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Abstract Probabilistic domain decomposition is proposed
as a novel method for solving the two-dimensional Maxwell’s
equations as used in the magnetotelluric method. The
domain is split into non-overlapping sub-domains and the
solution on the sub-domain boundaries is obtained by evalu-
ating the stochastic form of the exact solution of Maxwell’s
equations by a Monte-Carlo approach. These sub-domains
can be naturally chosen by splitting the sub-surface domain
into regions of constant (or at least continuous) conductivity.
The solution over each sub-domain is obtained by solving
Maxwell’s equations in the strong form. The sub-domain
solver used for this purpose is a meshless method resting on
radial basis function-based finite differences. The method is
demonstrated by solving a number of classical magnetotel-
luric problems, including the quarter-space problem, the
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block-in-half-space problem and the triangle-in-half-space
problem.
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1 Introduction

The magnetotelluric method is a standard remote sensing
method for inferring the Earth sub-surface electric structure
by measuring, at the Earth’s sub-surface electrical structure,
the electro-magnetic fields arising from electric currents
induced in the sub-surface by naturally occurring time vari-
ations of the Earth’s magnetic field. Due to its potential of
probing the sub-surface conductivity structure up to sev-
eral hundred kilometers, the magnetotelluric method has
become a standard technique for exploration surveys aim-
ing at locating mineral and hydrocarbon resources and for
investigating the structure and composition of the Earth’s
crust and upper mantle [8, 33].

Linking the data obtained from field surveys to the
conductivity structure in the ground requires a numerical
solution of Maxwell’s equations. Several techniques have
been proposed for this purpose, including finite differences,
finite volume, and finite element solvers [35, 38]. In this
paper, we propose another method suitable for the numerical
evaluation of Maxwell’s equations, based on probabilis-
tic domain decomposition [1], that is particularly suited to
efficient computation via parallelization and that has the
potential to handle arbitrary topography and realistically
complex geological interfaces.
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Probabilistic domain decomposition is a relatively recent
domain decomposition method. In traditional (determinis-
tic) domain decomposition, one generally splits the physical
domain into sub-domains and alternately (or in parallel)
solves the given differential equation over each sub-domain.
Proper interface conditions between the sub-domains ensure
convergence of the domain decomposition procedure to the
global solution over the entire domain using an iteration pro-
cedure. The rate of convergence strongly depends on what
type of interface conditions are chosen, see, e.g., [30], and
finding the most optimized interface conditions is usually a
challenging task.

In contrast to traditional domain decomposition, prob-
abilistic domain decomposition does not require iteration.
The main requirement for the applicability of probabilis-
tic domain decomposition is that the partial differential
equation under consideration possesses a stochastic repre-
sentation of its exact solution. This is always the case for
linear elliptic boundary value problems and linear parabolic
initial-boundary value problems [19]. Certain nonlinear dif-
ferential equations also allow for a stochastic representation
of their exact solution, see, e.g., [2].

The probabilistic form of the exact solution of a differ-
ential equation can be evaluated numerically using Monte
Carlo methods. While Monte Carlo methods are known
to converge notoriously slowly and hence only become
competitive for higher-dimensional problems [29], the situ-
ation is different in the probabilistic domain decomposition
framework. Here, one evaluates the stochastic representa-
tion of the exact solution only on the interfaces between
the sub-domains. Thus, rather than computing the solu-
tion of the global problem using the stochastic technique at
every point, only interface solutions have to be computed.
The solution over each individual sub-domain can then be
obtained using deterministic methods. Moreover, since the
stochastic solution reproduces the exact solution up to the
numerical error (consisting of a time-stepping error, the
boundary hitting error, and the Monte Carlo error [1]), no
iteration is required for the domain decomposition tech-
nique to converge. In addition, once the interface solutions
are obtained, the sub-domain solutions can be computed
simultaneously. Probabilistic domain decomposition is thus
particularly suited to massively parallel computing architec-
tures. Probabilistic domain decomposition has been used to
solve physical partial differential equations in [1–3] and
for the generation of moving meshes in partial differential
equation-based grid generations in [4, 5].

In this paper, we apply the probabilistic domain decom-
position method to the two-dimensional magnetotelluric
problem, solving the two-dimensional Maxwell’s equa-
tion in the time-frequency domain. The main challenge in
applying the method to Maxwell’s equations is the presence

of conductivity jumps. The two-dimensional Maxwell’s
equations, as used in the magnetotelluric method, are a
system of differential equations with discontinuous coef-
ficients. This adds another layer of complexity as most
work connecting boundary value problems and stochastic
calculus has been done for equations with continuous coef-
ficients, see, e.g., [26]. However, the discontinuity in the
conductivity allows for a natural splitting in sub-domains,
namely those where the conductivity is constant (or at least
continuous). This enables one to solve Maxwell’s equations
in the strong form on each of the sub-domains, which is
the route that we will pursue in this paper. For a recent
exposition on a deterministic domain decomposition method for
the three-dimensional time-dependent Maxwell’s equations,
see [10].

Since the stochastic form of the exact solution of
Maxwell’s equations can be evaluated at arbitrary points,
and in realistic sub-surface models the conductivity jumps
can have arbitrary shape, it is natural to use a determinis-
tic sub-domain solver that can handle a variety of interface
layouts as well. This makes so-called meshless methods a
natural choice. The use of meshless methods in geophysics
is relatively recent. The magnetotelluric problem has been
considered quite recently in this light in [36], although there
the authors used Maxwell’s equations in the weak form.
This requires one to use high-order numerical integration
which can be avoided if meshless methods in the strong
form are invoked. In the present paper, we will use radial
basis function based finite differences (RBF-FD). This is a
prominent meshless method [14, 16] that is in some sense
a generalization of the traditional finite difference method,
replacing the traditional polynomial basis functions with
radial basis functions. The method is truly meshless, i.e., it
can be used on arbitrarily distributed nodes.

This paper is organized as follows. In Section 2,
we present the mathematical background underlying the
probabilistic domain decomposition method for the two-
dimensional Maxwell’s equations. This includes both a dis-
cussion of the stochastic representation of the exact solution
of Maxwell’s equations and the description of the numerical
evaluation of this representation in the context of probabilis-
tic domain decomposition. Section 3 details the numerical
implementation of the probabilistic domain decomposition
method. This concerns both the choice for the discretiza-
tion of the stochastic representation of the exact solution
of Maxwell’s equations, and the implementation details of
the RBF-FD method. Numerical results for an analytical
solution and some simple geophysical examples are pre-
sented in Section 4. Although simple, these traditional tests
show the potential of the probabilistic domain decomposi-
tion method. The conclusion and final thoughts are given in
Section 5.
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2 Probabilistic domain decomposition
for the two-dimensional Maxwell’s equations

In this section we present the necessary theoretical back-
ground underlying the probabilistic domain decomposition
for the quasi-static two-dimensional Maxwell’s equations as
used in the magnetotelluric method.

2.1 The two-dimensional Maxwell’s equations

The two-dimensional quasi-static Maxwell’s equations in
the time frequency domain read

∇·
(

1

iωμ
∇Ey

)
−σEy = 0, ∇·

(
1

σ
∇Hy

)
−iωμHy = 0,

(1)

where ∇ = (∂x, ∂z) is the two-dimensional gradient opera-
tor in the (x, z)-plane, Ey and Hy are the y-components of
the electric and magnetic field vectors E and H, respectively,
σ is the electric conductivity, μ = μ0 = 4 · 10−7 Hm−1

is the magnetic permeability, ω is the angular frequency,
and i = √−1 is the imaginary unit. The equation for the
electric field component is called the TE-mode, whereas the
equation for the magnetic field component is called the
TM-mode.

The above system (1) gives the components of the pri-
mary fields perpendicular to the plane of the model, from
which the secondary field components Ex and Hx in the
plane of the model can be derived as

Ex = 1

σ

∂Hy

∂z
, Hx = − 1

iωμ

∂Ey

∂z
. (2)

The system for the field components Ex , Ey , Hx and
Hy has to be complemented with appropriate boundary
conditions. In the following we will work with Dirichlet
boundary conditions exclusively. More precisely, we will

x

z

σ(x , z )

σ0

σ1

Fig. 1 A sample sub-surface structure and computational domain for
system (1)

assume that all the boundaries are far away from any regions
of anomalous conductivity so that the one-dimensional half-
space boundary conditions can be used on the left and on
the right of the domain [34, p. 56; Fig. 1]. The top and
bottom boundaries are obtained from linear interpolation
from the respective top and bottom corner points of the
domain.

The proposed probabilistic domain decomposition
method can also be applied to other kinds of boundary
conditions, including Neumann and Robin boundary condi-
tions. For further details, see [24].

Once the primary and secondary field components are
computed, they can be used to calculate the apparent resis-
tivities and phases as

ρTE
a = 1

ωμ

∣∣∣∣ Ey

Hx

∣∣∣∣
2

and ϕTE = arg

(
Ey

Hx

)
,

ρTM
a = 1

ωμ

∣∣∣∣ Ex

Hy

∣∣∣∣
2

and ϕTM = arg

(
Ex

Hy

)
. (3)

2.2 Stochastic analysis for the two-dimensional
Maxwell’s equations

For a given domain � ⊂ R
2, it is well-known that for linear

elliptic boundary value problems of the form

Lu − λ(x, z)u = 0 in �, u|∂� = g(x, z), (4)

where λ is non-negative and L = 1
2aij (x, z)∂i∂j +bi(x, z)∂i

is a semi-elliptic operator with bounded, two times contin-
uously differentiable coefficients (summation over repeated
indices is implied), the exact solution can be written in
probabilistic form as

u(x, z)=E

(
g(β(τ∂�))exp

(
−

∫ τ∂�

0
λ(β(s))ds

)∣∣∣β(0)=(x, z)

)
.

(5a)

Here, β(t) = (X(t), Z(t)) denotes the stochastic process
associated with the operator L, satisfying the stochastic
differential equation

dβ = b(β)dt + V (β)dW, (5b)

where the two-dimensional drift vector b has components
b1, b2, and the 2 × 2 matrices V = (Vij ) and a = (aij )

are related through V V T = a, and W is two-dimensional
Brownian motion. The quantity τ∂� denotes the first time
a stochastic process β(t) starting at a point (x, z) hits the
boundary of �. Equation 5a is the celebrated Kac–Feynman
formula [26].

The main problem in using the stochastic solution (5) is
that the two-dimensional Maxwell’s equations are not of the
form of Eq. 4 since the conductivity σ is in general not a
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continuous function. It is therefore necessary to study the
class of problems given by

1

2
∇ ·(κ(x, z)∇u)−λ(x, z)u = 0 in �, u|∂� = g(x, z),

(6)

where both κ and λ are discontinuous. For the two-
dimensional Maxwell’s equations we have κ = 2/(iωμ)

and λ = σ for the TE-mode and κ = 2/σ and λ = iωμ for
the TM-mode. That is, λ is discontinuous for the TE-mode
and κ is discontinuous for the TM-mode, and both parame-
ters can be complex-valued. Multiplying the equation for the
electric mode with i, it is sufficient to assume that κ ∈ R

+
and λ ∈ C.

The stochastic analysis of this class of problems is con-
siderably more elaborate; available theoretical results seem
to be mostly restricted to one-dimensional and real-valued
cases. While it follows from applying a regularization argu-
ment, see,e.g., [20], that the solution of Eq. 6 is still given
through the Kac–Feynman formula (5a), finding a suit-
able stochastic process associated with the operator 1

2∇ ·
(κ(x, z)∇) for general forms of discontinuous κ appears to
be an open problem.

On the other hand, the construction of numerical approx-
imations to this problem for the case of κ (and λ) being
piecewise constant has been the subject of several investi-
gations, especially for the case of λ = 0. See [6, 22, 24,
31] for recent results. Different schemes have been pro-
posed, which include so-called kinetic schemes [21], mixing
schemes [22], schemes relying on occupation times [20] and
schemes using ideas of finite differences [22, 25]. Here, we
have chosen this last approach and will discuss it in more
detail.

The main idea of all the above approaches is to split the
domain into sub-domains �i over which both κ and λ are
constant. On each sub-domain, Eq. 6 reduces to

1

2
κi�u − λiu = 0 in �i. (7)

This equation is of the form (4) and hence the stochas-
tic solution as given by Eq. 5 holds. More precisely, the
stochastic differential Eq. 5b simplifies to

dβ = √
κi I�i

(β) dW, (8)

where here and in the following IA is the indicator function
of A. This means that the process can be simulated via regu-
lar Brownian motion when it is away from the interface. If it
reaches the interface, it is possible that for a while the pro-
cess goes to and fro between adjacent sub-domains before it
randomly resolves in either direction. The issue is that when
the diffusion coefficients are different, every time that the
process crosses the interface, the regime changes.

The approximation of the β(t) process as it passes
through the interface can be based on finite differences by

imposing the condition of continuity of the flux κ∇u across
the interface,

κi∇u = κj∇u at γij , (9)

where γij is the interface between the neighboring sub-
domains �i and �j .

Without loss of generality, we assume that there is only
one vertical interface separating the two neighboring sub-
domains �1 and �2 located at x = 0. At this interface, the
continuity of the flux condition (9) can be represented as

κ1 lim
h1→0

u(h1, z)−u(0, z)

h1
= κ2 lim

h2→0

u(−h2, z)−u(0, z)

−h2
,

∀(0, z) ∈ γ, (10)

which can be locally solved for u(0, z) yielding

u(0, z) ≈ p1u(h1, z)+p2u(−h2, z), h1, h2 > 0, (11)

with

p1 = κ1h2

κ1h2 + κ2h1
, p2 = κ2h1

κ1h2 + κ2h1
.

If h1 = h2 = h, then,

p1 = κ1

κ1 + κ2
, p2 = κ2

κ1 + κ2
. (12)

An interpretation of formula (11) is that when the β(t)

process reaches the interface, locally, u(0, z) can be approx-
imated as the expected value of a random variable taking
values u(h1, z) and u(−h2, z) with probabilities p1 and
p2, respectively. This, in turn, also admits the following
probabilistic interpretation: after reaching the interface, the
process resumes from either a point in the neighborhood of
(h1, z) with probability p1 or the neighborhood of (−h2, z)

with probability p2. This interpretation provides a straight-
forward algorithm to deal with the process when it hits
the interface. Note that formula (11) is not exact as long
as h1, h2 are finite.

An alternative to the previous procedure consists of dis-
secting the behavior of the process as it moves through the
interface by using notions of skew Brownian motion and
Brownian meander, see [20, 23] for further discussions. An
algorithm using this alternative approach is computationally
more complex and expensive than the one based on finite
differences. However, our testing indicates that both algo-
rithms produce qualitatively similar results. For this reason,
we choose to present only the procedure which is easier to
implement.

3 Numerical implementation

In this section we present the details of the novel numerical
implementation of probabilistic domain decomposition for
the two-dimensional Maxwell’s equations in the frequency
domain.
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3.1 Stochastic solver

The pointwise stochastic solution procedure consists of sim-
ulating realizations of the path {β(n)} = (

β
(n)
x , β

(n)
z

)
, a

discretized version of the solution to the differential Eq. 8
based on a modification of the Euler–Maruyama method.
The starting position, β(0) = (x, z), is the point at which
the numerical solution is sought and the realization of the
process is completed when the boundary of � is reached.
Suppose that at the step n, the process is in the sub-domain
�i . Then, we draw a provisional β(n+1) as

β(n+1) = β(n) + √
κi �t W, W ∼ N (0, I2) (13)

where �t = t (n+1) − t (n) is the time step, and N (0, I2)

denotes the distribution of a random 2-vector of independent
standard normal variables. Next, we check if ∂� has been
reached. If so, the realization is completed. Otherwise, we

verify whether between the times t (n) and t (n+1) the inter-
face has been hit. If the process is away from the interface,
β(n+1) is retained and �t is added to Ti , the occupation time
of �i , before moving on to the next iteration.

When the process hits an interface point (x, z)|γij
, say

(xγij
, z), if κi 
= κj , we carry out the procedure laid out

in Section 2.2, i.e., by using the probabilities pi and pj =
1 − pi from Eq. 12, we randomize to determine whether
β(n+1) lies in �i or in �j . Also, we estimate the occupation
times between t (n) and t (n+1). We estimate the time when
the interface was first reached, by either inverting the test
for the first hitting time during an excursion with respect
to a Brownian bridge (i.e., when the provisional β(n+1)

is on the same sub-domain as β(n)), or approximating the
expected value of the first exit time with respect to a Brow-
nian bridge [7, 18]. We define t

γ
(n)
ij

as zero when β(n) in on

the interface, otherwise

t (n)
γij

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−2(β
(n)
x − xγij

)(β
(n+1)
x − xγij

)

κi log Uγ

, Uγ ∼ U(0, 1), if β(n), β(n+1) in �i

�t

∣∣∣∣∣
β

(n)
x − xγij

β
(n+1)
x − β

(n)
x

∣∣∣∣∣ , if β(n) in �i and β(n+1) in �j ,

(14)

where U(0, 1) denotes the uniform distribution on [0, 1], so
that whenever t

(n)
γij

≤ �t , we conclude that the process has

reached the interface at time t (n) + t
(n)
γij

and, accordingly,
proceed to randomize in order to find the definitive value for
β(n+1). This randomization and the update of the occupation
times can be done as follows. Let cij (h) be

cij (h) = h I[
β

(n)
x ≤xγij

] − h I[
β

(n)
x >xγij

].

Now, if Uα < pi , Uα ∼ U(0, 1), then β(n+1) is
drawn randomly from inside a circle of radius hi and

center
(
xγij

− cij (hi), z
)
, and �t − 1

2

(
�t − t

(n)
γij

)
pi and

1
2

(
�t − t

(n)
γij

)
pi are added to Ti and Tj , respectively. Oth-

erwise, β(n+1) is drawn from a circle with radius hj and

center
(
xγij

+ cij (hj ), z
)
, and t

(n)
γij

+ 1
2

(
�t − t

(n)
γij

)
pj and

1
2

(
�t − t

(n)
γij

)
(1 +pj ) are added to Ti and Tj , respectively.

These occupation times estimates are based on approxima-
tions of their expected value as the process moves around
the interface given t

(n)
γij

[20]. When κi = κj and the pro-
cess hits the γij interface, there is no regime change and
we retain β(n+1) obtained through Eq. 13. Only the occupa-
tion times between t (n) and t (n+1) are updated according to
where β(n+1) lies.

This process is repeated N times so that the expected
value appearing in Eq. 5a can be approximated as

u(x, z) = 1

N

N∑
r=1

g(βr(τ̃r )) exp

⎛
⎝−

K∑
j=1

λkT
r
j

⎞
⎠ ,

where βr(τ̃r ) denotes the state of the process at the time τ̃r

of the rth realization of the discretized process (13), τ̃r is
the time estimate at which the overall boundary, ∂�, was
first reached, K is the number of sub-domains �j with dif-
ferent κj (and/or λj ) and T r

j is the time spent in the j th
sub-domain through the rth realization. When ∂� consists
of vertical or horizontal barriers, the estimation of τ̃r , the
first exit time from � for the rth realization of the process,
can be carried through an expression similar to Eq. 14 with
(x, z)|γij

replaced by (x, z)|∂�. Thus, when t
(n)
∂� ≤ �t , we

conclude that the process has reached the boundary at time
τ̃r = t (n) + t

(n)
∂� bringing the rth realization of the process to

an end.

Remark 1 The procedure described above can be extended
to handle interfaces that are at least piece-wise constant
or may be approximated by a smooth function. In such a
case, we indeed incur an increase in computational cost
due to the burden of testing whether the interface has been
reached or crossed. The cost of testing increases with the
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complexity of the interface. The relationship between the
time step and the precision of the solution in the proposed
procedure is a direct consequence of the mechanism used
to simulate the stochastic process (in our case the Euler–
Maruyama method); but the time step itself is not affected
by the topology of the interface.

Remark 2 While the main aim of this paper is to put
forward a new method for solving the two-dimensional
Maxwell’s equations over the entire computational domain,
the stochastic form of the solution of Maxwell’s equations
can also be used to compute the solution in single, isolated
points. Thus, if the solution is only required near the mea-
surement sites, the stochastic solution can be used for this
purpose as well. This is in striking contrast to all determin-
istic methods, which require the computations to be carried
out over the entire domain, even if the solution is only
required in a single point. An example for this use will be
presented in Section 4.

3.2 Sub-domain solver

Having described the stochastic part of the algorithm, we
now proceed to describe the deterministic portion. Recall
that due to the discontinuity in the conductivities, it is
not possible to solve Maxwell’s equations in the strong
form over the entire domain � using a deterministic solver
only. Instead, we divide the domain � into non-overlapping
sub-domains �i , on each of which the conductivity σ is
differentiable. Since we are primarily interested in the appli-
cation of the probabilistic domain decomposition method to
the two-dimensional Maxwell’s equations for realistic sub-
surface models, the single sub-domains �i will generally
be of an arbitrary shape. This makes it natural to choose a
sub-domain solver that can operate on an arbitrary set of
nodal points distributed in a suitable way over the single
sub-domain. Thus, meshless methods are a suitable choice
for the sub-domain solver.

The underlying paradigm of meshless methods is that
one does not require a topologically connected mesh in
order to compute a numerical solution over a given domain,
as is required in conventional mesh-based methods such
as finite differences, finite volumes or finite elements. In
meshless methods, the local approximations of derivatives
are formulated directly in terms of (in principle) arbitrar-
ily distributed nodes. Various meshfree methods have been
developed over the past few decades, including smooth
particle hydrodynamics, meshless finite differences, radial
basis function methods, meshless local Petrov–Galerkin
methods and element-free Galerkin methods [9, 14, 26, 27].

In this paper we will use the radial basis function-based
finite differences method (RBF-FD). This method rests on
replacing the one-dimensional polynomial test functions
that are used to derive regular finite difference formulas
by radial basis functions (RBFs) [16]. More precisely, the
weights wi at the node locations xi , i = 1, . . . , n, required
to approximate a linear differential operator L at the node
x0 are obtained by solving the matrix system

⎛
⎜⎜⎜⎝

φ(||x1 − x1||) φ(||x1 − x2||) · · · φ(||x1 − xn||)
φ(||x2 − x1||) φ(||x2 − x2||) · · · φ(||x2 − xn||)

...
...

...

φ(||xn − x1||) φ(||xn − x2||) · · · φ(||xn − xn||)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

w1

w2
...

wn

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

Lφ(||x − x1||)|x=x0

Lφ(||x − x2||)|x=x0
...

Lφ(||x − xn||)|x=x0

⎞
⎟⎟⎟⎠ .

In other words, the weights are found in the RBF-FD
method by requiring that the approximation of L is exact
when applied to the radial basis functions themselves. Here,
xi = (x1

i , x2
i , · · · , xd

i )T is a point in d-dimensional space,
|| · || is the Euclidean 2-norm and φ(||x − xi ||) is an RBF
centered at the node xi .
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Fig. 2 Numerical solution for the analytical test problem using N = 10000 Monte Carlo simulations. Left: real part, right: imaginary part
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Fig. 3 Error plots for the analytical test problem for N = 10000 Monte Carlo simulations. Left: Real part, right: Imaginary part

Common RBFs used in practice include the Gaussian,
φ(r) = exp(−(εr)2), the multiquadric, φ(r) =√

1 + (εr)2, and the inverse multiquadric, φ(r) = (1 +
(εr)2)−1/2 [16]. The parameter ε is called the shape param-
eter and it controls the flatness of the RBF. In the following,
we will use the multiquadric for all computations.

For the given RBFs, the above matrix system can be
solved provided that the nodes xi , i = 1, . . . , n are distinct.
Denoting by A the matrix with elements Aij = φ(||xi−xj ||)
and by B the square matrix with elements Bij = Lφ(||x −
xj ||)|x=xi

the differentiation matrix D approximating the
linear operator L becomes

D = BTA−1.

In other words, for the action of L on a function f (x),
we have the following approximation⎛
⎜⎜⎜⎝

Lf (x)|x=x1

Lf (x)|x=x2
...

Lf (x)|x=xn

⎞
⎟⎟⎟⎠ ≈ D

⎛
⎜⎜⎜⎝

f (x1)

f (x2)
...

f (xn)

⎞
⎟⎟⎟⎠ .

A main problem with the above procedure is that the
differentiation matrix D is a full matrix. Its computation
requires O(n3) operations, which is very costly if D has
to be re-computed. This happens, for example, if the node
layout {xi} changes, which is always necessary for moving
mesh methods or if adaptive mesh refinement is used.

A more cost efficient way is achieved by assigning to
each of the n nodes, xi , a separate stencil of ns � n nodes.
These nodes are typically the ns − 1 nearest neighbors of

Table 1 Absolute errors for the model (15) at point (0.6, 0.6)

varying N

N 1 · 104 1 · 105 1 · 106

(error) 0.0086 0.0017 7.25 · 10−4

�(error) 0.0067 0.0034 8.95 · 10−4

each node x0. In this procedure, the differentiation matrix D
becomes a sparse matrix having ns non-zero entries in each
of the n rows. This restriction to neighboring nodes yields
the RBF-FD method. It is the exact analogue of the classical
finite difference method, using RBFs instead of polynomials
as basis functions in the stencil around each point x0.

For Maxwell’s equations, we require to approximate L =
� on each sub-domain with continuous conductivity. We do
this by creating separate differentiation matrices for L = ∂2

x

and L = ∂2
z using ns = 9 nodes per each stencil. These

nodes are chosen to be the 8 nearest neighbors and the center
node x0 itself.

The choice of the shape parameter ε is paramount in
that it governs the accuracy of the RBF-FD method. It is
generally found that the numerical computations become
most accurate when using almost flat RBFs (i.e., ε being
very small). The smaller the parameter ε, however, the
more ill-conditioned the matrix systems become [17, 37].
In order to overcome the dilemma of choosing between
accuracy and ill-conditioning, several methods have been
proposed, including the use of high-precision arithmetics
and the RBF-QR method [15], which was mostly developed
for Gaussian RBFs. We found experimentally that a value

z

x

Fig. 4 Conductivity model for the quarter-space experiment
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Fig. 5 Apparent resistivities for the TE-mode (left) and the TM-mode (right) for the quarter-space model using f = 1 Hz

of ε = 1/2000 gives satisfying accuracy for a wide range of
grid spacings in the test problems considered in the follow-
ing section. A more thorough investigation of the optimal
shape parameter ε for use within the probabilistic domain
decomposition method for Maxwell’s equations should be
investigated elsewhere.

4 Results

In this section we present numerical results using the
stochastic solution technique for the two-dimensional
Maxwell’s equations discussed in the previous section.
These examples are well-studied in the literature and serve
as a demonstration for the potential of the new method
to correctly reproduce existing results. More realistic
sub-surface models that will also demonstrate the full poten-
tial of the meshless RBF-FD method will be presented in a
separate paper.

4.1 Analytical test model

To verify numerically our method for evaluating the pro-
cess as it passes through the interface for discontinuous κ

and imaginary λ, we consider the Dirichlet problem for the
complex-valued Helmholtz equation

∇ · (κ∇)u + λu = 0, (15a)

with exact solution

ue = c1(z + c2)

⎧⎪⎨
⎪⎩

cosh
(√

λ
κ1

x
)

, −1 ≤ x < 0

cosh
(√

λ
κ2

x
)

, 0 ≤ x ≤ 1.

(15b)

Here, we choose c1 = c2 = 1, κ1 = 1, κ2 = 10
and λ = 10i as parameters. The exact solution ue is used
as boundary data for the physical domain. The physical
domain � = [−1, 1]×[−1, 1] is discretized using a uniform
mesh with 51 × 51 grid points. The stochastic differential
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Fig. 6 Phases for the TE-mode (left) and the TM-mode (right) for the quarter-space model using f = 1 Hz



Comput Geosci

2000 m

250 m

1000 m

σ=5 S/m

σ=0.01 S/m

Fig. 7 Conductivity model for the COMMEMI 2D-1 experiment

Eq. 5b is discretized using the Euler–Maruyama method
with time step �t ∝ (�x)2. In Fig. 2, we display the
numerical solution un obtained from using the stochastic
procedure in all grid points with N = 10000 Monte Carlo
simulations. The associated pointwise errors are displayed
in Fig. 3.

In order to show the decrease of the errors as the num-
ber of Monte Carlo simulations, N , is increased, we present
the absolute errors for different values of N in Table 1.
Since numerically solving Eq. 15 at every point in � is
computationally intensive for a study of increasing N , the
errors reported in Table 1 are for the single point (x, z) =
(0.6, 0.6) only. While the magnitude of the error is spatially
dependent, the error decrease with increasing N at (0.6, 0.6)

remains valid throughout the domain.
The convergence results presented in Table 1 should be

taken with a grain of salt. Recall that the error incurred
by numerically evaluating the stochastic representation of
an exact solution of a linear boundary value problem such
as Eq. 5 consists of three parts. These are the pure Monte
Carlo error (due to approximating the expected value in
Eq. 5a with the mean value), the time stepping error (due
to discretizing the stochastic differential Eq. 5b using a

finite time step), and the error in estimating the first exit
time τ∂� [1]. Increasing only the number of Monte Carlo
simulations as done in Table 1 hence will not lead to a
convergent numerical scheme unless also the two other
sources of errors are controlled, e.g. by using increasingly
small time steps which will both reduce the time step-
ping error and improve the estimate for the first exit time.
What Table 1 does demonstrate is that if a reasonably small
time step is chosen in the discretization of the stochastic
differential Eq. 5b (controlling the second and third sources
of numerical error), the numerical results obtained can be
improved by merely increasing the number of Monte Carlo
simulations. This also shows that the additional error intro-
duced due to our approximation strategy at the interface is
small enough to prevent error saturation before geophysi-
cally acceptable accuracy is achieved. This is also explicitly
demonstrated in the following examples.

4.2 Quarter-space solution

The quarter-space model for this experiment is identical to
the one proposed in [12, 13]. It splits the region z ≥ 0 into
two areas, one with conductivity σ = 0.1 S/m (on the left),
the other with conductivity σ = 0.01 S/m (on the right), see
Fig. 4.

As in [12, 13], we used f = 1 Hz as the frequency.
We employed a variable grid spacing with minimum cell
sizes being �x × �z = 50 m × 50 m near the interfaces
and a maximum cell size of �x × �z = 300 m × 200 m
near the boundaries in the ground. A total of N = 5000
Monte Carlo simulations was used in the stochastic solver,
which here and in the following was only used at the sub-
domain interfaces, with the solution over the sub-domains
being computed using the deterministic, meshless solver.
Note that the variable resolution of the model is naturally
handled using the meshless solver.
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Fig. 8 Apparent resistivities for the TE-mode (left) and the TM-mode (right) for the COMMEMI 2D-1 experiment using f = 10 Hz
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The apparent resistivities and phases for the quarter-
space model are shown in Figs. 5 and 6, respectively. They
align closely with the results presented in [12, 13].

4.3 Rectangular block in half-space solution

This experiment coincides with the COMMEMI 2D-1
example [38]. It is given by a symmetrical, rectangu-
lar, highly conducting block embedded in an otherwise
uniform conducting half-space. More precisely, the rect-
angular block measures 1000 m in x-direction, 2000 m in
z-direction, with its top edge lying at z = 250 m. The con-
ductivity of the block is σ = 2 S/m, and the conductivity
of the half-space is σ = 0.01 S/m. The conductivity model
of this test problem is depicted in Fig. 7. The frequency
used in the experiments was f = 10 Hz. We carry out two
experiments for the COMMEMI 2D-1 model.

In the first experiment, we obtain a solution to the two-
dimensional Maxwell’s equations using the probabilistic
domain decomposition algorithm. For this experiment, the
grid cells of the model were of size �x × �z = 100 m ×
125 m throughout the entire domain. The number of Monte
Carlo simulations used in the stochastic solver was N =
5000.

As was outlined in Section 2, the stochastic solution
to Maxwell’s equations allows one to compute the solu-
tion at single points only. For the sake of demonstra-
tion, in the second experiment, we compute the solution
stochastically only in the COMMEMI locations, x ∈
{0, 500, 1000, 2000, 4000}. More specifically, we compute
the solution in three points near the surface at the afore-
mentioned x-locations to be able to compute the required
secondary fields by evaluating Eq. 2 using regular centered
differences. A total of N = 400000 Monte Carlo simu-
lations was used in this experiment. This high number of
Monte Carlo simulations ensures that the primary fields Ey

and Hy are computed with high accuracy to then allow
generating sufficiently accurate approximations for the

2000 m

500 m

2000 m

σ=0.2 S/m

σ=0.01 S/m

Fig. 9 Conductivity model for the triangle in a half-space example

secondary fields Ex and Hx , yielding ultimately leading to
accurate values for the apparent resistivities ρTE

a and ρTM
a .

The apparent resistivities for the TE-mode and TM-mode
are shown in Fig. 8.

To give a better comparison with the values reported in
the COMMEMI experiments, in Table 2 we list the mean
values (and standard deviation) taken from Table B.8 in [38]
along with the numerical values obtained with our two
approaches.

It can be seen from Table 2 that the probabilistic domain
decomposition method produces values that are well within
the range of results reported in the COMMEMI experi-
ments. The only significant deviation is the value for the
TM-mode resistivity at x = 500 m. As can be seen from
the right plot in Fig. 8, this is the region of highest variabil-
ity in the resistivity and the COMMEMI mean is obtained
between x = 500 m and the neighboring grid point. Sim-
ilarly, the pointwise solution obtained using the purely
stochastic algorithm also gives results that are well within
the range of the COMMEMI results, demonstrating that if
solutions are sought in single points only, the stochastic
algorithm may be a viable alternative compared to stan-
dard deterministic methods that requires the computation of
the numerical solution over the entire domain even if the
solution is required at several points only.

Table 2 Apparent resistivities
computed using the
probabilistic domain
decomposition method and the
purely stochastic algorithm
compared to the original
COMMEMI results

0 m 500 m 1000 m 2000 m 4000 m

ρa(TM)

PDD 10.15 36.01 93.98 98.55 99.78

Stochastic 11.58 41.10 93.43 98.52 99.65

COMMEMI 10.13 ± 0.96 48.07 ± 3.65 94.27 ± 0.79 98.40 ± 0.40 99.71 ± 0.64

ρa(TE)

PDD 7.44 13.27 51.20 97.58 104.36

Stochastic 6.70 12.50 50.84 97.54 103.77

COMMEMI 7.60 ± 1.04 13.92 ± 1.82 50.70 ± 2.48 95.94 ± 2.75 103.92 ± 0.80
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Fig. 10 Apparent resistivities for the TE-mode (left) and the TM-mode (right) for the triangle in a half-space experiment. Results from the
probabilistic domain decomposition method (circles) and the deterministic model presented in [11] for the frequencies f = 1 Hz, f = 3 Hz and
f = 10 Hz

4.4 Triangular block in half-space solution

This experiment was previously considered in [11]. It is
a bit more general than the COMMEMI 2D-1 example
and, with the sloping interface of the triangular anomaly,
begins to illustrate the capability of the combination of the
domain-decomposition solver and the meshless sub-domain
solver to take into account arbitrary, complex interfaces. The
conductivity model for this example is illustrated in Fig. 9.
The triangle has corners at the three points (−600, 400),
(−600, 2500) and (1500, 2500) with conductivity σ =
0.2 S/m in a half-space with conductivity σ = 0.01 S/m.

The grid cells for this model were of size �x × �z =
100 m×50 m and N = 5000 Monte Carlo simulations were
used for the approximation of the expected values. For this

experiment, we used the frequencies f = 1 Hz, f = 3 Hz
and f = 10 Hz.

The conductivities and phases for this experiment are
displayed in Figs. 10 and 11. Here we present the results
using the probabilistic domain decomposition method and
the model developed in [11].

It can be seen from Figs. 10 and 11 that for the TE-mode,
the apparent resistivities and phases for both methods coin-
cide closely. For the TM-mode, the results do not coincide
as well, with the discrepancy increasing as the frequency
increases. The reason for this is that the conductivity model
is treated differently by the different methods. For the prob-
abilistic domain decomposition approach presented here, a
conductivity is associated with each node, with this conduc-
tivity being implicitly an average over the neighborhood of

Fig. 11 Phases for the TE-mode (left) and the TM-mode (right) for the triangle in a half-space experiment. Results from the probabilistic domain
decomposition method (circles) and the model presented in [11] for the frequencies f = 1 Hz, f = 3 Hz and f = 10 Hz
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the node. For the FD scheme of [11], the conductivity is
explicitly considered to be uniform throughout each rectan-
gular cell of the mesh with the approximate values for Ex

and Hx solved for at cell centers and cell vertices (for the
TE- and TM-modes, respectively).

5 Conclusion

The present paper introduced the probabilistic domain
decomposition method for solving the two-dimensional
Maxwell’s equations as required in the magnetotelluric
method. The method is new in that it allows splitting of
the sub-surface into regions of constant or continuous con-
ductivity, over which Maxwell’s equations can be solved
independently. This splitting also allows one to use the
strong form of Maxwell’s equations, and thus, the potential
costly numerical integrations required in solvers using the
weak form can be avoided. The interface solutions for these
sub-domains are naturally found by evaluating the stochas-
tic form of Maxwell’s equations numerically using Monte
Carlo techniques. Once these interface values have been
computed, any sub-domain solver can be used to obtain the
solution over the entire physical domain. Here, we have
used a deterministic sub-domain solver based on radial basis
function based finite differences. We argue that such a
solver is suitable for magnetotelluric modeling as it allows
one to work with irregularly shaped sub-domains, which
arise naturally in realistic sub-surface models.

While Monte Carlo methods are notoriously costly,
invoking them only within the framework of probabilistic
domain decomposition makes for an efficient way of solv-
ing partial differential equations, particularly if massively
parallel computing architectures are available. Since these
architectures are getting more and more popular, probabilis-
tic domain decomposition becomes an attractive alternative
to conventional parallelization methods. We also note here
that the single interface values can be computed indepen-
dently of each other which is essential for the parallelization
of the algorithm. The computational benefits of probabilistic
domain decomposition where already established in several
scaling studies, see e.g. [1, 2, 4].

Moreover, there are several possibilities for accelerat-
ing the computation of the stochastic part of the problem,
such as computing the stochastic solution only in certain
points along the interface and using interpolation to obtain
the remaining interface values. This procedure has proved
successful in the application of the probabilistic domain
decomposition method to both solving physical PDEs [1]
and generating adaptive moving meshes [4]. Further speed-
up can be obtained by using GPU computing for the solution
of the stochastic differential equations, see, e.g., [28, 32]

for some examples. These avenues will be explored in a
forthcoming work.

We should again like to stress that while the bulk of this
paper was devoted to the idea of evaluating the stochastic
form of the exact solution of Maxwell’s equations to obtain
interface values separating regions of constant conductiv-
ity, the pointwise nature of this solution also allows one to
compute the solution at specific points only. This can be
of interest if the solution to the magnetotelluric problem is
only required near measurement sites. As a demonstration
of this property, we computed the solution for the block-in-
half-space example (the COMMEMI 2D-1 example) only at
regional key points. This property can be attractive if a solu-
tion is sought in distinct points over a large domain, since
it bypasses the need to obtain the solution over the entire
domain as required in traditional deterministic methods.

The examples studied in the present paper are quite sim-
ple. They should be regarded as a proof of the concept and
to demonstrate that probabilistic domain decomposition is
a viable alternative to more traditional ways of discretizing
Maxwell’s equations. More realistic sub-surface models are
under investigation and will be the subject of a future paper.
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