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A B S T R A C T

Larger numbers of geoscience reports create challenges and opportunities for data analysis and knowledge
discovery. Segmenting texts into semantically and syntactically meaningful words is known as the Chinese word
segmentation (CWS) problem because there is no space between words in the Chinese language. CWS is a crucial
first step toward natural language processing (NLP). Although the available generic segmenters can process
geoscience reports, their performance degrades dramatically without sufficient domain knowledge. Hence, de-
veloping effective segmenters remains a challenge and requires more work.

This inspired us to build a segmenter for the geoscience subject domain. By integrating the unigram language
model and deep learning, we propose a weakly supervised model: DGeoSegmenter. DGeoSegmenter is trained
with words and corresponding frequencies. We built DGeoSegmenter using the bi-directional long short-term
memory (Bi-LSTM) model, which randomly extracts words and combines them into sentences. Our evaluation
results using geoscience reports and benchmark datasets demonstrate the effectiveness of our method,
DGeoSegmenter can segment both geoscience terms and general terms. Since manually labeled datasets and
hand-crafted rules are not necessary for this proposed algorithm, it can easily be applied to various domains
including information retrieval and text mining.

1. Introduction

The explosive growth of geological reports has caused their accu-
mulation during geological survey procedures. The reports include
various geological topics, such as rocks, minerals, and hydrology. In
addition, large amounts of unstructured data are difficult to manage
and store via virtual applications. For unstructured geological data,
they contain more abundant information and have more potential value
than structured data (Wu et al., 2017). In recent years, considerable
research on mathematical geoscience efforts has been devoted to dis-
covering new knowledge about georeferenced quantitative data
(Cracknell et al., 2014; Lima et al., 2017; Wang et al., 2018). For many
geological reports, new information can be discovered and obtained
through data analysis and geological interpretation, and we can enrich
our understanding based on comparing and connecting relevant work.
Recent developments in the fast automatic processing of information
extraction from textural geoscience data are far from sufficient. In
particular, extracting information from geoscience reports in Chinese is
more difficult due to CWS problem, because the Chinese language is
written in continuous sequences of characters with no explicit

delimiters (Huang et al., 2015).
According to several excellent reviews, the CWS methods can be

broadly categorized as domain-independent or domain-specific
methods according to how their texts are obtained, whether from a
specific subject domain or not. Considerable research efforts have been
devoted to the former, especially using deep learning techniques. It
should be noted that very little optimization work has been conducted
on the latter. For geoscience reports, lacking of a word segmenter ad-
versely impacts other subsequent tasks such as information extraction.

As shown in Table 1, we used a domain-general segmenter to seg-
ment a sentence from our experimental datasets. There are no word
boundaries for the original text. This is consistent with the observation
from manually annotated words and English translations. For example,
the four characters in Chaganchulu (查干楚鲁) mean check (查, cha), do/
work (干, gan), clear(楚, chu) and surname (鲁, lu). In addition, Chagan
(查干) means white, and chulu (楚鲁) means rock. Whereas together
they form the name of a place in Inner Mongolia. If the characters in a
word are treated individually rather than together, they do not re-
present linguistically meaningful and intended words. Nevertheless, a
good word segmenter can accurately extract information from the raw
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sentences and reports. Hence, correct word segmentation is a pre-
processing step for Chinese geoscience reports. Without effective word
segmentation, it is difficult to obtain information because significant
ambiguities are present in deciphering the meaning of Chinese words.

One of the most significant challenges in the geoscience domain is
limited domain knowledge (Gao et al., 2004; Yue et al., 2013; Huang
et al., 2015). To address the CWS issue, the domain-generic segmenter
is still limited. Because the target domains are considerably different,
the capability decreases dramatically between domains (Yue et al.,
2013; Liu et al., 2014; Qiu et al., 2015). As shown in Table 1, the
segmentation obtained by a general domain segmenter makes some
mistakes, such as ”格日吐(Geritu)” and “敦德哈布其勒(Dundehabu-
qile)”. Another interesting finding is that inconsistent words are geared
toward the geoscience domain.

Motivated by the pressing needs, one method uses a comprehensive
dictionary and trains the corpus for the specific segmenter.
Additionally, Dizhi Da Dictionary (Encyclopedia of Geology) lists 11,000
distinct Chinese geoscience terms, and the Chinese vocabulary is an
open set. However, one obvious drawback to this approach is that ex-
isting geoscience dictionaries and word libraries in China are scarce.
Furthermore, even if they work well, these resources are insufficient to
produce an accurate segmenter. Notably, the simple reason is that
geoscience reports are also closely related to general terms.

Considering the above challenges, we designed a weakly supervised
framework for domain-specific CWS, and built a geoscience segmenter
based on a dictionary: the DGeoSegmenter. Based on the framework, we
first categorize the words based on the word frequency, which is used to
count the importance of the words. Then, we randomly select words
according to the frequency of the words and combine them into sen-
tences. Finally, the sentences are fed into models for training. In con-
trast to previous methods, asking humans to manually annotate word
boundaries, is tedious and expensive. We obtain our corpus by applying
deep learning to automatically build with word and frequency, and its
advantage over the alternative solutions increases expansibility when
the domain changes. We conducted some preliminary experiments to
evaluate DGeoSegmenter's performance in supporting automated CWS
from geological reports. Compared to all baseline segmenters,
DGeoSegmenter achieved a maximum performance increase of 22.4%.

The contributions of our work are as follows. First, we address the
CWS problem for the geoscience domain based on a deep learning and
unigram language model, which can capture domain information and
maintain useful domain information. It avoids a large selection of
handcrafted features. The study also shows that some traditional al-
gorithms can be optimized using deep learning. Second, for domain-
specific CWS, a weakly supervised training framework for domain-
specific CWS with a dictionary is proposed using a deep learning model
and methodology, which can easily be scaled/transferred to other
subject domains. Third, to our knowledge, this is the first study to
segment geoscience texts from unstructured geoscience reports in
Chinese via deep learning.

2. Related work

In practice, approaches for processing Chinese texts focus on word
segmentation and often assume that either a comprehensive dictionary
or a larger training corpus is available. Additionally, texts are manually
segmented and labeled from new articles. These methods can be

classified into three categories: dictionary-based, statistics-based and
hybrid approaches.

Dictionary-based methods for CWS depend on large-scale lexicons,
which are built based on several basic mechanical segmentation ap-
proaches with maximum matching. Without a large comprehensive
dictionary, the success rate of this approach would be degraded. In
dictionary-based methods, both predefined dictionaries and hand-
crafted heuristic rules are applied to segment input sentences (Palmer,
1997). Often, dictionary-based segmenter implementations rely on a
maximum-match strategy for segmentation. This method is dictionary-
based, where text is segmented by the longest word matches using a
pre-specified dictionary. A sequence is regarded as a single character if
no matching word exists. These methods represent domain knowledge,
which are the mainstream approaches for domain-specific CWS (Zeng
et al., 2011). One obvious drawback to this approach is that dictionary-
based methods heavily depend on a large amount of high-quality,
manually segmented data and cannot identify new words if they are not
in the given corpus.

Statistics-based approaches regard word segmentation as a sequence
of labeling problems (Xue, 2003). In other words, the best segmentation
sequences in a word are predicted through statistics modeling such as
conditional random fields (CRF) (Chang et al., 2008; Arnab et al., 2016)
or support vector machines (SVM) (Tsochantaridiset al., 2005; Nawroth
al., 2015). In essence, statistics-based approaches are principled and
flexible. For instance, it remains challenging for dictionary-based
methods to recognize new words that are not in the given dictionary,
whereas statistical methods can use learning techniques to acquire
knowledge from both training and test datasets to automatically im-
prove segmentation performance. Despite being the current state-of-
the-art, statistics-based approaches rely heavily on a large amount of
high-quality, manually segmented data, which are difficult to handle.
Furthermore, they are domain specific and involve heavily time and
resource-consuming retraining when the domain is transformed. How-
ever, once the target texts are changed different from training corpora,
performances of these methods drop dramatically.

As a result, statistical modeling has become the mainstream because
of deep learning, whereas there is much less concern regarding domain-
specific text. Recently, the neural network model has been widely used
in the NLP task for replacing manual discrete features with automatic
real-value features. In particular, convolution neural networks (CNNs)
(Krizhevsky et al., 2012), tensor neural networks, recurrent neural
networks (RNNs)(Mikolov et al., 2010; Zaremba et al., 2014), and long
short-term memory (LSTM)(Graves et al., 2005; Hochreiter et al., 2012;
Wang et al., 2015) have been used to extract deep level features from
the input words. Yue et al. (2013) collected patent terms by a CRF-
based term identifier and applied them to a generic segmenter. Huang
et al. (2015) developed a CRF-based GeoSegmenter for domain specific
CWS and proposed a generic two-step framework. This model can re-
cognize geoscience terms based learning and applying it, which can
transform the initial segmentation into the goal segmentation. Wang
et al. (2018) used CRF model with hybrid corpus combining the generic
and geology terms to CWS from geology dictionaries.

The third type of method focuses on hybrid approaches, which in-
tegrate both dictionary-based and statistics-based approaches to im-
prove the overall performance of word segmentation. Previous research
has shown that word segmentation has a substantial impact on parsing
accuracy in the pipeline method. Additional data were used to improve

Table 1
Example of Chinese geoscience word segmentation.

Original text 被查干楚鲁粗粒黑云母花岗岩侵入,该套地层主要分布在格日吐防火站和敦德哈布其勒南山

English translation It was invaded by Chaganchulu coarse grained biotite granite, the strata are mainly distributed in Lattice vomiting fire
station and London Dehabuqile Nanshan

The correct word segmentation 被/查干楚鲁/粗粒/黑云母/花岗岩/侵入/,/该套/地层/主要/分布/在/格日吐/防火站/和/敦德哈布其勒/南山/
Segmentation made by a general domain segmenter 被查/干楚鲁/粗粒/黑云母/花岗岩/侵入/,/该套/地层/主要/分布/在/格日/吐/防火/站/和/敦德哈布/其勒/南山/
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CWS, which resulted in a significant improvement in the parsing task
using the pipeline framework.

Unlike previous studies on domain-specific CWS, the proposed
model DGeoSegmenter is a weakly supervised method, which does not
rely on manual annotation. Our method is based on a statistical strategy
termed the “word dictionary”, which only requires compiling words
and frequencies. Although the dictionary is not a new, effective and
scalable method, we can incorporate a dictionary with deep learning to
learn and apply a model that can construct and train automatically.

3. Algorithm and computation

There are five main stages in DGeoSegmenter:
(1) Corpus construction: The corpus from domain-generic and domain-

specific texts is collected and constructed.
(2) Words grouped: Each word is grouped based on frequency and a

ranking algorithm.
(3) Random extraction and combination: Each group of words in the

previous step are extracted and joined together randomly.
(4) Training: With the previous processing, sentences are formed via

combination based on deep learning.
(5) Testing and output: The resulting segmentation is post-processed and

output.

The main contributions of our work lie in the Corpus construction
(Section 3.1) and Random extraction and combination (Section 3.3)
stages. To a great extent, this study focuses on the hard case of the
problem where no labels from the target domain are available, aiming
at exploring an effective way of applying vocabulary to enhance seg-
mentation.

Fig. 1 shows the DGeoSegmenter's framework, which consists of five
phases. This framework exhibits the following advantages: (1) it has
been designed to be modular and easily configurable and to work stably
for domain-specific Chinese texts, especially with a lack of annotated
target domain data; (2) it is inexpensive because it uses previously
designed models; and (3) it is flexible and can be applied to other
subject domains. Therefore, it avoids the basic requirements for
building a comprehensive and rich training data splitter.

3.1. Corpus collection and construction

Manually annotating the geoscience corpus by domain experts is a
time-consuming and error-prone process. Although some manually
segmented datasets from domain generics have been constructed, once
the target texts are considerably different from the training corpora or
the actual vocabulary has a significant portion outside the given dic-
tionary, the performance of CWS decreases dramatically.

Starting from this observation, this study focuses on random corpus
construction for training that integrates both domain-generic and do-
main-specific vocabulary in the optimization process to build a corpus
without any hand-crafted rules. For the domain-generic, we analyze the
corpora obtained from the SIGHAN Bakeoff (http://www.sighan.org),
which are the main corpora in Chinese NLP. The contents of the corpora
are carefully selected, and we statistically analyzed words from the PKU
and MSR corpora, including 1.07M/19.5M training words, respectively.

Unlike domain-generic text, the geoscience domain is limited by the
annotated words. We collected words from the geoscience subject ca-
tegory of the National Geological Archives of China (NGAC), the
Encyclopedia of Geology from the Geology Press and Wikipedia. This
resulted in 615,268/467,332 words for domain-generic and domain-
specific sets, respectively. Fig. 2 displays some randomly selected
training sets from the reports.

3.2. Words grouped

The task of word grouping is to divide the word into groups that are
ready for further analysis using a splitting strategy. A natural choice
ranks the words from the corpus by their frequencies. The following
preprocessing steps are conducted in this research: first, the function of
rounding down converts the frequencies into a format, which greatly
speeds up the algorithm with little impact on the quality of the final
results. Then, the words are grouped by the predefined function, re-
sulting in a significance score assigned to the words. The utilization of
the score, which represents the contributing factor of the probability,
calculates the weight of each word with an indicator function.

For each word w in group G={g1, g2,.., gN}, let F=(f1,f2,..,fN) be the
average frequency for each group, let θi be the significance extraction
score for word wi as follows:

Fig. 1. The DGeoSegmenter framework: collections of words are shown in rectangles, the processes are shown in gray rectangles, and the input/output are shown in
white ovals.
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θ f f/i i
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∑=
= (1)

A large θi means that word wi is statistically important for the
DGeoSegmenter to fit the target texts. Note that the lower frequency
words can also be selected to construct the new sentences with many
iteration processes based on deep learning, although one may feel that a
more frequently occurring word seems to have a better chance.

3.3. Random extraction and combination

To guide the corpus collection process, our attempt here is to pre-
sent a novel and effective approach based on a unigram language model
automatically to enrich the corpus in the hopes of enhancing word
segmentation performance. Words and corresponding frequencies in
the word set, together with random extraction and a combination
strategy, are integrated into an optimization function to optimize the
probability scores of words. These optimized words generate sentences
accompanied by labels, aiming to serve as a training corpus.

The underlying theory in our word segmentation system is the
unigram language model in which words in a sentence are assumed to
occur independently (Peng et al., 2016; Tripathy et al., 2016). A sta-
tistical language model is a probability p(w1,w2,…,wn) distribution over
sequences of words. Given such a sequence w1,w2,…,wn, say of length n,
it assigns a probability to the whole sequence. The unigram model splits
the probabilities of different terms in contents as follows:

p w w w p w p w p w p w( , , ... ) ( ) ( )... ( ) ( )uni n n
i

N

i1 2 1 2
1

∏= =
= (2)

In probability terms, p(wn) represents the probability of the word
wn. A sentence is a sequence of basic characters of a language, but is
read and understood through higher-order units, i.e., words, phrases,
idioms, and regular expressions, which in our context are all broadly
defined as “words.” Let A={a1,a2,…,ap} be the basic set of “char-
acters” of the language of interest. Specifically, in Chinese, it is the set
of all distinct characters appearing in the text, including tens of thou-
sands of words. A word w is defined as a sequence of elements in A, i.e.
w= ai1, ai2,…,ail. Let D={w1,w2,…,wn} be the vocabulary for the texts.
DGeoSegmenter builds each sentence S as a concatenation of words
drawn randomly from D with an extraction probability(score) θi for
word wi. θ=(θ1, θ2,…, θN) represents the word extraction probability,

in other words, the higher the probability, the more likely the word is
selected, and vice-versa. The probability of generating an N-word
(segmented) sentence S=wi1,wi2,…,win is as follows:

P S D θ θ( , )
n

N

i
1

n∏=
= (3)

This model for handling CWS can be traced back to Deng et al.
(2016). Theoretically, we can generate a random sequence of words by
sampling from the vocabulary with probability p(w1)p(w2)…p(wn). Im-
portantly, however, is it possible to produce new sentences (corpus) for
further training models in an unsupervised manner? A possibility for
this certainly lies in how well different frequencies of words can be put
together to generate sentences via repeated iterations. Since deep
learning algorithms are known to have particularly strong independent
learning capabilities. The DGeoSegmenter algorithm builds words and
obtains the sentences by capturing the highest probability p(w1)p(w2)…
p(wn) with a dynamic programming scheme. That is, a sentence is built
by maximizing the probability of those important features constructed
based on each candidate word. Formally, word selection can be ob-
tained by maximizing the probability function of p(w1)p(w2)…p(wn) as
follows:

S P S D θ p w p w p warg max ( , ) arg max ( ) ( )... ( )n1 2′ = = (4)

Compared with the other complexities and subtleties of natural
language models, our model is clearly a rough approximation. Though
neglecting the long-distance dependencies among words, this research
shows that using random extraction and then a combination strategy is
computationally efficient and works well in practice for two reasons.
First, segmentation in Chinese language processing does not necessarily
depend complement on context-dependent factors to determine the
boundary position of words. The important task is finding the rules and
patterns of inner-words. In this regard, it is only the (grammar) cor-
rectness of words that is needed to address the problem of CWS, even if
the sentence is not grammatically correct. Second, deep learning, as a
learner, is used to simulate this extracting procedure and automatically
learn the patterns of the texts, and aims at heightening the learner's
ability to identify OOV words at the cost of sacrificing as few in-voca-
bulary words as possible.

Fig. 3 presents an example of word extraction and sentence gen-
eration.

Random extraction and combination algorithms are illustrated in

Fig. 2. Fragments of the training set.
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Algorithm 1. Each iteration aims to produce a suitable sentence, and the
newly selected words are added to the sentence until the convergence
condition is satisfied. When the number of iterations reaches the con-
dition, the algorithm stops.

3.4. Domain-specific term segmentation as sequence labelling

We investigated the use of deep neural networks (DNNs) because
they showed better performance in wide areas for NLP. RNNs are an
extension of a conventional feed-forward neural network. The sequence
of variable length can be handled by these models based on a recurrent
hidden unit, whose activation at each time step is dependent on that of
the previous one. However, these models fail due to gradient vanishing/
exploding problems (Bengio et al., 2002).

The LSTM model can handle these gradient vanishing problems.
However, one main shortcoming of the LSTM is that it can only make
use of the previous context, knowing nothing about the future. An ef-
ficient approach to address this problem is by using Bi-LSTM (Mike
et al., 1997). The model can be used to process each sequence forwards
and backwards, which results in into two separate hidden states to
capture past and future information.

The geoscience word segmentation can be regarded as a sequence
labelling problem. After obtaining the corpus, we chose the max-margin
criterion (Taskar et al., 2005) to train our model. As illustrated in
(Kummerfeld et al., 2015), the max-margin criterion applies both the
likelihood and perception method. The parameter set of the DGeo-
Segmenter model is θ.

Given a character sequence x(i) from the hybrid corpus, with the

correctly segmented sentence for x(i) denoted as y(i), y is the label that
DGeoSegmenter aims to predict. let Δ(y(i),y) be a structured margin loss
as follows:

Δ y y μ y y( , ) 1{ }i

i

m
i t t( )

1

( ),∑= ≠
= (5)

where m is the length of a given character sequence x(i), and μ denotes
the discount parameter. The proportion of loss is the number of in-
correctly segmented characters.

For a given training set Ω, the loss function J(θ) is the regularized
objective function, which includes an l2 norm term:

J θ
Ω

l θ λ θ( ) 1 ( )
2x y Ω

i
( , )i i( ) ( )

∑= +
∈ (6)

l θ s y θ Δ y y s y θ( ) max( ( , ) ( , ) ( , ))i
i i( ) ( )= + − (7)

where s(·) is the sentence score. With the hinge loss, which is differ-
entiable for the objective function, we use a subgradient method (Ratliff
et al., 2007) for computing a gradient-like direction. Following (Socher
et al., 2013), the diagonal variant of AdaGrad (Duchi et al., 2011) with
minibatches was used to minimize the objective.

The update for the i-th parameter at time step t is as follows:

θ θ α

g
gt i t i

τ
t

τ i
t i, 1,

1 ,
2 ,= −

∑
−

= (8)

where α denotes the initial learning rate, and .gτ ∈ R|θi| is the

Fig. 3. An example of word extraction and sentence generation. Step #1 groups the words. Step #2 randomly combines the selected words into sentences. Step #3
tags the newly formed sentences.

Algorithm1 Random extraction and combination algorithm
Input: a set of words and homologous frequency, maxlen M
Output: a set of sentences(sentences)
1: corpus C  construct_corpus(words,freuencies)
2: groups G, extraction probability  group_words(C)
3: do
4:   repeat
5:      sentences S  extract_random(G, )
6:     M’  calculate_length(S)
7:   untilM’ > M return output_combination (sentences)
8: until the maximum number of iterations N reached
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subgradient at time step τ for parameter θi.

3.5. Testing and output

With the new sentences, we employ the Bi-LSTM approach to model
the correspondence between the input character sequence and the
output label sequence. Specifically, each character in the sequence is
tagged as one of {B, E, M, S}, representing Begin, Middle, and End, and S
represents a single character segmentation (Xue, 2003). Take the fol-
lowing example:

A sentence c= c1… cT is defined as a sequence of elements. Let
s= s1…sT be the segmentation locators of c. For instance, consider the
14-character sentence c=曹家埠金矿赋存于新城焦家断裂 “Caojiapu
gold deposit in the new city of Jiaojia fracture” where T=14, c1=曹

(cao), c2=家 (jia),..., c14=裂 (lie), and s= BMEBEBESBEBEBE.
Therefore, the linguistically meaningful segmentation is/曹家埠/金矿/
赋存/于/新城/焦家/断裂/. The 4-tag segmentation rule is effective in
achieving segmentation accuracy and computation efficiency, which
are two important and desirable properties in NLP (Shu et al., 2017).

4. Experiment and discussion

4.1. Setup

Datasets:We collected 43 geoscience reports as the test corpus. The
43 reports are considered to be representative because they (1) record
geological information from different years by different writers, (2)
come from different regions, and (3) present domain-specific com-
plexities with varying text from simple to complex. A manual annota-
tion process was followed to build the gold standard segmentation se-
quence for testing purpose. Based on the same criteria used to create the
benchmark corpus from the SIGHAN CWS Bakeoff, we invited some
annotators who satisfied the background knowledge of both geoscience
and CWS to avoid any annotation bias. This dataset was represented as
the GEO corpus. This resulted in 7.8M segments. The benchmark corpus
from the SIGHAN CWS Bakeoff consisted of new documents with a wide
range of topics. We used simplified Chinese versions of the test corpora
created by MSR and PKU. The resulting MSR and PKU corpora have
12.2M/5.63M segments, respectively. Table 2 illustrates the details of
the test datasets. Out-of-vocabulary (OOV) words denote the words that
were not in the training set but emerged in the test set. The content in
the test set was broadly represented, including regional geological re-
ports (RGR), environmental geological reports (EGR), mineral geolo-
gical reports (MGR), hydrogeology geological reports (HGR), geophy-
sical geological reports (GGR), and remote sensing geological reports
(RSGR).

Performance:The five standard metric criteria were used to com-
pute the segmenter performance. Precision denotes the percentage of
all predicted words whose true words were labeled by a human labeler.
Recall denotes the percentage of all true words that were correctly
predicted. An evenly weighted F1-score indicates the overall perfor-
mance as follows: F1 = 2*P*R/(P+R). Recall of OOV (ROOV) and recall
of IV (RIV) are the percentages of the OOV and in-vocabulary (IV)

words, respectively, that are correctly segmented. Given a learned
model, ROOV indicates how well it can be generalized to a new domain,
whereas RIV suggests its predictive power over the training data. The
range of the indicators, Precision, Recall and F1-score, are within [0,
1]; the greater the value is, the better the performance that is indicated.
The 10-fold cross-validation is used to test, and we reported the average
score of 10 independent runs.

4.2. Overall performance of closed and cross-domain segmenters

We conducted experiments for three baseline generic segmenters.
We used the PKU and MSR corpora in our experiment to investigate the
proposed model. Depending on whether resources other than
geoscience words were used, segmenters were classified as a cross-do-
main segmenter or a closed-domain segmenter. This resulted in four
GenSegmenter versions. Let DGeoSegmenter be the hybrid segmenter
incorporating all words. All of the experiments were trained by the Bi-
LSTM model with the same parameter setting.

Table 3 shows the performance of our model as well as previous
state-of-the-art systems. From the table we can see that these models
achieved better results for the generic domain; however, once the target
domains are considerably different from the training corpora, such as
those geoscience documents accumulated throughout ancient China
that contain many unregistered technical words, the performance of
these models trained with domain-generic datasets decreased drama-
tically. This could be caused by lacking of sufficient annotated data. The
key is to increase the comprehensive and representativeness of labeled
data, so that these algorithms can learn how to address different seg-
mentation cases. However, as discussed, constructing such a labeled
dataset is rather challenging and time-consuming.

Closed-domain segmenter: The maximum matching method (de-
noted as MM) based on the dictionary was the first closed-domain
baseline. This method required a given corpus as a reference and was a
representative method. We used all the training data in our experiment
to investigate the MM method. The text was segmented based on the
longest match strategy. When a new word for which there was no
matching word appeared, the approach segmented it as a single char-
acter.

The Bi-LSTM-based segmenter is the second closed-domain baseline
that was built directly from generic and geoscience data, denoted as
GESMSR, GESPKU, and GESGEO. The hyper-parameters of the neural
model significantly impacted the performance of the algorithm. The
character embedding size was chosen as a trade-off between speed and
performance. The number of hidden units was set to 128, as was the
character embedding size. We set the maximum word length to 4 in our
experiments. We dropped the input layer of the model with a dropout
rate of 20%, which is a popular technique for improving the perfor-
mance of neural networks by reducing overfitting. All of these models
were trained in the following environment: CPU:2 * Intel(R) Xeon(R)
E5-2620 v2 @ 2.10 GHz, GPU: 2 * NVidia, Tesla K20, Memory: 96 GB.
The operating system used was Ubuntu 14.04 64 bit.

Cross-domain segmenter:We initiated the four cross-domain
baseline segmenter. Using the same criteria as for buildingMM, the first
two were Bi-LSTM based, built from the MSR and the PKU corpora,
defined as GEOGMSR and GEOGPKU. The third segmenter was developed
using all the training data, including the MSR, PKU and GEO corpora.

A comparison of the results in Table 4 shows the effectiveness of the
proposed domain adaptation method. Although the segmenter MM did
not use the learning technique, it performed well. The segmentations
were more accurate than those of any of the closed-domain segmenters,
which did not use deep learning techniques and skills.

Nevertheless, the dictionary-based method is not necessarily better
than the deep learning method. A comparative study of Table 4 in-
dicates that the deep learning method exhibits a significantly higher
capability to segment. Compared with MM, DGeoSegmenters out-
performed their corresponding baselines by at most 22.4% in the F1-

Table 2
Details of the test datasets.

Corpus categories #sent. #testSize(words). OOV Rate

domain-generic MSR 181K 12.2M 2.60%
PKU 708K 5.63M 4.30%

domain-geoscience RGR 18K 1.9 M 75.2%
EGR 15K 1.1 M 80.2%
MGR 12K 0.9 M 73.2%
HGR 14K 1.3 M 74.1%
GGR 17K 1.2 M 82.6%
RSGR 20K 1.4 M 79.7%
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score. The segmenters built based on the same corpus, MM and GESGEO,
outperformed those built using different corpora such as GESMSR and
GESPKU. Note that GESGEO achieved a lower F1-score on its testing data.
This is not surprising because it was built using geoscience words,
which only utilize geoscience information and lack the generic domain,
and it was therefore difficult to segment words with a generic domain.

The cross-domain segmenters GEOGMSR, GEOGPKU and GEOGEO are
useful. With their stronger predictive power, the DGeoSegmenter per-
formance was increased by 20% compared to the baseline methods.
Furthermore, due to the use of neural network models, which have a
strong learning power over the training data, DGeoSegmenter was able
to learn the best adaptation model for each generic segmenter.

These results and findings suggest that general terms and geoscience
terms are recognized separately and compensate for each other.
Identical conclusions were obtained in previous studies, showing that
the proposed DGeoSegmenter approach based on Bi-LSTM is an effec-
tive approach for solving the domain-specific word segmentation pro-
blem. Meanwhile, both generic terms and geoscience terms were re-
cognized.

Table 5 presents the performance of DGeoSegmenter and four other
advanced CWS methods: GCRF (Huang et al., 2015), TopWords (Deng
at al.,2016), HyperLSTM (Zhang et al., 2017) and GRS (Huang et al.,
2017), in terms of the precision, recall and F1-score. In the tables, the
best (the highest) results were obtained by the HyperLSTM method, and
the second best results were obtained by a particular DGeoSegmenter.
However, this does not necessarily mean that DGeoSegmenter is in-
ferior to the HyperLSTM method. This is not surprising, because the
HyperLSTM approach is built with not only labeled data but also ex-
tensive dictionaries. In contrast, our proposed method relies solely on
dictionaries and is a weakly supervised approach. These results and
findings suggest that the proposed weakly supervised method is indeed
an effective in addressing the domain-specific CWS problem.

4.3. The performance of new word detection

As shown in Table 6, it is difficult to identify new words. In parti-
cular, the OOV rate of the MM method was only 5.8%. This is not a
surprising result since MM does not have the self-learning ability to
detect new words. We achieved significant improvement in ROOV when
we applied GenSegmenter, demonstrating that the use of the Bi-LSTM
model can efficiently obtain segmenting information. GESGEO achieved

the best score, of 65.3%. Based on our findings, it can be concluded that
GenSegmenter has stronger predictive capabilities.

DGeoSegmenter performed better than GenSegmenter. This result
demonstrates that DGeoSegmenter is more powerful than
GenSegmenter and that the hybrid data produce effective results.

The generic and geoscience domain data randomly combined to
have a key influence on the detection of OOV in a sentence. When we
trained with DGeoSegmenter, the recall rates of the OOV terms in-
creased dramatically, resulting in an increase of 33.3% and 31.6% in
ROOV for GESMSR and GESPKU, respectively. The RIV score demonstrates
that our model performed well on word recognition. Again, as de-
monstrated in the ROOV score, our model has a certain ability to address
OOV words.

Our approach does not depend on any predesigned features due to
the strong ability of the Bi-LSTM network in automatic feature learning.
This can be attributed to the effective capability of DGeoSegmenter in
domain adaptation. The performance of OOV and IV increases sig-
nificantly when using the LSTM unit.

Table 3
Performances on PKU, MSR and GEO test sets with different models. PKU/GEO indicate that the training and testing sets are PKU and GEO, respectively.

models PKU/PKU MSR/MSR PKU/GEO MSR/GEO

P R F P R F P R F P R F

Zheng et al., 2013 92.8 92.0 92.4 92.9 93.6 93.3 70.5 70.1 70.3 70.8 71.5 71.2
Pei at al., 2014 93.7 93.4 93.5 94.6 94.2 94.4 70.9 71.0 70.1 71.2 72.1 71.7
Huang et al., 2015 91.8 92.8 92.3 92.5 91.4 91.9 69.5 68.9 69.2 70.8 70.9 70.8
Zhang et al., 2017 96.4 96.8 96.6 97.5 97.7 97.6 73.8 73.6 73.7 74.1 73.5 73.8
Huang et al., 2017 95.1 95.6 95.3 96.8 96.4 96.6 71.1 71.0 71.0 71.8 70.6 71.2
Bi-LSTM 96.0 95.7 95.9 96.3 96.1 95.4 72.6 73.0 72.8 73.5 73.6 73.5

Table 4
Segmentation performance of different segmenters.

Type Segmenter P R F

Baseline MM 0.796 0.805 0.800
GenSegmenter GESGEO 0.650 0.663 0.656

GESMSR 0.620 0.646 0.633
GESPKU 0.631 0.649 0.640
GESCRF 0.715 0.711 0.713

DGeoSegmenter GEOGEO 0.861 ↑21.1% 0.871 ↑20.8% 0.866 ↑21%
GEOGPKU 0.844 ↑22.4% 0.849 ↑20.3% 0.846 ↑21.3%
GEOGMSR 0.847 ↑21.6% 0.853 ↑20.4% 0.850 ↑21%

Table 5
Segmentation performance of different methods.

Model P R F

GCRF 0.865 0.854 0.859
TopWords 0.845 0.84 0.842
HyperLSTM 0.889 0.872 0.88
GRS 0.758 0.765 0.761
DGeoSegmenter 0.861 0.871 0.866

Table 6
Performance of different segmenters on recognizing OOV and IV terms.

Type Segmenter ROOV RIV

Baseline MM 0.058 0.918
GenSegmenter GESGEO 0.653 0.816

GESMSR 0.405 0.776
GESPKU 0.417 0.853

DGeoSegmenter GEOGEO 0.715 0.918
GEOGPKU 0.708 0.887
GEOGMSR 0.711 0.906
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4.4. Different baseline neural networks

We conducted experiments with different baseline neural networks.
We used the following generic models for comparison. Complete details
of this case will be provided at a later time.

We compared these methods with the two top performers in the
GEO corpus. As shown in Table 7, the experimental results of the
models on the test sets of three CWS datasets with different neural
networks illustrate the effectiveness of the proposed domain adaptation
method. DGeoSegmenter outperformed the corresponding baseline by
at most 22.1% in terms of the F1-score.

In particular, the proposed model with CNN and LSTM attains
81.8% and 81.7% in the F-measure, respectively, which delivers a
comparable performance against the RNN performers. Specifically, the
Bi-LSTM model achieves 85.1% in precision and delivers the highest
recall with 84.2% and the highest F-measure with 84.7%. This result
shows that the model with Bi-LSTM performs the best against the other
methods at the expense of computation time. This occurs because Bi-
LSTM can capture information from the sequence dataset and maintain
contextual features from the past and future. In particular, the Bi-LSTM
network integrates the forward and backward passes of each layer and
can memorize the information of all sentences in two directions based
on the propagation of two parallel layers.

4.5. Varying the training dataset

Considering that the amount of training data may affect the per-
formance of the trained models, we conducted a set of experiments to
demonstrate that the amount of training data can affect the quality of
the learning models. First, we divided the hybrid dataset into disjoint
subjects and randomly extracted training data. Then, the training data
were increased from 10% to 100% in increments of 10%. We performed
ten independent runs for each and computed the average performance
results. The experimental results, in terms of F1-score, are shown in
Fig. 4.

It can be seen from Fig. 4 that the training data have a key influence
on both the cross-domain and closed-domain. This is not surprising
since our approach was trained using only words.

Both the GenSegmenter and DGeoSegmenter versions increasingly
benefited from more training data. We observed that using 10% of the
corpus for training resulted in a low F-score. The reason for this result
may be that the segmenter trained using deep learning requires not only
a large amount of generic data to learn but also geoscience data, in
particular, GESGEO, GESMSR and GESPKU in the closed-domain at the
same level of performance.

Domain-specific vocabulary is irreplaceable. For the
DGeoSegmenter built using hybrid words, although the generic seg-
menter made many mistakes, the randomly collected words enabled
learning of how to correct these mistakes.

DGeoSegmenter learned well by incorporating a random word

collection strategy, which can be useful as training data. In other words,
although the baseline segmenter made more mistakes on the geoscience
documents, the proposed strategy learned how to correct these mis-
takes. On the other hand, DGeoSegmenter can obtain the ability of an
adaptation procedure. This is because according to adaptation, what is
important is the ability of the baseline segmenter to correct the mis-
takes that were made in the initial segmentation. This demonstrates the
effectiveness of our deep learning-based technique for domain-specific
CWS.

4.6. Diversifying the frequency for geoscience words

As mentioned in Sections 3.1 and 3.2, the frequency can directly
influence the random extraction and model complexity, so that an op-
timal frequency can be determined and applied for improved perfor-
mance. A total of 6 controlled experiments were conducted, with the
same frequency ranging from 100 to 10000 for the domain-specific
words. The experimental results, in terms of F1-score, are illustrated in
Table 8.

The experimental results suggest that the frequency is important in
determining the overall performance. As shown in Table 8, increasing
the frequency leads to the improvement of the F1-score. For example,
when the frequency was set from 100 to 500, the average F1-score
improved by 17% and 12.8%, respectively. Although increasing fre-
quency can improve performance, the optimal performance cannot be
achieved if the frequency is set with the same value. When the fre-
quency was collected from the statistical strategy, the average F1-score
achieved 86.6% and 73.5%, respectively. In other words, DGeo-
Segmenter was greatly impacted by the frequency. This is because, the
comprehensive and representativeness of the frequency is the key
factor, so that the algorithm can learn how to address extraction cases.

This again demonstrates that the proposed approaches can learn
from words and frequency because they can make better use of datasets.

4.7. Ratio of domain-generic and domain-specific texts

To investigate the ratio of domain-generic to domain-specific texts,
a set of experiments was conducted to study the impact on the corpus. A
total of 18 controlled experiments were conducted with a ratio ranging
from 10% to 90% (with a step size of 10%). The experimental results, in
terms of average precision, recall and F1-score, are shown in Table 9.

As shown in Table 9, increasing the ratio of domain-generic or do-
main-specific texts leads to the improvement of average precision, re-
call and F1-score. For example, when the ratio of domain-generic and
domain-specific texts was set to 100/90, the DGeoSegmenter achieved
an average F1-score of 86.3%. More substantially, increasing the ratio of
domain-specific outperformed the ratio of domain-generic texts. Based
on the experimental results, the proposed algorithm benefits from in-
creasing the ratio of domain-specific texts.

4.8. Different categories of reports

We further investigated the benefits of the proposed models by
comparing different categories of reports, as shown in Table 10. Based
on the results, we were able to observe that DGeoSegmenter makes
progress gradually on different categories of reports.

DGeoSegmenter achieved an average F1-score of 85.55%. This is
because it uses learning methods. DGeoSegmenter has strong learning
and predictive power. As a result, compared to the baseline approaches,
DGeoSegmenter for environmental geological reports outperformed
other reports, achieving an F1-score of 87.11%. This is not surprising
because most of the environmental geological reports were built using
general words, with less specific vocabularies. In contrast, remote
sensing geological reports included more geoscience terms, making it
difficult to capture every word.

Table 7
Results of the models on the test sets of three CWS datasets. CNN: consists of an
input and an output layer, as well as multiple hidden layers. The hidden layers
of the CNN consisted of convolutional layers, pooling layers, fully connected
layers and normalization layers in our experiment. RNN: a class of artificial
neural networks in which connections between units form a directed cycle. For
the CWS task, an RNN typically has three LSTM layers. LSTM: a simple LSTM
network with three LSTM layers. Bi-LSTM: Bi-LSTM means a bidirectional
LSTM network with three LSTM layers.

Models P R F

CNN 81.2 82.5 81.8
RNN 77.6 78.2 77.9
LSTM 81.3 82.0 81.7
Bi-LSTM 85.1 84.2 84.7
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5. Conclusion

Domain-specific CWS is a difficult task due to the lack of sufficient
annotated reports and the costliness of manually generated segmenta-
tion rules. In this research, we employed deep learning and unigram

language model to CWS from geoscience reports. We proposed a weakly
supervised training framework for domain-specific CWS with only
dictionary-based deep learning. The proposed framework builds upon a
theoretical unigram language model, and thus is generalizable. We le-
veraged multilevel features using the following steps: First, we

(a)closed-domain

(b)Cross-domain 
Fig. 4. Performance of the (a) closed-domain and (b) cross-domain segmenters with varying training dataset sizes.
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categorized the words based on the word frequency, which was used to
determine the importance of words. Then, we randomly selected words
according to the frequency of the words and combined them into sen-
tences. Finally, the sentences were fed into a neural network model for
training.

In our future work, we plan to perform experiments with different
extraction and combination algorithms. Additionally, some supervised
methods can be integrated into the proposed approach, which improves
the performance. Another challenge worth investigating in the future is
addressing the upper-bound limit on performance due to mistakes.
Finally, we will also expand our method to other domains, such as
biomedicine and history.
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P R F
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