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A B S T R A C T

Quantifying the spatiotemporal change of land cover and understanding their ecological, environmental, and
socioeconomic impacts are important for sustainable development. Surface mining by the minerals industry is
one driver of the changes in land cover, leading to loss of natural vegetation and top soils, and interruption of
ecosystem service flows. This study investigates the effectiveness of remote sensing datasets to identify and map
land cover changes, with the specific goal of understanding the impact of surface mining activities on land cover
globally from 1980s to 2013. Diverse remote sensing datasets with long term observations are analyzed, in-
cluding high-resolution images in Google Earth, Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper
Plus (ETM+)/Operational Land Imager (OLI), the Moderate Resolution Imaging Spectroradiometer (MODIS)
Vegetation Index (VI) product and Defense Meteorological Satellites Program (DMSP)/Operational Linescan
System (OLS) stable night-time light. The results indicated that after entering 21st century, North America (e.g.,
the United States and Canada) was the only continent to have more surface mining spots categorized as Shrink
type (rehabilitated) rather than Expand type. South America (e.g., Chile and Brazil) and Asia (e.g., India and
China) had the highest proportions of Expand Type of surface mining spots. Detailed demonstrations on how
those remote sensing datasets could help in mining spot monitoring are presented.

1. Introduction

Rapid economic and social development drives growing demands
for mineral resources. However, mining of these resources has a sig-
nificant impact on ecological environment as mining activities take up
land resources, leading to the destruction of arable land and vegetation
(Schueler et al., 2011; Townsend et al., 2009); destroying the natural
landscape and affecting the integrity of the ecosystem and local biodi-
versity (Antwi et al., 2008); producing emissions from mining which
cause atmosphere/water/soil pollution; and inducing a variety of geo-
logical disasters, such as debris flow and landslides (Latifovic et al.,
2005). In particular, monitoring of land use/cover changes and its
consequences for ecological, environmental, and socioeconomic impact
on Earth is critical for sustainable development.

A conventional approach to environmental monitoring for mining is
based on field inspection which is slow and expensive. However, with
the advances in satellite-to-ground observation technology, remote
sensing technology has become an effective method (Latifovic et al.,
2005; Townsend et al., 2009). Surface mining removes vegetation and
soils, resulting in land cover changes. In the field of satellite remote
sensing, land-cover mapping has become one of the most active areas of
research (Yu et al., 2014a). Hundreds of satellites have been launched
to observe land dynamics. Since the early days of satellite remote
sensing, the spatial resolution of sensors on board these satellites has
increased to sub-meter. The spectral sampling frequency has increased
nearly a hundredfold from a few spectral bands to a few hundred bands.
Rapid advancements in hardware and computing techniques made land
cover monitoring at the global scale possible (e.g., Gong et al., 2013; Yu
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et al., 2013, 2014b) as well as diverse applications in natural sciences,
including climate and hydrological modelling, biogeochemical cycling,
environmental protection, biodiversity conservation, and resource
management.

For the monitoring of land cover changes with a specific focus on
surface mining activity monitoring, a remote sensing based approach
has many advantages over the traditional field based land cover mon-
itoring method including the following:

• Data collection efficiency: Remote sensing technology collects sur-
face information over a large spatial extent efficiently, while a
conventional method relies on point source information where data
collection is limited by access to the mine sites.

• Minimising subjectivity: Quantitative measurements from remote
sensing technology are objective and repeatable unlike field work
based data collection.

• Monitoring land cover dynamics: Cyclic observations by satellite
remote sensing technology allow periodic updates of data from the
surface mining and its surrounding areas. This allows monitoring of
changes in land cover over time, i.e. land cover dynamics, which
may help the understanding of land clearing and rehabilitation for
the mine sites. (for mining disturbance detection and environmental
impact assessment).

In the last decade, a wide range of studies have been carried out to
monitor environmental impacts of mining activities (e.g. Townsend
et al., 2009; Malaviya et al., 2010; Erener 2011; Schmid et al., 2013;
Raval and Shamsoddini, 2014; LaJeunesse Connette et al., 2016;
Redondo-Vega et al., 2017). Monitoring techniques may be based on
visual interpretation or computer assisted interpretation using auto-
mated pattern recognition techniques (Latifovic et al., 2005;
Petropoulos et al., 2013). The automated analysis techniques may vary,
including pixel-based to object-based analysis (Bao et al., 2014; Lechner
et al., 2016; Pei et al., 2017); bi-/multi-temporal image comparison;
continuous time-series monitoring (Li et al., 2015; Yang et al., 2018).
The monitoring may also vary depending on the details being sought
within the data, from low-resolution macro-monitoring to high-re-
solution monitoring (Demirel et al., 2011). In recent years, Pei et al.
(2017) used object-based image analysis to monitor the land cover
change in a coal mining area. Yang et al. (2018) applied LandTrendr, a
temporal segmentation algorithm, to dynamic monitoring of land dis-
turbance and recovery in mine sites. Previously, many studies focused
on observing detailed land cover analysis of mining area and improving
the accuracy (e.g., Chen et al., 2018). However, to the best of our
knowledge, no study on the long-term change of land use at the con-
tinental or global scale around the open-pit mining areas has been re-
ported. Existing databases record the geographic coordinates, char-
acteristics and attributes of mines at a specific time without considering
the continually phasing in and out of mines (Soulard et al., 2016),
therefore, keeping track of the mining-related disturbance (i.e., ex-
pansion, reclamation, or both) and updating the global database is
important for environmental management and monitoring.

In this study, we applied multi-source (multi-temporal and multi-
resolution) datasets, including NTL, MODIS, Landsat and high-resolu-
tion images from Google Earth, in order to globally track the spatial/
temporal mining and recovery process in respect of open-pit mining of

nonfuel mineral (except coal mining) resources over the past decades
(1980s-2013). The specific aims of this study were: (1) to present a
global surface mining dataset with accurate spatial location and
changes in mining footprint, (2) to investigate the global patterns of
land change in significant surface mining belts, and (3) to demonstrate
the effectiveness of different remote sensing datasets in surface mining
activity monitoring.

2. Datasets

This study uses long term observations of multi-source (with dif-
ferent spatial resolutions and revisited intervals) remote sensing images
including high-resolution images in Google Earth, Landsat Thematic
Mapper (TM)/ Enhanced Thematic Mapper Plus (ETM+)/Operational
Land Imager (OLI), the Moderate Resolution Imaging
Spectroradiometer (MODIS) Vegetation Index (VI) and Defense
Meteorological Satellites Program (DMSP)/Operational Linescan
System (OLS) stable nighttime light (NTL) for surface mining regions in
recent decades. A summary of those datasets is shown in Table 1, and
details will be elaborated in the following sections (Sections 2.2–2.5).
We also used the United States Geological Survey (USGS) Major Mineral
Deposits of the World (MMDW) database (https://mrdata.usgs.gov/
major-deposits/) to identify the locations of surface mining areas
around the world which can be used to analyse those areas’ land cover
changes. Images with different resolutions were given to interpreter and
the change trends between vegetation and bare land for each of the
identified mining spots were determined.

2.1. Deposit location data

The USGS MMDW database holds geographical locations and gen-
eral geologic setting of known deposits of major nonfuel mineral
commodities (Schulz and Briskey, 2005). It is compiled from five re-
gional databases (i.e. Zientek and Orris, 2005; Cunningham et al., 2005;
Peters et al., 2005; Nokleberg et al., 2005; Taylor et al., 2009) and
includes information such as record ID (gid), deposit name (dep_name),
country, latitude, longitude, commodity, deposit type (dep_type) and
others. However, it should be noted of a level of uncertainty in this
database. There are multiple authors (USGS geoscientists) for this da-
tabase, there may be variations in the criteria by which deposits were
chosen for inclusion. In addition, it seems mineral deposits in the
United States were documented more comprehensively than in other
regions, owing to better access to source materials. In addition, geo-
graphic location, the geometry and spatial extent of deposits in this
database are not precise. While this study doesn’t address the un-
certainty in deposit selection criteria by individual authors and lack of
consistency across different parts of the world in the collection of de-
posit data, a significant effort has been made to ensure the locations and
geometry of the listed deposits and their geographic locations are va-
lidated and modified if necessary according to high-resolution images
in Google Earth. Three quarters of the total sites in MMDW dataset
(3161 in total) were excluded as there was no none-vegetated region
(pit, overburden dumps, construction etc.) nearby based on our in-
spection of high resolution images. Possible reasons are (1) deposits are
not necessary to be active mining sites, some may have never been
mined, (2) some may have mined before but have been successfully

Table 1
Datasets used in this study.

Dataset Spatial resolution Time period Revisit interval Data processing

High resolution images <1m 1960s–2017 Irregular –
Landsat 30m 1970s–2016 16 days Atmospheric and terrain corrected
MODIS VI 250m 2000–2016 16 days Poor-quality/cloud pixel were excluded
NTL 1 km 1992–2013 1 year Inter-calibration among each year
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reclaimed prior to the acquisition of high resolution images in Google
Earth. Thus, the remaining 780 mining locations were used in our
study.

2.2. High-resolution images in Google Earth

Many high-resolution images (i.e., better than 1-m resolution) have
been captured and made available to trace detailed changes in land
cover (Yu and Gong, 2012). The spatial coverage of high-resolution
imagery in Google Earth (https://www.google.com/earth/) has been
expanded rapidly in recent years. In this paper we used high-resolution
images from Google Earth (mostly are SPOT 5, GEOEYE-1, IKONOS,
QuickBird, Worldview-I/II and Aerial photographs) over multiple dates
(from 2000 to 2016) to check for changes at specific sites according to
the USGS MMDW database.

2.3. Landsat TM/ETM+/OLI

Landsat datasets (http://landsat.usgs.gov/) are one of the most
widely used datasets for diverse applications, including disaster mon-
itoring, land cover/use mapping, urban expansion, and biodiversity.
The Landsat series, including TM, ETM+ and OLI, share relatively
consistent reflectance bands, which helps with tracking long-term
change back to the 1970s. Since the Landsat archive was made freely
available to the public, Landsat images have been used for large-scale
land cover mapping with a relatively fine spatial resolution (e.g., Gong
et al., 2013) or subtle change detection (Xu et al., 2017). In this study,
we selected the areas covering the mineral deposits from all available
Landsat imagery (processing level: L1T, and atmospheric correction
was done by USGS) from 1984 to 2016.

2.4. MODIS vegetation index

The MODIS dataset has coarser spatial resolution than Landsat but
with more densely distributed spectral bands and a higher temporal
resolution (revisiting frequency). Our study used the MODIS vegetation
index (VI) data (MOD13Q1) (2001–2016) with the spatial resolution of
250m composited every 16 days. Poor-quality pixels due to cloud cover
were identified and excluded in the analysis. Analyzing a relatively long
temporal span of MODIS covering the period from 2000 to 2016 every
16 days is helpful for detecting ground disturbances and understanding
the change trends over time.

2.5. Night-time light (NTL)

The DMSP/OLS NTL data provides a continuous observation of
nighttime luminance change caused by human-activity related events
(such as socioeconomic activities or surface mining) from 1992 to 2013
(Elvidge et al., 2009). This data have a near global coverage (spanning
from −180° to 180° in longitude and −65° to 65° in latitude), with a
spatial resolution of 30 arc seconds (equal to 1 km at the equator). The
long-term and global coverage advances the NTL dataset for detecting
surface anthropogenic activities through tracking the NTL change. For
this study, the NTL dataset was downloaded from the National Oceanic
and Atmospheric Administration (NOAA) with the stable product
(version 4) (https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.
html), from which ephemeral events such as fires and other background
noises have been eliminated.

3. Methods

Based on the spatial and spectral attributes of the satellite datasets,
various image processing and interpretation techniques were applied to
track the mining disturbance through the entire time series. In the
following sections, we summarize the techniques used in this study.

Three categories of changes in land-use were identified, namely, (1)
expand type – changes of vegetation/bare land cover to mine site; (2)
shrink type – from bare land to vegetation (rehabilitation); and (3) no
obvious trend – without consistent change pattern (expand or shrink) or
changes are not clearly detected. In the interpretation of the change-
categories, the use of different datasets were prioritized on the basis of
the spatial resolutions of the time-series images. Fig. 1 shows how the
datasets at three different levels of resolution are interpreted and in-
tegrated. The priority was given first to the use of high resolution
images for interpretation, and if not available, to moderate-resolution
images (that is, Landsat images comprising 47.3% of the total data used
in this study) and then to low resolution images (that is, VI/NTL
comprising 36.8% of the data.

3.1. Visual interpretation

High resolution images from Google Earth comprising 16.9% of the
data were visually interpreted for detecting the land-use change type.
We checked all the high resolution time lapse images from Google Earth
since 2000. This study analysed the locations of 790 mines globally and
temporally dense Google Earth images were available for 128 mine

Fig. 1. Flowchart of the mining spot interpretation using multiple datasets.
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sites. The rest of the mine sites were analysed with the aid of other
satellite data sources as previously shown in Fig. 1. With the aid of
visual and other auxiliary information (including tone, texture, shapes
etc.) using high spatial resolution and/or high temporal resolution
(revisited frequency) images, we were able to identify the change type
of each surface mining area. Meanwhile, since images were acquired at
different time and time interval for each mining area, other satellite
datasets were also used to support the discrimination of change types
when temporally sparse observations (time intervals> 3 years) were
available (See Sections 3.2 and 3.3). Here we supposed that mining
activity is a continuous one-way activity in a short term without multi-
directional change (i.e., the 1st year in shrinkage, the 2st year in ex-
pansion and 3rd year in shrinkage).

3.2. Landsat based change detection

The Landsat based mining change detection includes three main
steps: pre-processing the Landsat time series, Landsat image classifica-
tion and change detection based on the annual mapping results. Firstly,
surface Reflectance Landsat data from 1984 to 2016 covering 47.3%
mining sites was applied with atmospheric and geometric distortions
correction (downloaded from United States Geology Survey, http://
glovis.usgs.gov/next/) (Masek et al., 2006). Although geometrically
referenced products are available from USGS, there is still offsets in a
few of the Landsat images. Thus in this study, the registration ac-
curacies of multi-temporal Landsat images were geometrically verified
image-by-image using Google Earth images based on reference points
such as well-defined turning points of rivers and roads. The Landsat
images that were found misregistered were rejected and only geome-
trically consistent Landsat images were used in the next step. We used
all images from Landsat TM/ETM+/OLI except for the Landsat ETM+
images that had blank scan lines. Gap-filled methods were not applied
to these Landsat SLC-off products because those could bring additional
artificial information in the gap-filled regions. In the annual image
classification, to minimize the impact of seasonal variations, four
Landsat images acquired from each season (Spring, 3–5; Summer: 6–8;
Autumn: 9–11; Winter: 12–2) with lowest cloud cover for each year
were selected for each mining sites. Random Forest, a supervised
classification algorithm, was applied to map the land-use from mod-
erate resolution Landsat images collected at different times. We fol-
lowed the procedures described by Feng et al. (2016) for training
sample collection, Random Forest classification, annual result compo-
sition and temporal consistency check. The land cover system includes
cropland, other vegetation, water and hard surface. Four Landsat
images from each season were classified and the four seasonal mapping

results were then integrated into the annual mapping results to mini-
mize the mapping error because of seasonal variation (data acquisition
time). For example, an area is a barren land type in the dry season
which may change to grassland during the wet season. In this case, the
area is assigned as grassland in the annual analysis. This helps to dif-
ferentiate the natural vegetation from the open pit mining area which is
consistently bare throughout the year. Finally, the annual land cover
mapping results were then used to identify the temporal variations in
the spatial distribution of land-use classes and the land-use change for
each mines.

3.3. Time-series VI/NTL analysis

Normalised Difference Vegetation Index (NDVI) is usually used for
vegetation mapping. Mining-related disturbance generally cause
changes in surface vegetation cover, including deforestation, and in
case of reclaimed areas, afforestation, which can be detected by NDVI
dynamics. A least square approach was used to fit a linear trend (i.e.,
increasing or decreasing) to NDVI for each mine, from the year 2000.
The areas where mining activities damaged vegetation would show a
negative trend, while the areas where reclamation and restoration have
been carried out would show positive trends.

Because of their long time span (1992–2013), NTL dataset can also
be used for long-term mining-related change detection. We selected the
annual composition of NTL images from a series of satellites (i.e. F10
(1992–1994), F12 (1995–1996), F14 (1997–2003), F16 (2004–2009),
and F18 (2010–2013)) due to their relatively consistent temporal trends
of total digital numbers (DNs) over past two decades (Li & Zhou, 2017).
The NTL time series was processed for intercalibration using the ap-
proach described in Elvidge et al. (2009) to ensure the change of yearly
NTL is comparable among different years. The average digital number
values for all cloud-free observations (after removing the ephemeral
lights and background noise) were used in this study. The NTL detector
is capable of detecting faint light sources as well as bright lights
(Elvidge et al., 2014). Here, overall trends of DN values for the NTL
time series at the center of a mine and in a 5-km buffer (as suggested by
Kivinen, 2017), which represents the change of NTL intensity and
spatial extent, respectively, were used to identify the mining-related
disturbance (expand, shrink or complex) from 1992 to 2013.

4. Results and discussions

4.1. Overview

The results of the interpreted land cover change types (Expand,

Fig. 2. Change types of surface mining spots during 2000 to 2013.
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Shrink and No obvious change) are shown for global surface mining
spots in Fig. 2. We analysed the results by continents and by countries
to understand region-wise trends in land cover changes. We also de-
scribe case studies and examples to demonstrate the use of multi-tem-
poral and multi-resolution remote sensing datasets in understanding
surface mining related land cover changes.

The uncertainty in the identification of the change types for mining
spots is shown in Fig. 3). Here, scores 1 to 4 represents the uncertainty
of mining disturbance results, from the least reliable (score of 1) to the
most reliable (score of 4). Score 4 was assigned to those mining spots
where all the four datasets showed a consistent change type. A score of
3 was allotted to the spots where three datasets showed consistent re-
sults. And if two of the datasets with higher resolution showed the same
results while the others showed the reverse trend, or only two or three
datasets detected the change, a score of 2 was assigned. The score of 1
was allotted when some of the datasets failed to detect any change or no
consistent change type was found across different datasets.

Figs. 4 and 5 indicate that the count/proportion of these change

categories in different countries and continents respectively. North
America (e.g., the United States and Canada) was the only continent to
have more surface mining spots categorized as Shrink (rehabilitated)
rather than Expand. South America (e.g., Chile and Brazil) and Asia

Fig. 3. Uncertainty of the change types for the mining spots.

Fig. 4. Proportions of different change groups for countries with at least 3 records in the USGS MMDW database.

Fig. 5. Proportions of different change groups for different continents.
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(e.g., India and China) had the largest proportions of expanded spots.
This is probably because that after long-time resource exploitation,
those developed countries (i.e., the United States, Canada) began to
realize the importance of environmental protection and set up the strict
legislation to mine repair. For those developing countries, mining ac-
tivity is an important way to maintain the living and regulation is in-
sufficient.

Besides, the four datasets individually provided significant insights
in the land-use change patterns in mining belts. Many examples with
those datasets were elaborated in the following sections.

4.2. Evidence from single dataset

4.2.1. High-resolution images based example
High-resolution time series images, with finer spatial resolution,

allow more detailed land use/cover information than coarse resolution
product (i.e., 30-m Landsat archives and 250-m MODIS records). Here
we selected Fort Meade Mine – Cargill (Id: 701), a rock phosphate mine
in central Florida, USA, for our experiment. Fig. 6 shows the high-re-
solution images available on Google Earth from 1995 to 2017, which
document the construction, expansion and rehabilitation process of the
selected mining area. The white circles in the time lapse images from
Google Earth mark the mining areas with rapid land cover changes.

Using spectral and image characteristics such as reflectance, texture,
shape, size of patches, we could identify various land-use classes such as
vegetation, reservoirs and bare surface by visual interpretation. The
time lapse fine resolution images from Google Earth (Fig. 6) indicate
that, the rock phosphate mine was constructed in 1999. From 2004
onwards, the mine continuously expanded outwards (see the red rec-
tangles). However, restoration of deeply excavated pits as reservoirs
(see the yellow rectangles in 2004 and 2005) and of mining areas to
vegetation (see the yellow rectangles in 2012 and 2014) was also de-
tected.

4.2.2. Landsat images based example
Time series Landsat archives are widely used in monitoring land

surface change such as urban sprawl (Zhang and Weng, 2016; Li et al.,
2015), forest disturbance (Verbesselt et al., 2012; Schmidt et al., 2015)
and cropland change (Xu et al., 2017). However, the detection of land
cover changes in surface mining areas has not yet been conducted. Here
an example of monitoring mining activity changes was given in Xia-
fangshen Mine, China, one of the largest magnesium mines in the
world. After the random–forest-based classification of the Landsat TM/
ETM+/OLI images, seasonal and annual land cover maps were gener-
ated for the Xiafangshen Village, Northeastern China. Fig. 7 illustrates
the annual land cover mapping results for the study area (with four

Fig. 6. Mining disturbance from high-resolution images for Fort Meade Mine – Cargill Mine, USA, from Google Earth during 1995 to 2017. Deposit ID: 701, country:
United States, commodity: rock phosphate, dep_type: Marine biogenic-chemical sediment – phosphate rock.
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typical years enlarged in the top frame and the whole time series results
in the bottom frame) for the years 1986 to 2016. The red color in Fig. 7
represents the surface mining area, which is characterized as hard
surface comprising impermeable materials as compared to the sur-
rounding natural vegetation. The yellow, green and blue colors re-
present herbaceous cover, tree cover and water, respectively. The time
series mapping results showed that the mining regions experienced two
stages of change: 1) the area remained nearly unchanged from 1986 to
1997; and 2) the area continuously expanded from 1998 to 2016 (see
the white circles in Fig. 7, the hard surface expanded at the cost of tree
and herbaceous cover. The time series Landsat images not only cap-
tured the exact time point of surface mining activity expansion but also
provided detailed conversion types and patterns (from natural vegeta-
tion to hard surface).

4.2.3. MODIS VI based examples
We explored the surface mining activities (expand, shrink and no

obvious trend) by tracking the vegetation conditions in several surface
mining spots from 2000 to 2016 using time-series MODIS VI. Fig. 8
shows the variations in vegetation index (VI) over the center of the
mining spot in four typical sites over the 18 years: (a) Mulatos, gold and
copper mine in Mexico; (b) Three Springs, talc and asbestos mine in
Australia; (c) Fort Meade Mine – Cargill, phosphate rock mine in the
United States; and (d) North Stradbroke Island, titanium-zirconium-rare
earth elements (REE) mine in Australia.

Commercial production from the first site, Mulatos Mine, was
launched in 2006. The long time series VIs in Fig. 8(a) effectively
captures the gradual expansion of mining activities from 2006 onwards,

with an apparent decline in NDVI values from∼0.25 to 0.1. The second
site in Fig. 8(b) is the Three Springs deposit in Australia. Three Springs
is the second largest talc mine in the world and the largest talc producer
in Australia. The overall trend of VIs for the center of the mine site
(deposit ID: 56) is increasing, with the lowest NDVI in 2000 and the
highest in 2013. The Cargill deposit, characterized as marine chemical
sediment, is located in the Central Florida District and has been
exploited since the 1960s. The fluctuating VIs (higher in 2000–2004
and 2010–2012, lower in 2004–2009 and 2012–2015) in Fig. 8(c)
suggest simultaneous mining as well as rehabilitation in this area. In
North Stradbroke Island, mining activity has been conducted for more
than 60 years. Based on Australia's National Mineral Resources Act,
sand mining on the island would be phased out by 2027 and the mined
land would become a national park, eventually covering 80% of the
island. However, continuous decline of MODIS NDVI values indicate
that mining activity was probably continued and even expanded since
2004 (Fig. 8(d)). This demonstrates that we can use the sharp decrease
in VIs to detect the rapid expansion of the mining spot which may
potentially damage the local environment.

4.2.4. NTL based examples
NTL based observations are potential to detect gas flaring, coal fire

or other luminance caused by mining activities at night (Elvidge et al.,
2009; Li, et al., 2016; Ali et al., 2017). In general, there are two sources
of lights that related to the surface mining activities. Mining induced
lights such as gas flaring or coal fires can be easily captured by satellites
at night, particularly for those large mining sites. For instance, Elvidge
et al. (2009) used the NTL time series data to explore the efficiency of

Fig. 7. Annual mapping results in Xiafangshen Mine, China using time series Landsat images from 1986 to 2016 (four selected years zoomed and others listed below).
Deposit ID: 208, country: China, commodity: Magnesite, dep_type: Sedimentary.
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oil production facilities at the global scale. In addition, human settle-
ments with electricity use at night can also be detected using NTL
images. Bharti et al. (2011) used the brightness change of NTL images
to analysis the dynamics of population density in west Africa. There-
fore, human activities around the mining sites can also be detected
using NTL time series.

NTL time series can provide an effective monitoring of active mine
due to the lighting of the mine sites. Three typical cases related to NTL
change are presented in Fig. 9. For a deposit in Chile (Fig. 9(a)), the
overall trend of NTL (Digital Number (DN) value for the center of the
mine site (deposit ID: 1103)) is increasing, with a strong signal ob-
served around 2002. This is probably because of the intensified mining
activities in this region generating brighter luminance at night. For a
deposit in South Africa (Fig. 9(b)), it is clear that the DN value of the
center point decreased in the period from 1992 to 2013. Given that this
is a mining location, it is likely that the mining activities slowed down

gradually, then significantly after 2002 as the observed DN value after
2002 was decreased rapidly. For a deposit in Finland (Fig. 9(c)), the
NTL time series was relatively stable over the whole period. Therefore,
it is likely that stable mining activity was ongoing throughout the whole
period.

Fig. 10 demonstrates the integration of NTL and Landsat data to-
wards the monitoring of mining activities for four different mining
spots (a), (b), (c) and (d). In each of the subfigures, the top three shows
NTL changes in a 5-km buffer of the observed mine site, NTL (DN va-
lues) in the first year (1992/1995) and NTL in the final year (2013),
respectively, and the bottom shows the corresponding Landsat images
in the same year. The NTL changes were calculated using a linear trend
(i.e., increasing or decreasing) of DN values for each pixel between
1992/1995 and 2013. Red color in the first column of Fig. 10 (a), (b).
(c) and (d) refers to decreasing trend of NTL and the green one is the
increasing trend. This figure shows how NTL perform the mining

Fig. 8. Vegetation index (VI) changes in four typical surface mining spots from 2000 to 2017. (a) Deposit ID: 1213, country: Mexico, commodity: Gold, Copper,
dep_type: Hydrothermal; (b) deposit ID: 56, country: Australia, commodity: Talc, Asbestos, dep_type: Unclassified; (c) deposit ID: 701, country: United States,
commodity: Phosphate rock; dep_type: Sedimentary; (d) deposit ID 65, country: Australia, commodity: Titanium-zirconium-REE, dep_type: Surficial.

Fig. 9. Three typical cases related to NTL change with NTL time series, (a) deposit ID: 1103, country: Chile, commodity: Copper, molybdenum, dep_type:
Hydrothermal; (b) deposit ID: 2785, country: South Africa, commodity: Gold, PGE, Silver, dep_type: Surfacial; (c) deposit ID: 1324, country: Finland, commodity:
Tungsten, dep_type: Sedimentary.
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(a)  

 (b) 
Fig. 10. Four cases related to nighttime light change, i.e. (a) deposit ID: 2837, country: South Africa, commodity: Iron, dep_type: Sedimentary, increased NTL change
type: expand; (b) deposit ID: 1829, country: Spain, commodity: Copper, dep_type: Hydrothermal, decreased NTL, change type: shrink; (c) deposit ID: 40, country:
Australia, commodity: Iron, dep_type: Sedimentary, stable NTL; (d) deposit ID: 1119, country: Chile, commodity: Copper, gold, dep_type: Hydrothermal, increased
NTL, change type: expand.
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disturbance and the similar results by the referring Landsat images.

(a) This site is located in South Africa. Overall, there are two active
mines (As the two circle shows in Fig. 10a). By combining the NTL

trend and two-period Landsat images, it can be shown that the
mining spot started in the north which is then shifted to the south. A
more distinct increment of NTL can be found in the southern part.
Also, the Landsat images indicate that the initial bare land has been

 (c) 

 (d) 
Fig. 10. (continued)
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converted to mining spots with relatively high reflectance.
(b) This site exhibits a clear correspondence between NTL, mine loca-

tions in Landsat images. The North-West part in the circle shows a
clear decreasing trend whereas for the remaining area, the mean DN
slightly increased. Therefore, it is likely that the main mining region
was centered around the shrinking area (red color in Fig. 10b-i),
which is closer to the water (dark blue in Fig. 10b-iv and 9b-v) for
practical mining activities.

(c) This is a case where the mining activities in this region were rela-
tively stable without considerable shift in DN change over the past
decades. The mean DN value in the mining region is only slightly
decreasing (∼0.1 in Fig. 10c-i).

(d) This is a region with expanding mining regions in Chile. The change
in NTL in the central part of the circle is quite stable, whereas its
surrounding region shows an increasing trend. The expanded
mining region was clear when referring to the two-date Landsat
images.

4.3. Comparison of results of all four datasets

In this section, we explore the mining-related land cover dis-
turbance using high-resolution images from Google Earth, time series
Landsat images/VI/NTL and compare their performance. Fig. 11 de-
monstrates the land type changes in a deposit located in the USA

Fig. 11. Mining disturbance for Bald Mountain (Wharf, Trojan, Portland), USA from (a) high-resolution images from Google Earth (1984–2016); (b) annual mapping
results using time series Landsat images (1984–2017); (c) vegetation index (VI) changes from 2000 to 2017; (d) nighttime light time series (during 1992 to 2012).
Deposit ID: 2184, 2187, country: United States, commodity: gold, silver, dep_type: Gold, silver.
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(deposit ID: 2184 and 2187) during 1984 to 2017 using all four data-
sets. The three datasets (Google Earth, Landsat and Nighttime light)
showed a consistent trend of increasing land cover disturbance in the
past ∼3 decades for the studied mine site. The recovery of vegetation is
detected in four time-series datasets after 2000. Both high- and mod-
erate-resolution datasets showed a significant expansion in 1980s, fol-
lowed by a stable period in 1990s. However, there is some difference
between the results obtained from the four datasets. For example, the
fluctuations land recovery in mining areas in 1990s as interpreted from
the time-series NTL, are different from those interpreted from high
resolution images. After 2000, the recovery is more obvious in the
annual mapping results derived from Landsat images and time series
MODIS VI/NTL as compared to the higher resolution images from
Google Earth. However, overall, all the four datasets showed a con-
sistent tendency.

5. Conclusions

This study presented a global surface mining dataset with accurate
spatial location and changes in mining footprint. Multiple remote sen-
sing datasets (high-resolution images in Google Earth, Landsat TM/ETM
+/OLI, MODIS VI, DMSP/NTL) with long-term observations were used
to investigate the land changes in mining areas around the world from
1980s to 2013. However, because of the lack of availability of global
high spatial resolution and high temporal resolution datasets, only a
small subset of all surface mining operations was covered in the current
study and the reliability of the result depends largely by the spatial/
temporal resolution of the available data. Nevertheless, this study
proposes and demonstrates a workflow for analyzing and integrating
different types of readily available remote sensing images in order to
understand the global patterns of land use changes driven by mining
activities. In the future, repeated observations from higher resolution
images (e.g., Planet Labs Inc., https://www.planet.com/) can be in-
tegrated into the workflow proposed in this study.

North America (e.g., the United States and Canada) was the only
continent to have more surface mining spots categorized as shrink
(rehabilitated) type rather than expand type in the most recent two
decades. South America (e.g., Chile and Brazil) and Asia (e.g., India and
China) have the highest proportions of expanded spots. Conflicts among
mining and the surrounding environment/ecosystem services need to
be addressed, especially for countries in South America, Asia, and
Africa, where high proportions of expanded spots were detected. This
study can help in prioritizing mining spots for taking corrective actions
by appropriate agencies in these countries.
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