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A B S T R A C T

Sometimes geochemical anomalies linked with buried mineral deposits are too weak to be recognized by con-
ventional methods. In this study, element concentration data from a stream sediment survey were subjected to a
combined method of SWPCA (spatially-weighted principal components analysis) and WT (wavelet transforma-
tion) to derive a geochemical anomaly model for epithermal Au deposits in the Dashui ore-concentration district.
The SWPCA was applied as a data integration method to extract information related to mineralization in the
geochemical data. The WT was applied as a powerful tool for recognizing mineralization related anomalies in a
complex geochemical field and for enhancing weak anomalies from background. The SWPCA–WT geochemical
anomaly model indicated high favorability values for the known mineral occurrences and out-performed
PCA–WT and SWPCA models. The SWPCA–WT geochemical model generated in this study provides a robust
guide for further gold exploration in the Dashui ore-concentration district.

1. Introduction

Geochemical and geophysical anomalies may reflect the presence of
mineral deposits (Archibald et al., 1999; Carranza, 2008). Recognizing
geochemical anomalies related to mineral deposits is an important task
of geochemical mineral exploration (Carranza, 2009; Zuo, 2014). Ex-
ploration of concealed mineral deposits in covered areas has drawn
increasing attention in economic geology in recent years (Cheng, 2012).
However, surface geochemical anomalies caused by concealed mineral
deposits can be very weak such that the anomalies may not be easily
recognized by traditional analytical mapping methods. Cheng (2012)
argued that just considering magnitudes of surface geochemical
anomalies is not robust enough when used in covered areas due to the
complex origins and subtleness of such anomalies. Identification of
complex and weak anomalies has brought crucial challenge to mineral
exploration in covered areas. However, over the past decades, ex-
ploration geologists have realized that the multi-fractal nature of geo-
chemical anomalies must be considered when dealing with geochemical

exploration data (Carranza, 2010; Cheng and Zhao, 2011; Arias et al.,
2012; Yousefi et al., 2012, 2013; Zuo et al., 2015; Zuo and Wang,
2016).

Stream sediment geochemical surveys are significant for mineral
exploration to recognize geological processes, specifically mineraliza-
tion. The recognition and elimination of background geochemical field
to distinguish geochemical anomalies linked to mineralization is es-
sential for mineral exploration (Cheng, 2007; Afzal et al., 2010). The
traditional statistical analyses include the “mean plus two standard
deviations” to define background threshold values (Levinson, 1974;
Rose et al., 1979; Howarth, 1983). However, the multifractal/fractal
theory introduced by Mandelbrot (1983) has been proposed in modern
methods that have been found to be more robust for enhancing and
demarcating geochemical anomalies from background (Agterberg and
Cheng, 1999; Cheng, 1999; Afzal et al., 2010; Carranza, 2011a; Zuo,
2011a; Sadeghi et al., 2015; Wang and Zuo, 2016).

The task of recognizing geochemical anomalies from background is
akin to recognizing signals of interest from image data. In this regard,
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wavelet transformation (WT) is robust for frequency-scale processing of
images and signals. Techniques for wavelet analysis enable us to se-
parate a complex signal into a number of simple ones for individual
analysis (Goswami and Chan, 2011). In the broad field of geochemistry,
multi-resolution wavelet analysis has been shown to be robust for
processing of geochemical data, e.g., to process data on oxygen isotope
compositions of marine sediments (Bolton et al., 1995), to remove
surface interference in geochemical data for hydrocarbon exploration
(Pei, 1998; Zhang et al., 2003, 2006), to detect fracture from log data
on water saturation (Tokhmechi et al., 2009), and to remove the effect
of thickness of cap rock on intensities of anomalies (Zhang et al., 2012).
Shahi et al. (2015) used Haar as mother wavelet to recognize miner-
alization related geochemical anomalies of the Dali porphyry system,
central Iran. Lately, a wavelet-based multi-scale decomposition (WMD)
method was proposed by Chen and Cheng (2016) for consideration of
the multi-scale nature of geochemical patterns.

This paper is concerned with recognition of anomalies in element
concentration data from stream sediment samples collected from the
Dashui ore-concentration district (OCD), China. As recommended by
Carranza (2011a), the stream sediment geochemical data were sub-
jected to isometric log-ratio (ILR) transformation (Egozcue et al., 2003).
Then, the ILR-transformed data were subjected to PCA and to SWPCA
(spatially-weighted principal components analysis) to extract miner-
alization-related multivariate anomalies. However, because ILR-trans-
formed data do not have full rank or one-to-one relationship with ori-
ginal data (Egozcue et al., 2003), results of either PCA or SWPCA do not
have straightforward interpretations. Accordingly, the principal com-
ponent scores and loadings derived by either PCA or SWPCA were back-
transformed to centered log-ratio (CLR) space (Filzmoser et al., 2009) to
facilitate interpretation of mineralization multivariate anomalies. Then,
WT (2-D wavelet transformation) was performed on the image of
multivariate anomalies to study the spatial patterns of multi-element
distribution and to enhance weak anomalies. Finally, a combined
SWPCA–WT geochemical anomaly model was proposed and compared
with PCA–WT model and SWPCA using the Prediction-Area (P-A) test
and the Receiver Operating Characteristics (ROC) test.

2. Study area

The Dashui OCD is located east of Maqu county between the
Songpan–Ganzi Basin and the West Qinling Orogen (Chen et al., 2004)
(Fig. 1). It contains> 46 t indicated gold reserve with ~9.9 g/t,
and>100 t possible gold resource (Mao et al., 2002). In the last
20 years or so, four gold deposits have been discovered in this OCD,
namely: Geerke, Gongbei, Zhongqu and Xinqu (Fig. 1c). These deposits,
classified as epithermal Au deposits (Zeng et al., 2013), are still being
mined up to now. The average elevation of this OCD is ~3900m.

The strata in the area comprise bioclastic limestone, micritic lime-
stone, and marine platform facies of clastic, sandy or muddy limestone
of the Triassic Maresongduo Group, overlain by a Jurassic sequence of
interbedded siltstone, sandstone, coal, and conglomerate. These
Triassic and Jurassic strata unconformably overlie Cretaceous molasses
comprised of sandstone and carbonate gravel. The Triassic limestone
strata are intruded by stocks of intermediate-acid rocks or as small
laccoliths, comprising mainly granite, granodiorite, diorite porphyry,
(quartz) diorite, monzonite porphyry from the Yanshan orogenic phase,
some of which are associated with breccia in the host limestone (Dai
et al., 2009). However, most of the area is covered with thick eluvium
of weathered bedrock outcrops or Quaternary residuals.

The fracture structures developed in the area mainly have nearly
E–W trends (the overall trend is 100–115°) with steep dips of 60–75° to
the N or S. Several granodiorite dikes and calcite veins fill fractured
zones, forming several bead-like open spaces that apparently were fa-
vorable areas for hydrothermal fluid transportation and gold deposition
such that, with alternate permutation, ladder shaped structures were
formed that control the ore-forming process. Typically, intersections of

fractures were the most enriched and concentrated sites of ore de-
position. According to Zeng et al. (2013), fractures trending NeS were
important controls on ore formation and distribution.

A regional stream sediment geochemical survey has been carried
out by the Third Geological Survey of Gansu in the Dashui OCD during
2015–2016. The average sampling density was five samples per km2,
which resulted in an irregular sampling grid with sample spacing of
~400m. In total, 1479 stream sediments samples, each weighing
~150–400 g, were collected from the 264 km2 survey area. Each sample
has been placed in plastic receptacles and has been covered with fabric
to avoid contamination. After thorough drying at room temperature,
the samples have been sieved to 100 mesh fraction. Then the −100
mesh samples, each of ~50 g, have been stored in plastic containers,
and the chemical analysis was performed using ICP-MS to measure
concentration of 18 elements: Ag, As, Au, Bi, Cd, Co, Cr, Cu, Hg, Mo, Ni,
Pb, Rb, Sb, Sn, Ti, W, Zn. The accuracy and precision of the analysis
were within acceptable limits set by the Geological Survey of Gansu.
The geochemical dataset was interpolated to a 50m×50m grid using
inverse distance weighting method and then stored as raster files in the
GIS database.

3. Methodology

3.1. SWPCA (spatially-weighted principal components analysis)

Typically, principal components analysis (PCA) has been applied to
investigate relationships among multiple geochemical variables for re-
cognition and mapping of geological bodies (e.g., Reimann et al., 2002;
Cheng et al., 2006; Cheng, 2007; Grunsky et al., 2009, 2014; Zuo,
2011b; Deutsch et al., 2016; Parsa et al., 2017). Prior to PCA, the
geochemical data were subjected to isometric logratio (ILR) transfor-
mation using R package (R Development Core Team, 2017) to avoid the
closure problem in compositional data analysis (Filzmoser et al., 2009,
2010; Carranza, 2011b, 2016). The PCA then results in several un-
correlated variables termed as principal components (PCs), each of
which is a weighted combination of individual input variables, and
loadings on individual input variables are interpreted in a geological
context for recognition of anomalous geochemical processes.

Cheng et al. (2011) introduced a spatial weighting to ordinary PCA
to derive SWPCA by computing for every pair of variables a spatially-
weighted correlation coefficient defined as:

=
− −

− −
R A B

S A A B B

S A A S B B
( , )

Σ ( )( )

Σ ( ) Σ ( )
mn ij ij ij

mn ij ij mn ij ij

1

1 2 1 2
(1)

where Aij and Bij are values of geochemical elements A and B at location
(i, j), respectively; −A and eB are average values of A and B, respec-
tively; m and n are numbers of rows and columns, respectively, of A and
B in the data matrix, and Sij is the spatial weighting factor.

A spatial weighting factor, which was used to highlight Au miner-
alization in the area, is defined as follows. Firstly, known orebodies are
outlined and the Au grade level of each ore body is measured. Secondly,
Euclidean distances between every location (i.e., pixel in image data)
and the nearest orebody were measured to derive a function for
weighting, which is then multiplied by the Au grade of the closest ore
body. This means that the closer a location is to an orebody with high
Au grade, the higher the weight is assigned to that location. Thirdly,
locations outside the known mining areas, which are not known yet to
possess Au mineralization, were weighted as 0. In practice, values of
spatial weighting factors are assigned to locations according to their
importance relative to the target of interest (i.e., Au mineralization),
and the value ranges from 0 to 1 (Cheng et al., 2011): Sij=0means that
a location with (i,j) coordinates is not associated with Au mineralization
and its influence is ignored the correlation coefficient computation
whereas Sij=1 means that a location with (i,j) coordinates is strongly
associated with Au mineralization and its influence is enhanced in the
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computation of the correlation coefficient. Due to the spatial weighting,
the correlation coefficients of k elemental concentrations form a sym-
metrical k× k correlation matrix R (Cheng et al., 2011). After applying
a spatial weighting factor to PCA, new spatially-weighted principal
components (SWPCs) are produced as:

= + + …+SWPC b X b X b Xn n n pn p1 1 2 2 (2)

where SWPCn refers to the nth spatially-weighted PC of the ILR-trans-
formed data, [b1n, b2n, …, bpn, n=1, 2, …, p] are the new eigenvectors
of SWPCA, and Xp refers to the values derived from the original PCA
(Cheng et al., 2011).

However, the results of either PCA or SWPCA do not have
straightforward interpretations because ILR-transformed data do not
have full rank or one-to-one relationship with original data (Egozcue
et al., 2003). Accordingly, the principal component scores and loadings
derived by either PCA or SWPCA were back-transformed to centered
log-ratio (CLR) space (Filzmoser et al., 2009) to facilitate interpretation
of mineralization multivariate anomalies.

3.2. WT (wavelet transformation)

The WT is robust for noise removal, image compression, and ana-
lysis of signals (Grossmann and Morlet, 1984; Mallat, 1989). It has been
shown that WT, compared to Fourier transformation (FT), is more
flexible and performs better in the analysis of non-stationary signals
(Cartas et al., 2009; Zhang et al., 2012). The WT is able to obtain in-
formation on scale, frequency, and spatial relation of a signal simulta-
neously (Partal, 2009). The WT computes the similarity between fre-
quency content of signals and mother wavelets (Daubechies, 1992). For

a signal x(t), the continuous wavelet transformation (CWT) is (Partal,
2009):
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where ϕ denotes the mother wavelet, t is time (location) parameter, a is
translation parameter, * is conjugate complex function, and s is the
scale of a wavelet. The a is the time/location step for iteration of the
window function. The w(a, s) is a n-dimensional signal/map of wavelet
power transformed to another scale, resulting from the signal being
compressed or expanded by s. The translation results in the WT being
localized in a particular location or time. The scale parameter have a
reverse connection, and the latter results in either compression or
stretching. The value of a controls the degree of movement of the
window. However, computing the wavelet coefficient for all scales
using CWT generate enormous amounts of data and consumes so much
time (Nakhaei and Nasr, 2012). In DWT (discrete wavelet transforma-
tion), position and scale are chosen based on powers of two. The
transformed signal is divided into Details, which is of low scale and high
frequency, and Approximations, which is of low frequency and high
scale. In this way, the DWT of a signal is done with less time and more
precision (Nakhaei and Nasr, 2012). The DWT is accomplished by ad-
justing wavelet representation to (Grossmann and Morlet, 1984):
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where s is a fixed dilation step> 1, a0 is translation parameter that
must be>0, and i and j are integers that correspondingly determine

Fig. 1. Locations of (a) the West Qinling Orogen in China and (b) the study area in West Qinling Orogen (modified from Chen et al., 2004). (c) Simplified geological
map of the Dashui ore concentration district, with locations of known Au deposits annotated.
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scale and time. The coefficients of Details and Approximations are de-
rived, respectively, through a wavelet algorithm that uses high- and
low-pass filters (Zhang and Li, 2001). Iterative applications of these
filters result in certain frequencies in the signal being removed, and
thereby obtaining the Details and Approximations of a signal (Fig. 2)
(Adamowski and Chan, 2011). Typically, the information related to
mineralization is mainly contained in the Details part of a wavelet
transformed signal (Chen and Cheng, 2016).

3.3. ROC (receiver operating characteristics) validation

The ROC technique has been increasingly used in data mining re-
search and mineral prospectivity mapping to test the performance of
predictive models (Nykänen et al., 2015, 2017). In the confusion matrix
in Fig. 3, TN (True Negatives) and TP (True Positives) are numbers of
correctly classified negative and positive instances, respectively; FN
(False Negatives) is number of negative instances classified wrongly as
positive, and FP (False Positives) is number of positive instances clas-
sified wrongly as negative. The ROC curve represents the optimum
decision boundary for relative costs of FP and TP. The x-axis of a ROC

curve represents True Positive rate [TP/(FN+TP)] and the y-axis False
Positive rate [FP/(TN+FP)]. The AUC (area under a ROC curve),
which may vary from 0 to 1, is a commonly used metric for evaluating a
predictive model's performance; an AUC of 1 indicates perfectly accu-
rate results whereas an AUC of 0.5 indicates a totally random model
and the curve would follow the diagonal (Nykänen et al., 2015).

4. Results

The ILR-transformed geochemical data were subjected to PCA and
SWPCA to extract multi-element anomalies linked to gold mineraliza-
tion in the Dashui OCD. Roughly 95% of the total variance of the da-
taset was explained by the first five components extracted by either PCA

Fig. 2. Simplified architecture of wavelet transformation with Details (D) and Approximations (A).

Fig. 3. Diagram of a confusion matrix.

Table 1
Result of PCA: loadings of ILR-transformed element data on principal compo-
nents back-transformed to CLR-space.

Component loading PC1 PC2 PC3 PC4 PC5

lc(Ag) −0.174 0.285 −0.086 −0.037 −0.219
lc(As) −0.209 0.349 0.183 0.105 −0.065
lc(Au) −0.162 0.197 −0.419 0.665 −0.18
lc(Bi) 0.252 0.26 0.136 0.129 0.244
lc(Cd) −0.171 −0.092 0.37 −0.396 −0.409
lc(Co) 0.263 0.161 0.152 −0.151 −0.357
lc(Cr) 0.314 0.143 −0.064 −0.069 −0.205
lc(Cu) 0.329 0.057 −0.127 −0.081 −0.081
lc(Hg) −0.079 0.111 −0.201 −0.532 0.433
lc(Mo) −0.122 0.22 0.508 −0.098 −0.088
lc(Ni) 0.323 0.123 0.05 −0.144 −0.206
lc(Pb) −0.026 0.337 0.405 0.092 0.337
lc(Rb) 0.278 0.207 0.03 0.156 0.311
lc(Sb) −0.241 0.294 −0.198 0.073 −0.129
lc(Sn) −0.221 0.289 −0.187 0.096 −0.139
lc(Ti) 0.321 0.151 −0.093 −0.042 −0.107
lc(W) −0.091 0.428 −0.13 −0.073 0.088
lc(Zn) 0.318 0.146 −0.124 −0.052 −0.11
% of total variance 46.1 21.4 14.7 8.5 3.9
Cumulative % of total

variance
46.1 67.5 82.2 90.7 94.6
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(Table 1) or SWPCA (Table 2); the remaining components extracted by
either PCA or SWPCA were considered to represent noise. Element
loadings on each of the first three components extracted by either PCA
or SWPCA mainly reflect intrusive rocks, alteration zones and surface
residual materials. The fifth component extracted by either PCA or
SWPCA, which is dominated by Pb and Hg, represents polluted areas
due to mining activities. These components are not of interest for mi-
neral exploration, and so they are not discussed further. However, the
fourth component extracted by either PCA or SWPCA, which explains
barely 10% of the total variance, depicts a Hg-Au-Sb multi-element
association that is typical of epithermal Au mineralization in the area
(Yan, 1998). Thus, both the PC4 (Table 1) and the SWPC4 (Table 2) in
this study were considered indicative of Au mineralization in the Da-
shui OCD.

Since a great part of the Dashui OCD is covered with grasslands
and/or weathered residual soil, and some areas are contaminated with
mining pollutions, geochemical anomalies in these areas are considered
to be weakened by deeply-weathered surface covers or interfered by
high background. This adds to the difficulty of identifying geochemical
anomalies related to Au mineralization. As preliminary analysis, WT
was trialed using the PCA and SWPCA transformed geochemical data to
enhance weak or complex geochemical anomalies. For instance, the
outlined area in Fig. 4 is covered with grass and Quaternary residual
soil based on field observation, and, in the geochemical map of PC4

(Fig. 4a, c), the geochemical anomalies are dull and difficult to identify;
whereas, in the PC4–WT map three obvious anomalies can be re-
cognized (Fig. 4b, d). Additionally, in areas that have experienced
heavy metal contamination or pollution, such as the mining areas,
geochemical anomalies are often interfered by high background,
making it difficult to recognize the ‘concentration center’ of geochem-
ical anomalies. For example, the outlined area in Fig. 5 contains two
operating Au deposits (Geerke and Gongbei) and this area has suffered
severe contamination due to mining activities. In the SWPC4 map
(Fig. 5a, c), the patterns of ore-related anomalies are obscured by high
Au background; whereas, in the SWPC4–WT map (Fig. 5b, d), two sig-
nificant geochemical ‘concentration centers’ were revealed coincide
with the locations of the two deposits. Therefore, WT is apparently a
powerful tool for enhancing weak or complex anomalies in this study,
with a major improvement to the recognition of mineral potential in
covered or/and contaminated areas.

We subjected the images of PC4 and SWPC4 to WT to obtain PC4–WT
and SWPC4–WT models, respectively. The locations of known ore

deposits coincide with high favorability areas in both the PC4–WT and
SWPC4–WT models, but the concentration centers in the SWPC4–WT
model have stronger spatial association with the approximate outlines
of orebody of the four known Au deposits in the Dashui OCD (Fig. 6).
The classification of anomalies based on the SWPC4–WT model (Fig. 7)
shows several spots as favorable targets in the Dashui OCD, some of
which have already been planned for further detailed assessments.

The performance of the prospectivity models generated in this study
were evaluated using prediction-area (P-A) plots to check the predictive
ability of each model for epithermal Au deposits in the Dashui OCD
(Fig. 8). According to Yousefi and Carranza (2015a, 2015b), if there are
some known mineral occurrences (KMOs) in a study area, the P-A plot
can be used as an effective tool to compare and evaluate the ability to
predict exploration targets with respect to the size of the corresponding
class. In the P-A plots, the prediction ability of each model and its
ability to delimit exploration targets is evaluated in a scheme that
shows the relation between the percentage of occupied areas of each
class and the corresponding percentage of KMOs contained in each class
versus the class thresholds. The intersection point of the curve of pre-
diction rate and the curve of occupied area in a P-A plot is a proper
criterion of evaluating the predictive models; the higher the Y value of
an intersection point represents a smaller area containing large number
of exploration targets, and thus it is easier to find potential mineral
occurrences in these areas (Yousefi and Nykanen, 2016).

Inspection of the intersection points in the P-A plots of the four
models generated in this study shows that 63.12% of the known epi-
thermal Au occurrences were predicted in 36.88% of the total area
based on the result of PC4 model (Fig. 8a), 69.87% of the known epi-
thermal Au occurrences were predicted in 30.13% of the total area
based on the result of SWPC4 model (Fig. 8b), 71.89% of the known
epithermal Au occurrences were predicted in 28.11% of the total area
based on the result of PC4 –WT model (Fig. 8c), and 81.36% of the
known epithermal Au occurrences were predicted in 18.64% of the
total area based on the result of SWPC4 model (Fig. 8d). This compar-
ison shows the main advantage of the SWPC4–WT model because in this
study predicted the highest percentage of known mineralization oc-
currences in the least occupied area, which means that we have the
highest probability of finding undiscovered epithermal Au deposits in
relatively smallest area based on the SWPC4–WT model in comparison
with the other models generated in this study.

The performances of the PCA, SWPCA, PCA–WT and SWPC4–WT
model were further evaluated for comparison using the ROC test
(Fig. 9). Validation of different models is critical in mineral potential
mapping, and the main difference between conventional validation
techniques and the ROC method is that the latter not only takes into
consideration the known deposit sites (i.e., TP sites) but also the known
not-deposit sites (i.e., TN sites) (Nykänen et al., 2017). In this study, the
known Au deposits and other mineralization occurrences (newly dis-
covered Au outcrops) were used to validate the performance of the
geochemical models. According to Nykänen et al. (2015, 2017), if there
is not much sites of other type of deposits, random sites could be used as
valid TN sites, since there are no deposits of other type in this study
area. Therefore, we used random sites as TN sites in this study. Because
the total number of known deposits (N=4) and mineralization oc-
currences (N=7) is relatively low in the area (N=11), we generated
more instances (of known mineralization occurrences) by introducing
synthetic points on the decision boundary between the minority in-
stances and their k-nearest neighbors using SMOTE (synthetic minority
over-sampling technique) (Chawla et al., 2002). We subsequently
generated 275 TP sites for ROC validation using the SMOTE technique.
The TP sites generated by SMOTE are mainly based on the Geerke and
Zhongqu gold mines, which are two major operating gold mines owned
by the Gansu Gesaer Mining Company. The performances of each
geochemical model are presented as ROC curves in Fig. 8 and listed in
Table 3.

Table 2
Result of SWPCA: loadings of ILR-transformed element data on spatially-
weighted principal components back-transformed to CLR-space.

Component loading SWPC1 SWPC2 SWPC3 SWPC4 SWPC5

lc(Ag) −0.231 −0.267 −0.142 −0.179 0.263
lc(As) −0.245 −0.303 0.013 −0.112 −0.244
lc(Au) −0.206 −0.311 −0.031 0.411 0.066
lc(Bi) 0.236 −0.291 0.085 −0.031 0.188
lc(Cd) −0.004 0.303 −0.473 0.285 −0.199
lc(Co) 0.3 −0.09 −0.096 0.175 −0.321
lc(Cr) 0.265 −0.263 −0.142 0.227 −0.066
lc(Cu) 0.323 −0.09 −0.109 −0.188 −0.122
lc(Hg) −0.009 0.076 −0.299 0.603 0.376
lc(Mo) −0.068 −0.016 −0.203 0.275 −0.12
lc(Ni) 0.329 −0.051 −0.201 0.11 −0.187
lc(Pb) 0.067 −0.104 0.165 −0.139 0.379
lc(Rb) 0.262 −0.231 0.193 0.002 0.242
lc(Sb) −0.246 −0.296 −0.11 0.342 −0.285
lc(Sn) −0.206 0.374 −0.144 −0.264 −0.127
lc(Ti) 0.296 −0.239 −0.104 −0.242 −0.034
lc(W) −0.213 0.344 −0.163 0.076 0.166
lc(Zn) 0.291 −0.235 −0.101 −0.104 −0.01
% of total variance 38.1 28.5 12.5 9.6 6.7
Cumulative % of total

variance
38.1 66.6 79.1 88.7 95.4
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5. Discussion

Anomalies in element concentrations in stream sediments have been
conventionally exploited to guide mineral exploration of different types
of mineral deposits at different scales, but prospecting for mineral de-
posits in covered and/or contaminated areas brings further challenges
to stream sediment geochemical exploration. In covered areas, stream
sediment geochemical anomalies can be quite weak due to the dilution
of element concentrations by strongly weathered and transported

surface materials whereas in polluted areas the background is elevated
due to human activities, such that element concentrations derived from
mineralization are not easily recognized by ordinary techniques
(Cheng, 2012).

As shown in this study, the combined application of SWPCA and WT
provides a new way for identifying weak and complex geochemical
anomalies in covered and/or contaminated areas. The SWPCA serves as
a technique for integrating multi-element geochemical data and known
mineral occurrences to enhance multi-element signature of

Fig. 4. (a) Geochemical map of PC4 model and (b) corresponding wavelet transformed geochemical map of WT-PC4. (c) Anomalies of PC4 in a selected area (grass
covered) and (d) corresponding wavelet transformed anomalies of WT-PC4 in the selected area (grass covered).

Fig. 5. (a) Geochemical map of the SWPC4 model and (b) corresponding wavelet transformed geochemical map of the SWPC4-WT model. (c) Geochemical anomalies
of SWPC4 in selected area (contaminated) and (d) corresponding wavelet transformed geochemical anomalies of SWPC4-WT in selected area (contaminated) with
location of deposits under operation annotated.
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mineralization in covered and/or contaminated areas. Therefore, we
selected SWPC4 as a proxy of epithermal Au mineralization in the
Dashui OCD. The WT has shown great potential in identifying weak and
complex geochemical anomalies in covered and/or contaminated areas,

the concentration centers of mineralization related geochemical dis-
tributions were significantly enhanced, making the wavelet trans-
formed geochemical anomalies easier to recognize. In this study, based
on the comparison of the P-A plots of the four predictive models, the

Fig. 6. Geochemical models of the Dashui OCD based on (a) PC4–WT and (b) SWPC4–WT. Ellipses in red are approximate outlines of ore in existing Au deposits in the
area (see Fig. 1). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Classified Au prospectivity map of the area based
on the SWPC4–WT geochemical model. Ellipses in red are
approximate outlines of ore in existing Au deposits in the
area (see Fig. 1). Polygons in yellow are new favorable
targets from this study. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred
to the web version of this article.)
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SWPC4–WT model has shown the highest Y value in the intersection
point of the curves, which signifies that the SWPC4–WT model has the
best ability of predicting the highest proportion of mineralization oc-
currences in the smallest prospective area, and the field observations
also indicate that the locations of known mineralization occurrences
match well with SWPC4–WT anomalies, the high favorability areas in

the SWPC4 -WT model have better spatial consistence than those in the
PC4–WT model. Meanwhile, the result of ROC validation has shown
that the SWPC4–WT model, having the highest AUC value (Table 3),
out-performed the predictive ability of the SWPC4 and PC4–WT models.
We recommend, therefore, that the SWPC4–WT geochemical model
generated in this study can be used as a targeting model for further
exploration of the Dashui OCD.

6. Conclusions

This paper demonstrated a geochemical anomaly model by means of
spatially-weighted principal components analysis (SWPCA) and wavelet
transformation (WT) to detect anomalies linked with Au mineralization
and, thus, favorable exploration target areas in the Dashui ore-con-
centration district, Central China. The SWPCA works as a data in-
tegration method to extract spatial information of interest. In this re-
gard, the SWPC4 was selected as a multivariate signature of Au
mineralization in the Dashui OCD. The application of WT to the SWPC4

image as a filter technique has enhanced concentration centers of
anomalies, demonstrating the effectiveness of WT for recognition of
mineralization-related anomalies in covered and/or contaminated
areas. The empirical proof of this is that the results of the prediction-
area plots and ROC (Receiver Operator Characteristics) and AUC (area

Fig. 8. (a) P-A plot for PC4 model and (P-A) plot for SWPC4 model and (c) P-A plot for PC4-WT model and (d) P-A plot for SWPC4-WT model (intersection point
labeled blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. ROC test results for geochemical anomaly models.

Table 3
Performance of geochemical anomaly models.

Model Area under curve Std. error

PC4 0.732 0.015
SWPC4 0.781 0.013
PC4–WT 0.848 0.013
SWPC4–WT 0.872 0.012
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under the curve) tests showed that the SW PC4–WT model out-per-
formed either the PC4–WT or SWPC4 model, resulting in anomalies with
stronger spatial correspondence with the existing ore deposits and,
therefore, robust targets for exploration of undiscovered deposits. The
hybrid SWPC4–WT model has effectively enhanced weak and/or com-
plex geochemical anomalies for recognition of mineralization-related
anomalies in the Dashui OCD. However, this method need further
testing in other areas or on other types of ore deposits to further de-
termine its usability and generalizability.
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