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A B S T R A C T

The Zhongtiao region is a well-endowed Cu metallogenic province in the southern North China Craton and
contains a large number of early Precambrian Cu deposits of different styles, most of which have been subjected
to the ca. 1.85 Ga regional metamorphism. However, whether there was any role for the Proterozoic meta-
morphism on the extensive Cu mineralization is yet to be well understood. This paper presents an integrated
investigation on the field geology, mineral chemistry, fluid inclusion and C–H–O–S isotopes of the Huping
metamorphic-hydrothermal deposit in the Neoarchean–Paleoproterozoic Zhongtiao metamorphic terranes, and
reveals multi-stage Cu remobilization that formed and upgraded the Cu deposits in the region. We identified
three stages of syn- to post-metamorphic Cu remobilization/transportation in the Huping Cu deposit, including
(I) early mechanical transport, (II) intermediate metamorphic-hydrothermal remobilization and (III) late me-
teoric fluid incursion. In stage I, sulfides were remobilized and transported internally under lower-greenschist
facies metamorphism, forming the veinlet–disseminated ores and chalcopyrite (avg. δ34S= 2.1‰, similar to the
chlorite-amphibole schist wall rocks). In stage II, the immiscibility of metamorphic fluids (avg. δ18O=4.6‰
and δD=−56.6‰) from the metamorphic terranes triggered the precipitation of higher δ34S chalcopyrite (avg.
8.0‰), led by the incorporation of extra sulfur during the fluid migration. In stage III, incursion of meteoric
fluids into the waning metamorphic-hydrothermal system formed the barren quartz-calcite veins (avg.
δ18O=0.09‰ and δ13C=−0.88‰). During these Cu remobilization processes, the earlier-formed sulfides
were chemically stable during the mechanical transfer by regional metamorphism and deformation.
Subsequently, the immiscibility of metamorphic fluids induced significant Cu remobilization and precipitation in
the metamorphic-hydrothermal system. We thus propose a model of multi-stage mechanical and chemical Cu
remobilization for the Huping Cu deposit, which highlights the crucial impacts of metamorphic-remobilization
processes on the regional Cu mineralization in the Zhongtiao region.

1. Introduction

Metamorphic remobilization is a process of micro-, meso-, and
macro-scale transformation of preexisting mineralization, resulting in
further concentration and redistribution of the ore-forming components
(e.g., Marshall and Gilligan, 1987, 1993). Metamorphic remobilization
of metals, involving solid-state (mechanical), liquid-state (hydro-
thermal) or concurrent solid- and liquid-state (mixed) transfer processes
(Marshall et al., 2000), has facilitated the formation of metal deposits
related to metamorphic events (e.g., Mookherjee, 1970a,b; Tomkins,
2007; Mukwakwami et al., 2014a; Zhang et al., 2014). During regional
metamorphism, minerals re-equilibrate to form new assemblages and

textures (Pohl, 2011), and the breakdown of volatile-bearing minerals
would produce metamorphic fluids (Bickle and Mckenzie, 1987;
Connolly and Thompson, 1989; Ferry and Dipple, 1991; Oliver, 1996;
Tomkins, 2010). These metamorphic fluids, mixed with other ex-
ternally-derived fluids (e.g., magmatic fluids from syn-metamorphic
intrusions or meteoric fluids), may possess mineralization potential
(e.g., Stowell et al., 1996; Chen et al., 2004; Mishra and Pal, 2008;
Chinnasamy and Mishra, 2013; Mishra et al., 2017). Despite many
previous studies on the metamorphic-remobilization processes on hy-
drothermal deposits in metamorphic terranes (e.g., Stowell et al., 1996;
Elmer et al., 2007; Saravanan et al., 2009; Chinnasamy and Mishra,
2013), the detailed metal transfer and precipitation processes are yet to
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be well understood.
The Zhongtiao region in the southern North China Craton (NCC) is

an important Cu metallogenic province in China (Zhai, 2010; Zhai,
2013; Zhai and Santosh, 2013), and hosts over three million tonnes
(Mt) of contained Cu (WGCGZM, 1978; Sun et al., 1995). Copper de-
posits in the Zhongtiao region are mainly hosted in the Neoarch-
ean–Paleoproterozoic metamorphic terranes, and most of these deposits
have been subjected to the ca. 1.85 Ga regional metamorphism (Hu and
Sun, 1987; Sun et al., 1990; Sun and Hu, 1993). Previous works were
mainly focused on determining the original mineralization styles: For
example, porphyry Cu affinity has been interpreted for the Tong-
kuangyu Cu deposit (WGCGZM, 1978; Xu, 2010; Zhang, 2012; Jiang
et al., 2014a). The Hujiayu and Bizigou Cu deposits were interpreted to
be originally of sediment-hosted (stratiform) type (Zhang, 2012; Jiang
et al., 2014b; Qiu et al., 2015a,b), whilst the Luojiahe Cu deposit was
interpreted to be a VMS deposit (Jiang et al., 2017). However, the
mechanism of Cu mineralization attributed to the later regional meta-
morphism is still not well understood. Ore deposit geology indicates a
hydrothermal Cu deposit affinity for the Huping Cu deposit, which is
hosted in the Neoarchean–Paleoproterozoic Zhongtiao metamorphic
terranes and shows strong syn-metamorphic deformation. This makes
the Huping Cu deposit an ideal target to investigate the impact of

metamorphic-hydrothermal processes on the original Cu deposit.
In this contribution, integrated investigation on field geology, mi-

neral chemistry, fluid inclusions and C–H–O–S isotopes was conducted,
which reveals three stages of syn- to post-metamorphic alteration/mi-
neralization, and a critical Cu upgrading process by the metamorphic-
hydrothermal remobilization at Huping. Our study also shed light on
the contribution of regional metamorphism to the hydrothermal Cu
mineralization.

2. Geologic setting

The NCC is one of the oldest cratons in the world with basement
rocks dating back to ∼3.8 Ga (Liu et al., 1992; Zhai and Santosh, 2011;
Zhao and Zhai, 2013). The Zhongtiao region in the southern NCC
contains voluminous outcrops of early Precambrian basement rocks,
including those around the Sushui Complex and those within three
inliers (i.e., Tongshan, Luojiahe and Wangwu inliers) (Fig. 1a and b).
The Precambrian lithologies in the Zhongtiao region include the Late
Archean tonalite–trondhjemite–granodiorite (TTG) and supracrustal
rocks of the Archean complexes (e.g., the Sushui Complex; Sun and Yu,
1988; Zhang, 2015), the Paleoproterozoic meta-volcanic and sedimen-
tary rocks of the Jiangxian Group (ca. 2155Ma) and the Zhongtiao

Fig. 1. (a) Regional geologic map of the North China Craton after Zhao and Zhai (2013). (b) Geologic map of the Zhongtiao region, illustrating the distribution of the
basement rocks and main Cu deposits (BGMR, 1965; Sun and Hu, 1993). (c) Geologic and profile map of the Tongshan Inlier, showing the lithostratigraphy of the
Songjiashan Group and location of the Huping Cu deposit after Sun and Hu (1993); See text for detailed descriptions.

Y. Zhao et al. Ore Geology Reviews 101 (2018) 870–884

871



Group (ca. 2104Ma) (Sun et al., 1992; Liu et al., 2012), the upper
Paleoproterozoic thick low-grade meta-conglomerate and quartzite of
the Danshanshi Group (ca. 1848–1780Ma) (Liu et al., 2012) and the
basaltic to andesitic rocks of the Xiyanghe (or Xionger) Group (ca.
1800–1750Ma) (Zhao et al., 2007; He et al., 2008). The Songjiashan
Group occurs in the western part of the Tongshan Inlier, and consists of
four main lithostratigraphic units (Sun and Hu, 1993; Feng and Wang,
2008) (Fig. 1c). The units from the lower to upper part of the Song-
jiashan Group are as follows: (I) meta-mafic volcanics (e.g., chlorite-
amphibole schist) with intercalated banded iron formation, which has
Sm-Nd isochron age of 2535Ma (Sun and Hu, 1993) and were intruded
by the gneissic granite of∼ 2493Ma (Zhang, 2012 and our un-
published data), (II) interbedded sericite-quartz schist, dolomitic
marble and quartzite, (III) meta-sedimentary rocks with minor meta-
mafic volcanics, and (IV) quartzite. A series of SE-trending and SW-
trending basement faults controlled the formation of the Precambrian
Cu deposits in the Zhongtiao region, including the Henglingguan,
Tongkuangyu, Hujiayu, Bizigou, Luojiahe and Huping deposits (Fig. 1b;
Table 1).

Extensive regional metamorphism at ca. 1.85 Ga was documented in
the Zhongtiao region and the other parts of the southern NCC (Sun and
Hu, 1993; Liu et al., 2006; Wan et al., 2006; Zhao et al., 2008; Trap
et al., 2009). Recent U–Th–Pb dating on metamorphic monazites from
the Zhongtiao region constrained the timing of peak metamorphism at
ca. 1.88 Ga (Qiu et al., 2017a,b). Based on the metamorphic mineral
assemblage in the metapelite of the Jiangxian Group, peak meta-
morphic conditions were approximately estimated at 550–600 °C and
500–700MPa (Mei, 1994), where over 20 wt% H2O may have been
released by dehydration reactions (Cartwright and Oliver, 2000). Me-
tamorphism resulted in de-hydration reactions of the rocks affected and
these might result in the inception of hydrothermal activity in the
Zhongtiao region (Hu and Sun, 1987; Sun et al., 1992). Such hydro-
thermal activities were suspected as the main cause of Cu mineraliza-
tion in the Zhongtiao region (Sun et al., 1992).

3. Ore deposit geology

The Huping Cu deposit is located in the eastern Tongshan Inlier and
hosted in the lower part of the Songjiashan Group (Fig. 1c; 2). The host
rocks are mainly chlorite-amphibole schist, which contains high Cu
content (over 370 ppm; Han et al., 2005; Wang, 2014) (Fig. 3a). The
chlorite-amphibole schist wall rocks contain foliated fine-grained bio-
tite, chlorite and epidote (Fig. 4a), which grow along the crack/clea-
vage of amphibole (Fig. 4b). Five major tabular or lenticular orebodies,
structurally controlled by a series of NW-trending shear zones, have
been discovered at Huping (Fig. 2a and b). Such orebodies are im-
bricated and show an elongation parallel to fold axes or to linear fabrics
in surrounding rocks (Fig. 2a and b). Copper mineralization of the
Huping Cu deposit is largely stratabound in chlorite-amphibole schist of
the Songjiashan Group. Based on mineral assemblages and crosscutting
relationships, three stages (I, II and III) of alteration/mineralization
have been recognized.

The highly deformed veinlet–disseminated ores were recognized as
the stage I mineralization (Fig. 3b). Ore minerals of this stage include
chalcopyrite, pyrite and pyrrhotite that occur as thin and discontinuous
fabrics parallel to the rock schistosity (Fig. 4c–e). Boudin-like fine-to-
medium chalcopyrite aggregates were also observed along the plane of
the schistosity (Fig. 4c). Light-green chlorite coexists with chalcopyrite
and biotite in the ores of this stage (Fig. 4d).

Thick quartz–sulfide veins (Fig. 3c) were recognized as the stage II
mineralization, which contain mainly chalcopyrite, pyrite, pyrrhotite
and quartz, and minor bornite (Fig. 4f–h). The ore veins commonly
occur along fractures that crosscut the early-stage schistosity (Fig. 3c).
Chalcopyrite and gangue minerals in the stage II mineralization are
coarse-grained and show no or weak deformation (Fig. 3c).

Comb-textured carbonate (–quartz) veins (Fig. 3d) were recognizedTa
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at the stage III alteration. These veins crosscut the stage I and II mineral
assemblages (Fig. 4h and i).

The gangue minerals in the Huping Cu deposit include quartz and
calcite. Quartz occurs mainly in stage I and stage II but with markedly
different occurrence and optical characteristics. Quartz in stage I is
strongly deformed and fine-grained, and contains few inclusions
(Fig. 4d). In contrast, quartz in stage II is weakly deformed and coarse-
grained with numerous fluid inclusions (Fig. 5a–l). Calcite occurs in
stage III and contains numerous fluid inclusions (Fig. 5m).

4. Methods

4.1. Major element compositions of chlorite

Major element compositions of eight chlorite samples in stage I ore
veins were analyzed at the Key Laboratory of Mineralogy and
Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy
of Sciences (GIGCAS) by using a JEOL JXA-8230 electron probe micro-
analyzer (EPMA). Operating conditions were 15 kV, 20nA and a 1 μm
beam for analyses of all elements. The standards used were BaF2 for F,
tugtupite for Cl, orthoclase for K, albite for Na, kaersutite for Si,
diopside for Ca, kaersutite for Al, rhodonite for Mn, rutile for Ti,
magnetite for Fe, and olivine for Mg. Raw data were reduced with an
online correction procedure including background, dead time and a
ZAF calculation. Accuracy and precision are within∼2% relative errors
for the major oxides. Parameters of the equipment and procedures are
similar to that described by Xing and Wang (2017).

4.2. Fluid inclusion microthermometry and Raman spectroscopy

Twelve quartz and four calcite samples of stage II and III, respec-
tively, were selected for fluid inclusion studies, including petrography,
microthermometry and Raman spectroscopy. Microthermometry was
conducted at the Key Laboratory of Mineralogy and Metallogeny,
GIGCAS by using a Linkam THMS-G-600 heating–freezing stage (−198

to 600 °C). The results were calibrated by using synthetic fluid inclusion
standards of pure CO2 (melting at− 56.6 °C). The precision of tem-
perature measurement is± 0.1 °C between −100 and 25 °C,± 1 °C
between 25 and 400 °C, and± 2 °C above 400 °C. The analytical pro-
cedures are similar to that described by Jiang et al. (2017).

Laser Raman analyses were conducted at the Key Laboratory of
Mineralogy and Metallogeny, GIGCAS, by using the Horiba Xplora Laser
Raman Microspectroscopy. An Ar+ ion laser operating at 44 mW was
used to produce an excitation wavelength of 532 nm line. Pure silicon
was used as a frequency calibration standard. The scanning range of
spectra was set between 1000 and 4000 cm−1 with an accumulation
time of 20 s for each scan. The spectral resolution was 0.65 cm−1.
Details for the operating conditions were described by Jiang et al.
(2017).

4.3. In-situ S and mineral C–H–O isotopic analysis

In-situ S isotopic analysis of thirty spots on the stage I and II sulfides
were carried out by using Nu Plasma II MC-ICP-MS, which was
equipped with the Resonetics-S155 excimer ArF laser ablation system at
the State Key Laboratory of Geological Processes and Mineral Resources
(GPMR), China University of Geosciences, Wuhan. Helium gas was used
to transport the ablated materials into the plasma with a gas flow of
0.35 L/min. Sample gas (argon, 0.65 L/min) was mixed with the carrier
gas in a cyclone coaxial mixer before being transported into the ICP
torch. The energy fluence of the laser is about 3 J/cm2. The diameter of
laser beam was 33 um with a laser repetition rate of 8 Hz, and the
ablation process was set to last for 40 s.

Two in-house pyrite standards (WS-1) were used in this study. The
WS-1 (0.9 ± 0.1‰) is a natural pyrite collected from Wenshan poly-
metallic skarn deposit, Yunnan Province, China. Standard-sample
bracketing (SSB) was used to determine the δ34S values of samples
throughout the MC-ICP-MS analytical sessions. The true sulfur isotope
ratio was calculated by correction for instrumental mass bias by linear
interpolation between the biases calculated from two neighboring

Fig. 2. (a) Geologic map of the Huping Cu deposit and (b) the geologic profile along Exploration Line No. 8, showing the vertical relationships between the orebodies
and wall rocks after Sun et al. (1995).
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standard analyses. Isotope ratio data are reported in delta notation (‰)
relative to Vienna Cañon Diablo Troilite (V-CDT):

= − ×−δ S [(S/S) /(S/S) 1] 1034
V - CDT sample V CDT

3

where (34S/32S)sample is the measured 34S/32S ratio of the sample and
(34S/32S)V-CDT is defined as 0.044163 (Ding et al., 2001). The analytical
precision (1r) was about± 0.1 per mil. Detailed analytical conditions
and procedures can be seen in Zhu et al. (2016, 2017).

Four quartz samples in stage II ores were selected for H–O isotope
analysis and six calcite samples in stage III ores were selected for C–O
isotopic analysis. Quartz samples for H–O isotopic analysis were ex-
tracted from the crushed rock fragments and handpicked under a bi-
nocular microscope. The H–O isotopes were analyzed with a Finnigan
MAT253 Mass Spectrometer at the Analytical Laboratory of the Beijing
Research Institute of Uranium Geology (BRIUG). All data were nor-
malized to the Vienna standard mean ocean water (V-SMOW) with
analytical precisions better than±0.2‰ (for δ18O) and±1‰ (for δD).

Calcite samples for C–O isotope analysis were powdered to<200
mesh and were analyzed using a GV Isoprime II Stable Isotope Ratio
Mass Spectrometer coupled with an online carbonate preparation
system at the State Key Laboratory of Isotope Geochemistry, GIGCAS.
Analytical procedures were similar to that described by Deng et al.
(2013). δ13C values were reported as the per mil (‰) deviation of
13C/12C relative to the Vienna Pee Dee belemnite (V-PDB) and δ18O
values were reported as the per mil (‰) deviation of 18O/16O relative to
V-SMOW. External precisions for δ13C and δ18O were±0.03‰ (1σ)

and ± 0.06‰ (1σ), respectively, which were determined by repeated
measurements of the international calcite standard NBS-19 and Chinese
national standard GBW04405.

5. Results

5.1. Chlorite chemistry and geothermometry

EPMA results (Table 2) show that the chlorites of stage I are ripi-
dolite (Fig. 6). They show narrow compositional ranges of SiO2

(26.62–27.11 wt%), FeO (18.54–19.40 wt%), MgO (20.04–20.67 wt%)
and Al2O3 (20.67–21.42 wt%), and are uniformly low in Cr2O3, BaO,
CaO, K2O and Na2O contents.

Crystallization temperatures of the chlorite were calculated using
the empirical equation (Cathelineau, 1988):

= − + ×T(C) 61.92 321.98 Al(T)

where Al (T) represents the tetrahedral Al content. The calculation has
the potential to be general applicability for chlorite in diagenetic, hy-
drothermal and metamorphic settings (Cathelineau, 1988). Calculated
temperatures of the stage I chlorite vary in a narrow range of
332–349 °C (avg. 344 °C; Table 2).

Fig. 3. Photographs showing the ore geology of the Huping Cu deposit. (a) Chlorite-amphibole wall rocks intruded by gneissic granites; (b) Stage I veinlet–disse-
minated sulfides; (c) Stage II quartz–sulfide veins; (d) Stage III calcite veins.
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5.2. Fluid inclusion results

5.2.1. Fluid inclusion petrography
At room temperature, three types of fluid inclusion were observed in

quartz and calcite: vapor-rich two- or three-phase CO2-bearing (type I),
daughter mineral bearing (type II) and liquid-rich two-phase (type III)
fluid inclusions.

Type I inclusions contain two or three phases
(LH2O+ LCO2 ± VCO2) at room temperature and have various CO2

phase volumetric proportions (generally VCO2 > 40 vol%). They show
negative crystal, rounded or elliptic shapes with size of ∼6 to 16 μm
(Fig. 5c–g), and are isolated or randomly distributed. Type I inclusions
generally occur in clusters with type II inclusions in stage II quartz
(Fig. 5a–d).

Type II inclusions contain daughter minerals and are rich in liquid
(LH2O+D+VH2O). They range in size of ∼8 to 20 μm and typically
show rounded or negative crystal shapes (Fig. 5h–l). Daughter minerals
of the type II inclusions mainly include halite and sylvite with possible
captive hematite and opaque minerals. The opaque minerals are brassy
and irregularly shaped under reflected light (Fig. 5k and l), resembling
chalcopyrite. Type II and type I inclusions are the major fluid inclusion
types in stage II quartz, which commonly occur in the core of quartz,
and are thus probably primary (Fig. 5a and b).

Type III inclusions consist of a vapor bubble and a liquid phase

(LH2O+VH2O) at room temperature. They are rounded or rectangular
shaped and range in size of∼ 4 to 15 μm (Fig. 5m). The vapor phase of
the inclusions normally occupies 5 to 15 vol%. Type III inclusions are
the main fluid inclusion type in stage III calcite and commonly occur
along calcite cleavage (Fig. 5m).

5.2.2. Fluid inclusion microthermometry and Raman spectroscopy
The microthermometric results are listed in Table 3 and illustrated

in Fig. 7. For type I inclusions (LH2O+ LCO2+VCO2), calculations for
salinity (wt% NaCl eqv) were made by melting temperature of CO2

clathrates, based on equation of Diamond (1992). Molar volume (cc/
mol) was estimated by V–X diagram of the H2O–CO2 fluid system
(Bakker and Diamond, 2000), using the homogenization temperatures
and modes of the carbonic phase (ThCO2), and estimation of the volu-
metric proportion of the carbonic at ThCO2. Then the software LonerAP
(Bakker, 2012) was used to calculate isochores. For halite-bearing type
II inclusions (LH2O+Halite+VH2O), dissolution temperature of halite
(Tmhal) was used to determine salinity based on equation of Hall et al.
(1988). For type III inclusions (LH2O+VH2O), salinities were calculated
by measuring the freezing point of the solution (Tmice) as described by
Bodnar (1993), and isochores were determined using the software
SOWAT (Driesner, 2007).

For type I inclusions in stage II quartz, the melting of the carbonic
phase (TmCO2) occurred between −57.4 and −56.2 °C, suggesting the

Fig. 4. Photomicrographs of the Huping Cu deposit. (a, b) Mineral assemblages of the wall rock chlorite-amphibole schist; (c) Elongated boudin-like chalcopyrite
aggregates; (d, e) Stage I chalcopyrite and gangue minerals; (f–h) Mineral assemblage and textures for the stage II mineralization; (i) Stage III calcite crosscutting
stage II quartz and sulfides. Abbreviations: Alb–Albite; Amp–Amphibole; Bio–Biotite; Bor–Bornite; Cal–Calcite; Ccp–Chalcopyrite; Chl–Chlorite; Epo–Epidote;
Mt–Magnetite; Py–Pyrite; Qtz–Quartz.
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phase is nearly pure CO2. The final clathrate melting (Tmcla) occurred
between 4.0 and 9.7 °C, corresponding to salinities between 8 and 13wt
% NaCl eqv. Homogenization of the carbonic phase in type I inclusions
(ThCO2; LH2O+ LCO2+VCO2→ LH2O+ LCO2) occurred by vapor bubble
disappearance between 2.7 and 29.0 °C. Total homogenization (Thtotal;
LH2O+ LCO2→ L) occurred mainly at 300–380 °C (minor at
400–440 °C).

For type II inclusions (halite as daughter mineral) in stage II quartz,
vapor bubble disappearance (Thbubble; LH2O+ halite+VH2O→
LH2O+halite) occurred at 110–299 °C. Thtotal (LH2O+Halite→ L) fell
between 280 and 360 °C, corresponding to salinities of 34–38 wt% NaCl
eqv.

For type III inclusions in stage III calcite, ice-melting temperatures
(Tmice) ranged from− 17.8 to− 1.4 °C, corresponding to salinities of

2.4–20.8 wt% NaCl eqv. Thtotal (LH2O+VH2O→ L) fell between 153 and
229 °C.

The Raman spectroscopy results (Fig. 8) of representative inclusions
show that the vapor phase of type I inclusions is composed of CO2, and
the aqueous phase is mainly composed of H2O (Fig. 8a and b). Aqueous
and vapor phases of type II and III inclusions are also composed of H2O
(Fig. 8c–f).

5.3. In-situ S and mineral C–H–O isotopic compositions

In-situ S isotopic results are listed in Table 4 and illustrated in Fig. 9.
The stage I chalcopyrite has δ34S values varying from 1.7‰ to 2.5‰
(avg. 2.1‰), whereas the stage II chalcopyrite and pyrite have δ34S
values varying from 7.4‰ to 8.8‰ (avg. 8.0‰) and 9.2‰ to 10.2‰

Fig. 5. Photomicrographs showing petrographic characteristics of fluid inclusions from the Huping Cu deposit. (a, b) Photomicrograph and corresponding sketch
map, showing the distributions of type I and II inclusions in the stage II mineralization; (c, d) Photomicrograph and corresponding sketch map, showing the negative-
crystal type I and II inclusions; (e–g) Representative type I inclusions (LH2O+ LCO2 ± VCO2); (h–j) Representative type II inclusions (LH2O+D+VH2O); (k, l) Opaque
mineral-bearing type II inclusions under transmitted and reflected light, respectively; (m, m1–3) Type III inclusions in stage III primary calcite. Abbreviations:
VCO2–CO2 vapor; LCO2–CO2 liquid; VH2O–H2O vapor; LH2O–H2O liquid; Ccp–Chalcopyrite; Hal–Halite; Syl–Sylvie.
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(avg. 9.8‰), respectively. The δ34S values of the equilibrium fluids
were calculated from the sulfide δ34S and the mineral–H2S fractionation
factor of Ohmoto and Goldhaber (1997), assuming H2S as the major
sulfur species in the fluids. The calculated δ34SH2S values of the stage I

chalcopyrite vary in the ranges of 1.8 to 2.7‰ (avg. 2.2‰), using the
chlorite thermometric results. The calculated δ34SH2S values of the stage
II chalcopyrite and pyrite vary in the ranges of 7.6 to 9.0‰ (avg. 8.2‰)
and 8.0 to 9.2‰ (avg. 8.7‰), respectively, using the fluid inclusion
microthermometric results.

Mineral C–H–O isotopic results are listed in Table 5 and illustrated
in Figs. 10 and 11. δ18O values of the stage II quartz fall in a narrow
range of 10.7‰ to 11.9‰ (avg. 11.5‰). The calculated δ18O values of
the equilibrium fluids vary from 3.8‰ to 5.0‰ (avg. 4.6‰), using the
equation (1000lnαquartz-water = 3.38×106T−2− 3.40) of Clayton et al.
(1972) and the average Thtotal of fluid inclusions in quartz (∼320 °C).
In addition, the δD values of the extracted fluids from the stage II quartz
vary from −63.9‰ to− 49.3‰ (avg. −56.6‰). The δ13C values of
the stage III calcite vary from− 1.26 to −0.71‰ (avg. −0.88‰) re-
lative to PDB, and the δ18O values vary from 10.57 to 11.62‰ (avg.
10.92‰) relative to V-SMOW. δ18O values of the equilibrium fluids in
stage III were calculated at− 0.27 to 0.78‰ (avg. 0.09‰), using the
calcite–H2O equilibrium equations (O'Neil et al., 1969; Faure, 1986)
and the average Thtotal of fluid inclusions in calcite.

6. Discussion

6.1. Three stages of Cu mineralization

Deformation of the orebodies and intense hydrothermal alteration
at Huping suggest that the original mineralization had been modified
by later remobilization processes. The original Huping Cu mineraliza-
tion was proposed to be attributed to the eruption of the Songjiashan
Group mafic volcanic rocks (Sun et al., 1995; Wang, 2014), resembling
VMS type, as evidenced by the high Cu content (over 370 ppm) of the
Songjiashan Group (Han et al., 2005; Wang, 2014) and the largely
stratabound nature of the Cu orebodies. As to be described below, the
geologic and isotopic characteristics revealed in this study reflect a
complex metamorphic Cu remobilization history that had formed and
upgraded many of the Huping Cu orebodies. The remobilization pro-
cesses include deformation and metamorphism (stage I), metamorphic-
hydrothermal alteration (stage II), and meteoric fluid incursion (stage
III).

6.1.1. Stage I: Mechanical transfer
The ore geologic and isotopic characteristics indicate that the stage I

mineralization was triggered by mechanical remobilization, which was
interpreted to represent solid-state ductile transfer including plastic and
cataclastic flow and entrainment (Marshall and Gilligan, 1987). Firstly,
the veinlet–disseminated ores and the absence of fluid inclusions in
quartz (Fig. 4d) suggest weak fluid activities during the stage I miner-
alization. Secondly, chlorite in this stage occurs as ripidolite (Fig. 6),
which is generally related to metamorphism (Wang et al., 1982). The
metamorphism had likely thickened and upgraded the orebodies at the
fold hinges (Sun et al., 1995; Wang, 2014). Last but not least, chalco-
pyrite in stage I has relatively low δ34S values (avg. 2.1‰), resembling
those of the Songjiashan Group wall rocks (Fig. 9).

6.1.2. Stage II: Metamorphic-hydrothermal remobilization
The presence of fissure-controlled/-filling veined ores in the stage II

mineralization indicates hydrothermal remobilization, which was in-
terpreted to represent liquid-state transport by solution diffusion
(Marshall and Gilligan, 1987). Compared to those of stage I, δ34S values
of sulfides in stage II are more positive (Fig. 9). The calculated δ34S
values (7.6‰ to 9.1‰) of the stage II equilibrium fluids are higher than
those of the majority of magmatic-hydrothermal deposits (−3 to 1‰;
Hoefs, 2009), but overlap with the metamorphic fluid-related orogenic-
type deposits (0 to 10‰; Goldfarb and Groves, 2015) (Fig. 9). In ad-
dition, δD (−63.9‰ to− 49.3‰) and the calculated δ18O (3.8‰ to
5.0‰) values of the stage II fluids fall into the overlapping area of
metamorphic and magmatic fluids (Taylor, 1974) (Fig. 10). These H–O

Table 2
EPMA results of chlorite, along with their structural formulae and calculated
temperatures.

15HP6− 1–2 15HP6− 1–19

01 02 03 04 01 02 03 04

SiO2 26.74 26.74 27.11 26.62 26.89 26.62 27.05 26.87
Al2O3 20.91 21.22 20.73 21.20 20.98 20.98 20.67 20.79
FeO 19.16 18.54 18.74 18.59 19.05 18.71 18.66 19.40
MnO 0.21 0.25 0.24 0.22 0.19 0.22 0.21 0.22
MgO 20.33 20.45 20.04 20.33 20.32 20.11 20.67 20.22
Total 87.35 87.20 86.87 86.95 87.42 86.63 87.26 87.50

Cations
Si 2.73 2.73 2.78 2.72 2.74 2.74 2.76 2.75
Al 2.51 2.55 2.50 2.55 2.52 2.54 2.48 2.50
Fe 1.64 1.58 1.60 1.59 1.62 1.61 1.59 1.65
Mn 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Mg 3.09 3.11 3.06 3.10 3.09 3.08 3.14 3.08

Structural formula
Si (T) 2.73 2.73 2.78 2.72 2.74 2.74 2.76 2.75
Al (T) 1.27 1.27 1.22 1.28 1.26 1.26 1.24 1.25
(T) total 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00
Al (O) 1.25 1.27 1.27 1.28 1.26 1.27 1.24 1.24
Mg (O) 3.09 3.11 3.06 3.10 3.09 3.08 3.14 3.08
Fe (O) 1.64 1.58 1.60 1.59 1.62 1.61 1.59 1.65
Mn (O) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
(O) total 5.99 5.98 5.95 5.98 5.99 5.97 5.99 5.99
T/°C 346 348 332 349 343 345 338 342

Note: (T): Cations in tetrahedral sites; (O): Cations in octahedral sites; T:
Temperature calculated using empirical calibrations of Cathelineau (1988).

Fig. 6. Fe/(Fe+Mg) vs. Si (a.f.p.u., atoms per formula unit) diagram of the
Huping chlorite. Nomenclature and boundaries are after Hey (1954).
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isotopic compositions are also similar to the fluids of the metamorphic-
hydrothermal stages of the Hujiayu and Bizigou Cu deposits in the
Zhongtiao region (Hu and Sun, 1987; Sun et al., 1995; Jiang et al.,
2014b) (Fig. 10). Thus, we infer that the stage II ore-forming fluids
were likely metamorphic-sourced.

Ore precipitation from the metal-bearing fluids is controlled by
various physicochemical factors (Hemley et al., 1992; Robb, 2013),
including temperature and/or pressure drop (e.g., Landtwing et al.,
2005; Wang et al., 2013), fluid immiscibility (boiling/effervescence)
(e.g., Klemm et al., 2007; Chen et al., 2012; Zhao et al., 2013; Qiu et al.,
2017a,b), fluid mixing (e.g., Chi and Savard, 1997; Chen et al., 2004;
Qiu et al., 2016a), and fluid–rock interactions (e.g., Williams-Jones
et al., 2010; Peng et al., 2016). At Huping, the narrow H–O isotope
range (Fig. 10) does not support the presence of significant fluid mixing
or fluid-rock interactions. In contrast, the fault-controlled orebodies

and the open-fracture filling features of the ores indicate that pressure
drop may have facilitated the ore precipitation. Pressure drop would
generally lead to the migration of H2O–CO2 solvus to higher tempera-
tures, causing fluid immiscibility (Brown, 1998). The separation of a
homogeneous aqueous-carbonic fluid into an aqueous and a CO2-rich
fluid likely happened in the stage II mineralization. This is supported by
(1) the coexistence of the type I and II inclusions (Fig. 5a–d) with si-
milar homogenization temperatures but different homogenized nature
and distinct salinities (Fig. 7; Table 3) in stage II quartz, and (2) the
presence of rare carbonic inclusions with almost no aqueous phase
(Fig. 5f). This phase separation process is consistent with what would
be expected during fluid immiscibility (Ramboz et al., 1982). Im-
miscibility of CO2-bearing fluids would promote the precipitation of
both gangue and ore minerals (Robb, 2013). Therefore, fluid im-
miscibility induced by decompression may have been the main trigger

Table 3
Microthermometric data of the type I, II and III inclusions for the Huping deposit.

Type Num. Size/μm Vapor/CO2

proportion
TmCO2/°C Tmice/°C Tmcla/°C ThCO2 /°C Thbubble/°C Thtotal/Tmhal/

°C
Salinity/wt%
NaCl eqv

I 25 10 to 20 20 to 40% −57.4 to− 56.2
(avg.− 57.0)

−2.0 to 6.1
(avg. 3.7)

2.7 to 29.0
(avg. 19.2)

302 to 435
(avg. 363)

7.3 to 17.4 (avg.
10.7)

II 40 5 to 25 ∼5% 110 to 209
(avg. 170)

205 to 406
(avg. 291)

31.6 to 37.0
(avg. 34.5)

III 19 4 to 20 Mostly 5 to 10% −16.7 to−8.5
(avg. −8.8)

153 to 229
(avg. 178)

12.3 to 20.0
(avg. 15.4)

Abbreviations: TmCO2= Final melting temperature of the carbonic phase, Tmice= Final ice melting temperature, Tmcla= Final clathrate melting temperature
ThCO2=Homogenization temperature of the carbonic phase, Thbubble= Vapor bubble disappearance temperature, Thtotal = Temperature of final homogenization,
Tmhal= Final halite melting temperature.

Fig. 7. Histograms of (a) homogenization temperatures and (b) salinities for fluid inclusions in stage II quartz. Histograms of (c) homogenization temperatures and
(d) salinities for fluid inclusions in stage III calcite.
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Fig. 8. Raman spectra of representative fluid inclusions. (a) Carbonic and (b) liquid phase in type I inclusions; (c) Vapor and (d) liquid phase in type II inclusions; (e)
Vapor and (f) liquid phase in type III inclusions.

Table 4
Sulfur isotopic compositions of sulfides in the Huping deposit.

Sample Mineral δ34S/‰ Stage Sample Mineral δ34S/‰ Stage

15HP6-1–1-01 Ccp 1.8 I 15HP19-1–05 Ccp 8.3 II
15HP6-1–1-02 Ccp 1.9 I 15HP19-1–06 Ccp 8.8 II
15HP6-1–1-03 Ccp 2.1 I 15HP6-18–2-01 Ccp 7.7 II
15HP6-1–1-04 Ccp 2.0 I 15HP6-18–2-02 Ccp 7.4 II
15HP6-1–1-05 Ccp 2.0 I 15HP6-18–2-04 Ccp 7.7 II
15HP6-1–1-06 Ccp 1.7 I 15HP6-18–2-05 Ccp 8.3 II
15HP6-1–2-01 Ccp 2.4 I 15HP6-18–2-08 Ccp 7.7 II
15HP6-1–2-02 Ccp 2.2 I 15HP6-18–2-10 Ccp 7.9 II
15HP6-1–2-03 Ccp 2.4 I δ34SH2S 7.6–9.0
15HP6-1–2-04 Ccp 2.3 I
15HP6-1–2-05 Ccp 2.5 I 15HP6-18–2-03 Py 9.4 II
15HP6-1–2-06 Ccp 2.1 I 15HP6-18–2-06 Py 10.1 II

δ34SH2S 1.8–2.7 15HP6-18–2-07 Py 10.2 II
15HP6-18–2-09 Py 10.0 II

15HP19-1–01 Ccp 8.0 II 15HP6-18–2-11 Py 9.8 II
15HP19-1–02 Ccp 7.6 II 15HP6-18–2-12 Py 9.2 II
15HP19-1–03 Ccp 8.3 II δ34SH2S 8.0–9.2
15HP19-1–04 Ccp 8.6 II

Abbreviations: Ccp–Chalcopyrite, Py–Pyrite. δ34SH2S values are calculated for pyrite–H2S and chalcopyrite–H2S equilibrium. See text for discussion.
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for the stage II Cu precipitation at Huping.

6.1.3. Stage III: Meteoric fluid incursion
Carbon and oxygen isotopes suggest that incursion of meteoric

fluids into the metamorphic-fluid-dominated hydrothermal system may
have happened during stage III. δ18O values of equilibrium fluids de-
crease from stage II to stage III (Fig. 11a), suggesting a low δ18O source
for the latter, e.g., meteoric fluids. δ13C values of the stage III calcite are
higher than those of average organic matter, atmospheric CO2, dis-
solved CO2 in fresh water, continental crust, igneous rocks/magmatic
systems and mantle, but lower than those of average marine carbonates
(Fig. 11b). This suggests that the CO2 in the stage III fluids was likely
sourced from a mixture of marine carbonates (possibly the Songjiashan
Group dolomitic marble; Fig. 1c) and a low δ13C source, e.g., meteoric
fluids with atmospheric CO2 (Fig. 11b).

6.2. P–T conditions of mineralization

Mineralization related to metamorphic fluids is hosted in a variety

Fig. 9. Sulfide δ34S and calculated δ34SH2S values of the stage I and II miner-
alization of the Huping Cu deposit. δ34SH2S values are calculated based on
pyrite–H2S and chalcopyrite–H2S equilibrium. See text for discussion. Sulfur
isotope and mineralization temperature data of the Tongkuangyu, Bizigou,
Hujiayu and Luojiahe deposits and the wall rock Songjiashan Group are from
Sun et al. (1995), Jiang et al. (2014a; 2014b) and Zhang (2012). Sulfur isotopic
data of magmatic and metamorphic fluids are from Hoefs (2009) and Goldfarb
and Groves (2015), respectively.

Table 5
Carbon, hydrogen and oxygen isotopic results of the Huping deposit.

Sample Mineral Stage δ13C /‰
V-PDB
(mineral)

δ18O /‰ V-
SMOW
(mineral)

δD /‰
V-SMOW
(fluids)

δ18O /‰
V-SMOW
(fluids)

14HPK1-5 Qtz II 11.6 −54.3 4.7
14HPK1-9 Qtz II 11.9 −58.8 5.0
14HPK1-3 Qtz II 11.8 −63.9 4.9
14HPK1-6 Qtz II 10.7 −49.3 3.8
14HPK1-9-1 Cal III −0.74 10.57 −0.27
14HPK1-9-2 Cal III −0.80 10.58 −0.26
15HP6-19 Cal III −0.87 10.60 −0.23
15HPK1-6 Cal III −0.87 11.42 0.59
14HPK1-2 Cal III −0.71 10.73 −0.10
14HPK1-9 Cal III −1.26 11.62 0.78

Abbreviations: Qtz–Quartz, Cal–Calcite.

Fig. 10. Calculated H–O isotopic compositions of equilibrium fluids in the stage
II mineralization of the Huping Cu deposit. H–O isotope data of metamorphic-
hydrothermal veins of the Tongkuangyu, Bizigou, Hujiayu and Luojiahe de-
posits were compiled from Jiang et al. (2016; 2017) and Sun et al. (1995).

Fig. 11. (a) Calculated δ18O values of equilibrium fluids and (b) δ13C values of
calcite in stage III of the Huping Cu deposit. References for major carbon and
oxygen reservoirs are from Hoefs (2009).
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of lithologies, which were metamorphosed to greenschist facies, and
less commonly to lower amphibolite facies (Pirajno, 1992). Previous
studies show that the depositional conditions of metamorphic fluids are
characterized by a temperature range of approximately 200 to 450 °C
(mainly 250 to 350 °C), at pressures of 0.5 to 4 kbar (Pirajno, 1992).
Therefore, P–T conditions could be critical to metamorphic-hydro-
thermal mineralization.

Stage I of the Huping Cu deposit has a gangue mineral assemblage of
albite+ chlorite+ biotite+ epidote (Fig. 4d), indicative of lower
greenschist facies metamorphic conditions (ca. 350–500 °C and
300–800MPa; Spear, 1995). The metamorphic temperature is con-
sistent with our estimated chlorite formation temperature
(332–349 °C). The trapping temperature and pressure of fluid inclusions
likely recorded the P–T conditions of the hydrothermal system (Ramboz
et al., 1982; Brown, 1998). Giving that fluid immiscibility had likely
occurred during the stage II mineralization, the overlapping peak
temperatures (300–360 °C) for type I and II inclusions can be con-
sidered as the temperature of the stage II ore-forming fluids. The cor-
responding trapping pressures were estimated to be around 120 to
300MPa, based on a series of H2O–NaCl–CO2 isochores with different
salinities. Besides, low temperature and pressure conditions (< 250 °C
and < 10MPa) for stage III is constrained by the microthermometric
results of type III inclusions in calcite, i.e., the 150–230 °C homo-
genization temperatures and isochores of H2O–NaCl system with dif-
ferent salinities. Therefore, we conclude that the stage I mineralization
of the Huping Cu deposit likely occurred under lower greenschist facies
metamorphic conditions; the stage II mineralization may have occurred
at post-peak metamorphic ca. 300–360 °C and 120–300MPa conditions,
which is consistent with the main P–T range of ore deposition from
metamorphic fluids; the stage III alteration may have occurred under
low P–T conditions (Fig. 12).

P–T conditions of the Huping Cu deposit indicate that the main Cu
deposition occurred during the post-peak metamorphism, yielding the
fissure-controlled/-filling veined ores, which is consistent with the oc-
currence of Cu-mineralization in metamorphic rocks worldwide

(Pirajno, 1992). Fluid decompression has been recognized as a highly
efficient mechanism for the characteristic co-precipitation of silica with
metals during vein formation (Weatherley and Henley, 2013). As dis-
cussed above, decompression is critical to fluid immiscibility and thus
the Cu mineralization at Huping.

6.3. Mechanisms of Cu remobilization

Mechanical and hydrothermal remobilization in the sulfide ore
formation in metamorphic terranes have been supported by many re-
search (Mishra et al., 2005; Tomkins, 2007; Mukwakwami et al.,
2014a,b; Zhang et al., 2014; Turlin et al., 2016; Qiu et al., 2017a,b).
Previous studies show that mechanical remobilization is ineffective in
remobilizing disseminated sulfides for any significant distance
(Tomkins, 2007). The minor Cu endowment in the veinlet–dissemi-
nated ores of the Huping Cu deposit also indicates that Cu was unlikely
to be significantly mobilized by the stage I mechanical transfer.

Metamorphic-hydrothermal remobilization has been proposed to be
a critical process for Cu mineralization (e.g., Turlin et al., 2016; Qiu
et al., 2017a,b), which can enrich Cu by dissolution and subsequent
reprecipitation of sulfides during or after peak metamorphism
(Mukwakwami et al., 2014a,b). The increase of sulfide δ34S from the
mechanical transfer (stage I) to metamorphic-hydrothermal alteration
(stage II) indicates the incorporation of extra sulfur during the migra-
tion of metamorphic fluids, which could increase the stability of Cu
hydrosulfide/sulfide complexes in aqueous hydrosulfide solutions
(Mountain and Seward, 2003; Qiu et al., 2015a,b, 2016b) and thus Cu
solubility in the mineralizing fluids. Most Cu would precipitate by the
cooling of Cu-saturated fluids from 350 to 250 °C (Xiao et al., 1998),
which is consistent with our fluid inclusion results. The main Cu en-
dowment in the vein-type ores at Huping, and the occurrence of stage II
metamorphic-fluid immiscibility indicate that Cu mineralization was
mainly achieved by the immiscibility of Cu-bearing metamorphic fluids.

Most Cu deposits in the Zhongtiao region (Fig. 1b) were subjected to
the metamorphism, independent of their various original

Fig. 12. P–T conditions and schematic sketches illustrating the three stages of ore mineralization in the Huping Cu deposit.
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mineralization styles (Hu and Sun, 1987; Sun and Hu, 1993; Sun et al.,
1995). For example, late-stage, metamorphic-remobilization-related
thick quartz–calcite veins were recognized at the Tongkuangyu, Bi-
zigou, Hujiayu and Luojiahe deposits (e.g., Hu and Sun, 1987; Sun and
Hu, 1993; Sun et al., 1995; Jiang et al., 2014a,b; Qiu et al., 2015a,b;
Jiang et al., 2017). In addition, ore remobilization during the post-
orogenic exhumation (which upgrades the Cu ore veinlets and lenses)
has recently been documented at the Henglingguan deposit (Qiu et al.,
2017a,b). Hydrothermal remobilization of these Cu deposits was gen-
erally interpreted to be related to the ca. 1.85 Ga regional meta-
morphism (e.g., Zhang, 2012; Jiang et al., 2014b, 2017; Liu et al., 2016;
Qiu et al., 2015a,b,2017a,b). The Huping Cu deposit has metamorphic-
hydrothermal-related ore features, mineral assemblages and fluid H–O
and sulfide S isotopic compositions (Figs. 9 and 10) similar to many
other Cu deposits in the region. Therefore, the metamorphic-hydro-
thermal remobilization of the Huping Cu deposit was likely attributed
to the ca. 1.85 Ga regional metamorphism. The syn- to post-peak me-
tamorphic Cu transfer and remobilization processes at Huping indicate
crucial impacts of metamorphic remobilization on the Cu mineraliza-
tion in the Zhongtiao region.

7. Conclusions

(1) The Huping Cu deposit comprises three alteration/mineralization
stages, i.e., stage I veinlet–disseminated sulfides, stage II quartz–-
sulfide veins and stage III calcite (–quartz) veins.

(2) The stage I mineralization has an albite+ chlorite+ bio-
tite+ epidote gangue mineral assemblage, and has deformed
chalcopyrite with δ34S values similar to the chlorite-amphibole
schist wall rocks. This mineralization was likely resulted from me-
chanical Cu remobilization by solid-state ductile transfer under
lower greenschist facies metamorphism.

(3) Chalcopyrite in the stage II mineralization was likely precipitated
from metamorphic fluids (avg. δ18O=4.6‰ and δD=−56.6‰)
and has higher δ34S values (avg. 8.0‰). The sulfur isotope sig-
nature was likely influenced by the incorporation of extra sulfur
during the fluid migration. The stage II mineralization was likely
related to metamorphic-hydrothermal Cu remobilization and pre-
cipitation via metamorphic-fluid immiscibility.

(4) The stage III quartz-calcite vein alteration (avg. δ18O=0.09‰;
δ13C=−0.88‰) may reflect meteoric fluid incursion into the
waning metamorphic-hydrothermal system.

(5) Metamorphic-hydrothermal Cu remobilization may have had cru-
cial impacts on the Cu mineralization in the Zhongtiao region.
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