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Abstract Coarse-scale data assimilation (DA) with large
ensemble size is proposed as a robust alternative to standard
DA with localization for reservoir history matching prob-
lems. With coarse-scale DA, the unknown property function
associated with each ensemble member is upscaled to a grid
significantly coarser than the original reservoir simulator
grid. The grid coarsening is automatic, ensemble-specific
and non-uniform. The selection of regions where the grid
can be coarsened without introducing too large modelling
errors is performed using a second-generation wavelet trans-
form allowing for seamless handling of non-dyadic grids
and inactive grid cells. An inexpensive local-local upscaling
is performed on each ensemble member. A DA algorithm
that restarts from initial time is utilized, which avoids the
need for downscaling. Since the DA computational cost
roughly equals the number of ensemble members times
the cost of a single forward simulation, coarse-scale DA
allows for a significant increase in the number of ensem-
ble members at the same computational cost as standard DA
with localization. Fixing the computational cost for both
approaches, the quality of coarse-scale DA is compared to
that of standard DA with localization (using state-of-the-
art localization techniques) on examples spanning a large
degree of variability. It is found that coarse-scale DA is
more robust with respect to variation in example type than
each of the localization techniques considered with stan-
dard DA. Although the paper is concerned with two spatial
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dimensions, coarse-scale DA is easily extendible to three
spatial dimensions, where it is expected that its advantage
with respect to standard DA with localization will increase.
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1 Introduction

Sound decision making regarding efficient petroleum-
reservoir exploitation requires that uncertain porous-media
property functions are estimated and that the associated
uncertainties are quantified. The Bayesian framework facil-
itates uncertainty quantification as an integral part of the
history matching procedure. The posterior probability den-
sity function (PDF) constitutes the formal Bayesian solution
to the problem, but for all other than Gauss-linear problems,
the posterior PDF can only be characterized through sam-
pling. Markov chain Monte Carlo (MCMC) methods sample
correctly from the posterior PDF, but are known to be pro-
hibitively computationally expensive for realistic reservoir
problems. Ensemble-based data assimilation (DA) methods,
like the ensemble Kalman filter (EnKF) [23] and the ensem-
ble smoother (ES) [44], sample approximately from the
posterior PDF. (They sample correctly in the Gauss-linear
case). In recent years, several variants of ensemble-based
DA methods [9, 10, 20, 21, 38, 39] have been applied and
discussed in a large number of publications concerned with
porous-media flow problems. A review of ensemble-based
DA methods for reservoir history matching is found in [2].
Evaluation and comparison of different ensemble-based DA
methods are found in [22, 26–28, 40, 47].
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Common to ensemble-based DA methods is that both
computational cost and statistical credibility are primarily
controlled by the ensemble size, Ne. The overall compu-
tational cost, Q, roughly equals Ne times the cost of a
forward-model run, F . With fixed computational resources
available, one is therefore often forced to use a smaller
Ne than what one would have preferred to do if statistical
quality was the only concern.

Utilizing a small or moderately sized Ne will give rise to
two concerns. Firstly, sampling errors resulting from ensem-
ble approximation of the involved covariance matrices will
lead to spurious correlations between quantities that should
be uncorrelated. Secondly, since the number of degrees of
freedom in the assimilation equals Ne, attempting to assim-
ilate a large number of data simultaneously, such as with
time-lapse seismic data, may lead to ensemble collapse,
or at least to unwarranted reduction of the variance in the
analysed ensemble.

Attempting to alleviate the negative effects of using a
small/moderate ensemble size, localization [37] is often
applied. With localization, a spatial region is associated with
each observation. Variables associated with grid cells inside
this region are allowed to be influenced by the observation,
while other variables are not. The most common way to
define the region is to associate the region boundary with
a distance (that may vary with spatial direction) from the
observation location. In [3, 15], sensitivities were applied
to determine localization regions, while [8, 19] argued that
also the prior model needs to be taken into account.

Ideally, the localization region should be defined such
that all real correlations are retained while no false cor-
relations are allowed, but in practice, this is, of course,
extremely hard to achieve. For porous-media flow prob-
lems, it is particularly challenging due to heterogeneities
of porous rocks, which make the shape of the region an
important factor in addition to its size. For such problems,
it is therefore almost impossible to design a good generic
localization method, that is, a localization method whose
performance does not vary significantly with problem type.
Alternative ways to alleviate the negative effects of using a
small/moderate ensemble size in a more stable manner are
therefore highly desirable.

A conceptually simple way to avoid, or at least sig-
nificantly reduce, spurious correlations and/or unwarranted
reduction of the variance in the analysed ensemble, would
be to increase the ensemble size substantially. In order to be
able to do that with a fixed Q, F has to decrease by the same
proportion as Ne increases. A way to secure a smaller F is
to replace the reservoir simulator by a computationally less
expensive proxy model. Various types of proxy models, like
proper orthogonal decompositions (POD) and/or trajectory

piecewise linearization, have been introduced in the con-
text of reservoir production optimization, reservoir history
matching, and reservoir DA.

In this paper, an alternative approach, where the proxy
is an upscaled version of the original reservoir model, will
be utilized to do coarse-scale DA. This type of approach
has been used, for example, in multilevel history match-
ing [1], and to improve the mixing of the chain of samples
for MCMC methods [18]. An advantage of this type of
proxy is a high degree of transparency between the proxy
and the original simulation model. The standard approach
for modelling multiphase flow in a porous media is through
finite volume/finite difference discretization of the govern-
ing equations [5]. It is well know that the accuracy of this
type of schemes is controlled through the refinement of the
mesh. Hence, the accuracy of the proposed proxy model can
be entirely controlled through the coarsening of the simula-
tion grid. After discretization and linearization, solving the
multiphase flow equations consists of, for each grid point
in time, iterating until the non-linear equations have con-
verged where for each iteration of the non-linear equation
we must solve a system of linear equations. The computa-
tional cost of a forward simulation is, therefore, proportional
to the cost of solving the system of linear equations, which
scales approximately as N

η
g , where Ng denotes the number

of grid cells and η ∈ (1.25, 1.5) [4].
Clearly, it will be important to carefully select which

regions of the grid that can be coarsened without introduc-
ing too large errors in the forward simulations, and which
regions that cannot. Following [17, 48, 50], we will apply
a wavelet transform to perform this selection. To increase
the flexibility and applicability of this approach to non-
regular grids and geometries, a second-generation wavelet
transform [55] will be utilized.

We will compare the use of coarse-scale DA to DA using
localization. Three types of localization will be considered.
The first, termed GC-localization, is the commonly applied
localization procedure proposed by Gaspari and Cohn [31];
the second, termed CO-localization, will utilize localiza-
tion procedures proposed by Chen and Oliver [8]; while the
third, termed ER-localization, will utilize the localization
procedure proposed by Emerick and Reynolds [19].

The rest of the paper is organized as follows. Section 2
discuss ensemble-based DA and how upscaled reservoir
models fit into the DA framework, while Section 3 discuss
localization. Section 4 is devoted to wavelet transforms and
their use within upscaling of reservoir models. Section 5
presents the numerical experiments, while Section 6 anal-
yses the numerical experiments where coarse-scale DA is
compared to localization. Finally, in Section 7, we summa-
rize and conclude our findings.
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2 Ensemble-based data assimilation

Let y ∈ R
Ny denote a joint state vector containing a param-

eter vector, m ∈ R
Nm , and a dynamic state vector, z ∈ R

Nz ,
that is,

y =
(

z

m

)
. (1)

Let w ∈ R
Nz denote the forward-model operator, and let tk

denote an arbitrary time instance. Define the operator, gk ,
mapping the joint state from tk−1 to tk , by

yk = gk

(
yk−1

) + rk (2)

=
(

wk (zk−1, mk−1)

mk−1

)
+

(
qk

0

)
, (3)

where q denotes modelling errors, and let d1:Na ={
d1, . . . , dNa

}
denote the sequence of measurement vectors

to be assimilated. The observation model for dk ∈ R
Ndk is

given as

dk = Hkyk + ξ k, (4)

where Hk denotes a matrix of zeros and ones reflecting mea-
surement locations, ξ k ∼ N

(
0, �dk

)
denotes measurement

errors, N denotes the Gaussian probability distribution and
�dk

denotes the covariance of the measurement errors.

2.1 Filter solutions

The filter solution to the DA problem obtained via the
Bayesian approach is defined as the PDF, p

(
yNa

|d1:Na

) =
p

(
zNa , m|d1:Na

)
. With non-restrictive, standard assump-

tions on the error statistics [24], the filter solution can be
obtained by assimilating data sequentially,

p (zk, m|d1:k) ∝ p (dk|zk, m) p (zk, m|d1:k−1) , (5)

hence, the posterior PDF at tk−1, p (zk, m|d1:k−1), becomes
the prior PDF at tk .

When the prior model is Gaussian and wk is linear for all
involved k, all the posterior PDF’s will be Gaussian, and the
solution to the DA problem may be written as the Kalman-
filter equations for the mean, μy , and covariance, �y , at
time instance tk ,

μ
f
yk

= gkμ
a
yk−1

, (6)

�
f
yk

= gk�
a
yk−1

gT
k + �qk

, (7)

μa
yk

= μ
f
yk

+ �k

(
dk − Hkμ

f
yk

)
, (8)

�a
yk

= �
f
yk

− �kHk�
f
yk

, (9)

�k = �
f
yk

HT
k

(
Hk�

f
yk

Hk + �dk

)−1
, (10)

where the superscripts f and a denote forecast and analysis,
respectively, and � denotes the Kalman gain.

When wk is non-linear, the Kalman filter is no longer
applicable, and approximate methods, like the ensemble
Kalman filter (EnKF), are used instead. With the EnKF,
the involved PDF’s are represented by ensembles, and
each ensemble member is updated using approximations
to the Kalman-filter equations where the true covariances
are approximated by empirical covariances. In the descrip-
tion that follows, Ne ensemble members corresponding to
the quantities d, m, w and z, will be stored as columns
in the ensemble matrices D, M , W and Z, respectively.
Functional dependencies between ensemble members, like
with ze = w (me), will be denoted by Z = W (M) when
using the ensemble notation. Empirical covariances will be
denoted by C and the approximate Kalman gain obtained
from inserting empirical covariances in the expression for �

in Eq. 10 will be denoted by K .
If the involved forward models are non-linear, the

updated dynamic states obtained with EnKF, Za
k , and the

dynamic states at tk that would have been obtained by
running the forward-model sequence from time zero with
the updated parameters, Ma

k , as input, Wk

(
Z0, M

a
k

)
, will

be statistically inconsistent [58]. The half-iteration EnKF
(HIEnKF) [58] avoids this inconsistency by simply replac-
ing Za

k by Wk

(
Z0, M

a
k

)
before continuing towards the next

assimilation time. Hence, the HIEnKF is computationally
more costly than the EnKF. We will apply HIEnKF in this
paper, and we are interested in estimating m, only. The
latter is reflected in the version of the HIEnKF algorithm
summarized in Algorithm 1.

Algorithm 1 HIEnKF

Initialize
Ma

0 = Mprior

Z0 = Zprior

for k = 1, . . . , Na do
Forecast

Forecast parameters and states at tk by
M

f
k = Ma

k−1

Z
f
k = Wk

(
Z0, M

a
k−1

)
Analysis

Define the HIEnKF Kalman gain for the parame-
ters as

Kk = C
m

f
k z

f
k

(
C

z
f
k

+ �dk

)−1
,

and update the ensemble of parameters

Ma
k = M

f
k + Kk

(
Dk − Z

f
k

)
.

end for
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2.2 Sequential ensemble-based data assimilation
with upscaled forward models

For sequential DA to work properly, it is required that
the dimension of the joint-state vector is constant for all
assimilation times, confer Eq. 5. Since we apply upscaled
forward models in the forecast runs, it is useful to con-
sider how this requirement can be accommodated. Let Ŵ

denote the forward model (in ensemble notation) incorpo-
rating upscaling, let Ẑ denote its output, and let D̂ denote
the data observed on the coarse grid. The coarse-scale
DA algorithm—HIEnKF with upscaling—is summarized in
Algorithm 2.

Algorithm 2 HIEnKF with upscaling

Initialize
Ma

0 = Mprior

Z0 = Zprior

for k = 1, . . . , Na do
Forecast

Forecast parameters and upscaled states at tk by
M

f
k = Ma

k−1

Ẑ
f
k = Ŵk

(
Z0, M

a
k−1

)
Analysis

Define the upscaled HIEnKF Kalman gain for the
parameters as

K̂k = C
m

f
k ẑ

f
k

(
C

ẑ
f
k

+ �d̂k

)−1
,

and update the ensemble of parameters

Ma
k = M

f
k + K̂k

(
D̂k − Ẑ

f
k

)
.

end for

Note that the upscaling is considered as an implicit part
of the forward model, and the joint-state vector of HIEnKF
at the beginning of forecast stage k is

(
z0, m

a
k−1

)T . The
requirement that the dimension of the joint state vector
should be constant for all assimilation times is, therefore,
accommodated. This also holds for other DA algorithms,
such as ES, iterative ES [10] and ES with multiple DA [21].
We stress that the main goal of this paper is to investi-
gate the coarse-scale DA approach as a generic alternative
to localization. Hence, since both the upscaling approach
and localization could be utilized with any of the above-
mentioned algorithms, any one of them could potentially
be utilized in this investigation. The upscaling approach
could, however, not be applied to the EnKF, since the joint-
state vector at the beginning of forecast stage k then would
have become

(̂
za
k−1, m

a
k−1

)T . In that case, a downscaling

of ẑa
k−1 to the scale of z0 would be required before per-

forming the forecast with the reservoir simulator, see, e.g.
[45]. For practical applications of the ensemble-based meth-
ods, there is a strong motivation to use methods that restart
from initial time, see, e.g. [10, 11, 53]. Hence, consider-
ing the HiEnKF method instead of the EnKF is in line with
how the ensemble-based methods are utilized in realistic
applications.

One extra feature of this approach is that since the joint
state vector remains in the same dimension, it is possible
to combine localization with the coarse-scale DA approach.
This will not be investigated in this work, but would be prac-
tical for cases where one knew that some correlations were
spurious, e.g. if some areas of the reservoir, and the param-
eters in this area, were completely isolated from the one or
several data points.

In the case of infinite ensemble size, Algorithm 2 con-
verge to the Kalman filter Eqs. 8–9 only with zk substituted
by the upscaled approximation ẑk [46]. Hence, the accu-
racy of our solution will depend on the approximation
error ‖zk − ẑk‖ in some suitable norm. However, since the
upscaled model is introduced for cases where the ensem-
ble size is small to moderate, this limit has little practical
interest. We will therefore assume that some accuracy in the
forward model can be sacrificed for higher accuracy in the
Monte-Carlo estimation.

2.3 Discussion of alternative approaches

The approach introduced above only places minor restric-
tions on the selected DA algorithm and requires little
modification of the original code. Hence, it is clear that
other proxy models could also be utilized, such as POD,
or methods based on a neural network. However, to gen-
erate such proxy models, snapshots of the original out-
put is required. Hence, a representative set of the origi-
nal fine-scale reservoir simulator must be run before the
DA algorithm can start. The quality of this approxima-
tion depends on the snapshots, and whether these contain
sufficient variation to capture the potential variation in
the reservoir simulator. Due to the dependence on snap-
shots, there is a more complex relationship between quality
and cost for these types of proxy models. Hence, to fur-
ther compare different proxy models, a thorough numer-
ical analysis is required. This is not in the scope of this
work.

An other alternative are methods based on the multilevel
Monte-Carlo technique [32, 35], especially the multilevel
EnKF (MLEnKF) introduced in [36]. Here, a set of proxy
models that represents different levels of approximation of
the forward model are utilized to generate a more effi-
cient Monte Carlo algorithm. The major difference between
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multilevel approach and the approach introduced here is
that, in the case of infinite ensemble size, the former
approach converge to Kalman filter Eqs. 8–9, while in our
approach the accuracy of the forward simulator remains
constant and, as mentioned above, the algorithm converges
to an approximate solution. In addition, the multilevel
approach is required to balance the computational effort
between the different levels, while in our approach, all
computational effort is made on a single level. A further
comparison of the MLEnKF and data assimilation using
upscaled methods are currently in progress, and will be
presented in a future paper.

3 Localization

The localization methods selected for comparison with
coarse-scale DA will now be presented. From Algorithm 1,
the expression for the Kalman gain for m is (the subscript,
k, and superscript, f , will be omitted in this section, for
notational convenience)

K = Cmz (Cz + �d)−1 . (11)

Only localization of the individual covariance matrices in
the expression for the Kalman gain will be considered.
(In [8], it was found that localization of the individual
covariance matrices seems to be more robust than direct
localization of the Kalman gain.)

To describe the localization methods considered in a uni-
fied framework, some notation is introduced. The descrip-
tion of the methods utilizes a particular matrix associated
with two functions and a particular matrix product. Let Cuv

denote the covariance matrix for u and v, where u ∈ R
I

and v ∈ R
J denote arbitrary vectors whose values vary with

spatial location. The element cuv,ij of Cuv then gives the
covariance between ui = u(xi ) and vj = v(xj ), where xi

and xj denote two arbitrary spatial locations. Furthermore,
let ρ(h) denote an arbitrary spatial correlation function with
compact support, let τ(ρ) denote a function to be specified
below, let hij = ‖xi − xj‖ and let Lτρ denote the I × J

matrix where l
τρ
ij = τ(ρ(hij )). The final piece needed to

formally describe localization is the Schur (element wise)
matrix product ‘◦’. This product is such that A = B ◦ D

results in aij = bij dij , for arbitrary I ×J matrices B and D.
Localization of Cuv corresponding to τ and ρ is then per-
formed as L

τρ
uv ◦ Cuv . From Eq. 11, the general expression

for the Kalman gain with localized covariance matrices then
becomes,

K = (
Lτρ

mz ◦ Cmz

) (
Lτρ

z ◦ Cz + Cd

)−1
. (12)

3.1 GC-localization

In [31], the authors introduce the Gaspari-Cohn formula for
ρ(h),

ρ(h) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
4

(
h

�GC

)5 + 1
2

(
h

�GC

)4 + 5
8

(
h

�GC

)3

− 5
3

(
h

�GC

)2 + 1 0 ≤ h ≤ �GC

1
12

(
h

�GC

)5 − 1
2

(
h

�GC

)4 + 5
8

(
h

�GC

)3 +
5
3

(
h

�GC

)2 − 5 h
�GC

+ 4 − 2
3

(
h

�GC

)−1
�GC ≤ h ≤ 2�GC

0 h > 2�GC,

(13)
while they use the identity function for τ(ρ). In [31], the
specification of �GC is left to the user. We will use the com-
monly applied choice �GC = �prior, where �prior denotes
the correlation length of the prior model.

3.2 CO-localization

In [8], the authors express τ(ρ) by Eq. 23 in [30],

τ (ρ) = 1

1 + (
1 + α2/ρ2

)
/Ne

, (14)

and they use an exponential correlation function,

ρ(h) = α exp
(−3h/�exp

)
. (15)

The selection of the correlation length, �exp, used to calcu-
late L

τρ
mz is based on rules of thumb gained from experience

obtained through investigations in [8] using large ensem-
bles and either 1-D examples or 2-D examples with regular
well patterns. They argued that a localization region for a
particular datum with respect to a variable should cover the
region of significant cross-correlation between that datum
and variable. For data located in repeated five-spot patterns,
they found that the localization region should be centred
at the data location with �exp approximately equal to the
distance between neighbouring wells. For a single five-
spot pattern, they found that the location of the localization
region depends on the data type. Localization regions for
bottom-hole pressure data can be selected in about the same
manner as for repeated patterns, while localization regions
for fluid-production data should be centred between the data
location and the nearest injector with �exp large enough to
ensure that the region covers both these wells. They also
point to the fact that there are several complicating issues
that might make use of these rules of thumb challenging:
ideally, localization regions should vary with time, irregular
well patterns is not discussed, etc. Furthermore, they argue
that the localization matrix for Cz can be expressed as

Lτρ
z = (

Lτρ
mz

)T
Lτρ

mz, (16)
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followed by a scaling such that the diagonal elements of L
τρ
z

become equal to unity.

3.3 ER-localization

In [19], the authors use the identity function for τ(ρ), while
ρ(h) is given by the Gaspari-Cohn formula, Eq. 13. They
argue that the critical length, �GC, should be selected as
�GC = �prior + �sens, where �sens denotes the radius of a
circle with area equal to the region of non-zero sensitivity
for the datum in question. If the prior model is anisotropic
with principal correlation lengths �prior,1 and �prior,2, the
formula for �GC is replaced by �GC,1 = �prior,1 + �sens

and �GC,2 = �prior,2 + �sens. (Note that while the authors
of [19] use an approximate method equivalent to using
streamlines to calculate �sens, we calculate �sens from the
sensitivity matrix.)

4 Upscaling

In the reservoir engineering workflow, there are (at least)
two models describing the subsurface, the geocellular model
and the simulation model. The former contains a highly
detailed description of the geological subsurface (typically
in the order of 107 − 108 grid cells), while the latter is
an upscaled, coarser, representation of the same subsur-
face (typically in the order of 105 − 106 grid cells). In this
paper, we propose to upscale the simulation model further
to facilitating a faster reservoir simulator. The upscaling
is automatic, ensemble-specific and non-uniform. We uti-
lize a simple local-local upscaling method, see, e.g. [16,
25], where the porosity and permeability for each coarse
grid cell are found by calculating, respectively, the arith-
metic and harmonic mean of the corresponding fine grid cell
properties.

To control the approximation error, a good way of deter-
mining which fine grid cells that should be upscaled is
required. Following the approach introduced in [17, 48,
50], a wavelet transform is applied to perform this selec-
tion. Contrary to the previous works, we utilize a second-
generation wavelet transform, which makes this approach
extremely flexible and computationally efficient.

4.1 The discrete wavelet transform

The discrete wavelet transform was developed as a linear
method for computing compact representations of functions
or data sets by exploiting structures in the data or under-
lying functions. The goal is to create a transform that will
give an informative, efficient and useful description of the
function or signal by using localized oscillatory basis func-
tions called wavelets. The specific design of the wavelets

allows the signal to be localized both in space and in fre-
quency. Several petrophysical properties, such as absolute
permeability K(x) and porosity φ(x), are correlated on all
the length scales in the geological model, and the wavelet
transform is therefore well suited to analyse these quantities.

We can generate a standard wavelet basis for any equa-
tion f (x) ∈ L2, by the scaling function, 
k (x), and
the wavelet function, ψj,k (x). Where k indicates transla-
tion, and j indicates dilatation. Hence, the same, ‘mother’,
wavelet function can be dilated and, therefore, be used on
multiple scales. If a suitable scaling and wavelet function is
defined, we can expand the function f (x) in the following
form

f (x) =
∑

k

c (k) 
k (x) +
∑

k

∞∑
j=0

dj (k) ψj,k (x) , (17)

where c (k) and dj (k) are coefficients. The discrete wavelet
transform of the function f (x) is defined as determining
the coefficients in the expansion (17).

The wavelet basis functions are localized in space and
frequency, and the standard approach is to let j = 0 be
the function with the largest domain. Hence, one obtain a
coarser representation of f (x) by truncating the infinite
sum in Eq. 17, and we will later see that this is a useful fea-
ture with regards to upscaling. For more info regarding the
discrete wavelet transform, see, e.g. [6, 13, 42, 49, 54].

4.2 The lifting scheme and second-generation wavelet
transform

Traditionally, the basic tool for generating wavelet functions
is the Fourier transform. However, there are a number of
problems where the Fourier transform cannot be applied,
e.g. problems defined on curves, surfaces or volumes. In
addition, there are cases that are not translation and dila-
tion invariant; this may be along boundaries or for signals
with irregular samples. To deal with these problems, second-
generation wavelets were introduced in [55].

Second-generation wavelets are generated via the lift-
ing scheme, consisting of three steps: split, predict and
update. In the first step, the signal (sj,k) at scale j , for a
finite number of integers k, is split into two equally large
groups. Then, in the second step, the elements in the second
group is predicted from the elements in the first group, typ-
ically by some polynomial interpolation. The quality of the
prediction—the detail coefficients—are stored as the differ-
ence between the predictions and the original elements in
the second group.

Finally, in the third step, all the elements in the first
group are updated such that the mean, or some higher order
moment, of the original signal is preserved. The updated
group—the smooth coefficients—can now be considered as
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Fig. 1 The lifting scheme

a new and coarser representation of the original signal, and
a new pass of the lifting scheme can be performed on the
smooth coefficient. The smooth and detail coefficient, after
transformation of sj,k at scale j , are sj−1,k∗ and dj−1,k∗
respectively, for a new reduced set of integers k∗.

All the calculations in the lifting scheme can be per-
formed in-place, i.e., the detail coefficients overwrites the
values in the second group, and the smooth coefficients
overwrites values in first group. Hence, the algorithm will
not require more memory than is needed to store the original
signal. Moreover, obtaining the inverse transform is trivial,
one simply runs the algorithm backwards. The basic steps
involved in the lifting scheme are illustrated in Fig. 1, and
the basic steps of the inverse transform are illustrated in
Fig. 2.

In the following, utilizing the lifting scheme, we will
derive the simplest first generation wavelet transform, the
Haar wavelet [34] and its second-generation counterpart, the
unbalanced Haar transform. For more details regarding the
lifting scheme, see, e.g. [56, 57].

4.3 The Haar-wavelet

The Haar wavelet splits the signal (sj,k) into its even (sj,2k)
and odd (sj,2k−1) elements, and utilizes a prediction opera-
tor which assumes that the signal is a constant. Hence, the
odd samples are predicted to have the same value as their
even neighbours to the left, and the detail coefficients are

dj−1,k = sj,2k+1 − sj,2k. (18)

It is clear that for constant signals, all detail coefficients are
zero. We say that the order of the Haar wavelet predictor is
one since it correctly eliminates zeroth order correlation in

Fig. 2 The inverse transform

the signal. The update is designed to preserve the average of
the signal, and the smooth coefficients are

sj−1,k = sj,2k + 1

2
dj−1,k = sj,2k+1 + sj,2k

2
. (19)

Since the Haar wavelet preserves the zeroth order moment,
we say that the order of the update operator is one.

4.4 The unbalanced Haar transform

Based on the lifting scheme, it is possible to design a
second-generation Haar wavelet transformation, the unbal-
anced Haar transform, originally introduced in [33]. The
major difference between the Haar and the unbalanced Haar
transform are the coefficients sj,k . In the second-generation
case, these do no longer represent the signal on the location
xj,k . Instead, the coefficients represent an average on the
interval

[
xj,k, xj,k+1

]
, defined as

Ij,k =
∫ xj,k+1

xj,k

w (x) dx, (20)

The unbalanced Haar wavelet transform is constructed by
the lifting scheme as described above. The split, and predict
step are identical to the original Haar wavelet transform but
the update step is modified to preserve the weighted average

sj−1,k = sj,2k + Ij,2k+1

Ij−1,k

dj−1,k. (21)

Since the unbalanced Haar transform allows different
weight for different elements of the signal, it can be utilized
for any realistic computational grid where the cell volumes
vary. In addition, the transform can handle inactive or zero-
volume cells by setting the weight of these cells equal to
zero.

Because of the flexibility introduced by the unbalanced
Haar transform, one can deal with non-dyadic grids in a
number of ways, see, e.g. [41, ch. 4.4.5]. One approach,
which is also utilized in our application, is based on the orig-
inal idea of splitting the full signal into its even and odd
points. For non-dyadic grids, this subdivision will, for some
scale j , result in one more even than odd points, or, in other
words, the last even point cannot be utilized to predict its
odd neighbour. This is solved by postponing the prediction
until we reach a scale where this is possible. This procedure
is illustrated in Fig. 3.

4.5 2/3-dimensional wavelet transform

If we want to utilize the wavelet transform for realistic cases,
we must be able to extend it to higher dimensions. This is,
in principle, not problematic. There is, however, more ways
of splitting the signal into two groups when we consider
high-dimensional signals. Hence, there exists a wide range
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Fig. 3 Three passes of the unbalanced Haar transform. The vertical
lines indicated the walls of the grid cell, and bullet denotes the cell-
centres

of different approaches to this wavelet transform, including
approaches that splits the signal adaptively [29].

The simplest approach in higher dimensional problems
is, however, to decompose the original signal into several
1D signals and perform a 1D wavelet transform on each
1D signal. This repeated use of the 1D transform is not as
flexible as wavelet transform with more complex splitting
schemes, but it is still widely used in image compression
because of its efficiency. One pass of the wavelet transform,
performed on a two-dimensional image, is shown in Fig. 4.
This approach is utilized in all numerical experiments.

Fig. 4 2-D wavelet transform. White tiles illustrate the signal, light
grey tiles illustrates the detail coefficients after the transformation
is performed for the first dimension, dark grey tiles illustrates the
detail coefficients after the transformation is performed for the second
dimension

4.6 Wavelet-based upscaling

The petrophysical parameter, discretized on the computa-
tional grid, can be considered as a piecewise constant func-
tion with discontinuities at the cell edges. During the upscal-
ing procedure, suitable fine scale grid cells are merged
into larger grid cells. The discretized parameters on the
upscaled grid can, however, still be considered as piecewise
constant functions that are constant over a larger domain.
Recall that the detail coefficients in the Haar-wavelet are
zero only for constant functions. Hence, the upscaling pro-
cedure is identical to performing an inverse Haar wavelet
transform where selected detail coefficients have been set
to zero. Because the Haar wavelet preserves the average
value, the upscaled parameter automatically receives an
averaged—upscaled—value.

The upscaling procedure we utilize takes advantage of
the Haar wavelets similarity with a traditional upscaling pro-
cedure. However, since we seek an upscaling algorithm that
should work on any grid, the method introduced here is
based on the unbalanced Haar transform, where we assume
that the weight function, w (x), is a constant function over
all active grid cells, and zero in the inactive grid cells.
Hence, the value of the average on the interval Ik,j will only
depend on the size of the active grid cells.

Before this procedure can be applied, we must determine
some criterion that can be utilized for selecting which detail
coefficients to set as zero prior to the inverse transform.
The is handled in the manner proposed in [17, 48, 50–
52]. This approach is based on critical-path analysis, which
states that, for a heterogeneous media, most of the fluid flow
takes place in the high permeable regions of the reservoir. To
minimize the upscaling error, we want to retain a high reso-
lution in the areas where there is a high degree of fluid flow,
i.e. high permeability. To capture edges of areas with high
degree of fluid flow, we also keep a high resolution in areas
with rapidly changing permeability. We also want to ensure
that cells that contains wells, or other predefined structures,
are not upscaled. This is done by introducing two threshold
values, εs and εd , defined as

εs = γs max
k

sJ,k, εd = γd max
k

dJ,k, (22)

where γs/d are fractions and J is the resolution of the origi-
nal signal. In addition, we introduce a matrix of booleans, B,
where elements of B corresponding to cells we want to keep
in the original grid is set to False while all others are set as
True. After one step of the wavelet transform, one checks if
sj−1,k < εs and dj−1,k < εd are satisfied. If these condi-
tions are met, and if all affected elements in B are True, we
set dj−1,k = 0. This procedure is performed for all k, and
is repeated on subsequently coarser scales. We stop the pro-
cedure when we reach a scale where the requirements are
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no longer satisfied for any k. Hence, a new grid, containing
averaged values in regions with low permeability and small
variations, is generated by an inverse wavelet transform.

The efficiency of this method depends on the degree
of heterogeneity in the permeability field. If there are few
heterogeneities, i.e., the permeability distribution has low
variance, the critical-path analysis states that the fluid flow
takes place through many parts of the field. Hence, we must
define the threshold for upscaling such that these parts are
retained in high resolution, and thus few grid cells can be
upscaled. However, if the permeability field is highly het-
erogeneous, i.e. the permeability distribution has a large
variance, the critical-path analysis states that most of the
fluid flow takes place in only a small part of the reser-
voir. Hence, the threshold values can be set such that only
these are retained in high resolution, and large parts of the
reservoir may be upscaled.

Note that for 2-D reservoirs, the wavelet transformation
produces one sj−1,k value and three detail coefficients (see
Fig. 4). The shape of the final upscaled grid cell depends
on which one of these three coefficients we set to zero. Dif-
ferent approaches has been tested numerically, and the best
numerical behaviour is achieved when the coarse grid cells
are square. To obtain square grid-blocks, we either truncate
all, or none, of the three detail coefficient in the upscaling
scheme. The only exception from this geometry happens
when the grid is non-dyadic, and some part of the signal
has been passed over. When such cells are upscaled, there
will be a difference in the size of the fine grid cells, and
the new merged cell is not necessarily square. An example
is illustrated in Fig. 5, where the first pass of the transform
produces non-square grid cells. Due to the way we handle
non-dyadic grids, this will only happen on the edge of the
reservoir.

Figure 6 illustrates how the porosity of layer 38 in the
SPE-10 model [12] is upscaled using the wavelet approach
(no wells are included in this demonstration).

There is an inherent cost related to the upscaling. Since
we want to allow for a large number of ensemble members
in the coarse-scale DA approach, it is important that this
cost is low. Fortunately, the lifting scheme is a very efficient
method for generating the second-generation wavelet trans-
form. The wavelet representation of a signal can be achieved
in O(Ng) operations, and, moreover, the inverse transform
can be computed in O(Ng) operations [56]. Hence, this

Fig. 5 Upscaling of a non-dyadic 2-D grid

(a) (b) (c)

Fig. 6 2-D unbalanced Haar transform of porosity in layer 38 in SPE-
10 model. a Original field. b Upscaled field. c Upscaled grid

upscaling method generates very little overhead, and com-
pared to the reservoir model, where we solve a large number
of linear equations each requiring O(N

η
g ) (η ∈ (1.25, 1.5))

operations, this cost is negligible.

5 Numerical experiments

The numerical experiments consists of DA problems that
cannot be solved to reasonable accuracy when utilizing a
small or moderately sized ensemble, and we will study var-
ious ways of improving the accuracy for such problems.
More specifically, we compare the coarse-scale DA methods
against the three different localization schemes discussed
in Section 3. For all localization schemes, the localization
matrix L

τρ
z is calculated by Eq. 16. Throughout, we assume

that the available computational resources will allow us to
run 100 simulation runs of the original reservoir simulation
model, hence, Ne = 100 is selected for all experiments.

We assume that the absolute permeability is the only
unknown petrophysical parameter, and we assume that the
permeability is isotropic. Hence, the unknown parameter
can be defined as m ∈ R

Ng , i.e. a vector with the same
dimension as the number of grid cells.

Each ensemble member is upscaled with regards to its
specific permeability field, and it is, therefore, not possible
to define a unique value for the reduction of grid cells for
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the whole ensemble. Instead, given truncation values εs and
εd , we upscale the original ensemble containing Ne = 100
members, and calculate the mean degree of upscaling as

ζ = 1

Ne

Ne∑
i=1

Ng(
N̂g

)
i

, (23)

where
(
N̂g

)
i

is the number of grid cells after upscaling of
ensemble member i. This procedure is inexpensive since it
does not require a run of the reservoir simulator.

In the reservoir simulator, the flow equations have been
discretized following a finite volume approach and the solu-
tion of the equations are found by some iterative scheme on
the linearized equations, see, e.g. [5]. Since each non-linear
iteration requires a solution of a linear system of equations,
it is clear that the numerical cost of solving the flow equa-
tions in the reservoir simulator, F , is proportional to the cost
of solving the linear system of equations. The cost of solv-
ing the linear system is a function of the number of grid
cells. We, therefore, assume that F scales as N

η
g , where the

value η ∈ (1.25, 1.5) depends on the choice of linear solver,
see, e.g. [4]. Since the total overall computational cost of
the DA method, Q, roughly equals Ne × F , we can keep
the total numerical cost constant by defining the number of
ensemble members for the upscaled DA method, N̂e, as

N̂e = Ne × ζ η. (24)

It is clear that the number of upscaled ensemble members
depends on the quality of the linear solver. To evaluate this,
we will run experiments utilizing both η = 1.25 and η =
1.5. To make the DA problem extra challenging for coarse-
scale DA, we also test the unrealistic case where η = 1.

5.1 Example 1

In the first numerical experiment, we consider a 60 ×
60 2D reservoir model defined on a uniform Cartesian
grid. This experiment is based on example 3 in [19]. The
unknown model parameters are the log-permeability value
in each grid cell. The prior ensemble is generated from an
anisotropic spherical covariance function with major corre-
lation length equal to 30 grid cells, minor correlation length
equal to 10 grid cells and the direction of major correlation
rotated 45◦ clockwise around the ordinate axis. The prior
mean is set to 5.0 and the prior variance to 1.0. The true
model, used to generate the true data, is selected as one real-
ization drawn from the prior distribution and is shown in
Fig. 7. For all models, the porosity is set to 0.2 throughout
the field. The model contains six producing wells, P1-P6,
and one injector, I1.

At the start of the simulation time, producers P1, P2 and
P3 starts producing oil, while the injector, I1, starts inject-
ing water. After 6000 days, the well P4 starts production,

Fig. 7 True model

and after 9000 days the two final wells, P5 and P6, start
production. The total production time is 12,000 days. All
wells are controlled by bottom-hole pressure constraints,
1.03 × 104 kPa for the producers and 2.75 × 104 kPa for
the injector. The observed data consists of oil and water
production rates from the producing wells along with water
injection rates from the injecting well. These quantities are
observed each 150th day, resulting in 80 assimilation steps.

An ensemble of synthetic data was generated by adding
uncorrelated Gaussian noise to the true data with a variance
equal to 1% of the true value. To avoid unrealistically accu-
rate data points, we omitted all data with value below 10,
resulting in 594 data points.

For the upscaling, we set εs and εd , as defined in Eq. 22,
by setting γs = 0.7 and γd = 0.7. This results in ζ = 3. An
illustration of the upscaling for one realization of the prior
model is given in Fig. 8, and oil production rate from well P2
for the original and the upscaled model is shown in Fig. 9.

For the three localization procedures, we must define
the different localization ranges. For the GC-method and
the ER-method, this does not introduce any extra work
since the range is the prior range in the GC-method and
prior plus drainage area in the ER-method. However, for
the CO-approach, we must manually select the position and
range of the localization, following the approach outlined in
Section 3. The area of significant cross-correlation should
be included in the localization region [8]. Therefore, to com-
pare the localization functions, we have plotted the absolute
value of the cross-correlation between the log-permeability

(a) (b)

Fig. 8 Example 1, upscaling of one realization. a Original model. b
Upscaled grid
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(a) (b)

Fig. 9 Oil production rate (m3/day) from well P2 for the different
assimilation steps. The shaded area indicates 10 − 90% percentile, the
solid line represents the median and the thick dashed line represents
the true data. a Original. b Upscaled

and the selected datum in Fig. 10. The cross-correlation
was calculated using a large ensemble containing 1 × 104

ensemble members.

5.2 Example 2

In the second numerical experiment, we consider a 167 ×
167 2D reservoir model defined on a uniform Cartesian
grid. This experiment is based on example 2 in [8]. The
unknown model parameters are the log-permeability value
in each grid cell. The prior ensemble is generated from an
isotropic exponential covariance function with correlation
length equal to 10 grid cells. The prior mean is set to 2.5 and
the prior variance 1.44. The porosity is set to 0.2 throughout
the field. For this case, the true model, used to generate the
true data, is the same as utilized in [8], generously provided
by [7]. The model contains 25 inverted five-spot patterns,
giving a total of 36 producers and 25 injectors. Figure 11a
shows the model utilized to generate the true data, with the
well positions indicated.

(a)

(d)

(b) (c)

Fig. 10 Localization functions for water production rate at well P3
calculated, a CO, b GC, and c ER. d Absolute value of cross-
correlation between water production rate, at well P3, and parameter
at assimilation time 5, calculate using Ne = 1 × 104

All the producers are controlled by a fixed bottom-hole
pressure constraint of 6.89 × 103kPa, while the injectors
are controlled by fixed water injection rate constraint of
238.5m3/day and, in addition, a maximum bottom-hole
pressure constraint of 5.516 × 104kPa. Data are available at
nine different times, after 30, 120, 240, 360, 540, 780, 900,
1080 and 1440 days. At each assimilation time, the available
data consists of oil production rates and water production
rates from all producers, and bottom-hole pressure from
the injectors. In addition, the water injection rate from the
injectors are included since some injectors, in the true run,
switches controls to fulfil the constraints. The total num-
ber of available data at each assimilation time is 122, hence,
there is a total of 1098 data points.

An ensemble of synthetic data was generated by adding
uncorrelated Gaussian noise to the true data with a variance
equal to 1% of the true value for data with values above 10,
and fixed variance equal to 0.1 for data with values below
10.

We note that this model is relatively densely populated
with wells, and in this example, the flow-paths are deter-
mined, to a higher degree, by the well position rather than
the permeability value. This makes the model difficult to
upscale with our proposed technique, and we therefore test
two different degrees of upscaling. The values of εs and εd

(see Eq. 22), are determined by γs/d = 0.7, and γs/d = 0.5.
These degrees of upscaling results in ζ = 15, and ζ = 7.
Note that no grid cells containing wells can be part of an
upscaled grid cell. Hence, relatively many grid cells cannot
be upscaled, independent of their permeability value. The
results from upscaling the true model, utilizing the different
degrees of upscaling, are illustrated in Fig. 11. Oil produc-
tion rate from well P15 for the original and the upscaled
models are shown in Fig. 12.

For this experiment, the localization functions for CO,
as utilized in [8], was provided by [7]. To illustrate the
difference between the localization schemes, we have illus-
trated the localization functions, in addition to the cross-
correlation (calculated using an ensemble size of 1 × 104),
for a selected datum in Fig. 13. Note that, for this case,
all taper functions are centred at the well positions, but the
localization range of the various methods varies greatly.

5.3 Example 3

In the third example, we consider a 400 × 400 2D reser-
voir model defined on a uniform Cartesian grid, where the
unknown model parameters are the log-permeability value
in each grid cell, while the porosity is constant and equal
0.35.

Contrary to examples 1 and 2, where the unknown
parameter was described as a Gaussian field, we now con-
sider an unknown parameter described as a categorical field
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(a)

(b) (c)

Fig. 11 Upscaling of one realization. a True model. b Upscaled grid
ζ = 7. c Upscaled grid ζ = 15

with two distinctive regions and small Gaussian variation
within each region. Both the true model and the prior
ensemble are generated by a combination of the sequen-
tial indicator simulation (SIS) algorithm and the sequential
Gaussian simulation (SGS) procedure, both implemented
in the GSLIB software [14]. In the SIS, we simulate two
threshold values of 0.1 and 1, with target proportions of
0.8 and 0.2, respectively. Both categories utilized the same
isotropic spherical variogram with a variance of 1 and range
of 500 grid cells. The Gaussian variations were simulated by
the SGS with a mean value of 6 and a variance of 1 sampled
from an isotropic spherical variogram model with a range
of 10 grid cells. The final realizations were generated by
multiplying the two fields.

The reservoir contains nine wells, five producers and
four injectors, placed along the two diagonals going from

(a) (b) (c)

Fig. 12 Oil production rate from well P15 (m3/day) for the different
assimilation steps. The shaded area indicates 10 − 90% percentile, the
solid line represents the median and the thick dashed line represents the
true data. a Original model. b Upscaled prediction ζ = 7. c Upscaled
prediction ζ = 15

north-west to south-east and from south-west to north-east,
and the flow pattern depends heavily on the spatial extent
of the region with high permeability. To make the prob-
lem extra challenging, we condition the true field to have
a high-permeable path, connecting the wells, going along
both diagonals, while the prior model is only conditioned
to be in the high permeable region at well positions. The
true model, with well-positions indicated, is illustrated in
Fig. 14, and an arbitrary realization of the prior model is
illustrated in Fig. 15a.

All wells are controlled by fixed bottom-hole pressure
constraints, the injectors at 3 × 104kPa and the producers at
1 × 104kPa. Oil and water production rate from the produc-
ers and water injection rate from the injectors are collected
every 6 months for 8 years, giving a total of 224 data points.

An ensemble of synthetic data was generated by adding
uncorrelated Gaussian noise to the true data with a variance
equal to 1% of the true value for data with value above 10,
and fixed variance equal to 0.1 for data with value below 10.

To perform the upscaling, we set εs and εd (see Eq. 22),
by γs = 0.7 and γd = 0.7. This degree of upscaling results
in ζ = 20. The upscaled grid, for the log-permeability real-
ization shown in Fig. 15a, is illustrated in Fig. 15b, while
the original and upscaled oil production curve for well P2 is
shown in Fig. 16.

This example is so large that a simulation of the full
model takes approximately 450 s. Hence, obtaining a solu-
tion utilizing 1×104 ensemble members would take approx-
imately 52 days, and we, therefore, cannot afford to run the
case with a very large ensemble. The range and position
of the CO-localization function must therefore be selected
based on the well position. We select a localization range
of 100 grid cells, and let the CO-localization regions, for
the producers, be centred between the data location and the

(a)

(d)

(b) (c)

Fig. 13 a–c Localization functions for water production rate at well
P15 calculated, from left to right, by CO, GC and ER. d Absolute
value of cross-correlation between water production rate, at well P3,
and parameter at assimilation time 5, calculate using Ne = 1 × 104
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Fig. 14 Example 3, true model

nearest injector. For the injectors, we let the CO-localization
regions be centred at the well locations. The GC-, and ER-
localization regions are defined in their usual manner, but
we let the range representing the prior model be 20 grid
cells since we are not considering a Gaussian prior model.
Figure 17 shows the various localization functions for the
oil production rate at well P2.

6 Analysis of numerical results

In the following, we will present and analyse the results
of the numerical investigation. The analysis will compare
the proposed coarse-scale DA method to the methods that
are based on localization. For each of the three examples,
we will compare the methods based on their estimates of
the posterior mean and standard deviation, in addition to
the data match for some representative data points. Exam-
ples 1 and 2 are sufficiently small to allow DA utilizing
a high number of ensemble members, and the result from
this test is considered as the reference solution and will
be presented for these examples. Note that since the for-
ward model is non-linear, the reference solution does not
represent samples from the Bayesian posterior distribution.
However, since the EnKF also converges for non-linear for-
ward models [43], the best result we are able to achieve in
this framework is the EnKF in the limit of infinite ensemble
size. Hence, it reasonable to compare the coarse-scale DA
and the localization approach to the reference solution.

(a) (b)

Fig. 15 Example 3. a Original model. b Upscaled grid

(a) (b)

Fig. 16 Oil production rate (m3/day) from well P2 for the different
assimilation steps. The shaded area indicates 10 − 90% percentile, the
solid line represents the median and the thick dashed line represents
the true data. a Original model. b Upscaled model

6.1 Results example 1

In addition to the high number of data (potentially 720 data
points), which might cause the ensemble to collapse, this
experiment is also sensitive to the effects of spurious corre-
lations. Since the wells P4-P6 has a later production startup
than the other wells, the grid cells surrounding P4-P6 can
be affected by spurious correlation from earlier assimilation
steps. This can make it especially difficult to assimilate the
data from these wells [19].

In Fig. 18, we have plotted the posterior mean obtained
when utilizing the various localization methods and upscal-
ing. In addition, we have plotted the posterior mean obtained
without localization and the reference posterior mean. The
figure shows that all four methods obtain reasonably similar
estimates of the mean that are all similar to the refer-
ence solution. The coarse-scale DA method, especially with
η = 1.5, performs equally good as the distance based local-
ization methods. From the result without localization, we
clearly observe the necessity of implementing some method
to handle the small ensemble size. The mean model without
localization contains much roughness and does not resemble
the reference solution.

In Fig. 19, the posterior standard deviation of the log-
permeability, obtained by the four methods, are shown.
The plot of the reference posterior standard deviation, and
the plot of the posterior standard deviation obtained with-
out localization is also shown in Fig. 19. From the figure,
we observe that the three methods based on localization
performs relatively similarly, and captures the reference
solution quite well. Note that the same colorbar is utilized

(a) (b) (c)
Fig. 17 a–c Localization functions for oil production rate at well P2.
a CO. b GC. c ER
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(a) (b) (c)

(d) (e)

(g) (h)

(f)

Fig. 18 Mean log-permeability. a CO. b GC. c ER. d coarse-scale
DA η = 1. e coarse-scale DA η = 1.25. f coarse-scale DA η = 1.5. g
no localization. h high Ne

for all plots in Fig. 19. For the cases with localization, some
areas have a higher standard deviation than the reference
solution, and there are areas where the values overshoot the
range of the colorbar. The maximum standard deviation for
the different localization methods are 1.14, 1.17 and 1.04,
for the CO-method, the GC-method and the ER-method,
respectively. The coarse-scale DA method, with η = 1,
underestimates the standard deviation for this case, but, for
η = 1.5, the standard deviation is, as expected, more simi-
lar to the reference solution. From the figure, it is also clear
that if nothing is done with regards to the small ensemble
size, the ensemble collapses and the standard deviation is
significantly underestimated.

Figures 20, and 21 shows the water and oil production
rates from well P2 and P4, respectively. These figures are
obtained by rerunning the ensemble of models, obtained
from the various methods, after all data have been assimi-
lated. Again, we observe similar results from the methods
that apply localization. For the water production rate, the
median model for the coarse-scale DA method is closer
to the true data, and, contrary to the localization methods,
all data are captured within the shaded area. Hence, the
coarse-scale DA method performs better than the localiza-
tion methods for this data type. For the oil production rate,
the coarse-scale DA slightly underestimates the spread in
the prediction while all the localization methods slightly

overestimates the spread. However, even though that data
from well P4 was expected to be affected by spurious corre-
lations, all the coarse-scale DA cases, the GC method, and
the ER method matches the data, while the CO method fails
to capture all data within the shaded area. For the case where
nothing is done to mitigate the effect of the ensemble size,
we clearly observe that the ensemble collapses and is unable
to match the data.

In summary, when combining the results from the mean,
standard deviation, and the data match, it is clear that for this
example the coarse-scale DA method with η = 1.5 produces
equally good results as the localization method with the best
result, and better results than the localization method with
the worst result. The coarse-scale DA cases with η = 1,
and η = 1.25 has better data match, equal estimates of the
mean, but worse estimates of the standard deviation when
compared with the localization methods.

6.2 Results example 2

Similar to example 1, this example was also designed to
contain a high number of data (a total of 1098 data points).
However, for this case, the data comes from a dense pattern
of wells. Hence, the data from this experiment resembles
seismic data with respect to spatial data density.

(a) (b) (c)

(d) (e)

(g) (h)

(f)

Fig. 19 Standard deviation log-permeability. a CO. b GC. c ER. d
coarse-scale DA η = 1. e coarse-scale DA η = 1.25. f coarse-scale
DA η = 1.5. g No localization. h High Ne
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(a) (b) (c)

(d) (e)

(g) (h)

(f)

Fig. 20 Water production rate (m3/day) from well P2 for the different
assimilation steps. The shaded area indicates 10 − 90% percentile, the
solid line represents the median and the thick dashed line represents
the true data. a CO. b GC. c ER. d coarse-scale DA η = 1. e coarse-
scale DA η = 1.25. f coarse-scale DA η = 1.5. g No localization. h
High Ne

Figure 22 shows the mean posterior log-permeability
and Fig. 23 shows the standard deviation of the posterior
log-permeability, obtained by the three localization meth-
ods and the various coarse-scale DA methods. In addition,
Figs. 22 and 23 shows the mean and standard deviation
of the posterior log-permeability without localization, and
the reference mean and standard deviation of the poste-
rior log-permeability obtained from a run with a very large
ensemble.

Clearly, if nothing is done to handle the small ensemble
size, the ensemble will lose all its variability and collapse
into a mean model which has a high degree of roughness.

By comparing the results from the localization methods
with the reference solution, we see the effect of the different
localization ranges (illustrated in Fig. 13). The GC-method
has the shortest range, and the mean model does not show
significant updates between wells, especially in the north-
east corner of the reservoir, and the standard deviation is still
high between the wells. The CO-model has medium range
and its mean and standard deviation is closest to the ref-
erence solution, while the mean for the ER-model, which
has the longest range, is slightly rougher than the refer-
ence mean and the standard deviation for the ER-model is
significantly lower than the reference standard deviation.

The results from the coarse-scale DA method shows a
clear dependency on the degree of upscaling. For these
methods, the best standard deviation is achieved by ζ = 15
η = 1.5 (Fig. 23f), which is the run with the highest num-
ber of ensemble members. The other coarse-scale DA cases

Fig. 21 Oil production rate (m3/day) from well P4 for the different
assimilation steps. The shaded area indicates 10 − 90% percentile, the
solid line represents the median and the thick dashed line represents
the true data. a CO. b GC. c ER. d coarse-scale DA η = 1. e coarse-
scale DA η = 1.25. f coarse-scale DA η = 1.5. g no localization. h
High Ne

with ζ = 15 underestimates the standard deviation. How-
ever, the mean model obtained by ζ = 15 η = 1.5 is
significantly rougher than the mean reference model, and
there is little difference between the various cases with
ζ = 15. This effect is not seen in the cases with ζ = 7. Here,
for η = 1.5, we have a slightly lower standard deviation,
and the standard deviation decreases with η, but we obtain a
mean model which is smooth for η = 1.5 and rougher as η

decreases.
This effect can be explained by Fig. 11, which illustrates

the upscaled grid for both degrees of upscaling. As men-
tioned above, due to pressure gradients between wells, the
potential flow-paths in this experiment is determined more
by the well position than the parameter field. For ζ = 15
only a small area, apart from grid cells containing wells, is
kept in high resolution. Hence, areas between many wells
that might contain important flow-paths have been upscaled.
For ζ = 7, a larger area, which naturally covers more flow-
paths, is kept in high resolution. Due to the upscaling, all
parameters in an upscaled grid cell becomes strongly cor-
related in the analysis step of the coarse-scale DA method.
Since parameters that contribute to the flow get the largest
updates and because these parameters are retained in high
resolution, we usually do not observe correlations caused by
the upscaling in the analysed models. However, when other
factors than permeability are important for the flow-paths,
we observe these correlations as roughness in the approxi-
mation of the posterior mean. By using a lower degree of
upscaling, we can account for the fact that the well positions
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Fig. 22 Mean log-permeability. a CO. b GC. c ER. d ζ = 15, η = 1.
e ζ = 15, η = 1.25. f ζ = 15, η = 1.5. g ζ = 7, η = 1. h ζ = 7,
η = 1.25. i ζ = 7, η = 1.5. j No localization. k High Ne

are important for determining the flow-paths, and remove
the unwanted effect of the correlations. Hence, since this
example only permits a moderate degree of upscaling, it is
a challenging problem for coarse-scale DA.

Figures 24 and 25 show the curves of the oil and
water production rates for well P15 and P30, respectively,
obtained by rerunning the ensembles after all data have been
assimilated. This experiment contains a high number of
wells, and we can only show two results here. However, the
majority of the data matches are similar to the result shown
in Fig. 24, which can be defined as a typical result. The
results that are not typical will for the most part be similar to
the data match shown in Fig. 25. For the oil production rate,
all the methods perform similar. However, similar to the
plot of standard deviation, we observe that the ER-method
underestimates the spread while the GC-method overesti-
mates the spread. In addition, we observe that some of the
data-points for the ER-method are outside the 10−90% per-
centile region. For the water production rates, we observe

Fig. 23 Standard deviation log-permeability from coarse-scale DA. a
CO. b GC. c ER. d ζ = 15, η = 1. e ζ = 15, η = 1.25. f ζ = 15,
η = 1.5. g ζ = 7, η = 1. h ζ = 7, η = 1.25. i ζ = 7, η = 1.5. j No
localization. k High Ne

that neither the GC-method nor the coarse-scale DA method
match the water breakthrough. However, the results for the
two methods show no signs of collapse, such as in the
case with no localization. It is reasonable to assume that
for the GC-method, we cannot match the data due to the
small localization radius. For the coarse-scale DA method,
we observe that the match gets better as ζ decreases. This
shows the dependence on upscaling for this specific exam-
ple and a better match could perhaps be achieved by further
decreasing the degree of upscaling. However, this was not
studied further. Again, we clearly observe the consequence
of not doing anything to mitigate the small ensemble, the
ensemble is fully collapsed away from the data.

In summary, the CO-method obtains the best result when
comparing the mean, standard deviation and data match.
However, the best coarse-scale DA method (ζ = 7 and η =
1.5) obtains equally good, or slightly better, estimates of the
mean and standard deviation compared to the ER and GC
methods, and equally good data match as the GC-method.
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Fig. 24 Oil production rate from well P15 in m3/day for the different
assimilation steps. The shaded area indicates 10 − 90% percentile, the
solid line represents the median and the thick dashed line represents
the true data. a CO. b GC. c ER. d ζ = 15 η = 1. e ζ = 15 η = 1.25.
f ζ = 15 η = 1.5. g ζ = 7 η = 1. h ζ = 7 η = 1.25. i ζ = 7 η = 1.5.
j No localization. k High Ne

Hence, in summary, the coarse-scale DA method performs
equally good, or better than the localization method with the
worst result.

6.3 Results example 3

Compared to the two previous examples, example 3 is sig-
nificantly larger and more complex. As mentioned above,
this inhibits us from calculating a reference solution to the
DA problem. In addition, due to the complexity of the
problem, it is not possible to perform DA without local-
ization. After the first analysis step, the updated ensemble
is so rough that the flow equations will not converge, and
it is therefore impossible to do any further predictions.
Hence, DA on this model cannot be performed without some
method to handle the low ensemble size.

In Fig. 26, we have plotted the various approximations to
the posterior mean. Since we do not have the reference pos-
terior mean, we must compare the result to the true model
(Fig. 14). It is clear that the localization range is essential for
the result. The GC-method has the shortest range, and we
clearly see that this method is unable to capture the channels

Fig. 25 Water production rate from well P30 in m3/day for the differ-
ent assimilation steps. The shaded area indicates 10 − 90% percentile,
the solid line represents the median and the thick dashed line repre-
sents the true data. a CO. b GC. c ER. d ζ = 15 η = 1. e ζ = 15
η = 1.25. f ζ = 15 η = 1.5. g ζ = 7 η = 1. h ζ = 7 η = 1.25. i
ζ = 7 η = 1.5. j No localization. k High Ne

connecting the wells. The ER-method, which has a larger
range, also struggles to properly connect the channels. The
CO-method, and all the coarse-scale DA methods are able
to connect the channels better. However, we observe that the
posterior mean from the CO-method, which has large local-
ization range, is quite rough. The coarse-scale DA method
with η = 1 is also quite rough, and we observe that areas
away from the channels are updated. As η increases, the
result from the coarse-scale DA methods gets smoother, and
there is less updates outside of the high permeable region.
Hence, the coarse-scale DA methods does the best job of
capturing the posterior mean, when compared to the true model.

The same conclusions can be drawn from Fig. 27, show-
ing the standard deviation. Here, since we do not have a
reference solution, we can only compare the methods to
each other. However, we clearly observe that the highest
standard deviation is obtained by the GC-method, while
the lowest is obtained by the CO-method. Hence, we can
assume that the localization range of the GC-method is too
short to reduce the standard deviation, while the range in the
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Fig. 26 Mean log-permeability. a CO. b GC. c ER. d coarse-scale
DA, η = 1. e coarse-scale DA, η = 1.25. f coarse-scale DA, η = 1.5

CO-method is so long that the ensemble cannot retain suffi-
cient spread. For the coarse-scale DA methods, the standard
deviation gradually increase as η increases.

Figure 28 shows the posterior ensemble prediction of
the oil production rate from well P5. We observe that none
of the localization methods are able to match all the data.
The CO-method has the best match of the methods apply-
ing localization, but only parts of the data are within the
shaded area. The matches obtained by the coarse-scale DA
methods are better than for all the localization methods. For
η = 1 and η = 1.25, almost all the data are within the
shaded area, while for the case with η = 1.5, all data are
within the shaded area. Hence, for this example, the coarse-
scale DA methods obtains a better data match than any of
the localization methods.

Fig. 27 Standard deviation log-permeability. a CO. b GC. c ER. d
coarse-scale DA, η = 1. e coarse-scale DA, η = 1.25. f coarse-scale
DA, η = 1.5

Fig. 28 Oil production rate (m3/day) from well P5 for the different
assimilation steps. The shaded area indicates 10 − 90% percentile, the
solid line represents the median and the thick dashed line represents the
true data. a CO. b GC. c ER. d coarse-scale DA, η = 1. e coarse-scale
DA, η = 1.25. f coarse-scale DA, η = 1.5

When comparing the mean, standard deviation and data
match, it is clear that for this example the coarse-scale DA
methods with η = 1.25 and η = 1.5 performs better than
all of the localization methods. For the case with η = 1, the
result is in summary equally good or slightly better than the
best localization result.

7 Summary and conclusions

We have proposed and evaluated a new method for reservoir
history matching problems, coarse-scale DA, that aims to
remove, or at least significantly reduce, the need for local-
ization. Coarse-scale DA utilize an automatic, ensemble-
specific and non-uniform upscaling method to reduce the
computational cost of running each ensemble member,
allowing for a significant increase in the number of ensem-
ble members at the same computational cost as standard DA
with or without localization.

Three numerical experiments, with high degree of vari-
ability, show that the coarse-scale DA method is more robust
with respect to variation in example types than each of the
localization techniques considered with standard DA.

Experiment 1 was a relatively small history matching
problem with a smoothly varying permeability field, and a
high number of assimilation steps. We observed that, even
with a moderate degree of upscaling, the coarse-scale DA
method performed equally good or slightly better than the
localization methods.

Experiment 2 also had a smoothly varying permeability
field, which was densely populated with wells. This lead to
a high number of possible flow-paths in the reservoir model,
and the flow-paths depended more on the well positions
than on the permeability field. Since the basis of our upscal-
ing procedure is that the permeability field governs the
flow-paths, this model was the most challenging to upscale.
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However, for this example, we observed the importance
of a flexible upscaling procedure. We could easily adjust
the degree of upscaling by the truncation levels. The CO-
method gave the best results for this case, but, we observed
that the coarse-scale DA method performed equally good as
the two other localization methods.

Experiment 3 had a different prior structure than the two
previous examples. Here, the model consisted of a cate-
gorical field with small Gaussian variations. This was an
extremely challenging field to history match, and it was
impossible to perform DA without some method to han-
dle the low ensemble size. For this example, we observed a
strong dependency on the localization range, where a large
region was required to capture the channel structure in the
true model. However, as a consequence of a large localiza-
tion region, the standard deviation was underestimated when
compared to the results from other methods. For this exam-
ple, the best result was obtained by the coarse-scale DA
approach.

The results from the localization technique varied for
the different examples, and for all examples the coarse-
scale DA methods performed equally good or better than
the localization methods with the worst result. Moreover,
none of the DA methods with localization would consis-
tently outperform the other methods. The best result from
the coarse-scale DA methods was obtained when the cost
of the linear solver scaled as N1.5

g . For more efficient
linear solvers, the coarse-scale DA method is most often
equally good, and occasionally better than the localization
approaches.

Examples 1–3 are synthetic 2D examples and realis-
tic cases might be more complex, and/or have different
features. However, if we consider upscaling in all three
dimensions, there is a large potential for a greater increase
in the ensemble size. Moreover, the method for retaining
grid cells containing wells in high resolution can easily
be extended to retain other structures, such as, faults in
the highest resolution. Hence, we believe that the proposed
method has high potential for realistic 3D cases.

We have seen that there is a larger variability in the results
from the localization methods, and in general it is diffi-
cult to determine a generic localization method for history
matching. Apart from the task of setting a suitable degree of
upscaling, which does not involve any simulation runs, the
coarse-scale DA algorithm does not need any other exam-
ple specific input settings. The coarse-scale DA method is,
therefore, a generic alternative to localization for history
matching reservoir models.
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