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Abstract Oilfield development involves several key deci-
sions, including the number, type (injection/production),
location, drilling schedule, and operating control trajecto-
ries of the wells. Without considering the coupling between
these decision variables, any optimization problem formu-
lation is bound to find suboptimal solutions. This paper
presents a unified formulation for oilfield development
optimization that seeks to simultaneously optimize these
decision variables. We show that the source/sink term of the
governing multiphase flow equations includes all the above
decision variables. This insight leads to a novel and unified
formulation of the field development optimization problem
that considers the source/sink term in reservoir simulation
equations as optimization decision variables. Therefore, a
single optimization problem is formulated to simultane-
ously search for optimal decision variables by determining
the complete dynamic form of the source/sink terms. The
optimization objective function is the project net present
value (NPV), which involves discounted revenue from oil
production, operating costs (e.g. water injection and recy-
cling), and capital costs (e.g., cost of drilling wells). A major
difficulty after formulating the generalized field develop-
ment optimization problem is finding an efficient solution
approach. Since the total number of cells in a reservoir
model far exceeds the number of cells that are intersected
by wells, the source/sink terms tend to be sparse. In fact,
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the drilling cost in the NPV objective function serves as a
sparsity-promoting penalty to minimize the number of wells
while maximizing the NPV. Inspired by this insight, we
solve the optimization problem using an efficient gradient-
based method based on recent algorithmic developments in
sparse reconstruction literature. The gradients of the NPV
function with respect to the source/sink terms is readily
computed using well-established adjoint methods. Numeri-
cal experiments are presented to evaluate the feasibility and
performance of the generalized field development formula-
tion for simultaneous optimization of the number, location,
type, controls, and drilling schedule of the wells.

Keywords Field development optimization · Well
placement · Well control optimization · Drilling schedule ·
Sparsity-promoting solution

1 Introduction

Traditionally, field development planning, including well
locations and their control settings, has been accomplished
by integrating geologic and geophysical data with expert
knowledge as well as practical considerations and con-
straints. The advent of reservoir simulation technology
introduced a predictive tool to evaluate and support/reject
proposed development plans. With increased complexity of
models that are developed for simulation, the choice of a
sound development strategy becomes too difficult to pin
down. In many cases, to identify an optimal development
plan, an intractable number of strategies may have to be
evaluated, making the process computationally impractical,
if not infeasible. A more systematic and efficient approach
to field development is using numerical optimization in
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which a proposed development strategy is gradually upda-
ted and improved based on well-established optimization
techniques.

Several methods have been proposed and implemented
for solving a host of field development optimization prob-
lems in the past. Some of the important development deci-
sions include the type (injection/production), number, and
location of the wells, as well as their dynamic control
settings, and their drilling schedule. The majority of the
existing algorithms consider separate (independent) opti-
mization problems for each individual decision variables
without accounting for the interplay among them. Optimiz-
ing an individual variable type (e.g. well locations) while
disregarding its coupling with other variable types (e.g. well
controls) leads to solutions that are inherently suboptimal as
they do not exploit the full range of variability in the dis-
regarded decision variables [32]. In other words, fixing the
values of other variables when optimizing a certain variable
introduces strong constraints that often result in significant
performance loss in the optimization problem. Examples of
approaches that have been used to optimize individual deci-
sion variables are well placement optimization to identify
the optimal well locations given predetermined and fixed
well controls [3, 19, 36, 41, 58], and well control optimiza-
tion in which the operational settings of the wells (rates and
pressures) are optimized for a fixed well configuration [1, 9,
21, 47].

Both gradient-based local search methods and gradient-
free global search algorithms have been applied to
field development optimization problems. Gradient-based
methods are computationally efficient and monotonically
improve the objective function. However, they easily get
trapped in local solutions and are sensitive to initialization.
In addition, gradient calculation either requires develop-
ment of complex adjoint models or numerical approxima-
tion techniques that are computationally demanding. Global
search methods are a class of optimization techniques that
do not require gradient information. Some of these meth-
ods are based on evolutionary programming techniques that
adopt a population-based search mechanism to explore the
space of feasible solutions. There are a number of well-
known algorithms that belong to this category of heuristic
methods that are suitable for problems with objective func-
tions that have complex response surfaces. Examples of
application of this class of methods to field development
optimization include [7, 12, 22, 26, 27, 30, 36]. In gen-
eral, these methods are easy to implement and do not have
the requirements of gradient-based optimization methods.
However, they are heuristic in nature and are computation-
ally demanding, making them prohibitive for large-scale
applications.

Recent studies in the literature have attempted to include
multiple variable types in the field development optimiza-
tion problem. As an initial step towards such integrative
solution approaches, Li and Jafarpour [32] proposed a
sequential optimization scheme in which a coupled well
placement and well control problem is decoupled and solved
sequentially. In this approach, well locations and their con-
trol settings are optimized separately; however, the solution
of each optimization problem is used to re-initialize the
other optimization problem. These sequential optimizations
are repeated until no further improvement in the NPV objec-
tive function is observed. The results in Li and Jafarpour
[32] show significant improvement in the NPV values
when the two optimizations are combined. Li et al. [33]
applied a generalized version of the SPSA algorithm [50,
51] to simultaneously optimize well locations and controls
and also reported major improvement in production per-
formance. Humphries et al. [28] also propose a sequential
scheme by decoupling well placement and control opti-
mization problems and report possible improvement over
the joint optimization approach. They hypothesize that this
might be due to judiciously chosen control solutions that
are fixed when the well placement problem is solved; they
then argue that a proper control initialization leads to a
reduction in the solution space to be explored during well
placement optimization which can increase the likelihood
of finding the globally optimal well locations. While the
local nature of the optimization algorithm can result in sce-
narios where sequential solutions outperform coupled solu-
tions, those outcomes cannot be generalized. Theoretically,
sequential methods provide approximate solutions to joint
optimization problems that are typically applied to reduce
complexity and improve computational efficiency (see Shu
et al. [49] for a discussion). Other methods have also
been proposed to solve joint field development optimization
problems [24, 27, 29]. Isebor et al. [30] propose a hybrid
technique based on particle swarm optimization (PSO) to
solve the well placement and well control optimization
problems simultaneously. Humphries et al. [27] combine the
PSO algorithm with the generalized pattern search (GPA)
technique to jointly optimize locations and controls of the
wells. They reported improved solutions when the joint
problem is decoupled into consecutive stages of well place-
ment and control optimization and solved sequentially. In
Forouzanfar and Reynolds [24], a formulation is proposed
for simultaneously optimizing the number, location and rate
allocations of the wells. Their solution approach is initial-
ized by assigning a well to each cell in the reservoir domain
and improving the NPV by iteratively eliminating non-
profitable wells using a gradient-based algorithm. Unlike
our proposed framework, the formulation in Forouzanfar
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and Reynolds [24] does not include well control trajectories
and assumes that all the wells are drilled initially and have
time-invariant controls. In our approach, a discounted capi-
tal cost of drilling wells is included in the objective function
that enables drilling schedule optimization, by favoring later
drilling times.

While the previous studies have taken different ap-
proaches to include additional decision variables in the opti-
mization problem, a fully generalized field development
optimization formulation that seamlessly incorporates all
the important decision variables into a single optimiza-
tion problem has not yet been presented. In this paper,
we show that the entire decision variables of the general-
ized field development problem are collectively captured
in the source/sink term of the discretized governing flow
equations. Inspired by this insight, we formulate a novel
approach for the generalized field development optimiza-
tion problem as a continuous optimization problem. Since
such a generalized problem involves several coupled vari-
ables, finding an efficient solution approach poses another
challenge. Noting that the total number of cells in a reservoir
model far exceeds the number of cells that are intersected
by wells, the source/sink terms in a model are extremely
sparse (contain many zeros that correspond to cells that
do not contain any wells). As discussed in the next part,
this implies that the solution of the resulting generalized
field development optimization problem is sparse. In fact,
we show that in maximizing the NPV objective func-
tion, the well drilling cost essentially serves as a sparsity-
promoting penalty to minimize the number of wells. The
inherently sparse nature of the decision variables in the pro-
posed generalized field development optimization formu-
lation inspires the use of sparsity-promoting optimization
methods. Using recent algorithmic developments in sparse
reconstruction literature [4, 11, 20], we apply an efficient
gradient-based algorithm to solve the resulting optimization
problem.

The remainder of this paper is organized as follows.
Section 2 presents the subsurface flow governing equations
to illustrate that all the decision variables of interest in a
generalized field development optimization are indeed cap-
tured by the source/sink terms; a discussion on the sparse
nature of the source/sink terms in the discretized form of
the flow equations is presented next, followed by the for-
mulation of the generalized field development optimization
problem. The similarities between the solution of the gen-
eralized field development optimization problem and sparse
reconstruction techniques is then exploited to develop a
sparse optimization algorithm to solve it. Section 3 presents
a set of numerical experiments to evaluate the performance
of the proposed solution approach. The paper is concluded

in Section 4 with a discussion on the implications of this
work and its possible future extensions.

2 Generalized field development optimization

We motivate the problem formulation by presenting the
governing equations of multiphase flow in the subsur-
face environment [31] and discussing the source/sink terms
as decision variables of a generalized field development
optimization formulation. The proposed formulation is pre-
sented after introducing and discussing the NPV objective
function and its sparsity-promoting property.

2.1 Governing flow equations

In this section, to introduce the decision variables of
our generalized field development optimization, we briefly
present the governing flow equations for a two-phase (oil-
water) slightly-compressible 2-dimensional flow system.
Our presentation follows that of Jansen [31]. For simplicity,
and without loss of generality, we only consider a system
with constant compressibilities, ignore capillary pressure
and gravity forces. With these assumptions, the governing
equations for phase n (n = oil,water) can be expressed as
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The matrix form of the resulting discretized equations
can be expressed as
[
Vwp Vws

Vop Vos

][
ṗ

ṡ

]

︸ ︷︷ ︸
accumulation term

+
[
Tw 0

To 0

][
p

s

]

︸ ︷︷ ︸
flux term

=
[
qw

qo

]

︸ ︷︷ ︸
source term

(4)

In Eq. 4, the saturation and pressure values in all cells
are denoted by the vectors p and s. Vectors qw and qo in
the source/sink term of Eq. 4 denote, respectively, the flow
rates of water and oil phases in all the cells with their entries
arranged in the following format

qT
w � [ · · · (qw)i,j · · · ]

qT
o � [ · · · (qo)i,j · · · ] (5)

For any given time, the entries of the source/sink vec-
tor are zero for cells that do not contain a well. Hence,
the source/sink vectors in Eq. 4 contain the information
about well locations, types, and control settings. There-
fore, these vectors constitute the decision variables of
the generalized field development optimization problem
as described in the sequel. Figure 1 shows the corre-
spondence between the well location in a typical reser-
voir and the entries of the source/sink term. As illus-
trated in Fig. 1, in a typical oilfield, only a small num-
ber of grid blocks are intersected by wells and, thus, the
vast majority of entries in the source/sink vector (qT =
[qT

w qT
o ]) are 0s; that is, q is sparse. This interpretation

highlights the similarity between the field development
optimization problem and sparse reconstruction, where a
sparse solution to an optimization problem is sought. The
optimal solution of the source/sink vector should mini-
mize the number of wells while maximizing the produc-
tion or the net present value (NPV). Solution sparsity

is promoted due to the presence and significance of the
drilling cost in the objective function. Note that the entries
in the source/sink vector ([qT

w qT
o ]T ) in Eq. 4 are expressed

for a single time step (Fig. 2a). In practice, wells are
controlled dynamically and have time-varying control tra-
jectories. Typically, the control trajectory is discretized into
a set of control steps for which the control settings are opti-
mized. Examples of such multistep control trajectories are
displayed in Fig. 2b.

Concatenation of the source/sink vectors corresponding
to successive time steps leads to a representation that incor-
porates temporal variation in well controls. As illustrated
in Fig. 2c, in addition to location, type, number and time-
varying control values of the operating wells, from this
spatiotemporal description one can also deduce the drilling
schedule. The temporal resolution of the drilling schedule
depends on the selected control time steps, with smaller
control time steps resulting in more frequent changes in
development plans (control adjustment and drilling sched-
ule). To better illustrate the dynamic well controls and
drilling schedule, we expand the source/sink vector into
a source/sink matrix Q as follows (note that we use a
matrix form to facilitate the discussion, but for optimization
purpose this matrix is vectorized).

Q =

⎡
⎢⎢⎢⎢⎢⎣

q
t1
1 q

t2
1 · · · q

tT
1

q
t1
2 q

t2
2 · · · q

tT
2

...
...

. . .
...

q
t1
N q

t2
N · · · q

tT
N

⎤
⎥⎥⎥⎥⎥⎦

(6)

The rows of Q correspond to the indices of the grid
blocks (that can contain wells) and its columns consist of
well control trajectories in time (Fig. 3). In Eq. 6, T denotes

Fig. 1 Source/sink vector as the
main decision variable of the
generalized field development
optimization problem
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Fig. 2 a Source/sink vector for single control step problem; b Time-varying control trajectories for multiple wells; c Concatenation of source/sink
vectors to incorporate information about dynamic well controls and drilling schedule

the total number of control steps and N is the total number
of grid blocks in the discretized domain. The entry q

tj
i indi-

cates the total fluid flow rate of the well located in grid block
i at control time step tj . The well type is determined by
the sign of each entry in Q; by convention, injector (+) and
producer (−). It is important to note that the sparse nature
of the solution does not depend on the type of well con-
trols used (total fluid flow rates or bottom-hole pressure).
While the above equations use rate-controlled injection and
production wells, the formulation can be generalized to

problems that include a mixture of BHP-controlled and
rate-controlled wells.

The matrix form of the two-phase flow equations can be
described as

[
Vwp(s) Vws

Vop(s) Vos

][
ṗ

ṡ

]

︸ ︷︷ ︸
accumulation term

+
[
Tw(s) 0

To(s) 0

][
p

s

]

︸ ︷︷ ︸
flux term

=
[
Fw(s)

Fo(s)

]
qt

︸ ︷︷ ︸
source term

(7)
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Fig. 3 Structure of the controls
allocation matrix; sparsity is
imposed along the rows while
variation of dynamic control
values is regulated by posing
proper constraints along the
columns

where qt represents the total fluid flow rate and Fo and
Fw are diagonal matrices whose entries contain fractional
flows and are, thus, mostly zeros, except for the ones
corresponding to the grid cells that contain a well:

Fw � [0 · · · 0 (fw)i,j 0 · · · 0]
Fo � [0 · · · 0 (fo)i,j 0 · · · 0] (8)

where,

fo = λo

λo + λw

, fw = λw

λo + λw

(9)

in which λo and λw represent oil and water mobilities,
respectively. The proportion of oil and water in the total
fluid flow rate qt can then be computed as:

qo = foqt , qw = fwqt (10)

The general form of the matrix representation for
the two-phase flow, where some wells have total fluid
flow rate controls and some are controlled by prescribed

BHBs, can be written in the following partitioned format
[31, Chapter 2]:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Vwp,11 0 0 Vws,11 0 0
0 Vwp,22 0 0 Vws,22 0
0 0 Vwp,33 0 0 Vws,33

Vop,11 0 0 Vos,11 0 0
0 Vop,22 0 0 Vos,22 0
0 0 Vop,33 0 0 Vos,33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ṗ1
ṗ2
ṗ3

ṡ1
ṡ2
ṡ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
accumulation term

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Tw,11 Tw,12 Tw,13 0 0 0
Tw,21 Tw,22 Tw,23 0 0 0
Tw,31 Tw,32 Tw,33 0 0 0

To,11 To,12 To,13 0 0 0
To,21 To,22 To,23 0 0 0
To,31 To,32 To,33 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1
p2
p3

s1
s2
s3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
flux term

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 Fw,22 0
0 0 Fw,33

0 0 0
0 Fo,22 0
0 0 Fo,33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

0
q̆well,t

J3 (p̆well − p3)

⎤
⎥⎥⎦

︸ ︷︷ ︸
source term

(11)
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Here, p1 is a vector containing the pressure values in
grid blocks that do not contain a well, p2 denotes a vector
whose entries are the pressure values in well grid blocks
that intersect a well controlled by prescribed total fluid flow
rate (and, hence, have q̆well,t as their source term) while p3
vector has pressure values in cells with BHP controlled
wells (with the corresponding source/sink term J3 (p̆well −
p3)). The oil and water flow rate proportions are obtained
from Eq. 10. In multi-layer formations qo is the sum of oil
flow rates in all the grid cells perforated by the produc-
tion well: qo = ∑

j∈I
qo,j where I is the set of indices of

the perforated grid blocks. The notation p̆well refers to the
vector whose entries are pressure values in BHP-controlled
wells, where J3 is the diagonal matrix with well productivity
indices as its diagonal entries.

In Eq. 11, very few entries of the source/sink term are
non-zeros. In practice, only a small subset of grid cells in
a reservoir model are intersected with wells, resulting in
the vector representing the source/sink terms to be sparse.
This practical observation is also supported by the sparsity-
promoting nature of the well drilling cost term (l0 norm of
the source and sink vector). The matrix form in Eq. 6 can be
generalized to a multistep control matrix U with a mixture
of pressure (BHP) and rate controlled modes as follows:

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q
t1
1 q

t2
1 · · · q

tT
1

p
t1
2 p

t2
2 · · · p

tT
2...

...
...

...

q
t1
k q

t2
k · · · q

tT
k...

...
...

...

p
t1
m p

t2
m · · · p

tT
m...

...
. . .

...

p
t1
N p

t2
N · · · p

tT
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

where the mth grid block contains a well controlled by BHP
control (p

tj
m) and the kth grid cell is penetrated by a rate-

controlled well with total rate (q
tj
k ). The above matrix offers

a simple intuition where the rows represent the grid cells
and their associated source/sink terms, and the columns
have the control steps (trajectory) in time. For optimiza-
tion, U is vectorized to form a vector of decision variables
u = [U1,−,U2,−, . . . ,UN,−]T .

Considering the rate-controlled problem with the rate
allocations matrix U, the drilling cost applies a sparsity-
promoting penalty to the rows of U in Eq. 6 to minimize
the number of wells to drill. Furthermore, other constraints
may be imposed along the columns of U to impart a desir-
able behavior on the control trajectory. Such constraints may
be enforced to, for instance, minimize a particular norm of

the control trajectory (total water injected) or impose certain
structure on the control solution [2]. Next, we formulate the
generalized field development optimization problem.

2.2 Optimization formulation

The multivariate optimization problem formulation for the
generalized field development can be expressed as

u∗ = arg min J (u)

subject to umin ≤ u ≤ umax

gi(u) = 0 , i = 1, 2, · · · , n

fj (u) ≤ 0 , j = 1, 2, · · · , m

(13)

The decision variables are of dimension N × T . In gen-
eral, the equality gi(.) and inequality fj (.) constraints are
problem-specific and user-defined. A general equality con-
straint is the mass balance equations, which is satisfied
by running the flow simulation to compute the objective
function. Typical inequality constraints include economic
water-cut or bubble point pressure constraints. A common
objective function in field development optimization is the
net present value of the project. The NPV function for a
reservoir asset typically incorporates the discounted version
of production revenues and the operating and capital costs,
mathematically expressed as:

NPV =O(u) − C(u)

=
T∫

0

⎡
⎢⎢⎢⎢⎣

Nprod∑
i=1

ro(t) qo,i(t)

︸ ︷︷ ︸
oil revenue

−
Nprod∑
i=1

rw,disp(t) qw,disp,i(t)

︸ ︷︷ ︸
water disposal cost

−
Ninj∑
i=1

rw,inj (t) qw,inj,i(t)

︸ ︷︷ ︸
water injection cost

⎤
⎥⎥⎥⎥⎦

1

(1 + d(t))t︸ ︷︷ ︸
discount factor

dt

−
Nwell∑
i=1

γ

(1 + d(t))bi
.

(14)

Note that in Eq. 14, the production quantities depend on
the decision variables. The integral term represents the oper-
ating costs, C(u) (last sum) denotes the drilling cost, Nprod

and Ninj are the number of production and injection wells,
respectively, and ro(t), rw,disp(t) and rw,inj (t) stand for the
price of oil, the cost of water disposal/recycling and the
injection cost ($/stb), respectively. The annual discount fac-
tor is d(t), which is applied to both operating and capital
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expenditures, and γ denotes the cost of drilling a single well
($). Since the number of wells and their drilling times are
unknown, the objective function includes an associated cap-
ital cost, which is written separately (last term). Note that
the objective function is particularly sensitive to the number
of wells and the drilling times due to the high cost associated
with drilling.

To proceed, we seek to express the capital cost as a func-
tion of the decision variables. Because the drilling cost is
not a function of well control values, we present a manipu-
lation of the decision variables to express this cost in terms
of the decision variables. To mathematically express the
drilling cost in terms of U, consider a variant of matrix U
in which for each row (possible well), all entries after the
first nonzero element, which represents the introduction of
a new well, are zeroed out. The resulting matrix, UC , can be
obtained from a linear transformation of U:

UC := AU (15)

where A is an N2 dimensional matrix that can be expressed
as:

A = UCUT (UUT )−1 (16)

In Eq. 16, the term UUT is not guaranteed to be invert-
ible. Various numerical methods and preconditioning tech-
niques exist for numerical solution of this system [46]. The
number of nonzero entries in each column of UC , equals
the number of wells that are drilled at the control time step
corresponding to that column index.

It should be noted that Eqs. 15–16 are written based on
the assumption that UC is known. Mathematically express-
ing UC in terms of U allows for convenient computation
of the drilling time in terms of U. An approximate linear
transformation for obtaining UC from U (15–16) is also a
straightforward way to facilitate the computation of gradi-
ents of the drilling cost term needed for optimization. To
illustrate these steps, let us consider a simple example where
the control allocation matrix U is given as:

U =

⎡
⎢⎢⎣

1 1 1
0 −1 −0.8
0 0 −0.2

⎤
⎥⎥⎦ (17)

From the above expression, it can be inferred that Wells
1, 2 and 3 are drilled in control time steps 1, 2, and 3, respec-
tively. The resulting matrix UC will have, in each row of it,
zero entries except for the first non-zero entry. In this case,
we will have:

UC =

⎡
⎢⎢⎣

1 0 0
0 −1 0
0 0 −0.2

⎤
⎥⎥⎦ (18)

A can be reconstructed from Eq. 15 as:

A = UCUT (UUT )−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1

0 1 −4

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(19)

It can now be verified that AU = UC . Note that the rows
of UC contain the drilling time information, which will be
used for discounting the capital cost. Hence, the discounted
capital cost can be expressed in terms of UC as:

C(U) =
T∑

t=1

γ

(1 + d(t))b(t)
‖ Ut

C ‖0 (20)

where Ut
C denotes the t th column of UC and t enumerates

the column indices of UC (control time steps); b(t) is the
number of years prior to wells counted by ‖ Ut

C ‖0 coming
online. Note that the discount factor in the objective function
controls the drilling schedule by giving preference to wells
that are drilled later. The zero “norm” (�0) of the source/sink
terms at each time step (that is, ‖ Ut

C ‖0) counts the num-
ber of non-zero entries within the t th column of UC , which
refers to the number of wells coming online at that time step.
We also note that the �0-“norm” is not a true norm, but in
the literature it is loosely referred to as a norm.

The above drilling cost behaves as a sparsity-promoting
penalty that encourages solutions with minimum number of
wells (drilling cost) and delayed drilling while maximiz-
ing the NPV. An extensive literature exists on solving such
sparse optimization problems [52, 57, 61]. From an opti-
mization perspective, the (�0) function is discontinuous and
the exact solution of the resulting optimization becomes
combinatorial and NP-hard. However, several (heuristic)
approximate solution methods exist for practical applica-
tions. A common class of techniques involves approximat-
ing the (�0) function with a better-behaved function. An
approximate continuous function, with a similar behavior is
(see the �r -norm behavior for different values of r in Fig. 4a)

Ĉ(U) =
T∑

t=1

γ

(1 + d(t))b(t)
‖ Ut

C ‖r→0+ (21)

For values 0 < r ≤ 1, the �r norm function has sparsity-
promoting property, which has been extensively exploited
in solving �0-“norm” problems. For sparsity along the rows
of U, a sufficiently small r (i.e. 0 < r � 1) has been shown
[13, 14] to have a similar sparsity-promoting behavior as �0-
“norm”. However, given that the well cost will be affected
for any norm other than �0, it is imperative to ensure that
at the solution the well cost is properly reflected by using a
very small r value (e.g., r < .01).
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Fig. 4 a Illustration of the �p

norm functions for different
values of p; b the shrinkage
function

(a) (b)

While the above norm can effectively represent the
drilling cost, in many cases it is also desirable to constrain
the control trajectory (columns of U). For instance, the total
amount of injection can either be fixed or minimized. For
practical reasons, it may be desirable to penalize abrupt or
frequent changes in the control trajectory. Standard vector
norm penalty functions (such as roughness penalty) may
be used to achieve such goals. An alternative representa-
tion of the drilling cost function, as proposed in Navabi
et al. [37], is obtained by using a mixed �p,r norm which
applies a �p , p > 1 norm along the columns of U and a
�r , 0 < r � 1 norm along its rows. In that case, the capital
(drilling) cost C(U) can be expressed as:

C(U) =
[ N∑

i=1

γ

(1 + d(t))t

(
ε+

T∑
t=1

|qt
i |p

) r
p
] 1

r 	‖U ‖	;p,r

(22)

The term (‖ U ‖	;p,r ) in Eq. 22 is a weighted mixed norm
of U that accounts for the drilling costs and promotes spar-
sity along the rows of U. Since the entries of the nonzero
rows are control allocations of the corresponding wells in
time, p affects the behavior of the control trajectory. In this
case, setting p > 1 prevents dynamic control trajectories
from being sparse in time (wells being shut-off). Another
effect that ensues from setting p > 1 is avoiding large and
sudden injection/production controls; the larger the value of
p > 1, the less likely it is for wells to have very large oper-
ation rates. The �r norm that represents the drilling cost, on
the other hand, is applied to the rows of U to promotes spar-
sity (i.e. minimize the number of wells). The constant ε is a
small number introduced to avoid matrix singularity during
optimization iterations. The weights γ

(1+d(t))bi
incorporate

the discounting effect pertaining to drilled wells.
The drilling cost is also accounted for in the formulation

proposed by Forouzanfar and Reynolds [24] where given
the rate of the kth well at the lth and (l − 1)th iterations,
denoted by ul

k and ul−1
k , respectively, they define the drilling

cost function as f l
k (u

l) = (
ul

k

ul−1
k

)β where β ∈ (0, 1]. To

compute the drilling costs, f l
k (u

l) is multiplied by Cinj or
Cprd , the cost of drilling one injection or production well,
depending on whether the well is an injector or producer.
As the authors discuss, the drilling cost functional defined
this way is continuously differentiable and drives the rates
of negligible wells to zero while wells with higher rates tend
to grow in their control allocation during the optimization
iterations. At the end of the optimization, f l

k (u) = 1.0 for
all the wells with ul

k > 0 to compute the corresponding net
present value. In [24], the authors have studied the effect of
choosing different values for the parameter β and conclude
that for different values of β the resulting net present val-
ues are very close, although the well configurations and the
required simulation runs may vary for different values of β.

In the formulation developed by Forouzanfar and
Reynolds [24], it is assumed that all the wells are drilled at
the beginning of the operation and once wells are eliminated
they cannot be added at the later iterations. In our proposed
formulation, wells with dynamic control trajectories are
included and discounting is applied to the drilling term in
the objective function (21) to optimize the drilling schedule.

Shirangi et al. [48] also consider the optimization of
well drilling sequence in a closed-loop field development
scheme. In their approach, the drilling time for a new well
is determined after fixing the drilling times of previously
added wells. In our framework, the drilling times of all
the wells are inferred from their control trajectories, which
are optimized for all wells simultaneously, along with their
locations, number, and type. Furthermore, multiple wells are
allowed to be drilled at the same time (assuming drilling
resources allow for it). While a closed-loop implemen-
tation of our framework is straightforward (by adding a
dynamic data feedback mechanism), we have focused on an
open-loop formulation to introduce our approach.

2.3 Solution method: iterative shrinkage thresholding
algorithm

A main difficulty after formulating the above optimiza-
tion problem is solving it with an efficient and reliable
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algorithm. In particular, the well drilling cost is non-
differentiable, and standard optimization algorithms with
smooth functions cannot be used to minimize it. A gen-
eral class of methods that is suitable for a mixture of
differentiable and nondifferentiable functions is “proximal
splitting”, where splitting refers to separating the differen-
tiable and nondifferentiable parts while proximal reference
is because the nonsmooth functions are minimized using
proximity operators. In this section, we develop a spe-
cial case of proximal splitting methods, known as iterative
shrinkage thresholding algorithm, which we use to solve
the generalized field development optimization problem.
We first describe the proximal gradient optimization tech-
niques [42] with properties that are suitable for optimization
of non-smooth functions in large-scale problems. Proximal
splitting optimization methods [15, 42] use the concept of
proximal mapping to find the solution to a convex optimiza-
tion problem more effectively than classical approaches.
The proximity operator of a convex function is in fact a gen-
eralization of the notion of a projection operator and can be
defined as:

proxf (x) = arg min
u

(
f (u) + 1

2
‖ u − x‖2

2

)
(23)

Suppose f is a convex differentiable function with con-
tinuous gradient ∇f and that g is a convex non-smooth
function. To solve the following optimization problem

x∗ = arg min
x

O(x) = f (x) + g(x) (24)

an iterative proximal forward-backward splitting method
can be formulated (see Appendix A) as:

xk+1 = proxαkg
(xk − αk∇f (xk))

= arg min
u

(
g(u) + 1

2αk

‖ u − (xk − αk ∇f (xk))‖2
2

)

(25)

where, αk is the step size with values in a suitable bounded
interval (see [15] for a discussion on theoretical require-
ments for the choice of appropriate step-size for different
classes of proximal splitting methods). As discussed in
Parikh et al. [43, Section 1.2], from the definition in Eq. 23 it
can be inferred that proxf (x) is a point that provides a trade-
off between minimizing f and staying in the proximity of x;
hence, proxf (x) is sometimes referred to as a proximal point
of x with respect to f . In proxαkg

, as used in Eq. 25, the
parameter αk acts as a relative weight or trade-off parame-
ter between the two terms involved. This simple framework
can be generalized to handle as many non-smooth constraint
functions as desired, implying that a complicated objective
function can be decomposed into the sum of its separate
simpler components.

The problem in Eq. 24 is similar to the field development
optimization problem in Eqs. 13–14 where the functions

f and g correspond to the operating cost −O(.) (typically
differentiable) and drilling cost C(.) (nondifferentiable) in
Eq. 14, respectively. Proximal splitting methods are devel-
oped to separate these differentiable and non-differentiable
components of the objective function to develop more effec-
tive solution algorithms.

As discussed in Section 2.2, the drilling cost function
C(.), defined and approximated in Eqs. 20 and 21 respec-
tively, is not smooth because of the term �p , p � 1,
making the proximal splitting a suitable solution approach.
It should be noted that for non-convex functions proximal
splitting methods are gradient-based search techniques that
can be trapped in local minima.

The iterative shrinkage algorithms [18, 25, 56] provide a
straightforward solution approach to problems of the form
given in Eq. 24. Recently, efficient extensions of itera-
tive shrinkage thresholding algorithm (ISTA) with enhanced
convergence rates have been developed [6, 38] for solving
the problem in Eq. 24. Here, we use the fast iterative shrink-
age thresholding algorithm (FISTA) of Beck and Teboulle
[6] to solve the field development optimization problem.
The pseudocode for the FISTA with gradient projection
is outlined in Table 1. In Table 1, τα(.) is a shrinkage
operator for the updated matrix (Qk+1

C ), according to the
specified threshold α(= γ

L
). FISTA uses soft thresholding

as the shrinkage mechanism that is implemented using the
shrinkage function shown in Fig. 4b and defined as

τα(x) =

⎧⎪⎪⎨
⎪⎪⎩

x − α x ≥ α

0 −α ≤ x ≤ α

x + α x ≤ α

(26)

The term ∇uJ (Uk) in Table 1 is the gradient of the objec-
tive function J (u) (= −NPV ) in Eq. 14 with respect to the
rate allocations at the kth iteration. It comprises the gradi-
ents of both OPEX (O(u)) and CAPEX (C(u)) terms with
respect to the rate allocations (detailed expression for the

Table 1 Iterative shrinkage thresholding pseudocode

Iterative optimization algorithm

Initialization t1 = 1 , x1 = u0

fork ≥ 1 (while convergence criteria not satisfied)

tk+1 = 1+
√

1+4t2
k

2

uk+1 = uk − 1
L
Pk∇uJ (uk)

xk+1 = arg min
x

{
L
2 ‖ x − uk+1‖2

2 + C(uk)
}

= τ γ
L
(uk+1

C ) =
(
| uk+1

C | − γ
L

)+
sign(uk+1

C )

uk+1 = xk+1 + tk−1
tk+1

(xk+1 − xk)

uk+1 = P(uk+1)

End
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gradient of C(u) is provided in Appendix B). The posi-
tive part operator (·)+ in Table 1 is defined as (x)+ =
max (x, 0). The sign(·) function operates element-wise on
matrix inputs. The notation L represents the gradient Lip-
schitz constant of ∇uJ (.) that sets an upper bound on the
magnitude of the slope of ∇uJ (.) within its feasible domain,
that is

L = sup

{‖ ∇f (x1) − ∇f (x2) ‖
‖ x1 − x2 ‖

}
(27)

For the numerical experiments in this study, at each itera-
tion, we approximate the Lipschitz constant of ∇UJ (.) using

Lk 	 k
max

m,n=1
m �=n

{‖ ∇O(um) − ∇O(un) ‖
‖ um − un ‖

}
(28)

where u denotes the column-wise vectorized version of
U. The Lipschitz constant is approximated at each itera-
tion as the maximum value among all computed Lipschitz
constants using all pairs of the gradients calculated up to
the current iteration. The gradient projection matrix Pk is
applied to the gradient to modify the update direction to
ensure that the updated solution lies within the feasible set
specified by the constraints.

A simple field development optimization problem with
rate-controlled wells can be formulated as a nonlinear pro-
graming problem with box and linear equality constraints to
balance field injection and production rates:

min O(u)

subject to u ≤ 1 , −u ≤ 1

1T ui = 0 , i = 1, 2, · · · , T

(29)

Since entries of u denote the control allocations for each
well at the specified control step, they should neither exceed
the normalized upper bound (the maximum control alloca-
tion for an injector, normalized to +1) nor the normalized
lower bound (the maximum control allocation for a pro-
ducer, normalized to −1); hence, the inequality constraints
in Eq. 29 are designed to enforce the required box con-
straints on entries of u. To balance the input/output mass
into the reservoir, a set of equality constraints, (1T ui =
0 , i = 1, 2, · · · , T ) is used, where 1 is the all-ones vector
of the same size as ui’s.

In this paper, we have used the iterative gradient projec-
tion optimization algorithm to solve the resulting bound-
constrained optimization problem [35, Chapter 12]. In each
iteration of the algorithm, the negative of the gradient of
the objective function is projected onto the feasible set to
define the direction of iterative updates. The gradient pro-
jection matrix Pk , which modifies the direction of change
in the NPV response surface at iteration k, is formed as
[35, Chapter 12],

Pk = [I − AT
u (Au AT

u )−1Au] (30)

in which Au is a M × NT -dimensional matrix whose rows
represent the subspace formed by the set of active con-
straints. In each iteration of the optimization, the set of all
equality and inequality constraints in Eq. 29 is divided into
active and inactive constraints. Active constraints include
the T equality constraints in Eq. 29 as well as the inequality
constraints for which uj = 1 or uj = −1 , where uj is the
j th entry in the vector u. As outlined in Table 1, at the end
of each iteration, the mass balance constraint is enforced by
ensuring that the sum of injection and production alloca-
tions, with positive and negative signs, respectively, is equal
to 0. This constraint is satisfied by defining the feasible set
as

=
⎧⎨
⎩X ∈ [−1, 1]N×T : l≤ xi ≤ u, and

N∑
j=1

xji =0,∀ i =1, 2, · · ·,T
⎫⎬
⎭

(31)

where u and l correspond to the normalized upper and lower
bounds on the maximum control allocations for injection
and production wells, respectively: u = 1 and l = −1.
xi , i = 1, 2, · · · , T are the columns of the N × T

dimensional control allocation matrix X. Denoting yji =

xji −
N∑

j=1
xji

N
, ∀j = 1, 2, · · · , N , ∀i = 1, 2, · · · , T , it can

be verified that the entries of the vector y defined as the
shifted version of x sum up to 0. The projection operator
P(yji) = yji

‖y‖ , ∀j = 1, 2, · · · , N , ∀i = 1, 2, · · · , T per-
forms the desired mapping, where  is defined in Eq. 31.
The projection operator defined this way comprises a nor-
malization factor to satisfy the inequality bound constraints
in Eq. 29.

3 Numerical experiment

In this section, we examine the performance of the proposed
algorithm in a number of numerical experiments with two-
dimensional and three-dimensional two-phase (oil-water)
reservoir models.1

3.1 Example 1: synthetic 2D, two-phase reservoir

The first example involves a synthetic 2D model with het-
erogeneous permeability (Fig. 5). The model is discretized
into 50×50×1 = 2500 grid blocks. The simulation param-
eters for this experiment are summarized in Table 2. In this
example, the oil price and the cost of water injection and dis-
posal were set to $80/stb, $10/stb and $10/stb, respectively.

1Numerical experiments were implemented and simulated using MAT-
LAB Reservoir Simulation Toolbox (MRST) developed by SINTEF
Applied Mathematics Group, [34].
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Fig. 5 The log-permeability model in Example 1

The annual discount rate was assumed to be 10 %. The well
control trajectories are divided into 5 evenly spaced incre-
ments (control time steps) over the simulation time of 10
years.

While, in general, the solution procedure can be initial-
ized with any feasible starting point, we assign very small
rates to a large number of randomly placed producers and
injectors to give each grid block the same chance of contain-
ing a well. Because of the sparsity-promoting nature of the
drilling cost in the objective function, we apply the FISTA
method (with adjoint-based sensitivities with respect to well
controls) to solve the problem. Using this algorithm, the
wells with insignificant contributions to production perfor-
mance are successively removed to decrease drilling cost
and to allow for active wells to assume higher rate alloca-
tions. More precisely, once a well control rate falls bellow
the shrinkage threshold (denoted as α in the shrinkage

function τα(·) in Eq. 26), the well drilling cost is elimi-
nated from the objective function. It is important to note
that while the drilling cost for inactive wells is removed,
those wells are not eliminated from the optimization pro-
cess and can assume significant control values (i.e. greater
than α) in later iterations of the optimization. At conver-
gence, this procedure results in simultaneous identification
of the number and type of wells, well locations, well con-
trol trajectories, and their drilling schedule. We note that
the idea of surrounding the main wells with pseudo wells
that have small rates for deriving gradient information and
improving well locations have been used by others in the
past (e.g. [54, 55, 59, 60]). Our approach is different in that
the size of the decision vector throughout the optimiza-
tion remains unchanged while the values of the decision
variables determine the well cost in the objective function.

The optimized well configuration for this example is
shown in Fig. 6, which shows that the algorithm has placed
two injectors (marked with red crosses) and one producer
(marked with a black circle) to start reservoir operation
in control time step 1. More wells are added as reservoir
operation proceeds to later control steps; for instance, from
Fig. 6, the algorithm adds a second producer in the bottom
left corner of the field in control time step 2 (beginning of
the third year of production) and activates the third injec-
tor near the left-hand side of the field in control time step
3 (beginning of the fifth year of production). The differ-
ence in drilling times of the wells in the optimized drilling
schedule is due to the discounting effect in the well cost
term of the NPV objective function, which favors fewer and
later drilled wells to reduce the capital cost. The optimized

Table 2 Simulation parameter setup used for the numerical experiments

Parameters Synthetic 2D Reservoir PUNQ-S3 Reservoir (Ex. 1) PUNQ-S3 Reservoir (Ex. 2)

Reservoir grid dimensions 50 × 50 × 1 = 2500 28 × 19 × 5 = 2660 28 × 19 × 5 = 2660

Number of active cells 2500 1761 1761

Physical cell dimension 40 × 40 × 40 ft3 40 × 40 × 40 ft3 40 × 40 × 40 ft3

Rock porosity 30 % 30 % 30 %

Simulated reservoir life cycle 10 yrs 10 yrs 10 yrs

Number of control steps 5 5 5

Fluid phases Oil-water (2-phase) Oil-water (2-phase) Oil-water (2-phase)

Initial water saturation 0.05 0.05 0.05

Injection volume 1 PV 1 PV 1 PV

Perforation direction Vertical Vertical Vertical

Injectors control mode Total water injection rate Total water injection rate BHP

Producers control mode Total fluid production rate Total fluid production rate BHP

Well drilling cost $10 M $10 M $10 M

Oil price $80/stb $80/stb $80/stb

Water injection cost $10/stb $10/stb $10/stb

Water disposal cost $10/stb $10/stb $10/stb

Annual discount rate 10 % 10 % 10 %
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Fig. 6 Optimized well configuration within the control time steps 1–5; the injectors and producers are marked with (×××) and (•), respectively. Ti
is the ith control time step

control time trajectories for producers and injectors are dis-
played in Fig. 7. From Fig. 7, Producer 4 starts production
in the beginning of water flooding whereas Producers 1, 2,
and 3 are drilled in second, fourth and fifth control time
steps, respectively. Figure 7 also shows that Injectors 2 and
3 start injection in the first control time step and Injec-
tors 1 and 4 are added in the third and fourth control time
steps, respectively. The algorithm has placed a total of 8
wells in the field, which has resulted in an NPV value of
$ 263.19 M after 10 years of operation. The oil saturation
profile of the reservoir after 10 years of operation with the
optimized well configuration and control settings is shown
in Fig. 8. The evolution of the objective function (negative
NPV), including the OPEX (O(U)) and CAPEX (C(U))
terms, throughout the optimization iterations is shown in
Fig. 9. The algorithm has converged after 64 iterations.

The current implementation of the algorithm uses a back-
tracking line search method [8, Section 9.2] to update the
solution; hence, each iteration requires a few reservoir si-
mulation forward runs to properly adjust the step size. In the
present experiment, for about the first 40 iterations, the
number of full reservoir simulations needed ranged between
1 to 3 runs. In the intermediate iterations, it took more simu-
lation runs to calculate the appropriate step size (1∼6 runs).
Towards the end of the optimization (iteration 60 onward),
it could take up to 10 simulation runs for some iterations to
reduce the objective function. In total, about 160 reservoir
simulation forward runs were needed before the algorithm
converged. This performance can be improved by using
more efficient step size selection methods [5, 17, 23, 45].

While the decline in the objective function value and the
capital expenditures has a monotonically decreasing trend

Fig. 7 Optimized 5-step control trajectories of the producers (top) and injectors (bottom) in Example 1
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Fig. 8 Final oil saturation profile of the reservoir after 10 years of
operation with optimized well configuration and control settings in
Example 1

(as expected), the evolution of the OPEX term exhibits
a fluctuating behavior, especially in the intermediate iter-
ations. The abrupt changes in the operating costs during
the intermediate iterations are resulted from the removal of
several wells that can have a significant (sometimes unfa-
vorable) impact on the OPEX term, but with a net favorable
effect on the overall objective function. These fluctuations
tend to disappear as the algorithm approaches its conver-
gence (after about iteration 50), where the dominant wells
are mostly selected and fewer wells need to be removed.

3.2 Example 2: initializations with conventional 9-spot
pattern

In this example, the same optimization problem as in
Section 3.1 is considered. However the solution procedure
is initialized with a 9-spot well pattern (1 injector in the cen-
ter and 8 producers located in the corner points and near
the boundaries of the reservoir) as displayed in Fig. 10;
each well was surrounded by a local set of wells of the
same type with very small rates. The single injector was

Fig. 10 9-Spot well pattern as initial well configuration for Example 2

assigned maximum injection rate while the 8 producers
were assigned uniform control rate allocations. Other than
the initialization of the algorithm, the simulation experiment
setup is exactly the same as Example 1 in Section 3.1. Sim-
ilar to Example 1, the algorithm simultaneously determines
the optimal solution to the configuration in terms of num-
ber, locations and types of the wells, their dynamic controls
and drilling times. The optimized wells configuration for
this example is shown in Fig. 11 where it can be seen that
the algorithm has reduced the number of initial wells to a
total of 6 wells: 5 producers and 1 injector. Comparing the
optimized wells locations (Fig. 11) with the initial 9-spot
pattern (Fig. 10) it is observed that producers 2, 4, and 5
are removed in the optimized configuration. The locations
of the remaining wells (I1, P1, P3, P6, P7, and P8) have
undergone some local changes in their nearby zones after
optimization and more importantly, their drilling times are
altered in the optimized schedule. While in the initial 9-spot
pattern all the wells are drilled in the beginning of reservoir
operation, as inferred from the optimized dynamic controls
shown in Fig. 12 wells P1, P3, P6, P7, and P8 are drilled

Fig. 9 Evolution of objective function (left), the operating cost function (middle) and capital expenditures (right) in Example 1
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Fig. 11 Optimized well configuration within the control time steps 1-5 for Example 2

Fig. 12 Optimized 5-step control trajectories of the producers in Example 2

Fig. 13 Final oil saturation
profile of the reservoir after 10
years of operation with 9-Spot
well pattern (a) and with
optimized well configuration
and control settings (b) in
Example 2

Fig. 14 Evolution of objective function (left), the operating cost function (middle) and capital expenditures (right) in Example 2
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in the third, first, fourth, second, and last control time steps
respectively. Injector I1 is drilled in the first control time
step and operates with maximum injection rate throughout

reservoir life time. The final oil saturation profiles of the
reservoir after 10 years of operation with both conventional
9-spot well pattern and uniform control settings and the

Fig. 15 Optimized well locations within control time steps 1–5 in Example 3; the injectors and producers are marked with (×××) and (•), respectively
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Table 3 Optimization results
Experiment Ninj Nprod NPV

Synthetic 2D reservoir (random initialization) 4 4 $ 263.19 M

Synthetic 2D reservoir (9-Spot initialization) 1 5 $ 240.84 M

PUNQ-S3 3D reservoir with rate controls 5 4 $ 101.21 M

PUNQ-S3 3D reservoir with BHP controls 5 5 $ 104.62 M

optimized well configuration and control rates are depicted
in Fig. 13a, b. While the reduction in the number of wells
for the optimized configuration has left some portions of the
oil bypassed, the NPV of the project is higher for the opti-
mized settings ($ 240.84 M) compared with the NPV that
results under the conventional 9-spot well pattern with uni-
form well control settings ($ 174.36 M). The evolution of
the objective function along with the changes in the CAPEX
and OPEX portions of the NPV during optimization iter-
ations are shown in Fig. 14. The algorithm has converged
after 56 iterations.

The resulting NPV of the project with the optimized set-
tings in Example 1 ($ 263.19 M) where the solution was
initialized by randomly placing a large number of injection
and production wells with small rates in the reservoir, is
higher than the final NPV in this Example ($ 240.84 M)
where a 9-spot well pattern was used as the initial guess.
While a good choice for the initial solution can potentially
improve the final results, the comparison between the results
of Examples 1 and 2 implies that in the absence of such
good initial guesses the algorithm can produce reasonable
solutions when all cells are given an equal opportunity to
contain a well.

3.3 Example 3: 3D 2-phase PUNQ-S3 reservoir

We applied the proposed algorithm to optimize well con-
figurations and control settings in a 3D heterogeneous
model with geologic structure borrowed from the PUNQ-S3
benchmark reservoir model. In our example, the gas-cap
and the aquifer in the original PUNQ-S3 model are not
included. The optimization was implemented over a cycle
of 10 years. The log-permeability maps of the 5 layers in the
PUNQ-S3 model are shown in Fig. 15. The field contains
28 × 19 × 5 = 2660 discretized grid blocks, many of which
are inactive as displayed in Fig. 15. The simulation param-
eters for this example are summarized in Table 2. All the
wells are under fluid flow rate controls. Similar to Exam-
ple 1, initially a large number of production and injection
wells with small rates are randomly positioned throughout
the reservoir. The wells are assumed to be vertical and perfo-
rated in all 5 layers of the PUNQ reservoir model except for
the ones placed in the grid cells that are only active within
the first 2 layers of the formation. The simulation accounts
for the hydrostatic pressure gradient in vertical wells. The
total fluid flow rate for each well is computed as the sum
of the flow rates in all the grid cells perforated by that well:

Fig. 16 Optimized control time trajectories for injectors (top) and producers (bottom) in Example 3
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Fig. 17 Optimization solution in iterations 30 (Row 1), 70 (Row 2), and 100 (Row 3) in Example 3

qt
i = ∑

j∈Ii

qt
ij where Ii includes the indices of all the grid

cells perforated by well i and qt
i is the total fluid flow rate

of well i at control time step t .
The optimized well configurations for this case are dis-

played in Fig. 15. The number of wells and final NPV
values are listed in Table 3. In this case, the algorithm has
placed 5 injectors and 4 producers, with varying drilling

times as illustrated in Fig. 15. The optimized well trajec-
tories of the injection and production wells are shown in
Fig. 16, showing that some of the wells are drilled in later
years to improve the objective function. The optimization
solutions within some intermediate iterations are displayed
in Fig. 17. In early iterations (Iteration 30, Fig. 17, Row 1),
the algorithm tends to remove the wells that have insignifi-
cant contributions, thereby allowing the optimal regions for

Fig. 18 Final oil saturation profile with optimized configuration and control settings of the wells in Example 3
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Fig. 19 Evolution of the objective function (left), the operating cost function (middle), and the capital expenditures (right) in Example 3

placement of production and injection wells to emerge grad-
ually. At this initial stage, the algorithm removes several
producers that are located at the proximity of the injectors
to avoid unfavorable early watercuts. Further refinement of
these regions is carried out during the intermediate itera-
tions, when the potentially high-pay regions for placement
of candidate wells are identified. At this stage, the algorithm
begins to further shrink the size of the selected zones by
increasing the control allocations of more dominant wells
at the cost of removing the wells with less significant con-
tributions (Iteration 70, Fig. 17, Second Row). This gradual
improvement in the solution through successive removal of
wells with less significant contributions is achieved through
the iterative shrinkage thresholding mechanism that was dis-
cussed in the previous section. Note that the iterative scheme
is implemented using an approximation of �0 norm min-
imization with �p-norm (p < .01 at convergence). That
is, during the iterations, to have a better-behaved sparsity-
promoting function, the value of p ∈ (0, 1] is successively
reduced to its very small values (p −→ 0) at convergence.
In the terminating iterations (Iteration 100, Fig. 17, Third
Row), the optimal well configuration is almost identified
with some well clusters that need to be further reduced to
single wells. The oil saturation profiles of the optimized
configuration after 10 years are shown in Fig. 18. The
ultimate NPV is $ 101.21 M. From Fig. 18, some bypassed

Table 4 Optimization results for multiple initializations

Initialization No. Ninj Nprod NPV

1 5 4 $ 101.21 M

2 4 5 $ 98.57 M

3 4 5 $ 91.82 M

4 4 4 $ 106.23 M

5 4 4 $ 98.93 M

oil is observed in the top-right and bottom-left corners of
the field, which are primarily active within the first two
layers of the formation and have relatively low permeabil-
ity values. While it might seem that addition of more wells
in these regions can increase the NPV, the revenue from the
produced oil from those regions does not offset the cost of
drilling new wells. The evolution of the objective function
and the CAPEX and OPEX terms in the 115 iterations of
the algorithm are displayed in Fig. 19. From Fig. 19, the
decline in the cost function is faster during the initial and
intermediate iterations (Iterations 1 ∼ 80) where numerous
candidate wells still exist in the field; each time a group
of these insignificant wells is removed, the cost function
undergoes considerable reduction. When the algorithm pro-
ceeds to later iterations, the majority of insignificant wells
are already removed and it takes several iterations for the
algorithm to finalize the control allocations of the remaining
wells within the smaller well clusters. In this example, the
algorithms takes 15 additional iterations to reduce the pop-
ulation of potential injection wells from 9 (Iteration 100) to
5 (Iteration 115).

An important point to discuss is the local nature of the
gradient-based optimization algorithm. The well placement
and control optimization problems are known to have sev-
eral local solutions with relatively close final performance
(NPV) outcomes. This is mainly related to the nature of
the problem where a certain volume of water is injected to
displace a finite amount of producible oil from the reser-
voir. As can be expected, this goal can be achieved through
several optimized scenarios with comparable outcomes.
While global optimization techniques exist that heuristi-
cally search through all (local) solutions to identify the
global solution, these methods are computationally demand-
ing and do not render themselves to solving optimization
problems with high-dimensional decision variables (as is
the case in this formulation). To test the sensitivity of
the solutions obtained from the proposed gradient-based
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algorithm, the method was applied with five different ini-
tializations. The number of injection and production wells
and the final NPV values for these test cases are summarized

in Table 4. Figure 20 shows the final well configuration
for these solutions, indicating that the optimized configu-
rations for different initializations vary, which is expected

Fig. 20 Optimized well configurations for five different initializations in Example 3
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Fig. 21 Optimized control time
trajectories in Example 3 with
five different initializations
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given the local nature of gradient-based algorithms and the
number (and type) of variables that are included. Figure 21
shows the final control trajectories for different initializa-
tions, which are quite different. From Table 4 and Fig. 22,
we also observe that the optimized NPV values are relatively
close to each other, and fluctuate around ∼ $ 100 M. This
result is consistent with the observation by Van Essen et al.
[53], that in large-scale production optimization problems,
the NPV objective function typically consists of long con-
nected plateaus on which the value of the objective function
remains roughly the same. A similar observation was also
made in history matching literature by Oliver et al. [40] and
Oliver and Chen [39].

3.4 Example 4: 3D two-phase PUNQ-S3 reservoir
with BHP controlled wells

As discussed in Section 2, the problem formulation can be
applied to the case where the wells are controlled through
their bottom-hole pressures (BHPs). From Eq. 11, for BHP-
controlled wells the source/sink components (J3 (p̆well −
p3)) are represented with bottom-hole pressure values of the
wells. Therefore, the pressure gradient, i.e. the difference
between the well’s BHP and the corresponding grid cell
pressure in each grid block, can be used to identify the
grid blocks that are penetrated by a well (pressure gradi-
ents (p̆well − p3) will be non-zero only for the grid cells
intersected by a well). Provided with the pressure gradients
corresponding to each grid cell at every time step, one can
infer the type and dynamic control values for each well. In
fact, similar to the rate allocations matrix Q (6), we can

Fig. 22 Objective function evolution for five different initializations
in Example 3; the plot shows different solutions with similar NPVs

concatenate time-varying pressure gradients (p̆well − p3) of
all the grid blocks to construct the matrix

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�p
t1
1 �p

t2
1 · · · �p

tT
1

�p
t1
2 �p

t2
2 · · · �p

tT
2

...
...

. . .
...

�p
t1
N �p

t2
N · · · �p

tT
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(32)

that combines several decision variables into a structured
spatio-temporal representation to formulate and solve the
generalized field development optimization problem. In the
matrix form of Eq. 32, the entry �p

tj
i is equal to the pres-

sure gradient in the ith discretized grid block at time step
tj . Depending on its sign, �p

tj
i indicates the type of well

in the ith grid block in the discretized spatial domain (with
�p

tj
i > 0 and �p

tj
i < 0 indicating existence of an injec-

tor and a producer, respectively, while �p
tj
i = 0 indicating

the absence of a well). The problem can then be treated
in the same fashion as the case with rate-controlled wells
by adjusting the total fluid flow rates. The formulation and
solution approach that were discussed in Sections 2 and 2.3
can now be applied to set up and solve the problem for
BHP-controlled wells where the dynamic control trajecto-
ries represent time-varying bottom-hole pressure values of
the wells.

The above algorithm was implemented for a water-
flooding experiment in the 3D PUNQ-S3 reservoir model.
The parameters of this simulation experiment are listed in
Table 2. As before, the solution is initialized by randomly
placing many producers and injectors with small pressure
gradients (translating into small production/injection rates)
throughout the field. In each iteration of the optimization,
dynamic pressure gradients in the grid cells are used to
decide which wells are of relatively negligible contribution
and should hence be removed. The optimized well config-
uration and drilling sequence are displayed in Fig. 23. The
algorithm has placed 5 injectors and 5 producers with var-
ious drilling times as demonstrated in Fig. 23. Figure 24
shows the optimized BHP control trajectories for the injec-
tion and production wells along with the corresponding fluid
flowrates in those wells. In control time steps before a well
is activated, the bottom-hole pressure value for that well is
essentially equal to the cell pressure in that grid block. The
drilling cost is included only when the pressure gradient in a
grid cell becomes nonzero. As shown in Fig. 25, in this case
the algorithm has converged with a final net present value of
$ 104.62 M after 111 iterations, which is consistent with the
results obtained in the previous example. Figure 26 shows
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Fig. 23 Optimized well locations within control time steps 1–5 in Example 4 (note that some wells become active at later control steps)

the optimized oil saturation profile after 10 years. Although
Layers 1 and 2 show some high oil saturations in the lower-
left corner of the domain, the permeability and porosity

values in this region are very low (unlike Layers 3-5). Pro-
ducing the small volume of oil from this region requires
significant amount of energy, which is not economically
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Fig. 24 Optimized injection BHPs (Row 1), production BHPs (Row 2), injection flowrate (Row 3), and production flowrate (Row 4) trajectories
in Example 4

Fig. 25 Evolution of the optimization objective function (left), the operating cost function (middle) and the capital expenditures (right) in
Example 4
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Fig. 26 Final oil saturation profile of the reservoir after 10 years of operation with optimized well configuration and control settings in Example 4

viable. Finally, in all of the examples discussed above, the
control time trajectories of the wells were divided into 5
control time steps of 2 years to span a 10 year reservoir life
cycle. A smaller control time step can be used to provide a
higher temporal resolution for well dynamic controls, which
could potentially improve the optimized NPV values. This,
however, comes at increased computational cost due to the
larger size of the decision variables.

4 Conclusion

We developed a novel generalized oilfield development
optimization framework that can be used to optimize the
number, location, and type of wells, along with their operat-
ing control trajectories in time, and their drilling schedule.
The generalized problem formulation aims at jointly opti-
mizing these design parameters, which are traditionally
treated as separate optimization problems, by accounting
for the coupling between them. We first showed that the
source/sink terms in the discretized governing equations
of the subsurface flow models include all the information
about the type, number, location and control values of the
existing wells in the field and hence can serve as a compre-
hensive generalized decision vector, which inspired the for-
mulation of our generalized field development optimization
framework. By including the drilling (capital) cost in the
formulation of the NPV cost function, we showed that the
resulting optimization is analogous to a sparsity-promoting
joint optimization problem. In order to incorporate the time-
varying form of the well control settings, we extended this
vector into a matrix representation where the rows cor-
respond to the index of grid blocks that intersect a well
and the columns contain the dynamic control values of the
corresponding wells in time. We employed proximal split-
ting optimization approach to better handle the capital cost
term in the objective function that tends to have a complex
behavior. We solved the resulting optimization problem by
adopting efficient algorithms from the sparse reconstruction

literature, specifically the iterative shrinkage thresholding
scheme. The effectiveness of the generalized field develop-
ment framework and the proposed solution approach was
examined through a series of numerical experiments with
two-phase fluid flow in heterogeneous reservoir models,
including an example adapted from the three-dimensional
PUNQ-S3 benchmark formation.

One of the main inspirations of this work is to develop
a simple generalized formulation to solve the optimization
problems that arise in oilfield development with several
types of decision variable. The key in developing such a
generalized framework is recognizing the importance of
the source and sink vectors in the discretized form of
the governing flow equations. The source and sink terms
when expanded for the entire simulation time include all
the decision variables of interest, i.e. the number, type,
location, control trajectory, and drilling schedules of the
wells, which can be optimized simultaneously. Clearly,
expanding the decision vector to embed all these deci-
sion variables increases both the dimension and complex-
ity of the optimization problem. However, it also enables
solutions that can be explored to fully harness the optimiza-
tion potential in field development and, at the very least,
reveal the achievable performance of the field, since the gen-
eralized formulation is expected to produce a higher NPV
than solving each optimization problem independently.
While we proposed one approach, i.e. sparse optimiza-
tion, to solve the formulated problem, alternative solution
strategies may also be developed to handle the generalized
problem. Our findings suggest that the current framework is
worthy of further research and it can be considered as a new
direction for formalizing and studying field development
planning problems from a more general and unified perspec-
tive. The proposed formulation seeks to determine various
field development decisions variables simultaneously and
by solving a single optimization problem, as opposed to
the traditional approach of solving separate optimization
problems to determine different development decisions. The
latter approach typically leads to suboptimal solutions as
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they fail to acknowledge and properly incorporate the cou-
pling between various decision variables that are involved
in the development plan.

The proposed framework solves the generalized field
development optimization problem for vertical wells. One
interesting future direction is to extend the current approach
to allow for separate perforations at different layers of the
reservoir. Further generalization can also be made by includ-
ing more complex well completions, such as slanted wells,
multilateral wells, and horizontal wells. Such extensions
would require effective descriptions of complex well mod-
els for optimization purpose and maintaining the feasibility
of well model descriptions during optimization iterations
where updates are made. Other extensions for field appli-
cation include incorporation of nonlinear constraints and
implementation under geologic uncertainty. The simulation
experiments presented and analyzed in this work were of
fairly small scales. Additional work is needed to explore
the applicability of the developed framework to field-scale
problems with realistic constraints.

Appendix A: Proximal forward-backward
splitting algorithms

As discussed in Beck and Teboulle [6], iterative shrink-
age thresholding algorithm (ISTA) is mainly devised to
implement the proximal forward-backward splitting itera-
tive scheme [10, 16, 44]. We explain the proximal forward-
backward splitting approach for the following optimization
problem:

min
x∈RN

f1(x) + f2(x)︸ ︷︷ ︸
=f (x)

(33)

where f1(x) is lower semi-continuous and convex, and f2(x
is convex and differentiable with a β-Lipschitz continuous
gradient ∇f2(x). It is shown in Combettes and Wajs [16]
that one solution to the problem in Eq. 33 can be expressed
as the fixed point equation:

x = proxβ f1
(x − β∇f2(x)) (34)

which is valid for any β ∈ (0, +∞). Equation 34 can be
solved [15] iteratively through proximity operation:

xn+1 = proxβn f1︸ ︷︷ ︸
backward step

(xn − βn∇f2(x)︸ ︷︷ ︸
forward step

) (35)

As illustrated in Eq. 35, this scheme can be broken into a
forward (explicit) gradient descent update using the f2 com-
ponent and a backward (implicit) proximity operation step
using the function f1. Note that, for f1 = 0, Eq. 35 reduces
to gradient descent solution update

xn+1 = xn − βn∇f2(x) (36)

for minimizing a function with a Lipschitz continuous gra-
dient, and for f2 = 0, it takes the form of the iterative
proximal mapping of the function f1:

xn+1 = proxβn f1
(xn) (37)

for minimizing the nondifferentiable function f1. The
resulting forward-backward algorithm is an iterative form
that combines the gradient method (forward step) and the
proximal point algorithm (backward step).

Appendix B: Derivation of objective function
gradient

In this appendix, we derive the expression for the gradient
of the objective function ∇uJ (u) in Table 1 with respect to
the well control allocations (entries of matrix U in Eq. 6).
From Eqs. 14–21 , we have:

J (u) = −O(u) +
T∑

t=1

γ

(1 + d(t))b(t)

( N∑
i=1

|qt
C,i |p

) 1
p

︸ ︷︷ ︸
=C(u)

(38)

where qt
C,i is the entry in the ith row and t th column of the

UC matrix. The gradient of J (u) with respect to each entry
q

tj
i in matrix U can be written as:

∇
q

tj
i

J (u) = −∇
q

tj
i

O(u) − ∇
q

tj
i

C(u) (39)

Here, ∇
q

tj
i

O(u) is obtained using an adjoint model. To

get a well-behaved functional form for C(u) that is differ-
entiable everywhere, we use the following approximation to
reformulate C(u):

|qt
C,i | 	

√
(qt

C,i)
2 + ε , ε � 1 (40)

where ε is a small positive number introduced to avoid
matrix singularity during optimization iterations, without
affecting the numerical accuracy of the algorithm; ∇

q
tj
i

C(u)

can then be expressed as:

∇
q

tj
i

C(u) = γ

(1 + d(t))b(t)

( N∑
k=1

((qt
C,k)

2 + ε)
p
2

) 1
p

−1

× .
( N∑

k=1

aki sign(qt
C,k) |qt

C,k | ((qt
C,k)

2 + ε)
p
2 −1

)

(41)

In the above equation, aki is the entry in the kth row and
ith column of the matrix A that was defined in Eq. 16. In the
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above derivation, we used the relation UC = A U to obtain
UC’s entries in terms of the elements of A and U:

qt
C,i =

N∑
k=1

aik qt
k (42)

Note that when implementing the iterative gradient-based
algorithm, A needs to be updated in each iteration according
the updated U.
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