomena also can be found in other applications
with geochemical data. For example, Templ et al. (2008) show that
MCLUST, a clustering algorithm based on a hypothesis that the clusters
that are formed from normally distributed data (Fraley and Raftery,
1999), provide the most reliable and interpretable results compared
with other clustering techniques. The method presented here shows
that is essential to prepare the data to closely approximate normality.

The results of the current research not only provide a powerful data
mining tool that reveals the relationships between geo-objects through
geochemical data, but also reveal that measures derived from KL-di-
vergence can characterize geochemical characteristics for a more
meaningful interpretation.

Fig. 6. Results of HCA using DKLS on different datasets (a) G20E8; (b) G20E14. Fig. 7. Results of HCA using Euclidean distance and Aitchison distance as the
dissimilarity measures with dataset G18E8. (a) Euclidean distance; (b)
Aitchison distance.
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