
Contents lists available at ScienceDirect

Ore Geology Reviews

journal homepage: www.elsevier.com/locate/oregeorev

Hydrothermally altered mineral mapping using synthetic application of
Sentinel-2A MSI, ASTER and Hyperion data in the Duolong area, Tibetan
Plateau, China

Bin Hua,b, Yongyang Xua,b, Bo Wana,b,⁎, Xincai Wua,b, Guihua Yic

a Department of Information Engineering, China University of Geosciences, Wuhan 430074, China
bNational Engineering Research Center of Geographic Information System, Wuhan 430074, China
c College of Earth Science, Chengdu University of Technology, Chengdu 610059, China

A R T I C L E I N F O

Keywords:
Sentinel-2A MSI
ASTER
Hyperion
Duolong porphyry copper deposit
Hydrothermally altered mineral mapping

A B S T R A C T

The Duolong area is in a strong potential copper mineralization zone associated with felsic intrusions, and
several porphyry copper deposits (PCDs) have been identified. The PCDs are characterized by hydrothermal
alteration zones. In this study, Sentinel-2A MultiSpectral Instrument (MSI), Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER), and Hyperion data are combined to map hydrothermally altered
minerals. Three temporal Sentinel-2A MSI images are processed by integrating the Crosta technique and the
anomaly-overlaying selection method to map iron oxides and hydroxyl-bearing minerals. These approaches are
implemented to omit interference-induced false anomalies. The six shortwave infrared (SWIR) bands of ASTER
are used to extract information on Al-OH and Mg-OH group minerals. The distribution of Al-OH minerals in the
ASTER image map corresponds to that of hydroxyl-bearing minerals in the MSI image map. A combination of
minimum noise fraction (MNF), pixel purity index (PPI), n-dimensional visualizer (n-D Visualizer) and matched
filtering (MF) is adopted to process the Hyperion image to obtain accurate hydrothermal alteration mapping
results. The overall accuracy for mineral mapping is 92.75% and the kappa coefficient is 0.89. The results of the
Hyperion image are spatially consistent with those of the Sentinel-2A MSI and ASTER images. The image pro-
cessing results were validated by field investigations and spectral reflectance measurements. Hydrothermally
altered rocks correspond well with the five PCDs in the Duolong area. Three mineralization prospects associated
with felsic intrusions are discovered in accordance with the results. The methodologies and data are effective in
detecting porphyry copper mineralization in other arid areas.

1. Introduction

Porphyry copper deposits (PCDs) supply three-quarters of the
world’s Cu and one-half of the world’s Mo (Sillitoe, 2010). PCDs are
characterized by hydrothermal alteration and mineralization zones.
Hydrothermally altered minerals have diagnostic spectral absorption
properties in the visible and near-infrared (VNIR) through shortwave
infrared (SWIR) regions (Pour and Hashim, 2011, 2013).

Remote sensing has been used for hydrothermally altered minerals
mapping and mineral prospecting. The Landsat Thematic Mapper (TM),
Enhanced Thematic Mapper plus (ETM+), Operational Land Imager
(OLI) and Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) data are the four most widely used multispectral
data for mapping iron oxides, carbonates and hydroxyl-bearing mi-
nerals (Sabins, 1999; Tangestani and Moore, 2000; Goward et al., 2001;

Gabr et al., 2010; Mars and Rowan, 2010; Pour and Hashim, 2012a,b).
Compared to the SWIR bands of Landsat data, ASTER SWIR bands
provide superior performance in mapping two specific groups of mi-
nerals: Al-OHs and Mg-OHs (muscovite, kaolinite, chlorite, epidote and
others) (Liu et al., 2017). The methods of spectral feature fitting (SFF),
mixture tuned matched filtering (MTMF), matched filtering (MF),
spectral angel mapper (SAM), and spectral information divergence
(SID) are widely used for hydrothermally altered mineral mapping
(Ducart et al., 2006; Zhang and Pazner, 2007; Tangestani et al., 2011;
Amer et al., 2012). Supervised machine learning algorithms such as
artificial neural network (ANN), decision tree (DT), random forest (RF),
support vector machine (SVM), and extreme learning machine (ELM)
have been widely used in the image classification (Mas and Flores,
2008; Duro et al., 2012; Chen et al., 2014; Khatami et al., 2016).
However, there are few studies on the application of machine learning
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algorithms for mineral mapping. In the study, hydrothermally altered
mineral are mapped using the ELM for the first time.

The European Commission (EC) and European Space Agency (ESA)
establish Copernicus, which is the new name for the Global Monitoring
for Environment and Security Programme. The Copernicus programme
consists of six missions: Sentinel 1–6 (Berger et al., 2012). Sentinel-2A
carried a high-resolution multispectral imager with 13 bands spanning
the VNIR through SWIR regions. Sentinel-2A MSI (MultiSpectral In-
strument) data were first used for geological applications by Van der
Meer et al. in 2014, who compared the performance of the Sentinel-2A
MSI imager to that of the ASTER imager in mapping hydrothermal areas
(Van der Meer et al., 2014). There are a few studies on the use of
Sentinel-2A MSI for geological remote sensing (Mielke et al., 2014; Van
Der Werff and Van Der Meer, 2016). Principal component analysis
(PCA) is usually adopted to process a single-date Landsat TM dataset for
the identification of alteration information. Sentinel-2A MSI images
processing has been based on band-ratio method so far, however, spa-
tial and spectral performance characteristics of the Sentinel-2A MSI are
similar to those of Landsat TM. So, the PCA method can also be used to
process a single-date Sentinel-2A MSI dataset. However, field inspec-
tions revealed that false anomalies (iron oxides and hydroxyl-bearing
minerals) induced by vegetation, cloud, shadow and other factors ser-
iously affected the results. The relevant false anomalies can be effort-
lessly removed by overlaying selection using multi-temporal Sentinel-
2A MSI images.

Hyperspectral remote sensing images can be used to map altered
zones and basic surface mineralogy (Kruse et al., 2003; Bedini, 2009;
Liu et al., 2016). Hyperion, the first spaceborne imaging spectrometer,
is one of three instruments on the Earth Observing-1 (EO-1) spacecraft.
However, the application of Hyperion data is limited by its narrow
swath and site specificity. The integration of multispectral and hyper-
spectral data can enable the identification of the type of minerals and
increase the reliability of remote sensing-based mineral resources ex-
ploration.

The Duolong area in the northern Tibet has a mean elevation of
approximately 4900m. Because of the extremely arid climate, vegeta-
tion is sparse in the study area, and altered minerals are exceptionally
well exposed. The environment is very harsh because of the rugged
topography and severe climate. Elementary alteration zones were de-
limited by field reconnaissance. The objectives of this study are: (1) to
develop a systematic method for identifying hydrothermally altered
rocks using Sentinel-2A MSI, ASTER and Hyperion data; (2) to detect
crucial minerals associated with felsic intrusions-related mineralization
in the Duolong area using Hyperion data; and (3) to discover potentially
copper mineralized areas in the Duolong area.

2. Geological setting

The Duolong PCD is one of the largest Cu-Au deposits in Tibet,
China (Fig. 1a). The Duolong PCD is in the southern part of the
Qiangtang terrane on the western side of the Bangong Co-Nujiang su-
ture zone (BNS, Fig. 1b) (Xu et al., 2017). The Duolong area comprises
five PCDs: Duobuza, Bolong, Tiegelong, Naruo, and Saijiao (Fig. 2). The
Bangong Co-Nujiang suture zone (BNSZ) extends over 2000 km from
Bangong Co to the Nujiang River and is an important porphyry copper
metallogenic belt in Tibet.

In the Duolong area, the stratigraphy of the region includes the
Lower Jurassic Quse Group, the Middle-Lower Jurassic Sewa Group, the
Lower Cretaceous Meiriqie Group, the Paleogene Kangtuo Group and
Quaternary deposits (Fig. 2) (Li et al., 2011, 2013). The oldest strati-
graphy of the study area, the Quse Group (Lower Jurassic), is mainly
distributed in the southern part of the area and consists of metasand-
stone, siltstone and limestone. The Sewa Group (Middle-Lower Jur-
assic) contains metasandstone and siltstone, which are widespread in
the northeastern part of the study area. Regional intrusive rocks were
mainly formed during the Early Cretaceous, and the mineralized rocks

are felsic intrusions (porphyritic granites, porphyritic granodiorites,
granodiorites). Tectonism is dominated by nearly NE-EW- and SEE-
trending faults. The Duobuza PCD is a deposit which is surrounded by
phyllic, argillic and propylitic zones (Zhang et al., 2014). The Bolong
PCD is a deposit with an intensive phyllic zone, argillic zone and an
undeveloped propylitic zone (Zhu et al., 2011; Yang et al., 2015).

3. Materials

3.1. Sentinel-2A MSI data

Sentinel-2A MSI L1C orthoimage images are downloaded from the
Copernicus Open Access Hub. The MSI L1C product is produced from
the MSI L1B product by radiometric and geometric corrections. The
Sentinel-2 mission is designed to map changes in land cover and to
provide data continuity of SPOT, Landsat and ASTER missions. MSI,
which is aboard the Sentinel-2A satellite, records solar radiation in 13
bands (Table 1). Cloud-free level L1C (L1C) MSI data acquired on 15th
November 2016, 5th December 2016, and 15th December 2016 are
used for this research.

3.2. ASTER data

ASTER_07XT is a level 2 product that contains atmospherically
corrected data for both the VNIR and SWIR sensors. They are generated
using the bands of the corresponding ASTER L1B image. The ASTER
L1T data are also generated using the bands of the corresponding
ASTER L1B image. The differences between the ASTER_07XT data and
the ASTER L1T data are slight (Fig. 3). Because the ASTER L1T product
is produced from the ASTER L1B product by precision terrain correc-
tion, it is chosen for the study. ASTER L1T radiance data are down-
loaded from the Land Processes Distributed Active Archive Center (LP
DAAC). ASTER measures reflected radiation in three bands between
0.52 and 0.86 μm (VNIR) and in six bands between 1.60 and 2.43 μm
(SWIR) with 15-m and 30-m resolution, respectively (Table 1)
(Yamaguchi et al., 1999; Rowan et al., 2005). Cloud-free level L1T
(L1T) ASTER data acquired on 15th November 2007 are used for this
research.

3.3. Hyperion data

Hyperion is a satellite hyperspectral sensor which records data in
242 spectral bands at 30-m spatial resolution, with 7.5 km coverage in
the across-track direction (Table 1) (Hubbard et al., 2003). Cloud-free
level L1T (L1T) Hyperion data acquired on 30 October 2004 are used
for this research. The image is obtained from the USGS Earth Resources
Observation and Science (EROS) data center and processed to map iron
oxides and hydroxyl-bearing minerals.

3.4. Reflectance spectra

PCDs are characterized by potassic, phyllic, argillic and propylitic
zones (Lowell and Guilbert, 1970). In addition, both wall and intrusive
rocks can be hydrothermally altered. The alteration zones contain mi-
nerals which exhibit diagnostic spectral absorption properties in the
VNIR and SWIR wavelength regions (Pour and Hashim, 2012a,b). The
broad phyllic alteration zone contains muscovite (sericite), which has
an intense Al-OH absorption feature near 2200 nm and a secondary
absorption feature near 2350 nm (Fig. 4a) (Hunt, 1977). The narrower
argillic alteration zone contains kaolinite, which exhibits intense
2200 nm absorption and a secondary feature at 2170 nm (Fig. 4b)
(Hunt, 1977). Epidote and chlorite are common minerals of the outer
propylitic zone. Epidote has an intense Mg-OH absorption feature near
2335 nm and a secondary absorption feature near 2250 nm (Fig. 4c)
(Hunt, 1977). Limonite has a strong absorption feature at 480 nm and a
shallow absorption feature at 930 nm (Fig. 4d) (Hunt, 1977). However,
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the kaolinite is mostly related to the weathering of feldspars and epi-
dote can be related to regional metamorphism. Kaolinite and epidote
anomalies can have a genesis related to deposit when they have a close
relationship with muscovite anomalies.

4. Methods and results

4.1. Preprocessing of remote sensing data

The data analyzed in the area are three Sentinel-2A MSI L1C images,
a Terra ASTER L1T image and an EO-1 Hyperion L1T image.

The Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes
(FLAASH) is applied to top-of-atmosphere (TOA) level 1C orthoimage
products (12 bits signal quantization levels) to retrieve surface re-
flectance products at a 20-m spatial sampling interval (Table 2) (Berk
et al., 1998). The Sentinel-2A MSI L1C images are atmospherically
corrected in IDL ENVI version 5.4.1 (Environment for Visualizing
Images). Band 10 is removed from the dataset because this band is
designed for the detection of cirrus (Drusch et al., 2012). The Sentinel-
2A MSI images are subset to the study area (leaving 1195×725 pixels
starting at the top-left position at x= 973 and y=2853).

The Terra ASTER L1T dataset (8 bits signal quantization levels, solar

azimuth 166°, solar elevation 37°) is calibrated to radiance data in IDL
ENVI version 5.4.1 by applying the gain and offset values. The ASTER
image is converted to surface reflectance using the FLAASH (Table 2).
To reduce noise in the ASTER SWIR data, minimum noise transform
(MNF) analysis is used (Green et al., 1988). The sixth MNF channel
contains mostly noise because the eigenvalue of the channel is the
minimum. The ASTER SWIR data are compiled by using the inverse
MNF the 5 MNF channels. The ASTER SWIR data are subset to the study
area (leaving 797×484 pixels of 30×30m).

The Hyperion data are processed using a series of methods. First, the
EO-1 Hyperion L1T dataset is subset to 132 spectral channels (including
bands 11–53, 81–117, 139–164 and 195–220) to exclude unused,
overlapping and water absorption bands. Second, Digital Numbers
(DNs) are converted to radiance data by applying the gain and offset
values. The FLAASH algorithm is adopted to atmospherically correct
the Hyperion data with the aerosol amount retrieved by selected dark
land pixels (Table 2) (Berk et al., 1998). Third, MNF analysis is adopted
to reduce noise in the Hyperion data. The eigenvalues of the last three
MNF channels (channels 130, 131, 132) are 1.72, 1.70, and 1.69, re-
spectively. The Hyperion data are compiled using inverse MNF channels
1 through 129 to remove the noise in the Hyperion data.

The image process in this study follows the sequence of steps

Fig. 1. (a) Geographic map; (b) Sketch geotectonic map and generalized geologic map.

Fig. 2. Geological map of the study area.
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summarized in the flowchart of Fig. 5.

4.2. Sentinel-2A MSI data analysis

Hydroxyl-bearing minerals, which have a spectral diagnostic feature
in the 2.10–2.28 μm, can cause low reflectance in the Sentinel-2A MSI
band 12. These minerals also have a very high reflectance in the
Sentinel-2A MSI band 11. In addition, Sentinel-2A MSI band 1–9 (VNIR)
can discriminate iron oxides (limonite and goethite), which cause low
reflectance in the Sentinel-2A MSI band 2 and high reflectance in band
4. The Crosta technique is a PCA method which adopts the association
of Landsat TM bands 1, 4, 5 and 7 to extract hydroxyl-bearing minerals
and the association of Landsat TM bands 1, 3, 4 and 5 for iron oxides
(Loughlin, 1991). Similarly, hydroxyl-bearing minerals are extracted by
the combination of Sentinel-2A MSI bands 2, 8a, 11, 12 and the iron
oxides are extracted by the combination of Sentinel-2A MSI bands 2, 4,
8a, 11. However, interference factors such as snow, ice, water and soil

can cause false anomalies. Masking technique is employed to eliminate
the interference of the aforementioned factors. In addition, false
anomalies caused by random noise can be confused with real alteration
zones. The altered anomalies are usually contained in the noisiest
principal component (commonly the third or fourth principal compo-
nent) (Singh and Harrison, 1985; Liu et al., 2011, 2013).

The real alteration zones do not change, whereas the false anomalies
induced by noise are randomly distributed. The noise-caused false
anomalies can be eliminated by overlaying selection using multi-tem-
poral Sentinel-2A MSI images (Langford, 2015; Liu et al., 2017). Con-
ditions of climate, season, weather or atmosphere could be very dif-
ferent for data acquired on different dates. We had better select the
images which are photographed in the similar seasons. An anomaly-
overlaying selection method is proposed to remove the noise-caused
false anomalies because they do not coincide with those of other
images. The Crosta technique and anomaly-overlaying selection
method are used to extract information on hydroxyl-bearing minerals

Table 1
Performance parameters for the Sentinel-2A MSI, ASTER and Hyperion sensors.

Sensors Subsystem Band Number Spectral Range (μm) Spatial Resolution Ltypical SNR1 Signal Quantization Levels

MSI VNIR 1 0.433–0.453 60m 129 12 bits
2 0.458–0.523 10m 154 12 bits
3 0.543–0.578 10m 168 12 bits
4 0.650–0.680 10m 142 12 bits
5 0.698–0.713 20m 117 12 bits
6 0.733–0.748 20m 89 12 bits
7 0.773–0.793 20m 105 12 bits
8 0.785–0.900 10m 172 12 bits
8a 0.855–0.875 20m 72 12 bits
9 0.935–0.955 60m 114 12 bits

SWIR 10 1.360–1.390 60m 50 12 bits
11 1.565–1.655 20m 100 12 bits
12 2.100–2.280 20m 100 12 bits

ASTER VNIR 1 0.52–0.60 15m 370 8 bits
2 0.63–0.69 15m 306 8 bits
3N 0.78–0.86 15m 202 8 bits
3B 0.78–0.86 15m 183 8 bits

SWIR 4 1.600–1.700 30m 466 8 bits
5 2.145–2.185 30m 254 8 bits
6 2.185–2.225 30m 229 8 bits
7 2.235–2.285 30m 234 8 bits
8 2.295–2.365 30m 258 8 bits
9 2.360–2.430 30m 231 8 bits

Hyperion VNIR Continuous 0.400–1.000 30m 161 16 bits
SWIR Continuous 1.000–2.500 30m 40 16 bits

1 SNR at specified levels of typical spectral radiance (Typical).

Fig. 3. The reflectance spectra of AST_07XT and AST_L1T data at the same location.
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and iron oxides.
The band combination of TM 1, 4, 5, 7 is used to extract the in-

formation of hydroxyl-bearing minerals (Liu et al., 2017). Similarly, the
band combination of Sentinel-2A MSI 2, 8a, 11, 12 can be used to ex-
tract the information concerning hydroxyls. The PC3s of the band
combination of 2, 8a, 11, 12 using the Crosta technique primarily
contain information concerning hydroxyls because of the greatest
loading of band 11 (−0.474 to −0.507) and band 12 (0.836–0.841)
(Table 3). The hydroxyls occur as dark pixels because the positive
loading at band 12 and the bands need to be inversed. Many researches
have demonstrated that PC3 and PC4 have nearly normal distributions.
The anomalies for hydroxyl-bearing minerals are determined based on a
threshold of μ+2*σ, where μ and σ represent the mean value and
standard deviation of the relevant principal component images, re-
spectively. The three threshold values are 152.64, 155.81 and 149.01
for the images obtained from Sentinel-2A data acquired on 15th No-
vember 2016, 5th December 2016, and 15th December 2016, respec-
tively (Fig. 6a, b and c). The anomaly-overlaying selection method is
employed to eliminate the noise-induced anomalies. A pixel is classified
as a real anomaly if it satisfy the aforesaid criterion (Fig. 6d). The mi-
neral information of iron oxides is extracted using the same process.
Finally, the iron oxides and hydroxyl-bearing minerals are overlaid on

the false color composite Sentinel-2A image (MSI bands 12 (red), 8a
(green), 2 (blue)).

Fig. 7 shows the final result for the altered minerals derived from
multi-temporal Sentinel-2A MSI data. The iron oxides are depicted as
red pixels and the hydroxyl-bearing minerals as yellow pixels. Some
iron oxides are distributed in the proximity of the Quse Group and
Meiriqie Group (A and B, red, Fig. 7), whereas the other anomalies
cluster around the granite porphyry in the Tiegelong deposit (C, red,
Fig. 7). Nevertheless, most of the iron oxides are disorganized and show
no obvious correlation with the felsic intrusions. The hydroxyl-bearing

Fig. 4. Laboratory reflectance spectra of minerals
from the USGS spectral library (red line) and spectra
resampled to Hyperion 132 bands (blue line). The
vertical lines show the location of important ab-
sorption features. (For interpretation of the refer-
ences to color in this figure legend, the reader is
referred to the web version of this article.)

Table 2
FLAASH parameters for the Sentinel-2A MSI, ASTER and Hyperion images.

Atmospheric Model Aerosol Model Aerosol Retrieval

Sentinel-2A MSI Mid-Latitude Summer Tropospheric 2-Band (K-T)
ASTER Mid-Latitude Summer Tropospheric No
Hyperion Mid-Latitude Summer Tropospheric 2-Band (K-T)

Fig. 5. Sentinel-2A MSI, ASTER and Hyperion data processing flowchart.

Table 3
The Eigenvector matrix values of the PCA for the 2, 8a, 11, 12 bands of all three
multi-temporal MSI images.

15th Nov. 2016 Band 2 Band 8a Band 11 Band 12

PC 1 0.129 0.423 0.715 0.541
PC 2 0.502 0.704 −0.502 −0.006
PC 3 −0.144 −0.228 −0.474 0.838
PC 4 0.843 −0.523 0.108 0.064

5th Dec. 2016 Band 2 Band 8a Band 11 Band 12

PC 1 0.138 0.436 0.715 0.528
PC 2 0.578 0.666 −0.466 −0.070
PC 3 −0.130 −0.152 −0.503 0.841
PC 4 −0.794 0.585 −0.133 −0.096

15th Dec. 2016 Band 2 Band 8a Band 11 Band 12

PC 1 0.120 0.417 0.724 0.536
PC 2 0.562 0.690 −0.453 −0.052
PC 3 −0.147 −0.150 −0.507 0.836
PC 4 −0.805 0.572 −0.115 −0.109
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minerals are distributed near the central and east regions, where the
granodiorites, granodiorite porphyries and granite porphyries occur on
the map. Hydroxyl-bearing minerals mainly occur in the felsic intru-
sions (blue color) and agree well with all of the deposits (D, E, F, G, H
and I, yellow, Fig. 7). Moreover, the hydroxyl-bearing minerals show an
obvious correlation with the preliminary alteration zones delimited by
ground exploration. Only one felsic intrusion has anomalies associated

with both iron oxides and hydroxyl-bearing minerals (D, yellow, Fig. 7),
whereas hydroxyl-bearing minerals are inside or around the other
eleven felsic intrusions (J, yellow, Fig. 7). Iron oxides and hydroxyl-
bearing minerals have not been detected in the granodiorite in the
northeastern part of the study area (K, Fig. 7).

Fig. 6. Results of hydroxyl-bearing minerals extracted by using Crosta technique. (a) Results of 15th November 2016, (b) Results of 5th December 2016, (c) Results of
15th December 2016 and (d) Results of hydroxyl-bearing minerals extracted by using Crosta technique and 3 scenes anomaly-overlaying selection. Red arrows point
to the pixels extracted as high value only in one image. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 7. Results for hydroxyl-bearing minerals and iron oxides extracted using the Crosta technique and three scenes of the anomaly-overlaying selection. Background
image: MSI 12, 8a, 2 in RGB (15th November 2016). Areas discussed in the text: (A) iron oxides in the proximity of the Quse Group; (B) iron oxides in the proximity of
the Meiriqie Group; (C) iron oxides in hydrothermally altered rocks of the Tiegelong deposit; (D) hydroxyl-bearing minerals in granite porphyry of the Tiegelong
deposit; (E) hydroxyl-bearing minerals inside granodioritic intrusive rocks of the Saijiao deposit; (F) hydroxyl-bearing minerals around granodioritic intrusive rocks
of the Saijiao deposit;(G)hydroxyl-bearing minerals in granodiorite porphyry of the Naruo deposit; (H) hydroxyl-bearing minerals around granodiorite porphyry of
the Bolong deposit; (I) hydroxyl-bearing minerals around granodiorite porphyry of the Duobuza deposit; (J) hydroxyl-bearing minerals in hydrothermally altered
rocks of the West Tiegelong area; (K) granodiorite in the northeastern part of the study area.
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4.3. ASTER data analysis

The PCA and band-ratio techniques are usually used to map hy-
drothermally altered minerals. Band ratios are often derived using la-
boratory-measured or field-measured spectra, however, band ratios
such as those published by Commonwealth Scientific Industrial
Research Organization (CSIRO) are more of the standard (Hewson
et al., 2015). These band ratios are not defined in a laboratory, but have
been defined on ASTER scenes acquired all over Australia. Some of
these ratios are specifically for masking vegetation, snow, etc. In gen-
eral, these band ratios are therefore least affected by vegetation and
other covers. The Crosta technique, which involves principal compo-
nent (PC) transformation of band ratios, uses laboratory spectra to
identify the bands to be used for different alteration minerals. The PC3
of the band association of 1, 3, 4 and 6 for the ASTER image primarily
hold the information concerning Al-OH group minerals (Table 4)
(Moore et al., 2008). It should be inversed to be represented as bright
pixels (Fig. 8b). RBD6 [(ASTER band 4+ASTER band 7)/ASTER band
6] image is used to delineate phyllic mineral assemblages (Fig. 8c)
(Mars and Rowan 2006).

Al-OH group minerals include muscovite, illite and kaolinite. Both
muscovite and kaolinite show an intense absorption feature near
2200 nm (coinciding with ASTER band 6). Mg-OH group minerals

include epidote and chlorite. Epidote and chlorite have a spectral ab-
sorption feature near 2335 nm (coinciding with ASTER band 8). It is
difficult to identify epidote and chlorite using an ASTER SWIR image.
Whereas, ASTER SWIR bands have sufficient spectral resolution to
distinguish Al-OH group minerals from Mg-OH group minerals (Rowan
and Mars, 2003). Trials have shown that endmember selection utilizing
the entire coverage of the image does not provide satisfactory con-
sequences (Hubbard et al., 2003). The Tiegelong area consists of a vast
variety of surficial materials, including volcanic rocks, felsic intrusions,
hydrothermally altered rocks, snow, ice and rivers. The methods of
minimum noise fraction (MNF), pixel purity index (PPI) and n-dimen-
sional visualizer (n-D Visualizer) are used to extract reflectance spectra
from the ASTER image subset in the Tiegelong area. The scatter plot of
endmember is shown in Fig. 9. The locations of the purest pixels are
illustrated in the following image (Fig. 10).

The endmember spectra acquired from the ASTER image exhibit Al-
OH and Mg-OH spectral absorption features (Rowan et al., 2006). The
reflectance spectrum of the Al-OH minerals displays strong 2200 nm
and weak 2350 nm absorption features (A, yellow, Fig. 11) (Zhang
et al., 2016). The Mg-OH minerals have a well-defined absorption
feature positioned at 2335 nm (B, magenta, Fig. 11) (Zhang et al.,
2016). The MF procedure is applied to analyse the ASTER SWIR bands
using the ASTER image reference spectra. The MF is a partial unmixing
technique which maximizes the response of the known endmember and
suppresses the background (Rowan et al., 2004). It is expressed as:

= − −−x t m x mMF ( ) ( ) S ( )T 1 (1)

where t is the target vector, x is the sample vector, m is the background
mean and S is the background covariance. The resulting MF (x) is the
threshold to control the false alarm rate (Bedini, 2011). The MF result is
normally distributed and pixels with a greater value contain higher
contents of the target component (Liu et al., 2017). The MF image
(Fig. 8d) is found to be sharper and easier to interpret than the images
produced by the PCA and band-ratio methods (Fig. 8b and c). Pixels

Table 4
The Eigenvector matrix values of the PCA for the 1, 3, 4, 6 bands of ASTER L1T
image.

15th Nov. 2007 Band 2 Band 8a Band 11 Band 12

PC 1 −0.384 −0.540 −0.635 −0.397
PC 2 −0.693 −0.366 0.547 0.293
PC 3 −0.037 −0.004 −0.511 0.859
PC 4 −0.608 0.758 −0.191 −0.136

Fig. 8. (a) False color composite image using ASTER 4, 6 and 8. (b) Results of Al-OH group minerals extracted by using Crosta technique. (c) Results of RBD6 band
and (d) Results of MF analysis for Al-OH group minerals.
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representing Al-OH group minerals are extracted from the ASTER SWIR
image in the Tiegelong area. Approximately 30 percent of the pixels are
randomly selected to show the distribution of Al-OH group minerals,
reserving the others as a “hold-out” test set. The test set is used to
quantitatively evaluate the image processing results. The area under the
receiver operating characteristic (ROC) curve (AUC) is used as a per-
formance measure. The three values of AUC are 0.9984, 0.9983,
0.9993, respectively. The results indicate that the MF method outper-
form the PCA and band-ratio methods. It is implemented in Matlab
2017a software. Each anomaly is determined by a threshold value
μ+2*σ, where μ and σ represent the mean value and standard devia-
tion of the relevant band, respectively. Hence, the threshold values of
the Al-OH and Mg-OH minerals are set as 0.34 and 0.32, respectively.

The hydrothermally altered minerals are mapped in the study area
using the ASTER SWIR image reference spectra (Fig. 12). The yellow
areas representing Al-OH minerals correspond well with the distribu-
tion of hydroxyl-bearing minerals in the MSI image map (yellow,

Figs. 12 and 7). The Al-OH group minerals are mainly distributed in the
central and eastern parts of the study area. The results show the dom-
inance of Al-OH minerals in the granitic intrusive rocks in the eastern
part of the area (D, yellow, Fig. 12), inside and around the granodiorite
in the northeasternmost part of the area (E and F, yellow, Fig. 12), in
the northeastern labelled granodiorite porphyry (G, yellow, Fig. 12), in
the granodiorite porphyry of the Bolong deposit (H, yellow, Fig. 12) and
in the granodiorite porphyry of the Duobuza deposit (I, yellow, Fig. 12).
The Al-OH minerals mainly occur in the proximity of felsic intrusions
(blue color) and correspond very well with the five deposits (D, E, F, G,
H and I, yellow, Fig. 12). Moreover, Al-OH minerals cluster inside and
around granite porphyry in the West Tiegelong area situated in the
eastern part (J, yellow, Fig. 12). The information on Mg-OH minerals is
illustrated as magenta pixels (magenta, Fig. 12). A few Mg-OH minerals
are scattered around the granodiorite in the northeastern part (K, ma-
genta, Fig. 12), whereas no anomaly has been identified from the MSI
image (K, Fig. 7). Mg-OH minerals are mostly distributed to the south of
the two granite porphyries in the southeastern part (L, magenta,
Fig. 12). Some Mg-OH minerals are mapped around the granodiorite

Fig. 9. The scatter plot of endmember extracted by a combination of MNF, PPI and n-D Visualizer.

Fig. 10. The location of the purest pixels in the Tiegelong area. Background
image is ASTER band 4.

Fig. 11. Reflectance spectra of hydrothermally altered minerals from the
ASTER image subset. ASTER band centers shown at the top.
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porphyry of the Duobuza deposit (M, magenta, Fig. 12). In the Bolong
PCD, the alteration minerals of the phyllic zone are mainly composed of
muscovite and silicide (Zhu et al., 2011; Yang et al., 2015). Never-
theless, the propylitic zone of Bolong PCD is undeveloped (Yang et al.,
2015). In the Duobuza PCD, the phyllic zone mainly consists of ser-
icitization and silicification (Zhang et al., 2014; Zhang et al., 2016).
Strong muscovite alteration is apparent in the granodiorite porphyry
(Sun et al., 2017).

Machine learning algorithms (MLAs) are automated means which
can be used for data-driven classification (Zhou et al., 2018; Cracknell
and Reading, 2014). Huang et al. put forward the ELM, which is based
on a single hidden layer neural network (Huang et al., 2006). The ELM
has been used for remote sensing classification (Pal, 2009). Only one
user-defined parameter is need when the ELM classifier is used for re-
mote sensing classification. What is more, the performance of the ELM
is usually more excellent than that of the back-propagation neural
network. The 14,978 training pixels are extracted by the MNF, PPI and
n-D Visualizer. The ELM algorithm is implemented in Matlab 2017a
software. The number of hidden nodes in hidden layer is set as 1000.
The results of ELM classification method are shown in Fig. 13. The
result of ELM algorithm corresponds to that of MF algorithm (yellow
and magenta, Figs. 12 and 13).

4.4. Hyperion data analysis

Two spectral subsets of Hyperion bands are processed separately to
detect iron oxides and hydroxyl-bearing altered mineral assemblages.
The first subset of Hyperion data covering 80 bands (bands 11–53 and
81–117 with wavelengths at 457–884 nm and 952–1316 nm) is used to
highlight iron oxide information. The second subset of Hyperion data
covering 31 bands (bands 146–150 and 195–220 with wavelengths at
1608–1648 nm and 2102–2355 nm) is analyzed to extract hydroxyl-
bearing altered minerals. Reference spectra can be selected from the
image or spectral libraries (Liu et al., 2017). Generally, reference
spectra acquired from the image are more available for target detection
because they are obtained under the same atmospheric conditions as

the image (Bedini, 2011). The PPI procedure is performed on the top 15
MNF bands to map endmember spectra, because the top 15 MNF bands
contain most of the spectral information (Kruse et al., 2003). The po-
tential endmember spectra are loaded into an n-dimensional (n-D)
scatterplot and rotate until “points” or extremities on the scatterplot are
exposed. Once a set of unique pixels is defined using the n-D analysis
technique, each separate projection on the scatterplot is exported to a
region of interest (ROI) in the image (Kruse et al., 2003). Each class is
identified by comparisons of the endmember spectra to USGS spectral
libraries (Rowan et al., 2003; Pour et al., 2013; Molan et al., 2014). The
Hyperion image spectra selected from the Hyperion SWIR bands are
used to map the spatial distribution of the altered minerals (Pour and
Hashim, 2011; Kratt et al., 2010). The muscovite spectrum displays an
Al-OH absorption feature centered near 2200 nm (A, yellow, Fig. 14).
The spectrum, which exhibits a diagnostic doublet Al-OH absorption
feature in the 2170–2200 nm region, represents kaolinite (B, green,
Fig. 14). Epidote is characterized by an intense Mg-OH absorption
feature near 2335 nm and a distinctive feature at 2250 nm (C, magenta,
Fig. 14).

The results of the MF analysis of the Hyperion SWIR bands
(1608–2355 nm) for muscovite, kaolinite and epidote are shown in
Fig. 15. The MF results are normally distributed and the threshold value
of each anomaly is determined by the value μ+2*σ. Note: μ and σ
represent the mean value and standard deviation of the relevant image,
respectively. The threshold values of muscovite, kaolinite and epidote
are set as 0.30, 0.22 and 0.27, respectively. Classification aggregation
tool is used to solve the problem of isolated pixels occurring in classi-
fication image. It is difficult to obtain a large amount of rock samples
because of the area’s remoteness, severe climate, and rugged topo-
graphy. Thus, virtual verification is performed to evaluate the image
processing results. Pixels representing muscovite, kaolinite and epidote
are extracted from the Hyperion SWIR image. Approximately 30 per-
cent of the pixels are randomly selected to extract the reference spectra
and the others are selected to assess the accuracy of the results. The
total accuracy for hydrothermally altered mineral mapping is 92.75%,
and the kappa coefficient is 0.89 (Table 5) (Wan et al., 2015). The

Fig. 12. Results for Al-OH group minerals and Mg-OH group minerals extracted using the MF procedure. Background image: ASTER 6, 3, 1 in RGB (15th November
2007). Areas discussed in the text: (D) Al-OH minerals in the granitic intrusive rocks of the Tiegelong deposit; (E) Al-OH minerals in the granodiorite in the
northeastern part; (F) Al-OH minerals around the granodiorite in the northeastern part; (G) Al-OH minerals in the northeastern labelled granodiorite porphyry; (H)
Al-OH minerals in the granodiorite porphyry of the Bolong deposit; (I) Al-OH minerals in the granodiorite porphyry of the Duobuza deposit; (J) Al-OH minerals
cluster inside and around the granite porphyry in the West Tiegelong area; (K) Mg-OH minerals around the granodiorite in the northeastern part; (L) Mg-OH minerals
in the hydrothermally altered rocks in the southeastern part; (M) Mg-OH minerals mapped in the Duobuza deposit.
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difference between the muscovite spectrum and the kaolinite spectrum
is relatively subtle (Figs. 4 and 14). As a result, the accuracy for mus-
covite detection is 85.71% because a small number of muscovite areas
(approximately 14.29%) are misclassified as kaolinite.

Three classes of hydrothermally altered minerals are mapped in the
Tiegelong area using the Hyperion image spectra (Fig. 16). The yellow
areas representing muscovite correspond to the Al-OH minerals in the
ASTER image map (yellow, Figs. 12 and 16). The exposures of mus-
covite are more scattered than the Al-OH minerals in the ASTER image
map. The green pixels, which indicate kaolinite, are concentrated in the
proximity of granodiorite (F, green, Fig. 16). However, the Al-OH mi-
nerals are mapped at location F in the ASTER image map (F, yellow,
Fig. 12). The magenta color in the Hyperion image represents epidote
(magenta, Fig. 16). Very few Mg-OH minerals have been detected
around the granodiorite in the northeastern part (K, magenta, Fig. 16).

In area L, the epidote is less widespread in the Hyperion image map
than the Mg-OH minerals in the ASTER image map (L, magenta,
Figs. 12 and 16).

The results suggest that it could be erroneous to distinguish mus-
covite from kaolinite using the ASTER SWIR image, which is a new
conclusion in the field. The transformed divergence (TD) is a common
measure ranging from 0 (no separability) to 2 (completely separable)
(Huang et al., 2016). It is expressed as:
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C1 is the covariance matrix of class 1, μ1 is the mean vector of class
1, tr is the matrix trace function, and T is the matrix transposition

Fig. 13. Results for Al-OH group minerals and Mg-OH group minerals extracted using the ELM algorithm. Background image: ASTER 6, 3, 1 in RGB (15th November
2007). Areas discussed in the text :(D) Al-OH minerals in the granitic intrusive rocks of the Tiegelong deposit; (E) Al-OH minerals in the granodiorite in the
northeastern part; (F) Al-OH minerals around the granodiorite in the northeastern part; (G) Al-OH minerals in the northeastern labelled granodiorite porphyry; (H)
Al-OH minerals in the granodiorite porphyry of the Bolong deposit; (I) Al-OH minerals in the granodiorite porphyry of the Duobuza deposit; (J) Al-OH minerals
cluster inside and around the granite porphyry in the West Tiegelong area; (K) Mg-OH minerals around the granodiorite in the northeastern part; (L) Mg-OH minerals
in the hydrothermally altered rocks in the southeastern part; (M) Mg-OH minerals mapped in the Duobuza deposit.

Fig. 14. Hyperion image spectra in the 1608–2355 nm wavelength region of muscovite, kaolinite and epidote. The vertical lines show the locations of important
absorption features.
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function. The three classes of hydrothermally altered minerals pro-
duced from the Hyperion dataset are selected as the ROIs. The separ-
ability of the ROIs in the ASTER SWIR image is calculated. The resultant
values estimate the ability of the ASTER SWIR data to spectrally dis-
criminate among the three classes (Table 6). ROI pairs with low se-
parability values (less than 1) should be merged (Oskouei and Busch,
2012). The classes of muscovite and kaolinite should be combined be-
cause their separability score is less than 1. Thus, only two classes of
hydrothermally altered minerals can be produced from the ASTER
SWIR image in the Duolong area.

4.5. Field validation

The image processing results were verified by a field reconnaissance
during July 2013. Samples were collected from representative hydro-
thermal alteration zones associated with the known copper deposits in
the Duolong area (Fig. 17). Locations were recorded by the a GPS de-
vice. Spectral reflectance measurements were obtained using SVC HR
1024, which records 1024 channels throughout the 350 to 2500 nm
wavelength range (Fig. 18).

5. Discussion

Phyllically and argillically altered rocks containing alunite, kaoli-
nite and muscovite can be mapped using the Sentinel-2A MSI data.
However, it is impossible to identify propylitically altered rocks be-
cause of the breadth of the MSI band 12 (Table 1). The Crosta tech-
nique, which is based on the PCA method, has been widely employed in
hydrothermally altered mineral mapping. False anomalies caused by
random noise can be mixed with real altered anomalies. What is more,
they cannot be effectively eliminated using an adaptive fuzzy switching
filter and mean filtering (Xu et al., 2004; Brekke and Solberg, 2005).
The anomaly-overlaying selection method is put forward to omit false
anomalies. The information on hydroxyl-bearing minerals and iron
oxides can be extracted using the combination of the Crosta technique
and the anomaly-overlaying selection method.

Fig. 15. (a) The Hyperion color composite image of the Tiegelong area. Hyperion bands 150 (1649 nm)= red; 205 (2204 nm)= green; 218 (2335 nm)=blue.
Results of MF analysis for (b) muscovite, (c) kaolinite, and (d) epidote. (e) Color composite of fractions for epidote= red, muscovite= green, and kaolinite= blue.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 5
Accuracy assessment for mineral mapping acquired using the MF method.

Reference data Kappa
Coefficient

Muscovite Kaolinite Epidote Total

Truly-mapped pixels 162 148 227 537
Falsely-mapped

pixels
27 0 0 27 0.89

Not-mapped 0 4 11 15
Accuracy (%) 85.71 97.37 95.38 92.75 (Overall accuracy)

Fig. 16. Results for muscovite, kaolinite and epidote extracted from the
Hyperion SWIR bands. Background image: Hyperion 150, 205, 218 (30th
October 2004). Areas discussed in the text: (D) muscovite in the granitic in-
trusive rocks of the Tiegelong deposit; (E) muscovite inside the granodiorite in
the northeastern part; (F) kaolinite around the granodiorite in the northeastern
part; (J) muscovite inside and around the granite porphyry in the West
Tiegelong area; (K) epidote around the granodiorite in the northeastern part;
(L) epidote of the hydrothermally altered rocks in the southeastern part.

Table 6
Separability calculations for three classes of hydrothermally altered minerals.

Classes Kaolinite Epidote

Muscovite 0.64 1.80
Kaolinite 1.70
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The spectral reflectance differences between the Al-OH and Mg-OH
minerals are conspicuous in the ASTER spectra (Fig. 11). ASTER SWIR
bands are applied to distinguish the Al-OH group minerals from the Mg-
OH group minerals based on their spectral resolution. The ASTER image
spectra are extracted by a combination of MNF, PPI and n-D Visualizer.

The MF method is used to map the two classes of hydrothermally al-
tered minerals. The MF results are normally distributed and each
anomaly is determined by a threshold value. The Al-OH group minerals
in the ASTER image map correspond to the hydroxyl-bearing minerals
in the MSI image map. The Mg-OH group minerals which cannot be

Fig. 17. Some exposures of hydrothermally
altered rocks in the Duolong area. (a) mus-
covite in the phyllic zone of the Bolong PCD
at site 1; (b) kaolinite in the argillic zone of
the Saijiao PCD at site 2; (c) regional view of
the propylitic zone of the Duobuza PCD at
site 3; (d) limonite in the iron stained zone
of the Tiegelong PCD at site 4. For the geo-
graphical locations of the sites see Fig. 7.

Fig. 18. The reflectance spectra of field samples from the hydrothermal alteration zones. (a) F1: field sample number 1; (b) F2: field sample number 2; (c) F3: field
sample number 3; (d) F4: field sample number 4. For the geographical locations of the sites see Fig. 7.
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detected using the MSI images are mapped using the ASTER SWIR
bands. An ELM algorithm is also used to map the two classes of hy-
drothermally altered minerals.

The utilization of Hyperion data is limited by the low signal-to-noise
ratio (SNR), narrow swath and site specificity. Usually, Hyperion
spaceborne hyperspectral imagery is used to acquired accurate hydro-
thermally altered mineral mapping results. The methods of MNF, PPI
and n-D Visualizer are integrated to extract the Hyperion image spectra.
The spectral of the endmembers are compared with the spectra of mi-
nerals from the USGS spectral library resampled to the Hyperion
channels. The advantage of this semiautomatic methodology is that no
prior knowledge of the area is required. The research demonstrates that
muscovite, kaolinite and epidote could be differentiated by using the
Hyperion SWIR bands. An MF technique is used with the Hyperion
SWIR imagery to map three classes of hydrothermally altered minerals.
The accuracy the mapping results is assessed by virtual verification.

The Hyperion imagery is site-specific due to its 7.5 km coverage in
the across-track direction. So it is common to combine the multispectral
and hyperspectral data to map the spatial distribution of hydro-
thermally altered minerals. The integration of MSI, ASTER and
Hyperion data can lead to the identification of key hydrothermal mi-
nerals related to the mineralization prospects. The Sentinel-2A MSI
images are analyzed to map the spatial distribution of the alteration
minerals (iron oxides and hydroxyl-bearing minerals). ASTER SWIR
bands are used to map the Al-OH and Mg-OH minerals. The Mg-OH
group minerals which cannot be detected using the MSI images are
mapped using the ASTER SWIR bands. An MF technique is used with
the Hyperion SWIR imagery to map muscovite, kaolinite and epidote.
The integration of multispectral and hyperspectral data can enable the
identification of the type of minerals and increase the reliability of
remote sensing-based mineral resources exploration. Because of the not
well resolved kaolinite absorption band at 2170 nm (Fig. 4) distin-
guishing between muscovite and kaolinite using the ASTER SWIR bands
could be prone to errors. This is a new conclusion in the field.

The distribution patterns of these hydrothermal alteration zones
correspond well with the hydrothermal alteration zones delineated
from field reconnaissance (Li et al., 2011; Zhu et al., 2011; Zhang et al.,
2014; Yang et al., 2015). PCDs are typically characterized by the po-
tassic zone, the phyllic zone, the argillic zone and propylitic zone.
Previous research has proved that the phyllic zone provides a crucial
contribution to copper mineralization in the Duolong area. Accordingly,
three mineralization prospects associated with felsic intrusions have
been found (Fig. 7). A newest study indicates that the breccia pipes
occur at the first prediction site (Ⅰ, named Nadun, Fig. 7) (Zhang et al.,
2016), where the kaolinite and alunite exist. Outcrops of granodiorite
porphyry have been discovered by geological investigations at the
second prediction site (Ⅱ, Fig. 7) (Zhang et al., 2016). Felsic intrusions
associated with copper mineralization have been found during field
investigation (III, named West Tiegelong, Fig. 7) (Zhang et al., 2016).
The potentially mineralized areas will be tested by further geological
exploration.

6. Conclusions

This research attests to the significance and advantages of the syn-
thetic application of Sentinel-2A MSI, ASTER and Hyperion data to
detect hydrothermal alteration zones associated with copper miner-
alization in the Duolong area. Three temporal Sentinel-2A MSI images
are analyzed using the Crosta technique and the anomaly-overlaying
selection method to map the spatial distribution of the alteration mi-
nerals. The MF method is applied to the ASTER data for detailed hy-
drothermal alteration mapping. The distribution of Al-OH group mi-
nerals is spatially consistent with the distribution of hydroxyl-bearing
minerals. The results of the ASTER data indicate that the Al-OH group
minerals are specifically useful for exploring potentially mineralized
areas associated with felsic intrusions. Information on Mg-OH group

minerals can also be extracted using ASTER data. The results indicate
that both ELM algorithm and MF algorithm can used for mineral
mapping. The application of Hyperion data can provide complementary
information to Sentinel-2A MSI and ASTER data for hydrothermally
altered mineral mapping. The methods of MNF, PPI, n-D Visualizer and
MF are effectively combined to acquire more accurate hydrothermal
alteration mapping results using Hyperion data. However, it is hard to
use the approaches to detect the copper mineralization in heavy vege-
tation covering areas. This is the limitation of these methods. The
overall accuracy of the image processing results reach 92.75%
(Kappa=0.89), indicating the validity of the methods. What is more,
the distribution patterns of the hydrothermal alteration zones show a
good agreement with the alteration zones identified by field in-
vestigations. The spectral reflectance measurements of the field samples
verify the remote sensing results. Three mineralization prospects asso-
ciated with felsic intrusions have been located. The Duolong PCD is the
representative deposit of the Bangong Co-Nujiang River porphyry
copper metallogenic belt of the Tibetan Plateau. The approaches and
data used here are suitable for the detection of mineralization in other
arid areas.
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