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A B S T R A C T

Natural phenomena evolve in space and time are often highly dynamic. Numerical simulations and earth ob-
servations have provided the capability to capture and study the complex evolvement of natural phenomena in a
discrete fashion. It is demanding but challenging to extract events from these datasets automatically. Based on
the previous research on feature identification, this research presents a movement tracking framework to analyze
evolvements and dynamic movements of detected events. The framework consists of three components: feature
identification, movement tracking, and track simplification. Based on the proposed framework, dust storm
events are systematically detected and analyzed concerning their dynamic movements from a 4D (x, y, z, and t)
simulation dataset over North Africa, the Mediterranean, and the Middle East from December 2013 to November
2014. The systematic research includes single event, multi-event, and seasonal analyses. Evaluation of the de-
tected dust events shows that the tracked dust events align well with observations, with ∼80% identification
accuracy and consistency in the movement pattern. To briefly demonstrate its capability, we adopted the pro-
posed framework to detect precipitation events from 3D (x, y, and t) precipitation observation data.

1. Introduction

Natural phenomena evolve in space and time and can be highly
dynamic (Yang et al., 2011). With the improvement of numerical si-
mulations and earth observations in spatiotemporal resolution and
coverage, scientists and researchers can capture and study complex
physical processes and evolution patterns in a discrete fashion. These
simulations and observations can be three-dimensional (3D: x, y, and t)
or four-dimensional (4D: x, y, z, and t), allowing the investigation of the
movement patterns of natural phenomena in the temporal and vertical
dimensions. The obtained knowledge or insights may include “where
and when natural phenomena happen,” “how long a natural phenom-
enon lasts,” or “what the common transport pathway is for a natural
phenomenon.”

GIScience methodologies and techniques assist the understanding of
dynamic geographic changes over space and time, but challenges re-
main in handling complex natural phenomena, especially for data with
higher dimensions (Yuan, 2001; Worboys, 2005; Pultar et al., 2010).
The increasing spatiotemporal resolution of simulations and earth ob-
servations has become more complicated for scientists to examine

manually. Although numerical simulations and earth observations
provide the spatiotemporal data source, researchers and scientists still
need to develop algorithms to identify and track the movement of
features (e.g., thunderstorm, hurricane, ocean eddy). Automatically
identifying and tracking features are challenging; because features are
moving with changing boundaries and capable of splitting and merging,
and these movement patterns distribute over space and time. Therefore,
providing an efficient way to detect these movement patterns is es-
sential to the natural phenomena analysis. Besides, tracking features at
different thresholds convey different information about the phe-
nomena. It is essential to be able to track the movement of events at
various thresholds efficiently.

The objectives of our research are threefold: 1) identify features
based on out previous work (Yu and Yang, 2017) and introduce the
tracking framework to connect the identified features in consecutive
time steps; 2) apply the framework to a 4D simulation dataset; and 3)
analyze the evolvements and dynamic movements of the events. Dust
events are chosen as case studies to illustrate how this tracking ap-
proach can be used to represent and analyze the dynamic movements of
natural phenomena. For an individual dust event, it is essential to
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understand the physical process of dust up-lift from arid and semi-arid
regions, transport in the air, and deposition back to the ground. Besides,
one of the major topics towards mineral dust is the spatiotemporal
patterns of dust transport from desert source regions (Israelevich et al.,
2003; Prospero and Lamb, 2003; Borbély-Kiss et al., 2004). Dust events
that originate from a specific source show region-specific patterns of
transport pathways (Israelevich et al., 2003; Moulin et al., 1998).
Natural phenomena tend to interact with each other during transport in
the atmosphere, such as split and merge (El-Askary et al., 2002; Ammar
et al., 2014; Stein et al., 2015). These complex physical processes can
only be adequately addressed in a 3D or 4D environment.

Related research of 3D feature tracking is reviewed in Section 2.
Section 3 introduces the movement tracking approach. Section 4 ana-
lyzes dust storm events, their dynamic changes, and transport path-
ways, and Section 5 evaluates the resulting dust events with visibility
observations, and archived dust events in NASA Earth Observatory.
Finally, Section 6 offers conclusion from this research followed by po-
tential future work.

2. Related works

Tracking natural phenomena includes two categories of methods:
centroid- and overlapping-based. Centroid-based tracking methods
normally treat the features in consecutive time steps whose centroids
are within a certain radius in the same track. Johnson et al. (1998)
made a guess on the cell centroid locations at tn-1 to where they would
be at tn based on its positions at several previous times, and assigned
each cell at tn to the closest unassigned centroid within a certain search
radius. Lakshmanan et al. (2009) tied projected cells within a size-based
radius (given by (A/π), where A is the area of the storm, when dealing
with 2D) across different time steps.

Tracking methods using overlapping mechanism require that spatial
and temporal frequencies be high enough regarding the expected size
and speed of the features to track (Samtaney et al., 1994). Otherwise,
unlinked features need to be associated using additional information in
a second iteration of tracking. Choi et al. (2009) calculated the degree
of association between overlapping storm features using an inverse cost
function. The degree of association reflects the size similarity and
moving speed of two associated features. Han et al. (2009) treated cells
at tn that have 50% or more significant overlap with cells from tn-1 as
first matched, while unmatched cells are associated using a global cost
function or assigned a new ID. A better approach is that of Dixon and
Wiener (1993), where it utilized a combined approach of areal over-
lapping and centroid matching. First, storms that overlap significantly
at two successive times are likely to be from the same storm. Then, an
optimization scheme determines the most likely match between storms
identified at successive scans. The optimization selects the track paths
with shorter lengths, connects storms with similar characteristics (such
as size and shape), and eliminates those tracks that exceed the max-
imum expected speed of storm movement.

Choosing the right approach is closely related to the spatiotemporal
scales of datasets. Overlap-based methods are more suitable for tracking
more substantial features with higher temporal resolution, and cen-
troid-based methods may not be suitable for features with variable sizes
(Lakshmanan et al., 2009). Therefore, a tracking approach needs to be
designed and developed specifically for the natural phenomenon.

3. Feature identification and tracking methodology

The procedure of constructing the four entities of the framework
includes the following: 1) identification of static dust storm features; 2)
track features over consecutive time steps; and 3) composition of the
event through tracking results (Fig. 1a).

3.1. Data and implementation

Dust simulation outputs were obtained from BSC-DREAM8bv2.0
(Pérez et al. 2006a, 2006b; Basart et al., 2012), a dust forecast opera-
tional system with the updated version of the former Dust Regional
Atmospheric Model (DREAM; Nickovic et al., 2001) maintained by the
Barcelona Supercomputing Center. The simulated dust concentration
data include 12 months from December 2013 to November 2014 and
cover a standard latitude/longitude grid of approximately 0.3°× 0.3°
resolution for the broad north African and European domain
(25.7W–59.3E, 0.76S–64.3N). The temporal resolution is hourly, and
each time step contains voxel number of 256× 196×24 (latitude,
longitude, pressure level) (Fig. 1b).

The implementation was conducted in Python (Van Rossum and
Drake, 1995) as a prototype, including the feature identification (Sec-
tion 3.2) and tracking algorithms (Section 3.3). Visualization was im-
plemented with the assistance of third-party libraries, including Numpy
(Van Der Walt et al., 2011) and Scikit-learn (Pedregosa et al., 2011).

3.2. Identifying static meteorological features

The identification of meteorological features at each time step is
conducted using a region-grow based algorithm that integrates the idea
of the region-grow algorithm (Zucker, 1976) into 3D context; the sim-
plified pseudo-code version of the algorithm is illustrated in Fig. 2. The
computational complexity of this algorithm is quadratic concerning the
number of voxels at two consecutive time steps. This algorithm is based
on Yu and Yang (2017). The original algorithm has a multi-thresholding
approach, which facilitates the identification of multiple high-con-
centration substorms within a larger low-concentration system. In this
research, it is simplified to a single-thresholding approach, so that the
tracked dust event is of the same level of concentration. A meteor-
ological feature is specified as a contiguous volume with a concentra-
tion/intensity value greater than a threshold (Dth), while its volume is
greater than a threshold (Vth). For each identified meteorological fea-
ture, the geometry is calculated using the boundary extraction method -
Marching Cubes (Lorensen and Cline, 1987). Besides, associated attri-
butes are calculated (e.g., concentration-weighted centroid in degree,
speed in degree/hour, number and position of pixels in the dust storm
object, area in degree*degree, maximum and average concentration or
intensity). For the 4D dust simulation data, a dust concentration
threshold of 360 μg/m3 and a volume threshold of 10 voxels were used.

3.3. Tracking the linkages of features over consecutive time steps

After the feature identification strategy (Section 3.2) is applied to
the meteorological data, a list of feature objects exists for each time
step. The tracking algorithm associates these objects across time to
track the progress of the features as they form, move, and dissipate.

3.3.1. Overlapping strategy
Since the volumetric size of dust feature varies from 10 to 500

voxels, an overlap-based method was developed with an additional
check, detailed in the pseudo-code (Fig. 3). In the first overlap check,
the dust features over consecutive time steps are checked to track the
potential linkages, based on the assumption that meteorological fea-
tures from a later time step have partial overlap with those from an
earlier time step. This overlap approach performs a matching test on
features extracted from one timestep with all of the features extracted
from the subsequent time step, and all combinations of features from
dataset ti+1 (for amalgamation/bifurcation). The best match is selected
by minimizing the cost function defined as follows: β=100−O(Ct,
Ot−1), where O is a function measuring the percentage of overlap be-
tween the candidate object Ct and the object Ot−1.

The second check considers the rare cases when a feature is small in
size and moving fast compared to the spatial and temporal resolution of
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the dataset, in which case the first spatial overlap might not track the
feature. Attributes of the current pair of identified features, including
centers of mass and volumes, are compared; if the difference in attri-
butes is below the threshold, the two features are considered as an
additional continuation. The computational complexity of this algo-
rithm depends on the number of features at two consecutive time steps,
and the number of time step pairs.

3.3.2. Assigning objects to tracks
After checking the overlap, there are several possible cases for the

linkage between t and t+1 as outlined below:

1) Continuation: A meteorological feature at t is linked to a feature at t
+1. The feature may change location or shape across time but re-
mains as one object. The two possibilities for continuation are:
growth (with a growing volume or concentration) and decay (with a
decreasing volume or concentration).

2) Merge: Multiple meteorological features at t are linked to a single
feature at t+1. The choice is to propagate the track history of any
feature at t to that at t+1. If not, the merged feature serves as the
starting feature of a new track. Otherwise, the option becomes
choosing an appropriate object at t to be the one propagating its
track history to the one at t+1. In this study, the track history of the
meteorological feature at t with the maximized curvature smooth-
ness was propagated to the one at t+1, and the remaining features
at t are considered at the end of their corresponding objects. The
curvature between a candidate feature at t+1 and the track is de-
fined as follows: T F T TC ( , ) ( , )t t t t

, ,
1

,
1

,= + , where Tt
, is the

centroid point of the feature object of the track at t, and Ft
,

1+ is the
centroid point of the candidate feature at t+1. An angle allowance
from −90° to +90° of curvature is accepted. The smallest curvature
represents the maximized curvature smoothness.

3) Split: A single meteorological feature at t is linked to multiple fea-
tures at t+1. As with merging, this results in the option to assign the
track history to any feature at t+1. Addressing this problem, the
track history of the meteorological feature at t is assigned to the one

at t+1 with the maximized curvature smoothness, and the re-
maining features at t+1 are considered as the first one of new
Objects.

4) Appear: There is no meteorological feature at t that can be linked to
the one at t+1. In this case, the object at t+1 refers to the first
feature in a new object (i.e. birth of a new object).

5) Disappear: The meteorological feature at t has no linkage to any
feature at t+1, in which case, the feature at t refers to the last
feature in its object (i.e. death of this object).

With the above five types of linkage between identified features in
consecutive time steps, individual objects are constructed. Each object
starts from its appearance, ends with its disappearance, and is linked by
continuation. Each object is associated with a unique ID, and the time
step of the meteorological feature is identified and linked to its asso-
ciated geometry. In addition, splitting and merging linkages among
specific meteorological features are recorded at specific time steps.
Based on the established objects and linkages, meteorological events are
reconstructed by linking objects that have linkages among each other
(Fig. 4). The process of how a meteorological event evolves and is
transported is efficiently retrieved.

3.3.3. Track merging
The procedure described in Sections 3.3.1 and 3.3.2 produces a set

of tracks that are locally optimal at each timestep. However, this ap-
proach might lead to the false assignment of an object to a track, or the
premature ending of a track where a feature object has not been
identified in the next timestep. To avoid these problems, we adopt the
track merging strategy to find an optimal set of tracks, which extends a
track which ends at timestep t-1, by another track, which begins at
timestep t or timestep t+1. The connection between the first and the
second track is built on the fact that the first feature object of the second
track is within an adaptive search area of the last feature object of the
first track (Fig. 5). The adaptive search area is defined by the adaptive
search radius and an angle allowance of 90° (from −90° to +90°). The
adaptive search radius is defined as follows: h= × , where h is

Fig. 1. a) General workflow of tracking dust storm objects based on dust simulation data; b) 3D visualization of simulated dust concentration, which covers the area
of broad north African and European domain (25.7W–59.3E, 0.76S–64.3N), with 24 vertical pressure levels.
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represented as the time interval and refers to the velocity of the last
feature object in the first track. When multiple candidates exist as the
second track to be merged, only one is selected based on the maximized
curvature smoothness. As illustrated (Fig. 5), when two candidates exist
to merge with the first track with candidate track #1 having a smaller
curvature than candidate track #1, thus candidate track #1 is selected
as the second track to merge with the first one.

3.4. Track simplification

To improve visualization effects, tracks are processed to generate
simplified geometry and reduce visualization clutter. Instead of
working with all centroid points on the path of a meteorological event,
the path is divided into a series of line segments and the line segment
data are used to quantify the path and infer patterns in dust event be-
havior. The simplification strategy is inspired by the approaches of
Adrienko and Adrienko (2011) for extracting characteristic points of
trajectories, and Moy et al. (2015) for calculating step length of C.
elegans Locomotory.

While Adrienko and Adrienko (2011) applied the algorithm to GPS
datasets to reduce data volume to further aggregate multiple similar

trajectories into a generalized one, the same approach is applied to
describe the transport path of dust storm events quantitatively. In ad-
dition, Adrienko and Adrienko (2011) offered another parameter,
MinStopDuration, to constrain the minimum time spent in approxi-
mately the same position to be treated as a significant stop. Conversely,
in the current research it is expected that meteorological events do not
have a significant stop, and since meteorological events continuously
move and evolve, therefore this parameter is removed. Moy et al.
(2015) used the simplification algorithm to determine the location of a
turning event where “the angle between two movement segments
joining three successive positional fixes is less than a critical angle.”

Therefore, we extend and finalize the track simplification con-
straints as TurningAngle, MinDistance, and MaxDistance. TurningAngle
refers to the minimum angle between the directions of consecutive
trajectory segments to be considered as a significant turn.MinDistance is
when the distance between two consecutive points is below this value,
the points are treated as approximately the same position. MaxDistance
refers to the maximum allowed distance between consecutive char-
acteristic points extracted from the trajectory (i.e., if the trajectory has
a straight segment with the length more than this value, representative
points must be taken such that the distance between them do not

Fig. 2. Pseudo code of feature identification.
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exceed this value). To avoid deleting useful points, a set of tolerant
parameters are used so that more points will be reserved and only the
most redundant points are disgarded. A MinDistance of 3, a MaxDistance
of 5, and a minimum TurningAngle of 150° are used to detect the re-
presentative points. The strategy of track simplification is illustrated
(Fig. 6a) by marking the characteristic points in red based on the
abovementioned three constraints, resulting in the simplified track (red
in Fig. 6b). An example track simplification is demonstrated in Fig. 6c
and d.

4. Event analysis: case studies

Dust simulation data are used as the case study to demonstrate the
capability of the feature identification and tracking prototype in ana-
lyzing the spatiotemporal behavior of a meteorological event. The event
analysis facilitates the study of mesoscale natural phenomena by in-
vestigating the frequent interactions of natural phenomena in both
horizontal and vertical aspects, integrating volumetric components.

The origins of major dust events are the preferential dust sources in
North Africa used in emission scheme of BSC-DREAM model (Basart
et al., 2012) and including 1) Bodélé; 2) Mali; 3) Mauritania; 4) Western
Sahara-Morocco; 5) Algeria-Adrar; 6) North of Algeria-Tunisia; 7) Libya
desert; 8) An-Nafud desert; and 9) Rub’ Al Khali desert (Fig. 7).

4.1. Single event analysis

The framework supports the analysis of a single meteorological
event, which seeks information about how a specific event behaves in

space and time, including the evolution of object attributes (e.g., con-
centration weighted centroid, volume, average concentration/in-
tensity), and movement patterns (speed and trajectory). The obtained
information helps to examine the attributes of spatiotemporal objects
and how these properties change in an event lifecycle, and how the
examination offers insights on mechanisms responsible for the changes.

An example of representing a specific dust event and its composition
of spatiotemporal objects in 4D is illustrated (Fig. 8). The trajectory of a
particular dust event (Fig. 8A) is generated based on the centroids of
each static objects that belong to this event, and the dust volume

Fig. 3. Pseudo code for feature tracking.

Fig. 4. Example of meteorological object
merging and splitting at consecutive time
steps within a subdomain. The same colors
link the same event through the time steps.
(For interpretation of the references to color
in this figure legend, the reader is referred
to the Web version of this article.)

Fig. 5. Tracking merging strategy (simplified representation in 2D).
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(Fig. 8b) indicates the object shape at a particular time step. Object
Ob107 is blown in a low speed from its initiation to Time Step 5 and
then moves with a higher speed until it splits and generates Object
Ob111 (Fig. 8e). During the lifecycle of Event E60, the volume and the
average concentration of dust plumes generally degrade.

4.2. Multi-event analysis

Based on single event analysis, the framework obtains the transport
pathways of selected dust events to analyze their spatiotemporal pat-
terns. The pathways of dust events occurring during June 2014 (Fig. 9a)
that originate from Libya desert with each dust object displayed in blue,

Fig. 6. Strategy of simplifying track. Fig. 6a and b represent the track simplification strategy using a synthetic example, whereas Fig. 6c and d use a detected track
from the experiment data to represent the track before and after simplification.

Fig. 7. Preferential dust sources in North Africa used in emission scheme of BSC-DREAM model.
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and split and merge interactions displayed in red and green, respec-
tively. There are 15 events originating from Libya desert compared to
65 events in the entire study area (Fig. 9b). In June the dust originating
from the Libya desert was transported from the Libyan coast toward
eastern Mediterranean or northwest to the western Mediterranean
basin. Along the transport corridor of North of Algeria-Tunisia, evi-
dence of merging dust plumes is illustrated in the green pathways
(Fig. 9b), consistent with dust entrainment from the underlying dust
source areas.

4.3. Seasonal analysis

The proposed framework further offers insight into the seasonal
analysis of meteorological events.

4.3.1. Seasonal transport patterns
An example of querying dust events originating from Libya desert in

the four seasons of 2014 illustrates the seasonality of the events
(Fig. 10). Across the four seasons dust transport pathways follow the E-
W winds but show distinct differences among seasons (Moulin et al.,
1998; Rezazadeh et al., 2013). During the winter season (DJF) for dust
originating from the Libya desert, transports is westward along the
Libyan coast, entraining dust from North of Algeria-Tunisia and Algeria
toward Mali. During the spring season (MAM) there is more complexity
of dust transport. In addition to the main transport pathways from the
Libyan desert west along the coast, there is evidence of additional
pathways and splitting and merging interactions. It is hypothesized that

this increased complexity in the dust transport pathways is a con-
sequence of Sharav cyclones and cold fronts which occur typically in
spring (Varga et al., 2014). The dynamic lifting during the cool season
from cold fronts results in higher dust transport entrainment than other
seasons (Fig. 11b). During the summer season (JJA) dust transport
pathways are similar to that in June, and dust transport falls to its
lowest levels during fall season (SON) (Fig. 11d).

4.3.2. Seasonal occurrence, dust load, duration of dust events from
preferential dust sources

The specific contribution of the different source areas for the oc-
currence of dust events is investigated (Fig. 12). For each dust event,
the source contribution is calculated from the total number of trajec-
tories from the source regions. In the fall season, Bodélé (S1) con-
tributes more than other source regions, whereas in summer seasons
An-Nafud desert (S8) and Rub’ Al Khali desert (9) contribute more.
Moreover, Western Sahara-Morocco (S4) is a consistent dust con-
tributor throughout the year except in the autumn. The monthly oc-
currence of dust events shows a seasonal cycle characterized by the fall
minimum (September to November; 10.8%) and abroad spring-summer
maximum (June to August, 62.0%). On a monthly basis the highest dust
events are in February (13.1%) and June (12.9%), followed by sec-
ondary maxima in March (12.3%) and a July (11.6%).

The specific contribution of the different source areas to the total
dust load of dust events is also investigated (Fig. 13). The dust load of
events originating from An-Nafud and Rub’ Al Khali deserts (S8 and S9)
contribute to 73% during the summer season, indicating these two dust

Fig. 8. Trajectory and attributes of an example event, Event E60, which consists of Objects Ob107 and Ob111. The Object Ob107 at Time Step 7 splits and generates
Object Ob111.
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sources are having severe dust storms during Summer 2014. Dust from
Bodélé depression (S1) is the third major source of dust load and re-
mains consistent during the four seasons. The dust load from Western
Sahara-Morocco (S4) decreases from winter to fall annually, while that
from Algeria-Adrar and North of Algeria-Tunisia (S5 and S6) is higher
in the spring and winter and lower in the summer and fall (see Fig. 14).

During December 2013 to November 2014 the duration and fre-
quency of the dust events were less than one day (56%), one day (24%),
two days (13%), and greater than five days (1%). The frequency of dust
event duration was seasonally dependent, with the mean duration de-
creasing from summer (1.8 days) to winter (0.9 days). This pattern is in
agreement with Duchi et al. (2016).

4.3.3. Seasonal mean event locality
The mean event locality for all dust source regions was investigated

by introducing a track locality to describe whether a dust storm event is
moving locally or is being distributed across to a larger area. Here we
are not using the simplified tracks but the original tracks resulted after
Section 3.3. A long distance track or event does not necessarily trans-
port in a large area, but can also be moving within a small system
(Fig. 15). To quantify the locality L, the ratio of the total centroid
moving distance to the length of the transporting bounding box over the
full lifecycle of a track is used as expressed in Eq (1). A higher locality
indicates that the track is transporting dust within a relatively small
area (red track in Fig. 15), while a lower locality indicates that the track

is transporting dust over a relatively large area (blue track in Fig. 15).

L Distance Centroid Centroid Centroid
Max xmax xmin ymax ymin zmax zmin

( , , , )
( , , )track

t t tn0 1= …
(1)

An event may consist of multiple tracks, and the locality of a dust
event is expressed in Eq (2), where i represents the track number, and n
is the number of tracks within this event.

L
Distance

Max xmax xmin ymax ymin zmax zmin( , , )event
i
n

i1= =

(2)

Locality is calculated as the proportion of distance to the area of the
region that the event has traveled. A larger the locality value is asso-
ciated with the event being more localized, while a smaller value in-
dicates that the event transports dust across a larger region. Fig. 16
shows the seasonality the locality value of the events that originated
from these sources. In the winter season the locality of events origi-
nating from Bodélé (S1) is larger than the that of any other source re-
gion, indicating the dust events from Bodélé (S1) are constrained within
a smaller region. In addition, the mean locality values of spring and fall
seasons are lower than other seasons, indicating that dust events from
these are transport further. Summer season shows a larger variability of
locality among the nine different dust source regions. Dust events from
Western Sahara-Morocco, An-Nafud desert, and Rub’ Al Khali deserts
(S4, S8, and S9) tend to travel within a more constrained region.

Fig. 9. Example of querying the dust events occurring during June 2014 that originate from Libya desert (a & c), and without constraining dust source (b & d). In the
3d views, vertical levels are the pressure levels.
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5. Evaluation of detected dust events

The detected dust events are evaluated by two kinds of observation
sources: station-based visibility observation; and archived dust events
from NASA Earth Observatory. Visibility observation data are used to
verify that the identified dust storm objects cover the suspected area of
dust occurrence. The archived dust events from NASA Earth
Observatory are used to verify that the transport pathways are con-
sistent with the officially recorded situation. Herein the objective is not
to evaluate the dust model but the utility of the research procedure to
identify and track dust events from the model's simulation output. The
validation of BSC-DREAM8bv2.0 is documented in Basart et al. (2012).

5.1. Evaluation of identified dust storm based on visibility observation

Dust feature identification is verified using the visibility observation
obtained from the Integrated Surface Global Hourly Data archived at
the National Climatic Data Center (NCDC) (https://data.noaa.gov/
dataset/integrated-surface-global-hourly-data). This dataset is in text
format, indicating the visibility value at each specific station with the
station's latitude, longitude, and altitude. These weather observation
stations are not regularly distributed; stations are densely distributed
where it has a larger population or where the place needs to be mon-
itored. The temporal resolution of visibility data is hourly. The visibility
dataset is station-based weather observations (unit of meters) and dust

conditions (visibility observation < less than 10 km). Based on World
Meteorological Organization protocol (WMO, 2013), dust events are
classified according to visibility into four categories: 1) dust haze, with
no visibility constraints; 2) blowing dust, 1–10 km; 3) dust storm,
200m-1km; and 4) severe dust storm,< 200m. Since dust haze is not
corresponding to a particular visibility level, we do not consider it in
our following evaluation.

The procedure for investigating the utility of the procedure selects
the available visibility data within the covered area of the identified
dust storm object at each time step. There are multiple possibilities for
verifying the results of detected dust events (Fig. 17): 1) if a station
observation with low visibility (< Threshold) is covered by a detected
dust storm object, it is considered as a ‘hit’; 2) if not, it is considered as a
‘miss’; and 3) if a station observation with high visibility (> Threshold)
is covered by a detected dust storm object, it is considered as a ‘false
alarm’. Here the visibility Threshold is varied by using 200m (covering
severe dust storm only), 1 km (covering dust storm and severe dust
storm), and 10 km (covering blowing dust, dust storm and severe dust
storm). Based on the above three options, evaluation scores are calcu-
lated using probability of detection (POD, defined as hits hits misses/ + )
or false alarm ratio (FAR, defined as false alarms hits false alarms/ + )
(Wilks, 2006), commonly used to assess the detection/forecast results.

For each time step, the identification result is verified with available
visibility observations. Fig. 18 illustrates an example of a particular
time step with different types of dust events (color coded in terms of

Fig. 10. Seasonal transport patterns of dust events originating from Libya desert.
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visibility range) and the identification result. With a visibility Threshold
of 200m, the POD value has a mean of 91% and a standard deviation of
13%; the FAR has a mean of 16% and the standard deviation of 9%.
With a visibility Threshold of 1 km, the POD has a mean of 85% and a
standard deviation of 5%; the FAR has a mean of 12% and a standard

deviation of 8%. With a visibility Threshold of 10 km, the POD value has
a mean of 76% and a standard deviation of 15%; the FAR has a mean of
24% and a standard deviation of 10%. Overall, the identification result
achieves a relatively high POD with a low FAR, indicating the identi-
fication has a good performance.

A possible reason that the POD value is not higher is that the sta-
tions are irregularly distributed. This results in limited number of

Fig. 11. 3D view of seasonal transport patterns of dust events originating from Libya desert.

Fig. 12. Seasonality in occurrence of dust events from preferential dust sources.

Fig. 13. Seasonal total dust load of dust events from preferential dust sources.
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stations covered by the identified dust storms. In addition, not all sta-
tions provide available observation dataset for verification con-
tinuously, reducing the pool of data. Another explanation is that visi-
bility data are observed on the surface (two dimensions), while dust
events are reconstructed in three dimensions.

5.2. Evaluation of tracked dust events with NASA Earth Observatory

The transport pathways of the detected dust events are evaluated
using the achieved records in NASA Earth Observatory, which records
outstanding dust events with a textual description and MODIS images
produced by NASA GSFC. Within the time frame of our experiment
dataset, there are two events recorded - February 28, 2014 over West
Africa (NASA Earth Observatory, 2014a) and June 15, 2014 over Oman
(NASA Earth Observatory, 2014b). Both events have consistent trans-
port pathways with our detection (Fig. 19). The first dust event was
originated with harmattan desert wind blowing across the Sahara De-
sert from the northeast or east. During this dust event, dust was

transported to the west towards the Cape Verde Islands in the Atlantic
Ocean (Fig. 19a and b). The second event, originating with the tropical
cyclone Nanauk moving northwest toward Oman's shores, transported
dust from the northern border of the country toward the southwest,
extending over the Arabian Sea (Fig. 19c and d).

Fig. 14. Dust event duration as a function of the seasons of the year.

Fig. 15. Locality example. The distances of Track 1161 (blue) and Track 1455 (red) are about the same, which is 109°; but locality of Track 1161 is 0.15, while the
locality of Track 1455 is 0.61. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 16. Average event locality of dust events from preferential dust sources.

Fig. 17. Illustration of 'hit', 'miss', and 'false alarm'. Yellow polygons represent
identified dust features, and points represent visibility stations. Red points re-
present that the stations are in dusty condition (< visibility Threshold). The
gray point represents that the station is not in dusty condition (> visibility
Threshold). (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)
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5.3. Discussion

To demonstrate the capability of the framework on other meteor-
ological events, the framework is tested using 3D precipitation dataset
from TRMM Multi-satellite Precipitation Analysis.2 The data covers the
tropical area of 180°W −180°E and 50°S −50°N, with an original
spatial pixel size of 0.25° *0.25°, so the total pixel number of an original
dataset is 1440 × 400 (longitude, latitude). In the precipitation test, we
used a 24-h dataset on 8/18/2016 with 3-hourly temporal resolution,
and set the rainfall threshold of 2.5 mm/h and an area threshold of 10
pixels (Fig. 20). Fig. 20a illustrates the rainfall tracks in arrows during
the day, where as Fig. 20b, c, and 20d show three zoomed-in tracks. For

example, Fig. 20b represents the precipitation event starting from East
India to Central India, which can be verified by the 2016 India Rainfall
Statistics Report (India Meteorological Department, 2017). The event
transports northwest, then split with into two tracks (red arrow), which
merge together (green arrow) when the event ends.

One limitation of this approach is that we utilized a fixed threshold,
i.e., 360 μg/m3, to identifying dust features for the simplicity and
feasibility of tracking. However, as a dust event continues, the dust
concentration that can best characterize the dust event is evolving, or
changing continuously. Therefore, we will integrate fully the multi-
thresholding approach, proposed by Yu and Yang (2017), with the
tracking algorithm in this paper. The ultimate goal is to establish a
multi-level dust event tracking, covering different levels of dust in-
tensity and also different phases of dust evolution.

Fig. 18. Visibility values and identified dust features at April
1st, 2014, 0 UTC. Visibility stations are colored coded cor-
responding to different levels of dust storms: severe dust
storm in brown color, dust storm in red color, blowing dust in
yellow-green color, dust haze or clear sky in gray color.
Yellow polygons are the identified dust features. (For inter-
pretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)

Fig. 19. (a) Transport pathways described in NASA Earth
Observatory for the West Africa Event, on Feb 28, 2014; (b)
Transport pathway resulted from the experiment for the
same event as (a); (c) Transport pathways described in NASA
Earth Observatory for the Omen Event, on Jun 15, 2014; (d)
Transport pathway resulted from the experiment for the
same event as (b).

2 https://giovanni.sci.gsfc.nasa.gov/giovanni/.
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6. Conclusion

A framework is proposed to automatically identify and track me-
teorological phenomena to represent their evolvement. The framework
introduces the identification and tracking approaches to detect events
and analyzes the evolvements and dynamic movements of the detected
events. The feature identification approach was derived from previous
research (Yu and Yang, 2017), whereas the tracking approach considers
the variable size of dust feature and adopts a second check for addi-
tional temporal linkages. Detected tracks are optimized through mer-
ging tracks that are possibly sequential over time. Tracks are also
simplified for a better visualization.

In the future the capability of this framework to operate using
machine learning and knowledge reasoning algorithms to analyze sea-
sonal variation, annual cycle, and inter-annual cycle of dust events is a
high priority. In addition, this framework will be used on dust ob-
servation datasets to monitor dust transport and provide information on
early warning of severe dust events. The framework of identifying and
tracking natural phenomena can also be utilized for modelers as a
toolkit to automatically process their real-time forecast result, including
storm cells, ocean eddies, and cyclones. As high resolution atmospheric
and climate models produce big data, cloud computing provides in-
creasing value in high efficiency and scalability to the data manage-
ment and analytical process (Yang et al., 2017).
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