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Abstract ReactMiCP, a new reactive transport simulator
was developed based on the semismooth speciation solver
SpecMiCP. Its main feature is a sequential iterative opera-
tor splitting algorithm where macroscopic model parameters
are explicitly included in the formulation. Its correctness,
robustness, and efficiency are tested against the MoMaS
benchmark and two sets of cement paste lab experiments.
We show that a robust speciation solver is a key requirement
for good performance of the reactive transport simulator.
We also demonstrate that a sequential iterative solver should
be preferred over non-iterative solvers when using operator
splitting. The flexibility and the speed of the simulator are
used to test the influence of the database, the initial con-
dition, and the diffusion coefficient model for the cement
paste simulations.
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1 Introduction

Due to its wide range of applications, reactive transport has
gained a lot of attention in the last decades. It has been stud-
ied and used numerous times, and many codes implement
this method using various numerical strategies [8, 21, 27,
34, 36, 42]. A domain where reactive transport models are
important is for the assessment of long-term durability prop-
erties of cementitious materials [2, 22, 34]. From every-day
building to carbon capture and sequestration infrastructure,
cement is ubiquitous. However, concrete is sensitive to its
environment and it will undergo large-scale reactions if
in contact with species such as CO2 [2, 22], sulfates [32],
chloride [24], or just pure water in large quantities [33,
44]. By tracking both the flux of reactants and products,
and the transformation occurring inside the porous medium,
reactive transport is an essential tool for understanding the
mechanisms of these attacks and for developing mitigation
strategies [2, 22, 33, 41].

The optimization field is also in continuous progres-
sion and, at the turn of the century, the complementarity
problem and its variant were studied extensively (see, for
example, the bibliography of Facchinei and Pang [14]). The
complementarity problem gives us a mathematical frame-
work to study equilibrium in many fields [14]. Using these
newly developed tools, S. Kräutle and collaborators [21, 25]
were the first to implement a reactive transport solver based
on the complementarity condition to solve the equilibrium
solid phase assemblage.

In a previous paper [17], we presented SpecMiCP, a new
speciation solver based on the complementarity condition.
Compared to the traditional trial and error process [4], this
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formulation finds the solid phase assemblage more effi-
ciently [17]. The speciation solver was developed to solve
cement-related problems, where many solid phases can
coexist at equilibrium, the water content is low and the ionic
strength is high. The present article describes the work car-
ried out to interface an enhanced version (see Appendix A)
of this speciation solver with a reactive transport simulator.

Numerical methods are important but modelers need to
trust their tools before using them. Therefore, develop-
ers need to test and demonstrate the correctness of their
softwares. It is especially true for complex codes like reac-
tive transport simulators. Benchmarking and comparison
to simulations and experiments increase the confidence in
the mathematical methods and their numerical implemen-
tations. In the present paper, we describe the tests used to
develop and improve our simulator. In particular, we focus
on the stability and robustness of the coupling process and
the numerical benefits of our formulation and, of the semis-
mooth speciation solver. The robust and efficient code is
used to evaluate the sensitivity of the model to its input
parameters (initial composition, initial porosity, diffusion
coefficient law, . . . ). The second section explains the cou-
pling algorithm used. Section 3 describes the system of mass
balance equations solved in the examples (”saturated sys-
tem”). Sections 4 and 5 present and discuss the simulations
we used to test the solver.

2 Coupling algorithm

2.1 Component

Solving the mass conservation equations for every species in
the system would be too expensive. To remedy this problem,
the notion of component was introduced (see, for example,
the reference books [4, 30]). In a chemical system at equi-
librium, the chemical reactions for the set of species can be
written as function of a finite set of component, the basis :

{Aj } = [
νij

] {Ai} j = 1 . . . Nr , i = 1 . . . Nc

(1)

where
[
νij

]
is the matrix of stoichiometric coefficient and

index i denotes a component. The size of the basis is Nc,
and the number of species is Nr . Following the arguments
in [4, 17], the components in this work are chosen as actual
species. The total concentration of a component (Cα

i ) in a
phase is a linear combination of species concentrations (cα

k )
weighted by the stoichiometric coefficients.

Cα
i = cα

i +
∑

j

νij c
α
j (2)

2.2 Governing equations

We are interested in solving the following system of mass
conservation equations for each component i in phase α :

∂C α
i

∂t
= ∇ · F α

i +
Nα∑

β

R
β→α
i (3)

where C α
i is the total concentration of component i in phase

α (per unit volume of material). F α
i is the total flux of com-

ponent i in phase α. Several transport phenomena can be
combined in this term, such as advection, dispersion, diffu-
sion, . . . . R

β→α
i is a sink/source term due to the chemical

reactions from phase β to phase α (hereafter called chemi-
cal exchange term). Nα is the number of phases. This term
can describe precipitation and dissolution of solid phases,
sorption, or evaporation, . . . . In the following work, it is
assumed that coupling between phases and components are
mainly due to the chemical exchange terms. In addition, the
transport operator is the main factor driving the system out
of equilibrium. The importance of these assumptions will be
discussed in the next sections, when the coupling algorithm
is presented.

2.3 Operator splitting

Solving the system of Eq. 3 is a complex task because
of the coupling between phases and between components.
The different mathematical properties of the operators is
also a source of numerical difficulties. A common strategy
is to apply the operator splitting method (e.g., [30, 50]).
In this approach, each operator, or group of operators, is
solved sequentially while considering the others fixed. This
method is opposed to the global step approach where the
entire system is solved all at once. Operator splitting offers
a strong practical advantage. The best solver can be used for
each operator. In addition, the flexibility of the simulator is
greatly improved since it breaks the coupling between the
equations.

In the operator splitting method for reactive trans-
port, two sets of operators are usually defined [30, 50]:
the transport operator (∇F α

i ) and the chemistry operator

(
∑

β R
β→α
i ). We add a third operator: the upscaling oper-

ator. Its task is to solve the macroscopic parameters of the
model. As for the transport and chemistry operators, the
exact definition of the upscaling operator is problem depen-
dent, but a common set of properties for each operator can
be defined; they are presented in the next section.

2.4 Operator Staggers

Each operator is solved inside a stagger. A stagger is a self-
contained module solving a set of equations which defines
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the corresponding operator. Three staggers are defined:
transport, chemistry, and upscaling.

2.4.1 Transport stagger

The transport stagger is in charge of solving the system of
governing equations (3). During its execution, it assumes
that the chemistry exchange terms are fixed. Since a trans-
port stagger defines the governing equation of a system,
it defines the main assumptions about the models. As a
consequence, different chemistry staggers (e.g., equilibrium
or kinetics controlled equations) and/or upscaling stag-
gers (different models for the macroscopic models) can be
attached to the same transport stagger. On the contrary, the
same chemistry stagger should not be connected to different
transport staggers since fundamental assumptions about the
physical systems and the dominant phenomena vary.

Two transport staggers, i.e., two systems of equations, are
currently implemented: a saturated advection-diffusion sys-
tem and an unsaturated system. Only the saturated system
is presented in this article for brevity (see Section 3), but it
should be noted that the coupling algorithm is strictly the
same for both cases. Other systems of governing equations
could be implemented to broaden the scope of the simulator
(e.g., three phases H2O-CO2 transport).

The transport stagger solves the problem using a
finite element method. A new finite element solver was
implemented using the techniques and the algorithms of
Dynaflow [38]. Since we are interested in small 1D prob-
lems (∼ 100 nodes), the implementation is relatively easy
and straightforward. The main advantage of a new imple-
mentation over an existing code is the increased flexibility
in the choice of variables and of the method to exchange
data between the modules.

2.4.2 Chemistry stagger

The chemistry stagger solves the chemistry exchange terms
for every node of the mesh. It assumes that the total con-
centrations are fixed at the macroscopic scale. One of
the common task of the chemistry stagger is to solve the
aqueous phase speciation. Solid phases precipitation and
dissolution, as well as fluid phase separation can be added
if the model requires it.

SpecMiCP [17] is the speciation solver used by the
chemistry staggers implemented in ReactMiCP. The main
features of this speciation solver are to formulate the solid
phase equilibrium assemblage as a Mixed Complementar-
ity problem and to solve the resulting problem using a
semismooth Newton solver [17]. The robustness of this
method contributes directly to the efficiency of our reac-
tive transport simulator as it will be shown in the examples.
Some modifications were necessary to the speciation solver

in order to optimize the coupling. They are described in
Appendix A.

One of the consequences of the semismooth approach
is that the basis of components is fixed during a computa-
tion. It has important repercussions on the implementation
details. For example, the staggers share the same fixed basis.
Thus, indexing the species, checking the consistency of the
variables, and transferring data from the transport and chem-
istry staggers are easy tasks in our code. It removes the
possibility of numerous hard-to-debug errors.

2.4.3 Upscaling stagger

In addition to the numerical coupling introduced in equa-
tion (3), there is a strong physical coupling between the
transport and chemistry operators in variable porosity prob-
lems. Precipitation and dissolution of phases change the
microstructure of the porous medium (in term of poros-
ity, connectivity, tortuosity, . . . ). This transformation affects
the macroscopic transport properties such as the diffusion
coefficients or the permeabilities. Modification of the pore
structure is usually modeled using hard-coded laws such as
the Kozeny-Carman relationships for the intrinsic perme-
ability or power law for the effective diffusion coefficient.
Such laws are only theoretically valid under strong assump-
tions (monodisperse spherical particles, laminar flow, . . . )
and they are not generally applicable (e.g., [46]). Since we
are interested in problems where transport fluxes are the
main driving forces out of equilibrium, the quantitative abil-
ities of our simulator are limited by the accuracy of the
prediction of the transport parameters.

Improving the prediction of these parameters is only pos-
sible if the modeler can test and adapt its models. The
solution we propose is to separate the upscaling stagger
from the transport stagger. The user defines a customized
upscaling stagger which computes the necessary informa-
tion and provides them to the other staggers. The definition
of “necessary information” is presented in the next section
on variables. This approach is possible due to the operator
splitting approach. In practice, it works with an applica-
tion programming interface (API) that the modeler uses to
provide its data and functions to the algorithm.

2.5 Variables

Three sets of variables and one set of parameters are defined
by system. The variables are separated by their roles and by
the staggers used to find their values.

The main set of variables, called primary variables ({x} ),
is used to solve the governing equations. They are computed
in both the transport and the chemistry staggers. The number
of primary variables is Nc × Nα . However, some equations
and/or variables may be trivial. For example, a component
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may not exist in gas form, or solid phases can be considered
impermeable, thus making the flux operator null in the mass
balance equations of the solid phases.

The secondary variables ({y} ) are variables dependent on
the primary variables, and they are computed in the chem-
istry stagger. The total concentrations (C α

i ) can be written
as a combination of primary and secondary variables. For
example, the total concentration of water in the liquid phase
per amount volume of material is C l

w = φSlCw. The liq-
uid saturation (Sl) is used as a primary variable, and the
secondary variables are the porosity (φ) and the total con-
centration of water in the liquid phase (Cw). The gaseous
total concentration for a component who evaporates as an
ideal gas is C

g
i = φ(1 − Sl)

pi

RT
where the partial pres-

sure (pi) is a primary variable. The choice of primary and
secondary variables is dependent upon the model solved.
Solving the secondary variables consistently is important, in
particular in variable porosity problem. It was demonstrated
for the porosity by Lagneau et al. [27].

The set of tertiary variables is composed of the concen-
trations, volume fractions, fugacities, . . . , of the chemical
species. These tertiary variables are computed in the chem-
istry stagger. They are used to obtain the primary and
secondary variables in the chemistry stagger. Keeping these
values in memory is important to warmstart the speciation
solver [17].

To close the system, we also need the upscaling param-
eters ({w} ). They are solved in the upscaling stagger. They
are the macroscopic parameters related to the microstructure
and appearing in the transport and chemistry operators. The
diffusion coefficients, intrinsic, and relative permeabilities,
capillary pressure, specific surface area are all examples of
such parameters. These parameters are computed inside the
upscaling stagger. Depending on the model, these parame-
ters can be constants, variables, or function of the primary
variables. For example, the relative permeabilities and the
capillary pressure are function of the liquid saturation in the
unsaturated system. Although not presented in this paper,
this feature is crucial to model the coupling between reac-
tive transport and drying of cementitious material [16, 20].
The set of parameters and their dependence needed for a
simulation are defined by the governing equations and thus
by the transport stagger.

2.6 Residuals based formulation

2.6.1 Operator splitting

Operator splitting exists in two main flavors, sequential non-
iterative algorithms (SNIA) and sequential iterative algo-
rithms (SIA) (e.g., see the reference book [30]). As the name
suggests, SIA iterate over the operators until convergence is
obtained.

The main cited advantage of the non-iterative algorithms
is the simplicity of their implementations [6, 30]. How-
ever, they lack the robustness of the iterative algorithms.
They usually require smaller timesteps and finer meshes
to be numerically stable and accurate [8]. In addition, the
integration of adaptive timestep algorithm is harder since
a non-obvious metric must be defined to track the success
of the algorithm. These downsides are especially important
in our case since we want to allow user-defined models.
The solver needs to provide a stronger guarantee of stabil-
ity. In addition, it will be demonstrated using the MoMaS
benchmark that fixed coefficient problems also benefit from
iterative algorithms (see Section 4.3.2). As a consequence, a
sequential iterative algorithm was chosen. It should be noted
that a non-iterative algorithm can be trivially obtained by
stopping prematurely the iterative algorithm after the first
iteration.

2.6.2 Convergence criterion

The convergence criterion for any iterative algorithm is
crucial for the robustness of the method. We adopted a
residual-based formulation using fixed-point iterations (see
Fig. 1 . The residuals of the weak form of Eq. 3 over an
element is

‖Rα
i ‖ =

∫

�

⎛

⎝∂C α
i

∂t
− ∇ · F α

i −
∑

β

R
β→α
i

⎞

⎠ wi d� (4)

The choice of the test function wi and the method to per-
form the integration will define the finite element method
used to solve the transport operator (e.g., Galerkin, finite
volume, . . . ). Since the residuals contain all the informa-
tion about the system (transport, chemistry, and upscaling
variables/parameters are present), they provide a good met-
ric about the state of the solution. The goal of the coupling

Fig. 1 Sequential iterative algorithm of ReactMiCP
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algorithm, and of the transport stagger, is to minimize the
residuals.

We also define an initial residual to provide a reference
value :

‖Rα
i ‖0 =

∫

�

(∇ · F α
i

)0
wi d� (5)

This value is computed at the beginning of the timestep. The
system is considered solved when

‖Rα
i ‖ ≤ tol ‖Rα

i ‖0 (6)

where tol is a user-defined tolerance. The initial residual
is defined to represent the main perturbation driving the
system out of equilibrium. Equation 6 means that the sys-
tem is solved when the error on the mass balance is much
smaller than the initial perturbation. In practice, tol =
1 × 10−3 to 1 × 10−4 was found to offer a good com-
promise between accuracy and convergence speed. Since
fixed-point iterations are used, the number of iterations
increases steeply with stricter tolerances.

In our simulator, we assume that transport is the main
perturbation phenomena. If a chemical reaction is responsi-
ble for driving the system out of equilibrium (e.g., isotope
fractionation), it must be included in the initial residual and
must be solved in the transport stagger.

The same residuals are used for the coupling algorithm
and for the transport stagger. However, a different con-
vergence criterion must be used. In particular, the stagger
tolerances are much stricter. High precision is needed in
each stagger in order to reach convergence of the coupling
algorithm in a reasonable number of iterations.

A more common convergence condition is the minimiza-
tion of the difference between the total concentrations given
by the transport and the chemistry staggers [7, 43]. Our
residual formulation is governed by our goal of a flexi-
ble algorithm. The impact of the upscaling stagger can be
captured by the residuals independently of the model pro-
vided by the user, and the variables are always consistent.
Our formulation also directly minimizes the mass balance
error. However, computing the residuals requires an implicit
formulation. This is not a restriction for our applications.

Although the residuals are the main metric for conver-
gence, other criteria must be introduced for limit cases (e.g.,
when steady-state is reached). The complete algorithm is
presented in the code manual (see Appendix B).

2.6.3 Updating the variables

A predictor-multipredictor method is used to update con-
sistently the primary and secondary variables through the
staggers. The scope of each stagger is well defined due to
the operator splitting approach. The transport stagger only

modifies the primary variables. The chemistry stagger mod-
ifies both the primary and secondary variables. It also sets
the tertiary variables. The upscaling stagger only modifies
the upscaling parameters.

At the beginning of the timestep, the predictors are saved
from the initial condition {z}n,t+�t = {z}t , where z is a
primary or secondary variables (z = x, y). When the rate
of variation is computed in a stagger (e.g., transport stagger
and kinetic reactions), the variables are updated using the
predictors :

{z}n,t+�t = {z}0,t+�t + �t · {ż}n,t+�t (7)

where n is current iteration. When the variables are solved
directly (e.g., chemical equilibrium), the rate of variation is
updated using the backward scheme :

{ż}n,t+�t = {z}n,t+�t − {z}0,t+�t

�t
(8)

In this way, the information is complete and consistent at
every step. For each variables, at least three values must be
stored by nodes (z, z0, ż). In addition, the tertiary variables,
the upscaling parameters, fluxes, and chemistry exchange
terms must also be stored. However, as noted before, we are
interested in small 1D problems, so the memory require-
ment is not limiting. The highest resident set size measured
during a computation was 14 Mb (unsaturated system, 9
components, 19 solid phases, and 100 nodes).

2.6.4 Iterations

A timestep is solved by performing fixed-point iterations
over every stagger, as shown in Fig. 1. First, the govern-
ing (3) is solved using the transport stagger, assuming that
the chemical exchange terms are constant. Then, the chem-
ical exchange terms are computed by the chemistry stagger.
Finally, the upscaling parameters are updated in the upscal-
ing stagger. The last step is to check the convergence. The
residuals needed for this step are computed by the transport
stagger. This scheme works because the residuals are mini-
mized in the first step. Then the solution is perturbed in the
chemistry and upscaling stagger. If the perturbation is small
enough then the solution is still good enough at the end of
the iteration and, the residuals respect the convergence con-
dition (6). The meaning of “good enough” is defined by the
tolerances chosen by the modeler. Also, since the weak form
is used, only one implementation is required for the global
convergence of the coupling, and the local convergence in
the transport solver. Since a finite difference algorithm is
used to compute the Jacobian, the governing equations are
implemented only once per system.
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The initialization of the iterations is necessary for the
robustness and efficiency of the method (e.g., [27]). How-
ever, it is heavily dependent on the problem solved. For
example, using relaxed values from the previous timestep
to initialize, the system is useful to avoid negative concen-
trations. Many failures can be avoided if this algorithm is
correctly implemented. The upscaling stagger has access to
the initialization step, thus the user can apply specific rules
for his model. Readers interested in the implementation can
refer to the code for further details (see Appendix B).

2.6.5 Adaptive timestep

In variable porosity problems, the coupling is highly
dynamic. The stiffness of the numerical and physical cou-
pling varies with time. For better or worse, it results in a
change of the amount of work required to reach a given
tolerance. In nonlinear problems, especially with a user-
defined upscaling stagger, it is difficult to estimate the
required work and to adjust the parameters manually. A
method must be found to let the solver regulates itself. A
common solution is to use an adaptive timestep algorithm
to select an appropriate timestep duration [26, 36]. To drive
these algorithms, a metric is required to measure the per-
formance of the coupling algorithm. For SIA, the obvious
choice is the number of fixed-point iterations needed to
reach convergence. If the coupling strength increases, so
does the number of iterations. The adaptive timestep algo-
rithm tracks the number of iterations, and it keeps them in
a given range. If the upper limit is reached, the timestep
is decreased. Conversely, if the lower limit is reached the
timestep is increased. In the tests and examples presented
below, the range [1, 15] was found to work quite well.
To track the number of iterations, an exponential moving
average is used. A single value keeps the history of pre-
vious timesteps while smoothing out accidents. Since the
rate of variations (ẋ), rather than the variables themselves
(x), is used to drive the algorithms no special procedure
is needed to initialize the system when the timestep is
changed.

2.6.6 Restart procedure

Since the values at the beginning of the timestep are saved
in the predictors, the system can be easily restarted in case
of failures. Although failures should be avoided if possi-
ble, it might still happen if the conditions in the system
change abruptly (e.g., if the solid phase assemblage change
at the reaction front). In this case, a new timestep duration
is chosen (smaller or bigger, depending on the error). The
system is cleaned by resetting the values of variables, set-
ting the chemical exchange terms to zero, and recomputing
the upscaling parameters. Then, a new timestep is started.

2.6.7 Parallel computations

Modern computers have multiple CPUs, and efficient algo-
rithms should use them as much as possible. Operator
splitting algorithms for reactive transport are well-known
for their abilities to be parallelized since the chemistry prob-
lems for each nodes are independent [30]. The strategy
adopted should depend on the dimensionality of the prob-
lem. In our case, the main targets are small 1D problems
(∼ 100 nodes). Data transfer latency is a major bottleneck
for parallel algorithms. For these reasons, we constrain our-
selves to a single machine. Therefore, the shared-memory
multiprocessing OpenMP API [10] was chosen to imple-
ment the parallelization. It allows to perform tasks in paral-
lel in just a few lines of code, without perturbing the logic of
the main algorithms and it leaves the implementation details
to the compiler. As a consequence, running tests to find the
best parallelization strategies are easy. The impact of the
parallel computations is described in the examples.

3 Presentation of the saturated system

The formulation presented in the preceding section is gen-
eral and can be adapted to many cases describing advection,
diffusion, dispersion, . . . in one or multiphase systems gov-
erned by chemical equilibrium or by kinetics. However,
calibration and/or validation is only relevant when targeting
a specific case. Therefore, we focus on the case of the sat-
urated system. This system models the advection-diffusion
of aqueous components in a saturated porous medium. The
governing transport equation for the aqueous component i

is :

∂φC̃i

∂t
= −∇ ·

(
C̃iq − D∇C̃i

)
− ∂C̄i

∂t
(9)

The primary variables for component i are (1) C̃i , the
aqueous concentration (per unit volume of solution), and (2)
C̄i the immobile concentration (per unit volume of porous
medium). The immobile concentration is composed of both
the sorbed species and the solid phases. The only sec-
ondary variable is the porosity (φ). The pressure equation
of the liquid phase is not solved. The transport equations
for the immobile concentrations are trivial, but the immo-
bile concentrations should still be considered in the stopping
criteria. In this system, it is needed to distinguish between
apparent equilibrium, due to the chemical buffering, and
true steady-state. The system of governing equations is
solved using a vertex-centered finite volume method [29, 38]
with the upwinding scheme to solve the advection opera-
tor. A chemistry stagger for this system must compute the
aqueous speciation, the sorption of species and the precip-
itation/dissolution of solid phases. Only chemical reactions
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at equilibrium are considered in this article. By identi-
fying Eqs. (9) and (3), the chemistry exchange term for
component i is:

Rs→l
i = −∂C̄i

∂t
≈ − C̄ t+�t

i − C̄ t
i

�t
(10)

The upscaling parameters are the Darcy’s velocity (q)
and the effective diffusion coefficient (D). Any upscaling
stagger for this system must define these two parameters.
The diffusion coefficient is assumed to be the same for all
species.

A better classification for the Darcy’s velocity would
be as a simulation input parameter since we do not solve
explicitly the pressure equation. However, including it in
the upscaling stagger allows space and time dependence
without any supplementary cost in the implementation. In
addition, since both parameters are set in the upscaling
stagger, the diffusion term can model dispersion too. In
this case, the equivalent effective diffusion coefficient is
a function of the Darcy’s velocity and the dispersivity α,
D = α|q|. The effective diffusion coefficient includes
all effect of the porosity. The more common formulation

∇
(
φD̃∇C̃

)
is not used in this work for two main reasons:

(1) our formulation matches the common empirical laws
used in the cement and concrete community and (2) the
modeler can distinguish between the different porosities, for
example, the connected and non-connected porosities, in the
upscaling stagger.

This system is used in the examples presented in the next
two sections.

4 MoMaS reactive transport benchmark

4.1 Context

The MoMaS research group developed a reactive transport
benchmark to compare the performance and accuracy of
reactive transport simulators [9]. We use this benchmark
to demonstrate the correctness and efficiency of our algo-
rithm. Although each test cases tried are presented here, we
refer the readers to the original publication [9] for the full
description of the benchmark. The results are presented in
Carrayrou et al. [8] and in the following individual con-
tributions [6, 21, 26, 36]. The solutions are compared to
a reference solution found by increasing the number of
nodes and decreasing the timestep until convergence [6]. No
analytical solution nor experimental data is available.

Three cases, named easy, medium, and hard cases, exist
in the benchmark. Only results from the 1D easy test case
are presented in this paper. Since this benchmark is arti-
ficial and cannot be compared to analytical solution or
experimental data, we preferred to present real test cases

to show the properties of our simulator in real-life applica-
tions. These effects and their importance are discussed in
the next section. In this section, we first provide a presenta-
tion of the benchmark then the results for the two sub-cases
are discussed.

4.2 The benchmark

The benchmark is unitless. The 1D easy test case includes
four components (X1 to X4), one sorption site (S), five sec-
ondary aqueous species (C1 to C5), and two sorbed species
(CS1 and CS2). The sample of length L = 2.1 is initially at
equilibrium with a solution of X2 and X4. At time t = 0, a
solution containing X1, X2, and X3 is injected at x = 0. At
time t = 5000, the system is flushed with a solution con-
taining X2 and X4. The sample is inhomogeneous. Between
x = 1 and x=1.1, the material is more porous (φ = 0.5
instead of φ = 0.25) but less permeable (K = 10−5 com-
pared to 10−2). The concentration of surface sorption site is
also greater (S = 10 instead of S = 1).

In addition to the advective flux, dispersion is also con-
sidered. In the 1D problem, the flow field is not modified
during the experiment. Therefore, the dispersivity coeffi-
cient is constant with time, and the dispersivity term is
mathematically equivalent to a diffusion term. As a con-
sequence, our saturated system is equivalent to the one
presented in [9]. The benchmark can be modeled with our
saturated system and its equilibrium chemistry stagger. For
the advective case, the dispersivity between x = 1 and
x=1.1 is 6 × 10−2, and it is 1 × 10−2 elsewhere.

Although this exercise is artificial and called easy, it
presents many of the difficulties of real problems such as
appearing or disappearing components (due to the injection
and flushing fluxes), inhomogeneous mesh, large range of
equilibrium constant. . . However, the ionic strength model
and the solid phase equilibrium are not tested. In these tests,
it is especially interesting to compare our performance to
HYTEC [26], the other code of the benchmark based on
iterative operator splitting, and SPECY [6] which uses a
non-iterative operator splitting algorithm. The other codes
use a global-step approach [8].

For a better comparison, a normalization method for
the CPU time was introduced [9]. The normalization pro-
cess involves a matrix-matrix multiplication. Many methods
exist to implement the multiplication. Given the reference
value of 12.3 s, the straightforward way was assumed. On
the two computers used during the tests, the results are
(1) 8.3 s (Intel® Core™ i7-3612QM (8 cores) used for
development) and (2) 8.4 s (Intel® Xeon® CPU X5550 (8
cores) used for the long tests). When the normalization was
implemented using the Eigen library [19], this time drops
to approximately 0.2 s and drops further to 0.06 s when
OpenMP [10] is enabled. It shows that the first step to
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optimize a code is to use a powerful linear algebra library
which can use the features of modern CPUs. ReactMiCP is
implemented using Eigen [19].

Two sub-cases are defined depending on the relative
values of the advective and dispersive fluxes. The next
subsections present the results for both cases.

4.3 Advective case

4.3.1 Accuracy

As suggested by the name, advection is the dominant trans-
port phenomena in this case. The solution is characterized
by a relative sharp reaction front moving through the mesh.
In the original benchmark, the accuracy of the simulators
is tested using the concentration of free sorption sites at
time t = 10.0 [9]. The Figs. 2 and 3 present a comparison
between our results and the reference solution provided. Our
solution is similar to the reference solution and in the range
of the solutions presented in [8, Fig. 5].

Accuracy is quantified by the amplitude and position of
the first peak of free sorption site (Fig. 3). This peak is
delayed from the advection front due to the chemical equi-
librium buffering. In our tests, for �x = 0.001 the first peak
is at x = 0.0175, as close as possible to the reference value
of x = 0.0174 [8, Table 4] due to the resolution. However
the amplitude is lower (0.692 instead of the expected value
of 1.0). Most implicit numerical scheme to discretize the

Fig. 2 Concentration profiles of solid component S at time 10 for the
MoMaS benchmark 1D easy advective test case. Reference curve is
from Carrayrou et al. �x = 0.002 [8]

Fig. 3 Concentration profiles of solid component S at time 10 for the
MoMaS benchmark 1D easy advective test case. Zoom on the first
peak. Reference curve is from Carrayrou et al. �x = 0.002 [8]

advection operator introduce numerical diffusion ([29]). A
common solution is to use explicit high order methods (e.g.
[28, 29] and to be at the optimum timestep. This optimum
timestep is given by the Courant-Friedrich-Levy criterion
(CFL) [29] :

CFL = u�t

�x
(11)

where u is the pore velocity. The optimum timestep is for
CFL = 1.0. However due to the coupling with the chemistry
operator, the optimum timestep for the advection operator
does not lead to a stable scheme and a lower timestep must
be used. The reference solution was computed with CFL =
1 × 10−2 [6].

4.3.2 SIA / SNIA comparison

Since our simulator uses the predictor-multicorrector
method, we are able to choose between an explicit and
implicit scheme, and an iterative or non-iterative algorithm.1

Figures 4 and 5 present the results of these simulations.
Figure 4 shows the amplitude of the first peak as function of
the CFL criterion (For �x = 0.001). Figure 5 presents the
normalized CPU time for the same simulations. The explicit
point corresponds to the maximum timestep for which the
system is stable in our formulation (CFL = 1.1 × 10−2).
Using such a small timestep leads to a high execution time
as shown in Fig. 5 (× 4.2 the CPU time needed by the

1SIA is only available with the implicit scheme.
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Fig. 4 Amplitude of the first
peak of the concentration of free
sorption site at t = 10 as function
of the CFL criteria for the
MoMaS benchmark 1D easy
advective test case. S(N)IA:
sequential (non-)iterative
algorithm. �x = 0.001
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adaptative timestep algorithm). A longer timestep can be
used with the implicit solver. Thus, it decreases the overall
amount of work needed to solve the system. As the timestep
increases, the SNIA solutions requires less and less time.
However, the amplitude is not stable and it increases with
the timestep. Although the solution becomes closer to the
reference solution, we interpret this variation as instability.
A good numerical solution should be as invariant as possible
of the timestep. This is a requirement for the implemen-
tation of an adaptive timestep algorithm. SIA offers this

guarantee as seen on Fig. 4. It should be noted that even
with the implicit scheme, the maximum timestep is such
that CFL < 1.0. Higher timestep is usually not numerically
stable.

Figure 5 also demonstrates that no cheating is possible.
The same amount of work is required for all timestep dura-
tions to obtain the same quality of solution. The amount of
work is governed by the stiffness of the coupling, which
is related to the disequilibrium caused by the transport.
For the iterative algorithm, increasing the timestep implies

Fig. 5 Normalized CPU time
until t = 10 as function of the
CFL criteria for the MoMaS
benchmark 1D easy advective
test case. �x = 0.001.CFL = 1
corresponds to �t = 0.0455
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increasing the number of fixed-point iteration. This relation
leads to a stable total execution time with respect to the
timestep for the iterative algorithm. Figures 4 and 5 form a
very strong argument in favor of using an iterative sequen-
tial algorithm instead of the non-iterative approach. Only a
SIA solver guarantees a consistent solution across all nodes
and all timesteps. In the next examples, it is the only solver
used.

In addition, it should be noted that the amplitude of
the peak depends strongly on the space discretization. The
results presented are for �x = 0.001. Figure 3 presents the
results for �x = 0.002 and the amplitude of the peak is
only 0.495. Due to the lack of analytical solution, or exper-
iments, we can only assert that our results are sufficiently
close to the solutions obtained with the other simulators.

4.3.3 Efficiency

Obtaining a good answer is the first step, but obtaining
it quickly is better. Figure 6 shows the normalized CPU
time of ReactMiCP compared to the results presented by
Carrayrou et al. [8]. The execution time from ReactMiCP is
in the range of the other codes. In particular, it is faster than
HYTEC [26] and similar to MIN3P [36]. The slope is also
similar to the other code : CPUtime ∝ N2.30

cell . In the bench-
mark [8], these slopes range from 1.81 (GDAE1D) to 2.62
(HYTEC). These values are an indication of the complexity
of each coupling algorithm and the relative complexity of
the transport and chemistry solvers. The quadratic behavior
prohibits very fine mesh and highlights the need for a solver
to be able to solve accurately coarser meshes. This is another

argument for using an iterative solver. Figure 6 also displays
the effect of the parallelization. Parallel computing is imple-
mented by some of the other reactive transport solvers, but
this feature was disabled for the benchmark. Therefore, only
ReactMiCP results are provided. Without OpenMP, 67 % is
spent in the chemistry stagger and 30 % in the transport stag-
ger. When OpenMP is enabled, the trend is inverted: 28 %
for the chemistry and 68 % for the transport. Due to the
importance of the serial transport stagger, the speed up is
relatively small. This is not a common case, the chemistry
stagger is usually more expensive, even where OpenMP is
enabled, so the parallelization becomes more efficient.

4.4 Dispersive case

In the dispersive case, the magnitude of the dispersion is
increased by a factor 1000, making dispersion the domi-
nant transport phenomena [9]. Operator splitting methods
are supposed to be less efficient for this test case according
the original comparison [8]. Since the dispersivity is high,
more nodes are perturbed. Therefore, the coupling is stiffer
and more iterations are required (e.g., see [Fig. 15] [26]).

However, due to the care taken on the chemistry solver
and its integration, our implementation proved to be quite
efficient as shown by Figs. 7 (accuracy) and 8 (execution
time). Figure 7 presents the elution curve of species C2 as
function of time, as presented in the original publication
[8]. SPECY uses an explicit SNIA algorithm and therefore
do not control the error as seen on Fig. 7. As a conse-
quence, small timesteps and a fine mesh are required to
keep the error sufficiently small, leading to high execution

Fig. 6 Normalized computing
times as a function of
discretization for the MoMaS
benchmark 1D easy advective
test case. Results of the other
codes are from Carrayrou et al.
[9]
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Fig. 7 Elution curve for species
C2 at x = 2.1 for the MoMaS
benchmark 1D easy diffusive
test case. Results of the other
codes are from Carrayrou et al.
[9]
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times. Also, the fixed timestep does not adapt to the differ-
ent characteristic times of the injection and leaching steps.
The difference between the execution time of HYTEC and
ReactMiCP highlights the need for a very efficient chem-
istry solver. Indeed, the chemistry solver has a large impact
on the simulation. In this test case, the solver spends in aver-
age 80 % of its time in the chemistry stagger (40 % when
OpenMP is enabled). Therefore, it is important to keep the
overhead as small as possible. This is why ReactMiCP is

built has a collection of modules that can be customized and
interfaced together in a very efficient way. The slope of the
normalized CPU time with respect to the log of the number
of cells is similar to the other codes and the advective case,
with CPUtime ∝ N2.17

cell (Fig. 8).
Using the MoMas benchmark, we demonstrated the cor-

rectness and efficiency of ReactMiCP for this special case.
However, these problems are artificial, and we need to
guarantee these properties on real life problems.

Fig. 8 Normalized computing
times as a function of
discretization for the 1D easy
diffusive test case. Results of the
other codes are from Carrayrou
et al. [9]
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5 Cement paste simulations of laboratory
experiments

In this section, we present some simulation results relevant
to cement pastes. We use previous experimental works to
validate our simulator and test its performance and sensitiv-
ity.

The thermodynamic database used in this section is
the CEMDATA’07 database [31, 35] developed for cement
applications. It is based on the Nagra-PSI database for the
aqueous species [23]. No solid solution model is included
in SpecMiCP; therefore, only the end-member compositions
are taken into account. The basis used in the computations
is H2O, HO−, Ca2+, SiO(OH)−3 , Al(OH)−4 , Fe(OH)−4 , Cl−,
K+, and Na+.

5.1 Leaching in pure water

5.1.1 Presentation of the problem

Leaching is an experiment where a sample of cement paste
is dissolved in a bath of undersaturated water [15, 33].
The solid phases are dissolved progressively, increasing the
porosity in the leached area and leading to further damages
in the sample [15, 33]. This is one of the simplest simula-
tion for cement paste since no new component is introduced
to the system.

In this section, we use the data from Mainguy et al. [33].
In this paper, the authors present both experimental data and
a simplified reactive transport model where only the amount
of calcium is taken into account, as a proxy for the entire
state of the material. They obtain a good agreement between
the model and their data [33]. The objective of this section
is to reproduce both the experimental and the simulation
results with a complete reactive transport model. Although
more computationally expensive, a complete model pro-
vides more information especially about the chemistry. Such
insight is important when distinguishing mechanisms and
when extrapolating experimental data.

The cement paste samples were prepared from OPC
cement with a water to cement ratio of 0.4 [33]. They
were cured under lime-saturated water for 6 months. Then
the samples were immersed in water maintained at pH
7 by addition of nitric acid. The total loss of calcium
were recorded [33, Fig. 2]. Reaction fronts propagates into
the samples [33, Fig. 1]. These fronts are caused by the
dissolution of cement paste in contact with the acid solution.

The initial conditions used in the simulation were
obtained by hydrating the OPC oxide composition given
in [33, Table 1]. Since the samples were cured, complete
hydration is assumed. Then, the volume fraction of solids
were scaled in order to obtain a total concentration in cal-
cium equal to the reference value of 15,000 mol.m−3. The

final porosity of the system is φ = 29.5 %, higher than
the reference value of 25 %. The molar volumes used to
compute this value are those given by the CEMDATA’07
database [31]. We note that this value is the total porosity
including the non-connected porosity. The correct determi-
nation of the transport properties should include a correction
to only take into account the effective porosity [3]. A 1D
axisymmetric mesh is used to represent the experimental
samples of cylindrical shape (diameter d = 7 cm). The
pH at the boundary condition is fixed at 7 to simulate the
experimental conditions.

The advection velocity is set to 0. The effective diffusion
coefficient is given by the following exponential law [33] :

De = exp (9.95φ − 29.08) (12)

if φ < 0.92, else De = 2.2 × 10−9 m2 s−1, the diffusion
coefficient in water [33]. In practice, the porosity is not
higher than 0.6 in the original publication since it is assumed
that the amorphous silica gel does not dissolve in the time-
frame of the experiment [33]. As shown by Dove et al. [12],
the kinetics of dissolution of the silica gel are slower than
expected and it still exists even if the thermodynamic model
predicts its dissolution. In the profiles at 25 days (9), we
see that the pH is too high to allow for the precipitation of
the silica gel. In the experiment, the pH was maintained at
neutrality with the addition of nitric acid. Without the amor-
phous silica gel, the total loss of calcium is 2.5 times higher
than the experiments. To model the gel, the coefficient of
diffusion is taken as the minimum between the exponential
law and 1 × 10−10 m2 s−1. This value is close to the max-
imum value allowed in the original model for a porosity of
0.6 [33]. To force the precipitation of silica gel, silicates may
be added in the boundary conditions. However, in our sim-
ulations, these boundary conditions lead to the clogging of
the pores due to the mass precipitation of tobermorite at the
surface of the sample.

5.1.2 Results

Figure 9 presents a typical profile of solid phases obtained
by our simulator. The profile is a succession of reac-
tion fronts where the solid phases dissolve one after the
other. The first phase to dissolve is the portlandite. The
pH is maintained high (>12) in the core of the sample but
decreases in contact with the bath.

The solutions obtained (Fig. 10) are close to the value
of the experiments and the model of Mainguy et al. [33].
This figure presents the cumulative flux of calcium lost by
the sample. If this amount is closer to the experimental data
than the simplified model, the degraded depth is lower at 90
days: 1.23 mm against the value of 1.45 mm for the experi-
ment [33, Table 2]. The differences may be explained by the
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Fig. 9 Solid phase and pH
profiles for the leaching
problem at 25 days. Maximum
space discretization is
�x = 25 μm. Results obtained
with a non-uniform mesh,
crosses on the pH curve indicate
the position of the nodes
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different relationships between the total aqueous concentra-
tion of calcium, the total solid concentration of calcium, and
the porosity. It is investigated further below.

The short-term behavior is highly dependent on the mesh
size. Figure 11 shows the total loss of calcium for differ-
ent space discretizations. A very fine mesh (�x = 5 μm) is
required to study the short term behavior. From the physi-
cal point of view, it may be smaller than the representative
elementary volume. For the coarser mesh (�x = 50 μm),
the time to obtain a linear slope is the time to dissolve the
portlandite in the first cell. The complete dissolution of port-
landite induces a decrease of the total aqueous concentration

of calcium in the first cell, and it creates a gradient of con-
centration of calcium inside the material. when the first node
is depleted of calcium, a pseudo-stationary flux is obtained
and its amount is governed by the damaged area of the
sample. As a consequence, after the dissolution of the first
cells, the slope of the leaching curve are similar for all sim-
ulations, about 1.15 molm−1 s−1/2. This value is mainly
dependant on the diffusion coefficient Eq. 10. Finer meshes
require more work and lead to many numerical difficulties.
One way to solve the problem is to use a non-uniform mesh,
with finer cells at the surface of the material and larger
cells at the core of the samples. The results for such a mesh

Fig. 10 Leaching curve as
function of the upscaling law.
Experiments data is from
Mainguy et al. [33]. Inset layer
represents the coefficient of
diffusion as function of the
porosity. The mesh size was
�x = 10 μm D
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Fig. 11 Leaching curve as
function of the space
discretization. Experiments data
are from Mainguy et al. [33].
Inset layer is a zoom at short
term. Execution times are
presented in Table 1. The
non-uniform mesh contains cells
from 5 to 50 μm
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is presented in Fig. 11. The non-uniform mesh starts with
cells of 5 μm and end with cells up to 50 μm. The solution
obtained with this mesh is less accurate than the 5 μm mesh
but is still acceptable and is 32 times faster (see Table 1 and
Fig. 11). To take full advantage of the non-uniform mesh
an adaptive timestep algorithm is required, otherwise, the
timestep would be governed by the smallest cell for the
entire duration of the computation.

5.1.3 Influence of the simulation parameters

Table 2 tabulates the sensitivity of the solution to the initial
condition. When the solid concentration of calcium is lower,
the porosity is higher. Therefore, the coefficient of diffusion
and the leaching flux are higher. This is in partial disagree-
ment with the results presented by Mainguy et al. [33, Table
4] because they considered that the parameters where inde-
pendent in their sensitivity analysis, so the porosity had no

Table 1 CPU time for the leaching simulation until t = 25 days as
function of the mesh discretization. Non-uniform mesh contains cells
from 5 to 50 μm

Cell size (μm) CPU time (s)

50 28

25 108 (×3.9)

10 440 (×16)

5 2149 (×76)

Non-uniform 67 (×2.4)

Corresponding leaching curve are presented in Fig. 11

feedback on the concentration of calcium. In their study, the
most influencing parameter is the porosity, due to the diffu-
sion coefficient exponential law. The effect of the diffusion
law can be easily tested due to our formulation. We replaced
this law with the common power law

De = De,0

(
φ − φr

φ0 − φr

)m

(13)

where φ0 = 0.25, φr = 0.02, and De,0 = 2.76 ×
10−12 m2 s−1 is the value given by the exponential law for
φ = φ0. The results are presented in Fig. 10. The exponen-
tial law and the power law with m = 3.32 give very similar
answers. The value of 3.32 was chosen to be close to the
first law and to agree with the next section and Huet et al.
[22]. The two laws are very similar in the range 0.25–0.5.
For higher porosity, they are also similar since the effective
diffusion coefficient is capped at De = 1 × 10−10 m−2 s−1.
When no maximum is imposed for the power law, the

Table 2 Leaching : flux of calcium for different initial solid concen-
tration of calcium

Calcium concentration Initial Calcium flux

(mol.m−3) porosity molm−2 d−1/2

15000 29.5 1.095

14500 −3.33 % 31.9 1.131 +3.29 %

15500 +3.33 % 27.2 1.059 −3.29 %

16000 +6.67 % 24.8 1.025 −6.39 %

Results obtained with a mesh discretization of �x = 10 μm
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amount of calcium lost is higher, but not 2.5 times higher as
the exponential law due to the shape of the power law. When
the exponent m is higher, the flux of calcium is higher;
when the exponent is lower the amount of calcium leached is
lower. These variations are important and highlight the need
for a representative effective diffusion coefficient model. In
particular, the gel diffusivity is important since the diffusion
through the amorphous gel is the driving phenomena for the
leaching. It should be noted that using a single law for the
three areas (silica gel, damaged paste, and core) is prob-
ably not representative of the changes in connectivity and
pore shapes that occur during the experiment. Being able
to incorporate complex upscaling laws to model the system
is a step towards quantitative prediction; our three staggers
approach are the steps toward reaching this goal.

This test shows that ReactMiCP is able to solve the leach-
ing problem correctly, and it is robust with respect to the
simulation parameters. The semismooth approach and the
work done to optimize the solver allows us to be very effi-
cient, solving 25 days in less than an hour, even for fine
mesh. The conclusion to take out of this test is that the trans-
port properties have the most impact on the solution, and it
should be chosen carefully. These properties depend mainly
on two independent variables, the total concentration of cal-
cium (or the Ca/Si ratio) and the porosity [5]. Also, the mesh
has to be very fine and requires a speciation solver which
scales well.

5.2 Leaching in CO2-rich brines

5.2.1 Presentation of the problem

This set of simulation is similar to the previous one except
for the inflow of CO2 in the sample. CO2 acidifies the pore
solution. It also reacts with calcium to precipitates as calcite.
The precipitation may result either in clogging of the pores
or in accelerating the degradation process [40].

The simulations of this problem provide more demon-
stration of the correctness and efficiency of our code. In
particular, it gives some results about the stability with
respect to the chemistry modeling choices and a simple
profiling, i.e., analysis of the performance, of the code.

Duguid and Scherer [13] presented experiments of leach-
ing in CO2-saturated water of cement paste samples. Huet
et al. [22] developed a reactive transport model for one of
this experiment, where the cement paste sample is subjected
to sandstone-like condition, at pH= 3.7 (adjusted with
H2CO3) and T= 25◦C, (T= 20◦C in the experiments) [22].
The sample is a cylindrical shape of diameter d = 7 cm
obtained by hydration of a class H cement paste [13]. The
final porosity is φ = 0.4. Huet et al. used a global step
approach to solve the problem [22]. In this section, we run
the same simulation with our simulator.

The thermodynamic database and the effective diffusion
coefficient law are the main differences in the previous and
this set of simulations as further explained below.

Huet et al. [22] used a modified version of the EQ3/6
database [49] while we used the CEMDATA’07 database
[31]. In our version, less secondary species are included and
different solid phases may precipitate. No iron nor mag-
nesium are included in the simulation at first. The iron is
assimilated to the aluminum since it forms similar solid
phases [11]. The effect of iron is further discussed below.

The effective diffusion coefficient law used by Huet
et al. [22] is a standard power law (13) at low porosity.
However, for φ = 0.7, the diffusion coefficient is set to
n × 2 × 10−10 m2 s−1 (n ∈ [1, 2, 4]). The main problem
is that this law is not continuous and may lead to conver-
gence problem, especially for an iterative operator splitting
solver. Instead, we used the same upscaling law as for the
pure water leaching simulation. The impact of the diffusion
coefficient is discussed below and in the original publication
[22].

5.2.2 Results

Figure 12 presents the profiles of solid fraction as function
of the radius. The four layers defined in the experiments
[13] and the simulations [22] are also visible here and are
denoted by the roman numerals on the figure. The four lay-
ers are (I) non-damaged sample; (II) C-S-H layer, where the
portlandite is dissolved; (III) carbonated layer, where cal-
cite is the predominant phase; and (IV) an amorphous gel
primarily composed of silica and aluminum. The silica gel
does not span the entire length of the fourth layer unlike the
previous results [22]. Adding silicates in the boundary con-
dition can reduce the dissolution of amorphous silica at the
outer edge of the sample while conserving a similar profile
in the core [22]. The pH curve is also represented in Fig. 12.
As expected the pH is high in the core of the sample but
low in the carbonated and the gel layers. The drop occurs
in zone (II) and (III) where the carbonation takes place. The
total concentration of HO− approximately follows a linear
profile in the amorphous gel.

Figure 13 compares the diameter of these layers to the
experimental values [13]. For this simulation, the initial
porosity was matched to the initial experimental porosity of
47 %. In the original simulation, the porosity was 40 %;
they respected the initial composition more closely [22].
The porosity and the total concentration in calcium are two
independent variables [5] and a choice must be made. It was
observed that the numerical solution is closer to the experi-
ments when the porosity is matched. It is another indication
that a better modeling of the microstructure is required
and that our three-staggers operator splitting approach is
relevant for these problems.
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Fig. 12 Leaching in
CO2-saturated water simulation.
Solid phases and pH profiles at
30 days, with
De,max = 1 × 10−10 m2 s−1 .
Results were obtained with
�x = 50 μm and straetlingite
and thaumasite are disabled
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As in the leaching case, the front tracking is only approx-
imate. If the gel and calcite layers are roughly represented,
the dissolution of the portlandite is not correct. A better
match can be obtained by modifying the upscaling law (see
Fig. 15). The mismatch is probably not due to the kinetic
of dissolution since the experimental fronts are sharp [13],
indicating a local equilibrium. However, it may be due to
the kinetics of precipitation of the new phases which may

not be at equilibrium at T= 25◦ [39]. It may also be due
to an error of prediction of the relative volume fractions
of the solid phases, in particular for the portlandite and
the C-S-H. Another possible reason is that it is supposed
that every component has the same diffusion coefficient. In
practice, some species migrate faster. However, it is already
quite difficult to fit one upscaling law, one upscaling law
per component does not seem reasonable. Therefore, the

Fig. 13 Leaching in
CO2-saturated water simulation.
Comparison of the simulated
and experimental degradation
depths for the saturated
carbonation simulation. Results
were obtained with
�x = 25 μm. Experimental
values were initially reported by
Duguid and Scherer [13] Initial
porosity of 47 %. The double
arrows present the extent of the
layers in the experiment
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Fig. 14 Leaching in
CO2-saturated water simulation.
Effect of the components and
solid phases included in the
thermodynamic database for the
saturated carbonation
simulation. Profiles of the
porosity and the pH at 30.0
days. Results were obtained
with �x = 50 μm and
De,max = 1 × 10−10 m2 s−1
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discrepancy between the experiments and the simulation is
more a modeling problem that a numerical issue and does
not invalidate our solver.

5.2.3 Influence of the database

The database used in this work is different from the pre-
vious study. Therefore, the set of solid phases is different.
To investigate the impact of this choice on the simula-
tion results, we run a simulation where the precipitation of

straetlingite were disabled and another simulation where the
speciation of iron is included. Few perturbations is expected
since aluminum and iron are minor species, and they form
similar phases in cementitious materials [11]. Figure 14
shows the results of this experiment. The main conclusion
is that the differences are very small and mainly located
in area (II) (portlandite dissolution) and (III) (calcite layer)
where the carbonation takes place. The iron does not intro-
duce any major perturbation. Although the inclusion of iron
seems to slightly delay the front, it should be noted that

Fig. 15 Leaching in
CO2-saturated water simulation.
Effect of the effective diffusion
coefficient law. Profiles of the
porosity and the pH at 30.0
days. Results were obtained
with �x = 50 μm
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the uncertainty linked to the diffusion coefficient law is
higher. A change of the gel diffusivity has more impact on
the carbonation depth has shown in Fig. 15. The removal
of straetlingite is even less significant for a finer mesh.
However, for very fine mesh, the precipitation of calcite,
thaumasite, straetlingite, or ettringite may clog the poros-
ity and stop the carbonation process. This was observed for
a fine mesh (�x ≤ 10 μm). Disabling the precipitation
of straetlingite and thaumasite only delay the apparition of
this problem. No reference solution could be obtained, and
the damaged depths are slightly dependent upon the mesh.
However, once again the uncertainty of the diffusion coef-
ficient has a higher impact than the mesh dependency. Nev-
ertheless, this set of simulations demonstrates the numerical
stability of our solver. It also demonstrates the relevance of
our flexible simulator for cement pastes.

5.2.4 Profiling

For this problem, ReactMiCP is also quite efficient. It solves
the problem in 12 to 18 min for 50 μm cells (76 cells) and
for a simulated time of 30 days. As a comparison, the global
step solver [22] take approximately 6 h to solve the same
problem with �x = 75 μm ( 50 cells). As before, a very
efficient speciation solver makes the difference since the
solver spent 60 (with OpenMP on 8 cores) to 95 (without
OpenMP) % of the total execution time in the chemistry
stagger (see Fig. 16).

To analyze the impact of the semismooth approach, a
rudimentary profiling was run using Valgrind with the Call-
grind tool [47]. The profiling was executed with a 50 μm
mesh and with OpenMP disabled. The semismooth refor-
mulation is not as computationally expensive as it may

seems. The computational power is mostly used to form and
solve the chemistry system (60 % of the estimated CPU
cycles). However, only 1.5 % of the computation is spent
reformulating the Jacobian and the residuals. The aque-
ous solution non-ideality model is another important part
of the computation (25 %). Simplified benchmarks such as
the MoMaS benchmark may fail to represent accurately the
relative performance of reactive transport simulators in real-
life problems. The non-ideality model is expensive because
it is called many times and includes many power and expo-
nential computations. Modern hardware which provides
more advanced instruction sets for floating point computa-
tions (e.g., AVX or AVX2) does provide a non negligible
performance gain.

Indeed, the choice of the logarithm of the molalities as
the main variables has a significant impact on the computa-
tional efficiency. Twenty-four percent of the estimated CPU
cycles is spent calling the power and exponential functions.
For comparison, 26 % of the CPU cycles is used to invert
the chemistry system and 5 % is spent solving the transport
problem. It is good that much of the computational power
is spent on actual computation rather than on bookkeep-
ing. Nonetheless, it highlights the cost of the logarithms of
the molalities rather than the molalities themselves as main
variables for the speciation solver. However, as discussed
through this paper, robustness is an important part of effi-
ciency. The logarithms allow the system to be more resilient
to the large range of molalities. A basis where some com-
ponents are not the dominant species can also be used. In
the traditional algorithm, the basis is regularly changed and
can be adapted to the problem [4, 37, 48]. With the comple-
mentarity approach, this is no longer required. However, in
the course of a reactive transport simulation, the conditions
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may change dramatically, and the initial basis may become
sub-optimal. The logarithms and the scaling help to reduce
the impact of a poor basis and remove the need for basis
switching.

As stated earlier, using OpenMP accelerates the com-
putation with a minimal impact on the code. Figure 16
presents the effect of the number of OpenMP threads on
the computation for two meshes. As the number of threads
increases, the percentage due to the transport stagger also
increases, but the chemistry stagger is always more expen-
sive (> 60 %). The speedup is significant but it is less than
the theoretical prediction given by Amdhal’s law [1]

Speedup(s) = 1

(1 − p) + p
s

(14)

where s the number of threads and p is the percentage of
time spent in the parallelizable section when s = 1. This is
due to the bookkeeping introduced by OpenMP, and the fact
that the chemistry problems are inhomogeneous since most
of the difficulties are concentrated at the leaching front.

6 Summary and Conclusion

ReactMiCP, a reactive transport simulator, is introduced. Its
main features are :

1. It is based on the operator splitting method, using
a sequential iterative algorithm. The convergence is
checked using the residuals of the governing equations
compared to the initial perturbation.

2. Three staggers are defined: transport, chemistry, and
upscaling. The operator splitting method separates the
staggers into self-contained modules.

3. The transport stagger defines and solves the govern-
ing equation of the system. Different chemistry staggers
and upscaling staggers can be used with the same
transport stagger to adapt the simulation to the problem.

4. The chemistry stagger solves the chemical reactions
driving the system back to local equilibrium. The imple-
mented chemistry staggers use SpecMiCP, a semis-
mooth speciation solver. We demonstrated that its effi-
ciency and robustness properties are important in the
context of reactive transport.

5. The upscaling stagger computes the macroscopic
parameters from a model of the microstructure. It can be
customized to adapt the simulation to the user specific
problem.

The correctness and efficiency of the algorithms and
their implementation were demonstrated using the MoMaS
benchmark and two sets of cement paste simulations. Our
simulations are able to provide solutions similar to previous

simulation [8, 22, 33] and/or to match the experimen-
tal data [13, 33]. Quantitative predictions are limited by
our knowledge of the microstructure and available models
and data. We believe that the flexibility offered by React-
MiCP will give modelers new methods to investigate these
problems and to develop new quantitative upscaling mod-
els. To test these models, efficient numerical tools are a
key requirement. The performance of ReactMiCP on the
MoMaS benchmark is good, but more importantly, real-life
simulations of saturated cement paste leaching were solved
in less than an hour for a simulated time of thirty days.

More results and discussions concerning cement paste
leaching will be presented in a future paper [18]. In partic-
ular, the mechanisms will investigated, and more complex
models are introduced making full use of the upscaling
stagger.
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A SpecMiCP enhancements

The first tests using SpecMiCP[17] in our reactive transport
simulator highlighted some weaknesses due to the mathe-
matical formulation of the problem. This section describes
the modification made to SpecMiCP in order to resolve
these problems and to improve the code. The main changes
are the introduction of intensive main variables and the scal-
ing of the main equations. In the process, gaseous species
and sorbed species were added to the system. Also, mod-
eling constraints such as fixed-fugacity gas, or saturated
samples were implemented to allow more flexibility for the
modeler. However, the main features of the solver remain
mostly unchanged, and we refer the reader to the original
publication for further information.

The first tests of the reactive transport solver revealed
that the mesh should be very fine in order to obtain a good
solution (e.g., see Section 5.1 and Fig. 11). The previous
system used extensive variables: the mass of water and the
mole number of solid phases. As a consequence, it scaled
badly and failed for fine meshes. To remove this depen-
dency to the mesh discretization, all primary variables were
switched to intensive variables. In the new system, the main
variables are the volume fraction of water (ϕw), the vol-
ume fractions of each solid phases (ϕm), and the logarithm
of the molalities of each component xi = log10(bi). The
volume fractions are good variables since they are natu-
rally contained between 0 and 1. The downside is that they
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introduce physical parameters into the mass conservation
equations, such as the density of liquid water (ρw) or the
solid phase molar volumes (V̄m). It is a drawback since they
may be difficult to characterize, especially for amorphous
or poorly crystallized phases like C-S-H [45]. Nevertheless
these parameters are already needed in a reactive trans-
port code. They are used to compute the porosity and the
effective transport properties of the porous media.

In addition, the equations are now scaled when an obvi-
ous scaling factor exists. For example, the local mass con-
servation equations are scaled by the total concentration of
the corresponding component. This new choice of variables
and the scaling allow to temporarily switch off some of the
safeties described in [17] (non-monotone linesearch, pertur-
bation of the Jacobian, descent condition, . . . ). Depending
on the problem disabling some of these options may allow
faster and easier convergence. The scaling introduced in this
version is only for the residuals, the scaling of the Jacobian
described in the previous paper can still be applied. It may
be important since it avoids failures when the components
in the basis are not dominant in the system.

The local mass conservation equation of water is now :

Cw = ρwϕw

⎛

⎝ 1

Mw

+
Naqueous∑

j=1

νjwbj

⎞

⎠ + ρwϕw ·
Nsorbed∑

s=1

νswss

+
Nmineral∑

m=1

νmw

ϕm

V̄m

+
Ngas∑

h=1

νhwϕg

fhPg

RT

(15)

where Cw is the total concentration of water (in number
of moles per volume), bi are the molalities of the compo-
nents, and bj are the molalities of the secondary species.
νkj denotes the stoichiometric coefficient of component Ai

in the reaction of species Ak . From left to right, the term
of the right hand side corresponds to the total aqueous con-
centration, the total sorbed concentration (see below), the
total solid concentration, and the total gaseous concentra-
tion (see below). Similarly, the total concentration for an
aqueous component i is replaced by:

Ci = ρwϕw

⎛

⎝bi +
Naqueous∑

j=1

νjibj

⎞

⎠ + ρwϕw ·
Nsorbed∑

s=1

νsiss

+
Nmineral∑

m=1

νmi

ϕm

V̄m

+
Ngas∑

h=1

νhiφg

fhPg

RT

(16)

The complementarity condition for the solid phase Am is
now

ϕm ≥ 0, − SIm ≥ 0, and − ϕmSIm = 0 (17)

where SIm is the saturation index of the mineral :

SIm = log �m, �m =
∏Nc

i=1 a
νmi

i

Km

(18)

Two new terms appear in the local mass conservation
equations: the total gaseous concentration and the total
sorbed concentration. Gaseous species are included in the
program to model unsaturated samples. Since there is very
few evidence of change in the gas pressure inside cement
paste or concrete samples under usual conditions, a constant
gas pressure (Pg) is assumed throughout the computation.
In addition, the gases are assumed ideal. These assump-
tions greatly simplify the computation since only two cases
are possible: (1) the fugacity of the gaseous species is not
fixed; in this case, it is treated as a secondary species and
it’s fugacity is given by Eq. 19, or (2) the fugacity of the
gaseous species is fixed, and in this case, the mass conserva-
tion equation for the corresponding component is replaced
by the equation giving the fugacity :

fh =
∏Nc

i=1 a
νji

i

Kh

(19)

If this corresponding component is charged, then the elec-
troneutrality needs to be enforced. The mass conservation
equation of another charged component is replaced by the
charge balance equation :

0 =
Nc∑

i=1

zibi +
Naqueous∑

j=1

zj bj (20)

where zk is the charge of aqueous species Ak . The charge
balance can be use in any computation to replace the equa-
tion for a component. It was observed that it facilitates the
convergence, especially when poor starting guess are used.

The sorption model is also simple, and its implementa-
tion was mainly motivated by the MoMaS reactive transport
benchmark [9]. A fixed total concentration of sorption sites
may be occupied by sorbed species. Each sorbed species is
defined by a desorption reaction :

As ⇐⇒
Nc∑

i=1

νsiAi + νssSf (21)

where Sf denotes the free sorption sites and νss is the num-
ber of sites occupied by the adsorbed species. The law of
mass action for the sorbed species (A s) is defined as :

ss = s
νss

f

Ks

Nc∏

i=2

(γibi)
νsi (22)

where sf is the concentration (per mass of solution) of free
sorption site. Hence, these species can be treated as ordinary
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secondary species, and only the equation describing the
conservation of sorption sites is added to the system :

Cs = ρwϕw

⎛

⎝sf +
Nsorbed∑

s=1

νssss

⎞

⎠ (23)

xf = log10 sf is the main variable used to solve this
equation by analogy with the components.

For greater flexibility, any local mass conservation equa-
tions can be replaced to simulate different equilibrium con-
straints (fixed fugacity, saturated sample, fixed activity, and
charge balance on selected component). The equations are
chosen automatically according to the constraints specified
by the user.

The ionic strength model is solved using the strategy pre-
sented in the previous paper [17]. Furthermore, only minor
modifications were made to the semismooth newton solver,
such as more return codes to distinguish between the dif-
ferent problems that can occur or adding some shortcuts to
bypass some safeties (e.g., the Jacobian condition number
checking) if some options are turned off.

B Code

SpecMiCP and ReactMiCP are available under a 3-clause
BSD license. They can be obtained from a git repository at
https://bitbucket.org/specmicp/specmicp. Compilation and
installation instructions, as well as examples from the arti-
cles and additional tests are available in the same repository.
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