
Contents lists available at ScienceDirect

Journal of Geochemical Exploration

journal homepage: www.elsevier.com/locate/gexplo

Spatial distribution mapping of Hg contamination in subclass agricultural
soils using GIS enhanced multiple linear regression

Xiaolu Jianga,b, Bin Zoua,b,⁎, Huihui Fengb, Jingwen Tangc, Yulong Tub, Xiuge Zhaod

a Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Central South University, Changsha,
Hunan 410083, China
b School of Geosciences and Info-Physics, Central South University, Changsha, Hunan 410083, China
c Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha, Hunan 410083, China
d State Key Lab of Environmental Criteria and Risk Assessment, CRAES, Beijing 100012, China

A R T I C L E I N F O

Keywords:
Hg
Soil pollution
Mapping
Subclass agricultural lands
Multiple linear regression

A B S T R A C T

In order to accurately determine the spatial distribution of soil Hg pollution in one agricultural land, 104 topsoil
samples were studied by means of three subclass agricultural lands, including vegetable field, paddy field and
orchard field in the southeast of China. The method of multiple linear regression modeling combined with the
spatial analysis is adopted to recognize the driving factors of soil Hg contamination in each subclass agricultural
land. Consequently, corresponding spatial distribution maps of estimated soil Hg concentrations in vegetable
field and paddy field are plotted. Results demonstrate greater mean soil Hg concentrations in vegetable field and
paddy field over orchard field, but both of them are lower than the maximum permissible concentration in the
Chinese Environmental Quality Standard for agricultural soils. In vegetable field, soil Hg concentrations are
closely interrelated with chimneys which have the least distances to their around soil samples. In paddy field,
both the soil sampling slopes and distances from soil samples to the nearest roads are the dominant driving
factors of soil Hg concentration variance. The spatial distribution of soil Hg concentrations reveals several lo-
calized hotspots in the north for the vegetable field, while in the paddy field, spreads evenly across the space.
These results suggest that while the exhaust emission from industrial chimneys might drive the contamination
difference of soil Hg in vegetable field in the study area, surface runoff and traffic contamination from the roads
might be other factors causing those spatial variances of soil Hg contamination in paddy field. Quantification of
soil Hg concentrations in agricultural lands at subclass level may provide a more accurate basis for taking
appropriate prevention and controlling action to protect agricultural soil quality and human health.

1. Introduction

The toxic impact of Hg in agricultural soils has gradually become a
world concern, because of its mobility, volatility, accumulation through
food chain, and ultimate harm to human health (De Simone et al., 2015;
Ottesen et al., 2013). Accurately identifying spatial distribution of Hg
contamination become more important to improve the understanding
of the soil environmental conditions and implement the control and
prevention of soil Hg pollution in agricultural land (Micó et al., 2006).
In soil Hg contamination investigation, traditional soil surface sampling
is a common and reliable way to obtain Hg concentration data in
agricultural soil (Li et al., 2008). However, this site based traditional
sampling method is cost intensive and representativeness limited,
which is insufficient for a wide range of continuous soil Hg con-
tamination survey in a regional area.

Regarding this issue, researchers usually rely on traditional spatial
interpolation methods to construct continuous surface distribution of
soil Hg concentration in agricultural land based on a discrete set of
sampling data (Lu et al., 2012; Xu et al., 2014; Zhou et al., 2015), such
as Kriging, inverse distance interpolation, spline interpolation (Cheng
et al., 2007; Xie et al., 2011; Yang and Wang, 2008). Theoretically,
these methods could overcome the defects of sparse sampling some-
what, but their accuracies are still far from being satisfactory in prac-
tice. This is because not only the soil Hg concentrations at sampling
locations, but numerous auxiliary geo-environment elements might also
strongly affect the spatial distribution of soil Hg contamination (Huang
and Jin, 2008; Wuana and Okieimen, 2011). And then, new machine
learning methods have been gradually used in the Christoforidis esti-
mation of soil Hg concentration, such as neural network interpolation
models (e.g., generalized regression neural network, radial basis
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function (RBF) neural network) (Hu et al., 2007; Lu et al., 2004; Zou
et al., 2015) and fuzzy C-means clustering models (Amini et al., 2005).
However, these methods benefit from abundant samples which are not
suitable for soil Hg pollution investigation. Further, a series of statis-
tical analysis approaches superior to the simple interpolation or new
machine learning have been adopted for driving factors recognition,
which typically comprise linear regression modeling (e.g., geo-
graphically weighted regression) (Fang et al., 2016; Yang et al., 2015;
Zhai et al., 2018; Zou et al., 2016), and non-linear modeling (e.g.,
generalized additive model) (Zou et al., 2017a). Among them, the
multiple linear regression (MLR) is recognized as a relatively simple
and applicable one for soil Hg concentration estimation by fusing the
auxiliary driving factors identified (Caeiro et al., 2005; D'Hose et al.,
2014; Zeng et al., 2011).

In terms of main class agricultural land (including all the three types
of agricultural lands, i.e., vegetable field, paddy field and orchard field),
current soil Hg concentration mapping technique based on driving
factors identification has been able to cursorily estimate the spatial
distribution of soil Hg concentration in a large-scale area (Yuan et al.,
2014). However, due to the complexity of soil Hg contamination
sources and transportation mechanism, the formation and dispersion
processes of soil Hg contamination may be discrepant within the main
class agricultural land over a large geographical area. These differences
can be attributed to the terrain, crop types, irrigation types, and the
distribution effects of industry enterprises and roads (Han et al., 2006;
Micó et al., 2006). This inversely means the inconsistency of the driving
factors of soil Hg contamination in the inner subclass agricultural lands
(i.e., vegetable field, paddy field and orchard field) (Gagiu et al., 2015).
Therefore, to meet the need of fine agriculture governance, it is ne-
cessary to further improve the accuracy of soil Hg concentration esti-
mation by more accurately identifying the different driving factors of
soil Hg concentration variance in the various subclass agricultural
lands.

Thus, this study was to test the hypothesis that whether factors
driving soil Hg concentration variations at main class and sub-class
level agricultural lands are different, and consequently depict their
impacts on spatial distribution mapping of soil Hg contamination across
the study area. Results of this study are expected to contribute or
provide some insight to the soil conservation strategy during fine
agriculture governance.

2. Materials and methods

2.1. Study area

The study area is located in the north of Pearl River Delta, the
southeastern part of China (Fig. 1). As a traditionally agricultural-based
economy city, the study area has large agricultural land which is mainly
cultivated as vegetable field, paddy field, and orchard field. The rapid
industrialization in this area has considerably increased chimneys' ex-
haust emissions, solid waste accumulation and sewage discharges of Hg
contamination, which posed obvious effects on local agriculture (Qiu
et al., 2009). The area is surrounded by mountains to the north and
south, with a wide plain area between them. This area has a typical
subtropical climate with an annual temperature average approximately
22 °C, the mean annual precipitation 1897mm, and the prevailing wind
from southeast to northwest. These geo-environment elements further
cause soil Hg contamination diffusion through surface runoff and at-
mospheric deposition in different subclass agricultural lands (Cai et al.,
2012).

2.2. Soil samples and chemical analysis

The sampling route was designed by means of a completely ran-
domized layout, on the basis of the agricultural production, industrial
distribution, waste discharging, roads and river networks, according to

FOREGS Geochemical Mapping Field Manual (Salminen et al., 1998).
The total 104 topsoil (0–20 cm) samples were collected from the agri-
cultural land, including vegetable field (53), paddy field (40), and
orchard field (11) (Fig. 1). Each main soil sample, consisted of nine sub-
samples, were randomly taken from the surroundings of each site,
pooled and homogenized, then reduced to the weight of 300 g to form a
representative sample (Micó et al., 2006). Each sample is at least 200m
apart from the next one. The longitudes and latitudes of sampled lo-
cations were recorded by a global positioning system (GPS) receiver.

Each sample was sealed and transported to the laboratory through a
polyethylene bag, air dried for 24 h and redried at 45 °C in an oven until
constant weight, and finally stored in plastic reagent bottles. All plastic
instruments used for sample collection were cleaned sequentially with a
phosphate-free detergent, rinsed with distilled water, then with 10%
nitric acid, and finally with distilled water. The samples were then
passed through a 100-mesh sieve to analyze Hg, and 2mm sieve to
analyze soil pH. For determining concentration of soil Hg, 0.5 g dried
soil of each sample was treated with concentrated HNO3 (10ml) and
H2SO4 (20ml) for 1 h at 70 °C. When being cool, the volume of the
digest was kept to 100ml with deionized water. An aliquot of the so-
lution was added with 1ml K2Cr2O7 solution and analyzed by cold
vapor atomic fluorescence spectroscopy (AFS-9230) after reducing Hg
with a stannous chloride solution. Quality assurance and quality control
procedures were conducted by using the standard reference material
(GBW07401-GBW07408) with each batch of samples (one blank and
standard for each 10 samples). Soil pH was measured after shaking 10 g
in a suspension of soil: water at a ratio of 1:5 for 30min, using a glass
electrode (ISO-10390 2005) (Briki et al., 2015). All of the experiments
were conducted at the Soil and Fertilizer Institute (Hunan, China).

2.3. Spatial data processing and statistical analysis

Fossil fuel-fired power plants, mining plants, processing of no-fer-
rous metals plants, cement plants, municipal and medical waste in-
cinerators are the general sources of Hg contamination (Frentiu et al.,
2013). However, investigations during soil sampling visit in this study
actually had preliminarily demonstrated that the soil Hg contamination
in study area might be influenced by the intense traffic nearby, proxi-
mity to industries, irrigation types, and land morphology (Chen et al.,
2005; Guney et al., 2010; Mostert et al., 2012). As a result, the distance
from roads, rivers and chimneys, elevation, slope and land use were
selected as predictors potentially indicating the variations of soil Hg
concentration in this study. The positions of chimneys were extracted
from the point of interest (POI) of industrial enterprises in China. The
river network, road network and the land use raster data (30m re-
solution) including construction land, agricultural land (vegetable,
paddy and orchard field), forest land, lawn, water area and unexploited
land, were provided by the national geographical condition cloud
platform. The DEM data (30m resolution) were downloaded from the
United States Geological Survey. Also, all these data were collected in
the same time year.

Geographic information system (GIS) technique, including proxi-
mity analysis, buffer analysis, and land morphology analysis, was
adopted in spatial data processing to extract geographical driving fac-
tors of the soil Hg concentration variance in agricultural land. The
proximity analysis was used to determine the distances between the
sampling sites and nearest roads (DRD), nearest rivers (DR), and nearest
chimneys (DC). The buffer analysis was applied to calculate the pro-
portion of construction land in all types of land (CP) by creating buffer
polygons around sampling sites to a specified distance, which ranges
from 25 to 200m with an interval of 25 m. And for example, the CP
(100) expressed the construction land portion in a buffer of 100m. The
land morphology analysis was used to extract the elevation (SE) and
slopes (SS) at each sampling site from the DEM data. All the spatial
analyses were conducted using ArcGIS 10.1.

The standard descriptive statistical parameters (e.g., mean,
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maximum, and standard deviation) of soil Hg concentration were cal-
culated in order to evaluate the basic status of soil Hg contamination.
Since the distribution of soil Hg concentration most often differs from
normality, not all statistical methods are appropriate for analysis
without previous transformations, so does the MLR analysis (Gagiu
et al., 2015). Outliers removing, logarithm and square root transfor-
mation are three frequent data transformation methods (Schwertman
and De Silva, 2007). Among them, square root transformation is found
more effective and consequently utilized. In the process, Pearson's Chi-
square test was employed for normality checking of the transformed
soil Hg concentrations.

In addition, Pearson's correlation analysis, denoted by indices of
correlation coefficient (r) and significance level (P), was adopted to
initially identify the relationship among the soil Hg concentration and
the potential driving factors (i.e., pH, industrial sites, river network,
road network, land use, DEM) (Francouría et al., 2009; Lu et al., 2010).
This can contribute to determine accurate driving factors of soil Hg
contamination in different subclass agricultural lands (i.e., vegetable
field, paddy field, and orchard field). Correlations between potential
predictors were further investigated. Only the predictors without strong
correlations can be input into the regression analysis at the same time to
avoid multi-collinearity (Liu et al., 2011). The correlation analysis was
conducted with IBM SPSS Statistics 19.0 for Windows.

2.4. Multiple linear regression modeling and soil Hg concentration mapping

Based on the modeling variables selection through the correlation
analysis, MLR modeling was adopted to accurately identify the driving
factors of soil Hg contamination in subclass agricultural lands (i.e.,
vegetable field, paddy field, and orchard field), to compare with the
results of driving factors identification in the main class agricultural
land in order to verify the necessary and accuracy. The MLR model can
be expressed as

= + + + …+ +y β β x β x β x εp p0 1 1 2 2 (1)

where, y is the soil Hg concentration, x0, x1, … and xp refer to the
relevant driving factors, β0 is the constant value, β1, … βp are regression
coefficients, ε is the accidental error.

In the process of MLR analysis, the potential modeling variables
selected in the correlation analysis were preferentially considered as the
covariates to develop the MLR models through backward stepwise re-
gression based on the ordinary least squares approach. All the variables

were introduced to the model one by one until the model meets the
requirement of significance (P≤ 0.05) and consequently the dominant
driving factors were ascertained. As MLR modeling conditions, the
Gauss-Markov assumption test was implemented to ensure the dis-
tribution similarity of soil Hg concentrations and values of related
driving factors. The widely used ‘n− 1 cross validation’ was im-
plemented to validate the reliability of MLR models. In this process,
mean error (ME), mean absolute error (MAE), the mean relative error
(MRE), and F test were employed (Zhai et al., 2017).

ArcGIS 10.1 was used to create fishnets (85,298 points) at a re-
solution of 1 km×1 km in the agricultural land, including vegetable
field (16,872 points), paddy field (40,296 points), and orchard field
(28,130 points). The extracted model parameters at fishnet corners
were then employed to estimate the soil Hg concentrations based on the
MLR models in the main class and subclass agricultural lands, respec-
tively. Then, all these estimated soil Hg concentrations at fishnet cor-
ners' locations were further interpolated as the continuous concentra-
tion surfaces. In addition, these spatial distribution maps of soil Hg
concentration for main class and subclass agricultural lands were
overlaid to demonstrate the differences caused by inner geographical
driving factors.

3. Results

3.1. Descriptive statistics of Hg concentration in the soil samples

The descriptive statistics of soil Hg concentration are shown in
Table 1. As displayed, Hg concentrations of 104 soil samples ranges
from 0.003 to 0.773mg·kg−1. The values of soil pH vary from 4.0 to

Fig. 1. Location of soil sampling sites and potential geo-environmental elements in the study area.

Table 1
The descriptive statistics of soil Hg concentrations.

Soil uses Mean
(mg·kg−1)

Maximum
(mg·kg−1)

Minimum
(mg·kg−1)

Standard
deviation

χ2

Main class
agricultural
land (104)

0.181 0.773 0.003 1.355 2.260

Vegetable field (53) 0.153 0.394 0.003 0.170 2.071
Paddy field (40) 0.215 0.773 0.060 0.611 6.593
Orchard field (11) 0.101 0.325 0.009 0.138 1.665

χ2 represents these test results in 95% confidence level according to percentile
table of χ2 distribution.
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8.2. In general, for the main class agricultural land in this study area,
the mean value of soil Hg concentration is 0.181mg·kg−1, which is
below the National Environment Quality Grade II Standard for soil,
0.30 mg·kg−1 (Zhang et al., 2014), even if the maximum value is up to
0.773mg·kg−1 belonging to the serious pollution level. In fact, the
distribution of soil Hg concentration significantly varies in three sub-
class agricultural lands according to their respective mean, maximum,
and minimum. Among them, the average values of soil Hg concentra-
tion are 0.153mg·kg−1, 0.215mg·kg−1 and 0.101mg·kg−1 in vegetable
field, paddy field and orchard field, respectively. In vegetable field and
orchard field, the minimum values of soil Hg concentration are
both< 0.01mg·kg−1, the maximum values are both<0.40mg·kg−1.
These values are much lower than those in paddy field (0.060mg·kg−1

and 0.773mg·kg−1). It clearly indicates that the soil Hg concentration
in paddy field is the highest, followed by the vegetable field, and then
the orchard field. Moreover, the soil Hg concentration displays quite
heterogeneous distributions across the paddy field and therefore higher
standard deviation, contrasting with the homogeneous distributions of
soil Hg concentration in the orchard field with lower standard devia-
tion. Therefore, this study excluded four outliers from all the 104 soil
samples, including one sample from vegetable field, two samples from
paddy field, and one sample from orchard field. After outliers re-
moving, square root transformation was done for the four sets of soil
sampling data. Finally, the soil Hg concentration met normal distribu-
tion according to the results of Pearson's Chi-square test (χ2) (Table 1).

3.2. Correlation based modeling variables selection

The Pearson's correlation analysis between predictors showed that
the independent variables of the group including DR and SE are cor-
related with another group including DRD and SS. Besides, variables of
group in various buffers are also strongly correlated. According to the
Pearson's correlation coefficients, this study reserved DRD, SS and CP
(100) as the potential driving factors with the exclusion of DR, SE and
CP in other different buffer areas. Correlation analysis results between
soil Hg concentrations and variable values denoting driving factors are
partially shown in Table 2. As illustrated, driving factors vary at three
subclass agricultural lands. In vegetable field, soil Hg concentration
negatively correlates to DC, with coefficient −0.271 (P≤ 0.05). In
paddy field, they are negatively correlated to SS, with coefficient
−0.602 (P≤ 0.05). However, in orchard field, no obvious covariate is
found. For the main class agricultural land, soil Hg concentration has
significant positive (0.243 when P≤ 0.05) or negative (−0.209 when
P≤ 0.05) relation to DC and CP (in a buffer of 100m), respectively.

3.3. Multiple linear regression modeling and driving factors identification

Table 3 shows the coefficients and significance of soil Hg con-
centration estimation models through MLR modeling method in two
sub-class and the main class agricultural lands (i.e., vegetable field and
paddy field). Clearly, the significant variables of models are not exactly

the same in different subclass agricultural lands, which are DC in the
vegetable field, while SS and DRD in the paddy field. Therefore, in the
vegetable field, the exhaust emission from industrial chimneys is the
main driving factors of soil Hg contamination, while in the paddy field,
combined with the action of surface runoff, traffic exhaust and solid
waste from the roads are the main pathways of the soil Hg con-
tamination accumulation. However, for the orchard field, significant
anthropogenic effects on soil Hg contamination were not found in the
case of this study. By contrast, in main class agricultural land, the sig-
nificant variables of soil Hg concentration estimation model include DC
and SS. Therefore, the driving factors of soil Hg contamination identi-
fied on the basis of main class agricultural land are the exhaust emission
from industrial chimneys and the contamination accumulation along
with surface runoff.

Table 4 lists the validation results of soil Hg concentration estima-
tion models to characterize the overall quality of the results with re-
spect to the three models. As shown in Table 4, all the three MLR
models passed the F Test, and the MRE values for model deviations in
subclass agricultural land, including vegetable field and paddy field, are
3.79% and 2.05%, respectively. These results indeed outperform the
MLR model for the main class agricultural land with the MRE value at
9.82%. Additionally, in terms of the model results of two subclass
agricultural lands, the accuracy of the model in the paddy field is much
higher than in the vegetable field according to the ME, MAE, and MRE
values for model deviations.

3.4. Spatial distribution mapping of soil Hg concentration

The spatial distributions of soil Hg concentration for the vegetable
field and paddy field aided with the two subclass agricultural land
models in this study area are shown in Fig. 2a–b. The ranges of the
simulated soil Hg concentration are classified into five levels taking the
statistics into consideration. The mean values of soil Hg concentration

Table 2
Pearson correlation coefficients between soil Hg concentrations and potential driving factor values.

Covariates Vegetable field Paddy field Orchard field Main class agricultural land

r P r P r P r P

pH −0.077 0.583 0.022 0.896 0.088 0.808 −0.035 0.866
DRD 0.269 0.069 −0.034 0.131 0.102 0.744 0.026 0.806
DC −0.271 0.021⁎ −0.010 0.951 −0.075 0.379 0.243 0.014⁎

SS −0.021 0.880 −0.602 0.032⁎ −0.209 0.447 −0.032 0.112
CP (100) −0.126 0.244 −0.033 0.763 0.511 0.078 −0.209 0.035⁎

DRD: the distances between the sampling sites and nearest roads; DC: the distances between the sampling sites and nearest chimneys; SS: the slopes of sampling sites;
CP (100): construction land portion in a buffer of 100m.

⁎ Represents significant level at 0.05.

Table 3
Various multiple linear regression (MLR) model parameters for soil Hg con-
centration estimation in agricultural land.

Soil uses Parameter Coefficients Sig.

Vegetable field Total model – 0.021
(Constant) 0.326 0.000
DC −7.276× 10−6 0.021

Paddy field Total model – 0.013
(Constant) 0.452 0.000
SS −0.034 0.011
DRD 3.874×10−5 0.033

Main class agricultural land Total model – 0.044
(Constant) 0.379 0.000
DC 5.486×10−6 0.006
SS −0.021 0.045

DRD: the distances between the sampling sites and nearest roads; DC: the dis-
tances between the sampling sites and nearest chimneys; SS: the slopes of
sampling sites.
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(0.225mg·kg−1 in paddy field, 0.135mg·kg−1 in vegetable field) il-
lustrates that the paddy field soil is suffering from severe Hg pollution
than vegetable field in this study area. Fig. 2a suggests that spatial
distribution of soil Hg concentration demonstrates several localized
hotspots in the north of the vegetable field. As shown in Fig. 2b, in
paddy field, it is difficult to find any local areas with continuous highest
or lowest values, instead the soil Hg concentration spreads evenly
across the space. However, the spatial distribution of soil Hg con-
centration is more heterogeneous with higher standard deviation
(0.067) in paddy field than in the vegetable filed (0.029).

The spatial distribution of soil Hg concentration aided with the main
class agricultural land MLR model is shown in Fig. 2c. Furthermore, the
spatial distributions of differences for the soil Hg concentrations from
main class agricultural land MLR model and subclass agricultural land
MLR models are shown in Fig. 2d and e. In fact, both in vegetable field
(Fig. 2d) and paddy field (Fig. 2e), the difference is greater in the areas
with higher soil Hg concentrations.

4. Discussion

Benefiting from the MLR modeling method, there is indeed a pow-
erful way to identify driving factors causing soil Hg contamination in
agricultural land so far (Du et al., 2015; Podolsky et al., 2015). How-
ever, it has to be acknowledged that while previous MLR based studies
mostly focused on the factors identification at main class agricultural
land (Han et al., 2006), the process difference of soil Hg contamination,
accumulation and diffusion in the different subclass agricultural lands
was ignored.

According to results of descriptive statistical analysis of this study,
several soil Hg concentrations in paddy field are slightly higher than the
National Environment Quality Grade II Standard for soil, 0.30 mg·kg−1.
But in general, Hg contamination is not significant in agricultural land
of the study area, which will not harm to human health at present (Zou
et al., 2017b). High concentration coupled with great standard devia-
tion values suggests the complex anthropogenic sources for soil Hg
contamination in paddy field. Relatively, in orchard field, the soil Hg
concentration displays quite homogeneous distribution across the space
with lower standard deviations, which probably suggests the un-
apparent anthropogenic pollution sources (Li et al., 2008). Moreover,
the results of correlation analysis in Table 2 actually also confirmed that
the selected predictors for denoting the soil Hg concentration variation
in orchard field of the study area are ineffectual.

Proving the credibility of MLR models developed in this study is
essential to accurately identify the real driving factors and consequent
to reveal the accumulation and transport process of soil Hg con-
tamination of the study area. As demonstrated in Table 3, the MLR
model developed in vegetable field shows that the soil Hg concentration
is only correlated with DC. This suggests that the farther away from the
nearest industrial sites is where the soil Hg concentration is lower. And
this result is completely consistent with the diffusion law of Hg exhaust
from industrial chimneys in previous studies. For paddy field, the MLR
model shows that soil Hg concentration is significantly correlated with
SS and DRD. This correlation relationship between soil Hg concentra-
tions and the slope of soil sampling sites might be contributed to large
runoffs in steep areas, which is helpful for the Hg contamination

migration in paddy field (Jiang et al., 2016). In this way, the ability of
runoffs for Hg contaminants transportation decreases gradually with
the digressive slope, which can lead to more accumulation of Hg
(Christoforidis and Stamatis, 2009; Wei and Yang, 2010). Relatively,
the correlation relationship between soil Hg concentrations and the
distances to the nearest roads might arise from the well-developed road
system. Generally, the on-road transportation of the solid waste is one
of main Hg contamination sources (Podolsky et al., 2015). In this study,
roads across around paddy fields, and this can lead to the Hg con-
taminants from multiple roads being transferred into the center of
paddy fields. As a result, Hg in the soils of these areas can be accu-
mulated faster and its concentration is higher than in the areas nearby
single roads or with less intersected roads.

The spatial distribution mapping results (Fig. 2a–b) well shows the
continuous variety characteristics of soil Hg concentration across the
vegetable and paddy fields. In vegetable field, the localized hotspots of
soil Hg concentration in the north (Fig. 2a) could be attributed to the
distribution of chimneys in this case study area (Fig. 1). The exhaust
diffusion of Hg contamination from industrial sites has already been
identified as a key driving factor in the MLR modeling step. Along with
the prevailing wind from southeast to northwest of the study area, the
Hg contaminants coming from the industrial chimneys in the midland
area can heavily accumulate in the north of the vegetable field. For
paddy field, the spatial variances of soil Hg concentration might result
from the combined actions of the soil sampling slope and the roads in
this area. Consequently, the ragged terrain characteristic and the de-
veloped roads network (Fig. 1) result in the even spatial distribution of
soil Hg concentration in paddy field (Fig. 2b). Moreover, comparisons
of the spatial distributions of soil Hg concentrations based on the MLR
models for main class and subclass agricultural lands clearly demon-
strated the large differences among them. Spatial patterns of the biased
soil Hg concentrations (Fig. 2d–e) are highly consistent with those from
the subclass MLR models based spatial distributions (Fig. 2a–b). This
results actually further indicate the defect of main class MLR model in
revealing the high soil Hg concentration due to misunderstood driving
factors. Additionally, although the ‘n− 1 cross validation’ was im-
plemented to validate the performance of MLR models in this study, the
reliability of the MLR model for orchard field still needs in-depth dis-
cussion due to the lack of enough samples. Therefore, we can only
suggest that significant anthropogenic effects on soil Hg pollution were
not found in the orchard field in the case of this study currently. Cer-
tainly, another probable explanation for this might be that, in terms of
agricultural situation in China, orchard fields are usually planted on a
large area and mostly intensively clustered in the high-altitude hills.
Therefore, the pollution risk will be easily considered and avoided
during the site selection. In contrast, the distribution of vegetable and
paddy fields usually located around people's homestead, which easily
suffer from various anthropogenic contamination sources.

5. Conclusion

Compared to the utilization of one unified MLR model based in-
vestigation of soil Hg contamination for main class agricultural land
traditionally, this study innovatively developed the GIS enhanced MLR
models at subclass level agricultural lands. In this process, it reveals
that subclass level factors driving the soil Hg contamination variation in
agricultural lands are obvious different to those from main class level.
With the subclass level specific MLR models, the spatial distributions of
the soil Hg concentrations in vegetable and paddy fields can be more
accurately mapped. In consequence, the soil Hg concentrations of
paddy field are the highest, which is mainly derived from surface runoff
and traffic contamination from the roads. Secondly, higher soil Hg
concentrations can be found in the vegetable field, which might be
caused by the exhaust emissions from industrial chimneys. However,
although this study lays a solid foundation for fine mapping of poten-
tially hazardous elements contamination in soil and consequent precise

Table 4
The validation of soil Hg concentration estimation models.

Soil uses ME
(mg·kg−1)

MAE
(mg·kg−1)

MRE
(%)

F test

Vegetable field 0.001 0.005 3.79 8.26
Paddy field 0.004 0.004 2.05 7.24
Main class agricultural land 0.013 0.025 9.82 6.25

ME: mean error; MAE: mean absolute error; MRE: the mean relative error.
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prevention and controlling action, future work should be more con-
centrated on the inherent diffusion and transport mechanism enhanced
semi-empirical modeling methods at higher spatial resolution.
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