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A B S T R A C T

The inclusion model for pore pressure and near surface localized heating may be of practical importance to many
geological applications including geothermal reservoirs and volcanoes. In literature, the axisymmetric inclusion
problems considering vertically placed spheroidal inclusions have been examined, while the complementary
problems concerning horizontal spheroidal inclusion have not drawn much attention. The latter lacks axial
symmetry, and usually cannot be handled by the analytical methods developed for the symmetric case. The
current work analytically explores this asymmetric problem of thermo-porous spheroidal inclusion with the as-
sistance of geometric interpretation. The complete solution to the displacement, strain and stress is formulated in
Cartesian coordinates for ease of engineering applications. The formulae are derived in compact closed-form
expressions in terms of elementary functions, which are handy for analytical manipulations and computer
programming. Furthermore, applications in geostructures are discussed, and benchmark examples are provided
to validate the present solution.

1. Introduction

Eshelby's celebrated works (Eshelby, 1957, 1959), have helped
shape many fields of modern science and technology over the past
decades. Particularly in geophysical engineering, the Eshelby inclusion
model has been considered as an effective tool in dealing with many
related problems including geostructures, caverns and geothermal re-
servoirs (Rudnicki, 2011; Bedayat and Dahi Taleghani, 2015; Im et al.,
2017). Although it might be more realistic and necessary to adopt a
half-space model when the geothermal structures are located in shallow
ground, most studies (e.g., Healy, 2009; Meng et al., 2012) focus on the
inclusions in a full-space. This is presumably because the analytical
studies of the half-space inclusion problem are intricate and the avail-
able solutions are limited. Mindlin and Cheng (1950) solved the sphe-
rical inclusion with uniform dilatational thermal expansion by utilizing
the Galerkin vector stress function. Chiu (1978) formulated the analy-
tical solution of uniformly distributed cuboidal inclusion by employing

the method of images. Chiu's work (1978) was refined later by Liu et al.
(2012), where an ingenious application of the Fast Fourier Transform
technique is proposed for numerical computation of the half-space in-
clusion problem. Seo and Mura (1979) investigated the elastic field of a
semi-infinite space containing an ellipsoidal inclusion with pure dila-
tational eigenstrain. Although Seo and Mura did not present the final
formulae in explicit form, they plotted the stress results corresponding
to the axisymmetric case when the inclusion is a spheroid. Recently, Seo
and Mura's problem was revisited by Lyu et al. (2018) where the
complete elastic field solutions were given analytically in explicit form.
Two major complexities, due to the cubic root and involved elliptic
functions, are unavoidable in the analytical representation (Lyu et al.,
2018), leading to the limited manageability of their solutions.

In the case of dilatational eigenstrains, the deformation tendency of
the inclusion would be to expand isotropically, as would be the case for
poroelastic or thermoelastic strains in an isotropic medium
(Soltanzadeh and Hawkes, 2008). Accordingly, the thermo-porous
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inclusion problems have a variety of significant applications in the
geophysical systems, including fault zones, compaction bands and in-
trusions, even for the renewable and sustainable energy of geothermal
reservoirs and volcanoes.

A spheroid is an ellipsoid with two equal semi-diameters, or called
ellipsoid of revolution. The quadric surface of a spheroid is obtained by
rotating an ellipse about one of its principal axes. To be specific, if the
ellipse is rotated about its major axis, the result is a prolate (elongated)
spheroid, as compared to the oblate (flattened) spheroid which is ro-
tated about its minor axis. If the generating ellipse is a circle, the result
is a sphere. Manoylov et al. (2013) demonstrated that spheroid may
allow for a more versatile model than sphere for predicting the elastic
characteristics porous materials. Since spheroids may represent a wide
range of geometries varying from spherical to layer-like shapes,
Rudnicki (1999) employed the spheroidal inclusion model to solve
various geophysical problems with applications to aquifers and re-
servoirs by taking advantage of the handy analytical solutions available
for the full space problem. However, it would be desirable to extend the
spheroidal inclusion model (Rudnicki, 1999; Healy, 2009) to the half-
space case so that the influences of the free surface may be more ac-
curately evaluated. The axisymmetric problems considering vertically
aligned spheroidal inclusions have been studied (Yu and Sanday, 1990;
Korsunsky, 1997), while the asymmetric problems concerning hor-
izontally aligned spheroidal inclusions have not received much atten-
tion and cannot be analytically treated by those axisymmetric ap-
proaches (Yu and Sanday, 1990; Korsunsky, 1997).

Another known issue is that the classical Eshelby solution involves
derivatives of elliptic integrals of the first and second kinds, and usually
cannot be expressed in closed-form with elementary function.
Furthermore, in the presence of free surface, the expressions will be-
come lengthy and difficult to manage. A semi-infinite space containing
a three dimensional inclusion other than polyhedral shape can hardly
be solved in closed-form. The current work is a rare exception in which
a closed-form formulation does exist for a horizontally aligned thermo-
porous spheroidal inclusion in a semi-infinite solid. Furthermore, the
study is complementary to the axisymmetric cases investigated pre-
viously by Yu and Sanday (1990) and Korsunsky (1997). It is noted that
although technically axisymmetric problem might be more interesting,

these two works did not present explicit results, nor were the elastic
solutions complete (i.e. in the sense of both displacement and stress).
Using a geometric interpretation, the current study proposes an effec-
tive way to analytically treat the asymmetric problems. We derived
complete elastic field solutions corresponding to the displacement,
strain and stress for both the interior and exterior fields due to either
prolate or oblate spheroid shaped inclusion in a semi-infinite space.
These analytical and explicit expressions therefore attempt to overcome
the mathematical difficulties due to the mirror image terms stemming
from the effect of the free boundary surface. Furthermore, all the for-
mulae derived in this paper are geometrically meaningful and are ex-
pressed in explicit closed-form.

This paper is organized as follows. The solution of an ellipsoidal
inclusion with thermo-porous eigenstrains in a half-space is reviewed
with geometric representation in Section 2. By employing the trigono-
metric and logarithmic functions, the J -function for the oblate and
prolate spheroidal inclusions are represented in closed form. Based on
the outward unit normal vector of an imaginary confocal ellipsoid, we
present the solution for full elastic fields with respect to the displace-
ment, strain and stress components in Section 3. For the convenience of
engineering applications, the source codes programmed in FORTRAN
language are detailed in Section 4. Jump conditions across the interface
between the inclusion and surrounding matrix are discussed, and il-
lustrative benchmarking examples particularly with geostructural ap-
plications involving poroelastic and thermoelastic strains are provided
to validate the present solution in Section 5. The concluding remarks
are presented in Section 6. The solution of the interior field with respect
to the displacement, strain and stress components are listed in the
Appendix for ease of reference.

2. Geometric interpretation of the solution for an ellipsoidal
inclusion with dilatational eigenstrains in a half-space

Eigenstrain, ij , is a generic name to represent a broad range of in-
elastic strains, such as thermal strains, plastic strains, phase transfor-
mation, and misfit strains (Mura, 1987). For an isotropic thermo-por-
oelastic solid, ij due to pore-pressure and thermal expansion may be
represented as (Segall and Fitzgerald, 1998)

Nomenclature

a The radius of spherical inclusion
aI Semi-axis of the ellipsoidal inclusion
c Depth location of the ellipsoid center
E Young's modulus
H Symbols to simplify the expression
n n,i i Outward unit normal vector
P P, 0 Pore pressure and unstrained state of pore pressure
Qij Symbols to simplify the expression
S s,ij ij Strain influence coefficients for the exterior and interior

field
T t,ij ij Stress influence coefficients for the exterior and interior

field
T T, 0 Temperature and unstrained state of temperature
W w,i i Displacement influence coefficients for the exterior and

interior field
u x( )i Displacement components
x x x, ,1 2 3 Coordinate system
x A target field point of the elastic space

The ratio of a1 to a3

B Biot pore-pressure coefficient
, Symbols to simplify the expression

Denotes the “jump” of elastic components
T P, Changes of temperature and pore pressure

x( )ij Strain components
( )ij Uniform dilatational eigenstrains

JI Functions related to elliptic integrals
, Largest positive root of cubic equations
T Coefficient of linear thermal expansion
, Symbols to simplify the expression

x( )ij Stress components
0 Normalized factor

µ Shear modulus
Poisson's ratio

Subscripts

i j, Index of Cartesian component

Superscripts

ext The exterior field
int The interior field
(in) Quantities just inside the inclusion
(out) Quantities just outside the inclusion
* Term reflecting the effects of the boundary surface
═ Indicating the solution of the dilatational inclusion in a

full space
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where P T P T, , ,o o are pore pressure, temperature, the unstrained state
of pore pressure and temperature, respectively. Moreover, B is the Biot
pore-pressure coefficient, where 1B for compliant porous matrix
and 0B for stiff matrix; T is the coefficient of linear thermal ex-
pansion. Assuming thermo-porous eigenstrain = = =11

*
22
*

33
* and

= = = 012
*

13
*

23
* uniformly distributed within the inclusion, and van-

ished in the surrounding matrix.
Consider a semi-infinite matrix containing an ellipsoidal inclusion,

, which is defined as (Fig. 1)
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where =a I( 1, 2, 3)I is the semi-axis of the ellipsoidal inclusion with
center at c(0,0, ). The boundary surface, =x 03 , is free from any external
tractions. For any point x x xx( , , )1 2 3 located outside the inclusion, a
confocal imaginary ellipsoid is constructed (Fig. 2).
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where is the largest positive root of the confocal imaginary ellipsoid
in Eq. (3). When a point is located inside the inclusion, the value of
vanishes. To account for the mirrored ellipsoid, the mirrored confocal
ellipsoid is constructed by passing an exterior point similar to the
confocal imaginary ellipsoid and defined as
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where is the largest positive root of Eq. (4).
The displacement solution of an ellipsoidal inclusion with uniform

dilatational eigenstrains in a semi-infinite space may be presented as
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where is Poisson's ratio and the JI functions of elliptic integrals are
detailed in our previous work (Jin et al., 2016, 2017). The terms with
superscript (*) in Eq. (5) reflect the effects of the boundary surface
related to the mirrored images. The double underlined terms in above
equation denote the corresponding solution of an infinite extended
space case in the absence of the boundary surface. The additional

-functions are
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Ju and Sun (1999) introduced the outward unit normal vector ni at a
matrix point x x xx( , , )1 2 3 on the imaginary ellipsoid surface (Fig. 2). The
method of Ju and Sun (1999) can be extended to a half-space inclusion
problem, and the outward unit normal vectors of the imaginary con-
focal ellipsoids with respect to the original and mirrored ellipsoidal
inclusion are denoted by ni (Fig. 2a) and ni (Fig. 2b).
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Subsequently, the strain components may be obtained by differ-
entiating the displacement solution of Eq. (5), and the stresses are de-
termined through Hooke's law. Noting that the value of and the
J1-function cannot be expressed in closed-form with elementary func-
tions.

3. The closed-form solution to the spheroidal inclusion with
dilatational eigenstrains

3.1. Simplification for the spheroidal inclusion

Although geostructures may seldom be of exactly spheroidal shape,
this geometry encompasses a wide range of possible shapes, and is

Fig. 1. Schematic illustration of a spheroidal inclusion with uniform dilata-
tional eigenstrains in a half-space.

Fig. 2. Schematic of the original and mirrored ellipsoidal inclusion. For any
exterior points x located outside the inclusion, an imaginary ellipsoid is con-
structed with the outward unit normal vector denoted by n (Fig. 2a); the
imaginary spheroid confocal to the mirrored inclusion is constructed passing
the exterior points x, where the corresponding outward unit normal vector is
denoted by n (Fig. 2b).
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frequently a good approximation. Unlike a general ellipsoid, the value
of , J1-functions and outward unit normal vectors of the spheroidal
shape can be derived in closed-form with only elementary functions.
The solution for the case of a spheroidal inclusion may be derived from
Section 2 by setting =a a a1 2 3, and consequently the value of for the
exterior field is

= + +

+ + + + +
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For the degenerate case of a spherical inclusion = = =a a a a( )1 2 3 ,
the corresponding value of may be written as

= + +x x x c a( )1
2

2
2

3
2 2 (10)
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a
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3
, the corresponding J1-functions for the oblate
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> =a a a( )1 2 3 in the exterior field may be expressed in terms of ele-

mentary functions
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The J1-function for a spherical inclusion = = = =a a a a( , or 1)1 2 3
may be deduced by employing the L'hospital rule

=
+
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a3( )

1
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2 3
2 (12)

3.2. The complete elastic field of spheroidal inclusion with dilatational
eigenstrains

The solution to a spheroidal inclusion with dilatational eigenstrains
in a semi-infinite medium may be presented in explicit closed-form. The
displacement solution in exterior field may be derived as

= +u W(x) 1
1

(x)i i (13)
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Note that for a spheroid, and123 123 in Eq. (6) are respectively
renamed as and133 133, indicating the differences between ellipsoidal
and spheroidal shape:
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The strain solution for any exterior points may be derived as

= + S(x) 1
1

(x)ij ij (18)

where
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Furthermore, the solution to the exterior stress are obtained by
employing Hooke's law

= +µ T(x) 2 (1 )
1
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in which
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where µ is the shear modulus and the Q-functions are presented in Eq.
(25). It is noted that T Tx x( ), ( )23 31 and T x( )12 share the same expression
with S Sx x( ), ( )23 31 and S x( )12 for the exterior field. The corresponding
results of the displacement, strain and stress for the interior field are
listed in the Appendix.

4. Implementation

The FORTRAN package of this paper is provided with multiple files,
which are convenient for user to download and calculate the complete
elastic fields, corresponding to the displacement, strain and stress,
produced by a horizontally aligned spheroidal inclusion with uniform
dilatational eigenstrains in a half-space. The current formulae are
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implemented in matrix form (Jin et al., 2011, 2014), and the Voigt
notation is employed for ease of programming. The description of the
present code is detailed as follows.

(1) Main.f90 contains the codes CPDISP, CPSTRN and CPSTR to cal-
culate the elastic fields with respect to the displacement, strain and
stress of the spheroidal inclusion, respectively. The solution for
points on the interface is evaluated in CPINTERFACE. In order to
validate the presented solution, extensive benchmarks are studied
and dimensionless results of full field for the spheroidal inclusion
are reported in this project.

(2) Functions.f90 constructs the basic functions, which are frequently
used in determining the displacement, strain and stress compo-
nents. Subroutine LMDSPH is used to obtain the closed-form value
of for either oblate, prolate spheroidal or spherical inclusion.
RLROOTEX determines the values of and outside the original
ellipsoidal inclusion, while RLROOTIN calculates the inside the
original ellipsoid, noting that vanishes inside the original ellip-
soidal inclusion. Moreover, TERMH represents the terms
H H( ), ( ) in Eqs. (7) and (8), UNITVECT shows the outward unit
normal vector, n n,i i , of the imaginary confocal ellipsoids with
respect to the original and mirrored ellipsoidal inclusion in Eqs. (7)
and (8). Note that the subroutine UNITVECT also evaluates 133 and

133 in Eq. (17). Subroutine J1FUN exhibits the closed-form of
J1-function for the oblate, prolate spheroidal and spherical inclu-
sions, cf. Eqs. (11) and (12).

(3) Displacement.f90 calculates the displacements for the exterior and
interior fields. HFDSPCOF checks the target points' location.
Subroutines UIEXCOFF and EXDISP3 respectively determine the
coefficients and solution of the displacement for exterior points
using Eqs. (13)–(16), while UIINCOFF and INDISP3 evaluate the
counterparts for interior points according to Eq. (A1)-(A4).

(4) Strain.f90 determines the strain components for the exterior and
interior fields. HFSTNCOF checks the points' location in the ex-
terior or interior field. For exterior points, the influence coefficients
of the strains, cf. Eqs. (19)–(24), are evaluated in Subroutine EIJ-
EXCOFF, which are then called by EXSTRN6 to determine the
strain components produced by the thermal inclusion. The term
Q-functions in Eq. (25) are programmed in TERMQIJZ. In parallel,
the corresponding subroutines for evaluating the interior strain
field utilizes EIJINCOFF and INSTRN6 according to Eq. (A5)-
(A11).

Fig. 3. Benchmark example.

Fig. 4. Dimensionless results for the prolate spheroidal inclusion with thermal eigenstrains are compared along the x1-direction: (a) variation of displacements; (b)
variation of strains; (c) variation of stresses.
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(5) Stress.f90 constructs the solution for the exterior and interior stress
components. HFSTRCOE checks the points' location. The sub-
routine SIJEXCOFF determines the influence coefficients and is
subsequently called by STREXFLD to solve the exterior stress field,
cf. Eqs. (26)–(30). Furthermore, SIJINCOFF and STRINFLD are
programmed according to Eq. (A12)-(A16), which present the so-
lution for the interior stress field.

5. Discussions

For the interior field, the formulae of the displacement and strain
are identical with the expressions of the corresponding exterior field,
but the parameter = 0 and the parts containing the outward unit
normal vector ni vanish. To be specific, the double underlined terms of
the displacement in Eqs. (14)–(16) are replaced by
y J J(0), [1 (0)]y

1 1 2 1
i , and the strain components in Eqs. (19)–(21) are

replaced by J J(0), [1 (0)]1
1
2 1 , respectively. However, the double un-

derlined terms of the stress components in Eqs. (27)–(29) become
+J J(0) 1, [1 (0)]1

1
2 1 . For convenience of reference, the interior

solutions are given in the Appendix.

5.1. Interface discontinuity

It is of interest to examine the jump conditions of the displacements,
strains and stresses between the inclusion and the surrounding matrix.
The jump of displacements is determined as

= = +u u u Wx x x x( ) ( ) ( ) 1
1

( )i i i i
(out) (in)

(31)

where the superscripts (out) and (in) respectively represent quantities
just outside and just inside the inclusion. When the target points move
to the interface either from the inside or outside of the inclusion, the
term =(0) 113 . This result immediately verifies the displacement
across the interface between the inclusion and the surrounding matrix
must be continuous:

= =W W wx x x( ) ( ) ( ) 0i i i (32)

The jump of the strains across the interface are found to be

= = + S(x) (x) (x) 1
1

(x)ij ij
out

ij
in

ij
( ) ( )

(33)

in which

= =S S s n n(x) (x) (x)ij ij ij i j (34)

For instance

= =
=

S n n S n n
S n n

(x) , (x) ,
(x)

11 1 1 33 3 3

13 1 3 (35)

The jump of the corresponding stresses may be denoted as

= = +µ T(x) (x) (x) 2 (1 )
1

(x)ij ij
out

ij
in

ij
( ) ( )

(36)

wherein

= =T T t n n(x) (x) (x)ij ij ij ij i j (37)

That is, for example

Fig. 5. Dimensionless results for the oblate spheroidal inclusion with thermal eigenstrains are compared along the x1-direction: (a) variation of displacements; (b)
variation of strains; (c) variation of stresses.
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= =
=

T n n T n n
T n n

(x) 1 , (x) 1 ,
(x)

11 1 1 33 3 3

13 1 3 (38)

Similarly, other entries of Eqs. (35) and (38) may be obtained by the
cyclic permutation with respect to subindices (1, 2, 3).

5.2. Benchmark examples

In order to compare the results with the known solution by Mindlin
and Mura, analytical calculations are carried out with = 0.3. The
shape effect of the inclusion on the stress 33, which is normalized by

= E T v/3(1 )T0 , is plotted along the x3-direction at a depth of
=c a3 in Fig. 3. In the calculation, the aspect ratio of a a/1 3 ranges from

0.25 to 4 and the special case of spherical inclusion =a a( / 1)1 3 may
serve as a benchmark example to validate the present closed-form so-
lution. When a spheroid transforms into a sphere, the result exactly
reproduces Mindlin and Cheng's solution (1950). For the spheroidal
inclusion =a a( / 0.25)1 3 , the compressive stress component 33 shows
larger value as compared to that of other shaped spheroids when

<x a/ 23 3 . However, the stress components for the five types of spher-
oids decrease to zero after the points are far from =x a/ 33 3 . It can be
concluded that the stress distributions are apparently influenced by the
free boundary surface and the shape of the inclusion.

Seo and Mura (1979) reports the axisymmetric problems of verti-
cally placed spheroidal inclusions, while the problem concerning hor-
izontally aligned spheroidal inclusions is given in this section. The
prolate spheroidal = =a a a( 3 3 )1 2 3 and oblate spheroidal = =a a a(3 )1 2 3
inclusions with thermal eigenstrains are reported according to the

current solution. The displacements, strains, and stresses for the prolate
and oblate spheroidal inclusions along the x1-direction with at depth

=c a3 are shown in Figs. 4 and 5, respectively. The displacements,
strains and stress components are normalized by =u TaT0 3,

= TT0 and = E T v/(1 )T0 , respectively. The stresses and
strains for the interior field are no longer constant due to the existence
of the free surface, as opposed to the inclusion in a full-space. The
stresses and strains become almost zero for =x a/ 51 3 which pertains to
the prolate spheroidal case, as compared to the oblate spheroidal case
with stress and strain components approaching to zero in the limit

=x a/ 21 3 . The present plots verify that the strain and stress fields suffer
discontinuities across the interface between the inclusion and the sur-
rounding matrix, while the displacements are continuous across the
boundary of the inclusion.

The results for the elastic field due to the fluid withdrawal leading
to the pore pressure are analyzed and the corresponding displacements,
strains and stresses are shown in Fig. 6 (prolate spheroid) and Fig. 7
(oblate spheroid). The displacements, strains and stress components are
normalized by setting =u P Ea(1 2 ) /0 3, = P E(1 2 ) /0 and

= P0 , respectively The displacement u1 is negative inside the in-
clusion and approaches zero for >x a/ 51 3 of the prolate spheroid, as
compared to the oblate spheroidal case with a displacement ap-
proaching zero for the condition >x a/ 21 3 . Moreover, the strain com-
ponent 11 represents compression inside the inclusion and which con-
verts to tension in the surrounding matrix, while the other strain
components are always in a compressive state and that increases with
x a/1 3. The stress 33 inside the inclusion can have a tension region, and
jumps to compression in the matrix.

Fig. 6. Dimensionless results for the prolate spheroidal inclusion with porous eigenstrains are compared along the x1-direction: (a) variation of displacements; (b)
variation of strains; (c) variation of stresses.

X. Zhang et al. Computers and Geosciences 122 (2019) 15–24

21



6. Concluding remarks

The inclusion problems for determining the elastic field around the
inhomogeneities have wide applications in the field of geophysics. The
exterior field of a spheroidal inclusion in a half-space tends to be more
complex and intricate. For the case of spheroidal inclusion with pure
dilatational eigenstrains, the obstacle may be conquered by introducing
the outward unit normal vector of an imaginary confocal ellipsoid and
the closed-form of J1-function for the oblate and prolate spheroidal
shape both in a full-space and a half-space is obtained by adopting the
trigonometric and logarithmic functions. Thus, a complete solution
with respect to the displacement, strain and stress may be derived in a
compact and explicit closed-form.

In conjunction with interior field solution (given in the Appendix),
the full field closed-form solution can be utilized to predict the localized
heating due to temperature changes, or pressure alterations caused by
fluid mass injection or withdrawal for the geothermal reservoirs. The
double underlined terms in the expressions denote the corresponding
solution for an infinitely extended medium. The discontinuities across
the interface between the inclusion and surrounding matrix are related
only to the underlined terms and are identical to those of a full-space.

We also developed a FORTRAN code to calculate the elastic field of the
oblate and prolate spheroidal inclusion produced by uniform dilata-
tional eigenstrains in a semi-infinite solid. In addition, illustrative
benchmark examples are provided to validate the present analytical
solution and the source code can be downloaded from the journal
website for the convenience of engineering applications in the field of
geophysics.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cageo.2018.10.001.

Appendix. Interior field solution

For any interior points, the elastic solution to the displacement, strain and stress components are obtained by setting = = =n0, 0, 1i 133 .
Hence, from Eqs. (13)–(17), the displacements for interior points may be obtained as

Fig. 7. Dimensionless results for the oblate spheroidal inclusion with porous eigenstrains are compared along the x1-direction: (a) variation of displacements; (b)
variation of strains; (c) variation of stresses.

X. Zhang et al. Computers and Geosciences 122 (2019) 15–24

22

https://doi.org/10.1016/j.cageo.2018.10.001


= +u w(x) 1
1

(x)i i (A1)

where

= +w x J x J x n nx( ) (0)
¯̄

(3 4 ) ( ) 21 1 1 1 1 3 133 1 3 (A2)

= +w x J x J

x n n

(x)
2

[1 (0)]
¯̄

3
2

2 [ ( )]

2

2
2

1 2 133 1

3 133 2 3 (A3)

= + + +w x c J x x c J

x n n

(x)
2

[1 (0)]
¯̄

2 3
2

( ) [ ( )]

2

3
3

1 3 3 133 1

3 133 3 3 (A4)

The closed-form solution for the interior strain field is determined in view of Eq. (18)

= + s(x) 1
1

(x)ij ij (A5)

To be specific,

= +

+

s J J n n

Q

x( ) (0)
¯̄

(3 4 )[ ( ) ]

2 ( )

11 1 1 133 1 1

133 11 (A6)

= +

+ +

s J J

n n Q

x( ) 1
2

[1 (0)]
¯̄

3
2

2 [ ( )]

[(4 3) 2 ( )]

22 1 133 1

133 2 2 22 (A7)

= +

+ +

s J J

n n Q

x( ) 1
2

[1 (0)]
¯̄

2 1
2

[ ( )]

[( 3 4 ) 2 ( )]

33 1 133 1

133 3 3 33 (A8)

= +s n n Qx( ) [ 3 2 ( )]23 133 2 3 23 (A9)

= +s n n Qx( ) [ 3 2 ( )]31 133 1 3 31 (A10)

= +s n n Qx( ) [(4 3) 2 ( )]12 133 1 2 12 (A11)

From the aforementioned expression of Eq. (26) with respect to the exterior stress field, the corresponding stress solution for interior points may
be presented as

= +µ t(x) 2 (1 )
1

(x)ij ij
int

(A12)

wherein

= +

+ +

t J J

n n n n Q

x( ) (0) 1
¯̄

(3 2 ) ( )

[2 3 4 2 ( )]

11 1 1

133 1 1 2 2 11 (A13)

=

+ +

t J J

n n n n Q

x( ) 1
2

1
2

(0)
¯̄

3
2

4 ( )

3
2

3 4 2 ( )

22 1 1

133 2 2 1 1 22 (A14)

= +

+ +

t J J

n n Q

x( ) 1
2

1
2

(0)
¯̄

1
2

( )

1
2

3 2 ( )

33 1 1

133 3 3 33 (A15)

= = =t s t s t sx x x x x x( ) ( ), ( ) ( ), ( ) ( )23 23 31 31 12 12 (A16)

where the Q-functions are given in Eq. (25)
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