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PREFACE 

Although many papers have presented different aspects of truncated gaussian and 
plurigaussian simulations, no single work gives a comprehensive view of the 
theory and practical applications of this new and interesting geostatistical 
simulation method. Our aim in writing the book has been to encourage readers to 
test this method of simulating the geometry of reservoirs and orebodies for 
themselves. That is why we have included a CDrom containing two small 
programs called pluri_demo_simu and pluri_demo_vario to demonstrate how the 
method works. 

Initially this material was developed as the notes for short courses on 
plurigaussian simulations . The first such course was given in Fontainebleau in 
September 1998. Others have given at Petrobras training centre in Rio di Janeiro 
in 1999 and at the IAMG annual conference in Trondheim in 1999. 

The original impetus for developing the truncated gaussian method came from 
Georges Matheron in reponse to a request from the Institut Fran~ais de Petrole, in 
particular from Lucien Montadert who realized the importance of being able to 
simulate the internal architecture of reservoirs. The plurigaussian method was a 
natural development from the truncated gaussian method. This cooperation 
between the IFP and the Centre de Geostatistique resulted in the development of 
the HERESIM program as well as practical applications for many oil companies 
including AGIP, Gaz de France, Petrobras and PDVSA. 

Applications of the methodology to mining were initiated during a short course 
to engineers and geologists of Anglo American Corporation in 1999. Soon 
afterward a test case was carried out for Rio Tinto Ltd on data from the Rossing 
uranium mine. 

The authors would like to thanks these mining and petroleum companies for 
their support in developing and testing this new simulation method. Special thanks 
are due to of three of our colleagues: Christian Ravenne from the IFP for his 
geological insights in developing the method, and to Brigitte Doligez also from 
the IFP and HeU:ne Beucher from the Centre de Geostatistique who played a key 
role in implementing the new methodology. This book would never have been 
published without their help 
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1 INTRODUCTION 

This book focuses on two methods for simulating facies and lithotypes: truncated 
gaussian (Matheron et al, 1987) and plurigaussian simulations (Galli et al, 1994). 
The first method was developed in the late 80s for simulating the lithotypes found 
in oil reservoirs because it makes much more sense to simulate the geometry and 
internal architecture of the reservoir first, then generate suitable values of porosity 
and permeability once the lithotype is known. These simulations were designed 
for reservoirs where the lithotypes occur in a sequential order; for example, when 
sandstone is followed by shaly sandstone then shale. Plurigaussian simulations are 
a natural extension of these. They were designed to produce a much wider range 
of patterns and to allow for more complicated types of contacts between facies. 

The photo below shows canyons along the San Juan river in Utah where 
phylloidal algal mounds of Pennsylvanian age are beautifully exposed. This is 
typical of the sedimentary oil bearing formations that can be modelling using 
truncated gaussian and plurigaussian methods. This series shows tabular 
prograding sequences of shallow carbonates and algal mounds. The carbonates 
can be simulated using the simpler, truncated gaussian method. The upper part of 
the series consisting of algal mound and intermound facies with the sandstones 
capping them, is more complicated. The plurigaussian method was used to 
simulate its structure. The details are given in Chapter 7. 

Fig 1.1: Outcrops of a typical carbonate reservoirs along the San Juan River in Utah 
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Over recent years the mining industry has also started using these two approaches 
to simulate the facies present in orebodies. For example, the recovery during froth 
flotation (a mineral processing technique for concentrating sulphide ore) depends 
on the rock type, rather the grades. So for both mining deposits and oil reservoirs, 
the message is clear: first simulate the geometry of the lithotypes or facies then 
simulate its properties as a function of that type. Before outlining how truncated 
gaussian and plurigaussian simulations work, we would like to take the time to 
explain why geostatistical simulations of lithofacies are important in the petroleum 
industry, since this motivated the development of both methods. 

Putting reservoir simulations into context 

The aim of reservoir modelling is to construct a gridded model of the reservoir 
containing its petrophysical properties such as porosity, permeability and capillary 
pressure, in order to simulate its behaviour during production. As the wells are 
generally widely spaced and as seismics only provides indirect geological 
information with a low resolution, the distribution of the geological heterogeneity 
between wells is uncertain. Geostatistical simulations are a way of quantifying the 
uncertainty by providing reservoir engineers with representations of the spatial 
distribution of reservoir heterogeneity. Fluid flow simulations can then be 
performed on the model to optimise the field's development. 

The precise objectives vary depending on the field's stage of development. At 
the appraisal stage when the aim is to produce a global reservoir model rather than 
a detailed one, simulations are used to estimate reserves and to quantify their 
uncertainty. They are also used to define recovery process scenarios. At this stage 
only a few wells are available and so the seismics play a crucial role. 

When the field has started to be developed using primary recover processes, the 
aim is to optimise the location of wells. At this stage more wells are available and 
so the geological model is constructed using the detailed well descriptions 
together with the seismic interpretation. Detailed reservoir characterisation studies 
will have been performed, and the petrophysical variables will be available from 
core and log analysis. Pressure measurements in wells are used to estimate the 
reservoir connectivity and well test information provides a way of estimating the 
permeability around the wells. Seismic data can also provide information about 
the heterogeneity with layers. As we will see later, the degree of detail required in 
the simulations (i.e. the grid size) depends on the recovery process chosen. 

During the final stage of the field's development, the initial reservoir model has 
to be updated in order to make the recovery process more efficient. A very 
detailed reservoir model is then needed, for example, to optimise the drilling of 
wells with a complex geometry. By this time, the well database is much larger; it 
contains both geological and petrophysical information. Because of its low 
resolution the seismic information is less important. As the production history of 
the field is generally available, the observed oil and water flow rates can be 
compared with those computed from the simulation and used to modify the model 
iteratively until a good fit is obtained. This process is called history matching. 
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The complete procedure for reservoir simulation including simulating the 
lithofacies on a very fine grid and transforming these into reservoir properties, is 
described by Matheron et al. (1987). The initial geological modelling is a critical 
step because it ensures the consistency of the simulation from a geological point 
of view. Another crucial step is upscaling the reservoir properties to a coarse grid 
to reduce the number of cells because the capacity of most fluid flow simulators is 
still limited. 

Finally, all the information available on the field has to be integrated into the 
model. Different data have been studied at different scales and have different 
characteristics. For example, microscopic information such as pore throat types 
obtained from special core analysis has to be combined with information derived 
from seismic campaigns having a vertical resolution greater than 20m. Hard data 
such as well logs based on physical measurements in wells, have to be combined 
with soft information resulting from geological interpretation of the data. So 
simulations have to balance hard and soft constraints. 

Idea behind truncated and plurigaussian simulations 

The basic idea is to start out by simulating one or more gaussian variables (i.e. 
with a N(O,l) distribution) at every point in the study area and then use the rock 
type rule to convert these values back into lithotypes. Figure 1.2 summarises the 
procedure when only one gaussian is used. This is called the truncated gaussian 
approach. The greytone image (left) represents the gaussian value at each point in 
space. In the image on the right, values below -0.6 have been coloured in dark 
grey, indicating one facies. Values above 0.5 have been shaded white and 
intermediate values have been coloured light grey (Figure 1.2b). Three facies have 
been generated in this way. 

Fig 1.2 (a) Simulated greytone image. Values have a N(O,l) distribution. (b) Same image 
after being truncated at the cutoffs -0.6 and 0.5. Values below -0.6 have been shaded dark 
grey, those between -0.6 and 0.5 are coloured light grey while values above 0.5 are shown 
in white 
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Fig1.3: Histogram of a standard normal distribution (i.e. N(O,l )) showing the two cut-offs, 
-0.6 and 0.5 

Looking at Figure 1.2b we see an important feature of the truncated gaussian 
approach: the grey facies can touch the other two facies, but black and white never 
touch. Or if they do, it is because the pixel size is too large. If four or five facies 
were simulated in this way, they would occur in a fixed order, which is defined by 
the sequence stratigraphy. 

Figure 1.3 shows the two thresholds, -0.6 and 0.5, on a standard normal N(0,1) 
distribution. It is easy to calculate the areas under the three parts of the curve 
(25%, 45% and 30%) and hence deduce the proportion of space occupied by each 
facies. In fact there is a 1-1 relationship between the proportions and the 
thresholds, once the order has been established. In practice we compute the 
proportions experimentally and use these to deduce the thresholds. 

In many cases, the truncated gaussian approach proves to be too restrictive; for 
example, if there is no natural sequence in the facies or if certain facies can be in 
contact with more than two facies. So it has been extended to two or more 
gaussians. Figure 1.4 illustrates this plurigaussian procedure for the case of two 
gaussians. At the top we see two gaussian images (simulations obtained using a 
gaussian random function). The one on the left has its long range in the NS 
direction while the other one has its long range in the EW direction. The square 
shown in the bottom right summarises the rock type rule, the rule that is used to 
assign each point to a facies. Values of the first gaussian, Y1, can range from- oo 
to+ oo. They are plotted along the horizontal axis. Similarly for those ofY2 along 
the vertical axis. This square is divided into three regions corresponding to 
different lithotypes. IfY2 < 0, the rock is coded as dark grey; ifY2 > 0 and Y1 < 0, 
the rock is classified as being white whereas ifY2 < 0 and Y1 > 0, the rock is light 
grey. The resulting three facies are shown in the lower left square. 

The underlying idea in both truncated gaussian and plurigaussian simulations is 
to set up one or more simulations of standard normal random functions in the area 
of interest and to attribute the lithotype or facies depending on the simulated 
values at each point. This is done by truncating. When only one gaussian is used, 
the truncation is effectively defined by the values of thresholds. When two or 
more gaussians are used, the situation is more complex. It is represented 
graphically via the rock type rule. 
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Fig 1.4: How plurigaussian simulations work. The two images at the top are realisations of 
gaussian (i.e. N(O, 1)) random functions with anisotropies in the NS and EW directions. The 
rock-type rule shown bottom right has been used to truncate these two images to obtain the 
facies or lithotypes shown bottom left. Note the contrast between the anisotropies in the 
simulated facies 

In this book we will almost always use rectangles to divide the rock type rule into 
lithofacies. We do this because it makes it easier to work out the thresholds from 
the experimental proportions. 

In most plurigaussian applications, the two gaussian random functions are 
independent of each other but it is also possible to use correlated gaussian RFs. 
When this is done the facies tend to "wrap around" each other. This makes it more 
difficult to compute the thresholds from the experimental proportions. 

As well as being able to use independent or correlated RFs, more advanced 
models can be obtained by using derivatives or translated RFs: 

• 
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where x; represents one of the directions and b is the translation vector. Even more 
complicated models can be obtained by combining these. The paper by Armstrong 
and Galli (1999) shows how to generate crevasse splays in anamastosed channels 
using derivative RFs. 

Key steps in a plurigaussian simulation 

Having explained the broad principles behind plurigaussian simulations we need 
to go into more detail. Here we assume that readers are familiar with basic 
geostatistics (variograms and kriging) and with simulating gaussian random 
functions. The four main steps in a plurigaussian simulation are choosing the 
appropriate type of model, estimating the values of its parameters, generating 
gaussian values corresponding to the lithotypes at sample points and lastly running 
the conditional simulation, using the gaussian values generated in the previous 
step. 

Step 1: Choosing the model type 

Plurigaussian simulations can be divided into several broad families, depending on 
the types of relations between the facies or lithotypes. For example, in some cases 
there is a natural sequential order among the facies. In fluvial channel reservoirs, 
the lithotypes - sandstone, shaly sandstone and shale - generally occur in that order 
because of depositional conditions. By looking through the catalogue, the reader 
can choose the type of model that seems best suited to his/her data. When there is 
a clear sequential order in the lithotypes, a single gaussian usually suffices; 
otherwise two or more gaussians can be used. In some cases, one of the facies may 
appear to be a « shifted» version of another facies. Increments or derivatives of 
gaussians can be used to obtain special effects. 

Step 2: Estimating the parameter values 

Two key factors control plurigaussian simulations: the thresholds at which the 
different gaussians are truncated and the variogram model of the underlying 
gaussian variable. The proportion of each facies, the "rock type" rule and the 
correlation between the two underlying gaussian random functions, determines the 
thresholds. Once the thresholds have been worked out, the variograms and cross­
variograms of the indicators are calculated experimentally. Knowing the 
mathematical relation between the indicator variograms and the variograms of the 
underlying gaussian variable(s), we can find a suitable model for the underlying 
variogram and estimate the values of its parameters. 
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Step 3: Generating gaussian values at wells/drill-holes 

The samples available at wells (or drill-holes) give us the facies or lithotype for 
each sample but this does not tell us the corresponding gaussian values. We 
merely know that they must fall in certain domains which reduce to intervals when 
a rectangular partition is used. The third step in the procedure consists of 
generating gaussian values in the appropriate intervals and having the right 
properties (e.g. variogram model). Obviously these values are not unique. A 
special statistical method called a Gibbs sampler is used to generate these values. 

Step 4: Simulating values at grid nodes given values at wells 

Once the gaussian values corresponding to the faciesnithotypes have been 
generated at wells or drill-holes, the rest of the simulation procedure is quite 
straightforward. Any algorithm can be used for conditionally simulating the 
gaussian values. Once the gaussian values at all the grid nodes have been 
obtained, the last step is to convert these back to facies using the rock type rule. 

Layout of the book 

This guidebook to plurigaussian simulations is divided into 7 chapters plus an 
appendix containing a visual catalogue of simulated images. As we will see, 
indicator variables are deceptively simple. People have the mistaken impression 
that they can be treated like ordinary variables - like grades, or porosity, or the 
depth to a horizon. So Chapter 2 reviews their properties and those of indicator 
variograms. Chapter 3 is on proportions. It shows how to calculate vertical 
proportion curves which summarise the vertical variability in the lithotypes found 
in oil reservoirs, and generalises this for the case where there is horizontal non­
stationarity as well. Once the proportions have been modelled, the thresholds 
separating the facies can be calculated. Chapter 4 presents this step. The next step 
(Chapter 5) is to calculate the experimental indicator variograms and fit models to 
the variograms of the underlying gaussian variables. 

Before introducing the Gibbs sampler, an important theoretical question has to 
be addressed. We have to show that simulating the gaussian values at target points 
knowing which facies each sample belongs to is equivalent to simulating those 
values at target points given the gaussian values generated by the Gibbs sampler at 
data points. Chapter 6 gives this result and then goes on to explain the Gibbs 
sampler which is used to generate gaussian values corresponding to the 
lithotypes/facies at the sample points. Several applications of truncated gaussian 
and plurigaussian simulations applied to the oil industry are presented in Chapter 
7. 

Colour illustrations are vital to understanding plurigaussian simulations but 
they greatly increase the printing costs. You will find a CD in the pocket in the 
back cover. It contains colour copies of many of the figures plus two 
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demonstration programs. The first one called "pluri-demo" was designed to 
demonstrate how plurigaussian simulations function and to allow readers to test 
the impact of key parameters for themselves. The second program is called "pluri­
vario-demo". It shows the relationship between the variogram models of the two 
stationary random functions (i.e. the two underlying gaussians) and those of the 
indicators. The appendix at the end of the book contains instructions on how to 
run the demonstration software together with exercises that the reader can carry 
out using the programs. 



2 BASIC PROPERTIES OF INDICATORS 

The aim of this section is to review some of the basic properties of indicators that 
will be needed later. We let F be a random set (i.e. all the points belonging to one 
particular facies). Let F be its complement (i.e. the points that do not belong to F). 
The indicator function for the set F takes the value 1 at all the points inside F; it 
takes the value 0 elsewhere. This indicator function is denoted by IF (x). In Figure 
2.1, the set F has been shaded. Its complementF includes all of the non-shaded 
area. The set F could be any shape or form, and need not be a single piece. It could 
be split into several parts. 

The first property of indicator functions relies on the fact that inside F its 
indicator takes the value 1 whereas the indicator of its complement takes the value 
zero. Outside F the converse is true. That is, the union of F and its complement 
fills the whole space. Consequently, 

1 = lFuF(x) = IF(x) + lf'(x) 

One property of a geological facies that can be measured experimentally is the 
proportion of space that it occupies. If we let PF(x) be the probability that point x 
lies in F, then it is equal to the mean or mathematical expectation of h(x). That is, 

PF (x) = E[IF (x)] 

So h(x) is a random function. As it takes the values 0 or 1, its expected value 
must lie between these two values. 

Moreover, because of the linearity of taking expectations, 

PF(x) + PF(x) = 1 

oo_ 
F 

Fig 2.1: Set F (shaded grey) and its complement F in white 
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Now we calculate its variance. Since (lp(x)f = [lp(x)], 

Var[lF (x)] = E[lF (x)]- {E[lF (x) ]}2 = PF (x)(l- Pp (x)) s 0.25 

Spatial covariances, variograms and cross-variograms 

In this section we focus on the spatial relation between indicators by studying their 
centred and non-centred covariances, then their variograms and cross-variograms. 
After defining these concepts we derive their key properties. The first step is to 
study the relationship between the facies at point x and the one at y, firstly via the 
(non-centred) spatial covariance CF(x, y) and then via the variogram YF(x,y). 

Spatial covariances 

Let x and x + h be any two points. Their non-centred covariance is defined as: 

CF(x,x+h) = E[ lF(x) lF(x+h)]= P[ lF(x)=l & lF(x+h)=l] 

=P[xeF&x+heF] 

It measures the probability that both points lie inside F. Similarly the centred 
covariance crp (x , x + h) and the centered cross covariance between facies Fi and 
Fi, denoted by crFiFi (x , x +h) are respectively defined as 

crF(x,x+h) = E{[lF(x) -PF(x)][lF(x+h)-PF(x+h)]} 

= CF(x, x +h)- PF(x)PF(x +h) 

G 
Fig 2.2: Two points, x and x + h, lying in facies F 
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Variograms and cross-variograms 

Let A(x) be an arbitnuy variable. It could be an ordinary variable Z(x) or an 
indicator 1F (x). Its variogram is defined as: 

1 
'YA (x,x+h) = "2 Var [A(x)-A(x+h)] 

=~{ E{ [A(x)-A(x+h)r}-(E[A(x)-A(x+h)] )2
} 

Consequently the indicator variogram of the facies F is just 

1 
'YF(x,x +h)=-Var [1F(x) -lF(x +h)] 

2 

=~{ E{[1F(x)-1F(x+h)r}-(E[IF<x>-1F(x+h)] )2
} 

Note that if the indicator is stationary, the second tenn disappears. 

The cross variogram between facies Fi and Fj is defined as: 

'YHI'l(x,x +h)= ~E{[1Fi (x) -lFi (x +h)] [11'l(x) -11'l(x +h) J} 

When this product is expanded, two of the four tenns disappear because hi and 1Fj 
cannot both take the value 1 at the same point since we have one and only one 
facies at each point. This gives 

'YFiFi (x, x +h)= -~{E[ 1Fi (x) 11'l(x +h) J + E[ 11'l (x) 1Fi (x +h) J} 

Variogram properties 

Property 1 

As the indicators can only take the values 0 or 1, the values of the variogram must 
satisfy the inequality 

'}'p(x,x +h)=..!:. Var[1p(x) -1p(x +h)]s: 0.5 
2 

One consequence of this is that indicator variograms must be bounded. So a power 
function could never be an appropriate model for an indicator variogram. 



12 Basic Properties 

Property 2: Variograms for two facies (stationary case) 

Proof. By definition the variograms ofF and F are 

YF(h) =.!E[lp(x+h)-lp(x))Z and y-(h) =.!E[ l-(x+h)-1-(x)] 2 
2 F 2 F F 

The first result follows because 

lp(x+h)-lp(x) = -{lF(x+h)-lF(x)) 

Property 3: Covariances for two facies 

If F is a stationary random set, its variogram depends on the vector between the 
two points, but not on their positions, and similarly for the covariances. The next 
property follows from this. 

cr F (h) = crF (h) =- cr FF (h) =- crFF (h) 

Proof. By definition, we have 

<rp(h) = E[ lp(x +h)- Pp(x +h))[ lp(x) -Pp(x)] 

Because of the stationarity, PF (x + h) = PF (x) = PF and similarly for its 
complement. So 

<rp(h) = E[ lp(x +h)- Pp )[ lp{x)-Pp] 

Moreover 

lp(x+h)-Pp =1-lF(x+h)-Pp =-~F(x+h)-PFj 
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Substituting these relations into the covariance formulas gives the second result. 

Comments 

There are three practical consequences of these results. Firstly two complementary 
random sets are forcibly correlated. They cannot be independent of each other. 
Secondly their cross covariance is the same as the direct covariance up to a change 
of sign. Thirdly, the indicator covariance is not a connectivity index. A 
connectivity index tells us whether it is possible to find a path joining any two 
points in the facies and lying completely inside that facies, whereas the indicator 
covariance merely tells us whether to two end points are in the facies. It says 
nothing about paths joining the two points. 

A facies F and its complement rarely have the same connectivity and yet their 
indicator covariances are identical. Figure 2.3 illustrates this point. The 
background is divided into two separate parts but the shaded facies is a single 
piece. 

@ 
Fig 2.3: The facies F and its complement do not have the connectivity but their indicator 
covariances are identical 

Property 4: Three facies 

Instead of two facies we now consider three facies labelled A, B and C, which 
together fill the whole space under study. See for example Figure 2.4. At present 
we assume that the three random sets are stationary. 

Fig 2.4: Three facies A, Band C shown in white, light grey and dark grey 
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For these three facies 

cr A (h) = -crAB (h)- cr AC (h) 

cr8 (h)= -cr8A (h)- cr8c (h) 

cr c (h) = -cr CA (h)- cr CB (h) 

crAB (h) - cr BA (h) = cr BC (h)- cr CB (h) = cr CA (h)- cr AC (h) 

Proof. To prove this result, we note that any point x lies in one and only one of 
the three sets; that is 

IA (x) + 18 (x) + lc(x) = 1 

Consequently 

PA+P8 +Pc=l 

Hence 

IA (x)- PA = -[18 (x)- P8 + lc(x)- Pc] 

We now substitute this into the second term of 

cr A (h) = E[l A (x +h) - P A] [1 A (x)- P A] 

This gives 

cr A (h) = -E[lA(x+h) -PA][l8 (x)-P8 +lc(x)-Pc] 

= -crAB (h)- cr AC (h) 

This proves the first three parts of property #3. Now to get the last part, we start 
from the definitions : 

As before, we substitute the relation linking IA to 18 + lc into these two, giving 

crAB(h) =- E[l8 (x) -P8 +lc(X)-Pc] [18 (x+h)-P8 ] 
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= -crB (h) -crcB (h) 

= -crB(h)-crBc(h) 

Subtracting gives the result : 

crAB (h) -crBA (h)= crBc (h) -crcB (h) 

Property S: Is it possible for two facies to be independent? 

As A, B and C are a partition of the space, they cannot all be uncorrelated. But we 
can ask whether it is possible for two facies, A and B (say), to be uncorrelated. We 
are now going to show that this is not possible. 1f there were more than three 
facies, we could simply regroup all the other facies (except A and B) into a single 
facies C. So it suffices to prove the result for three arbitrary facies, A, B and C. 
Suppose that facies A and B are uncorrelated. Then 

CTAB(h) = E[lA(x) -PA] E[ln(x+h)-Pn]=O 

Similarly for u BA (h) . So 

0 =crAB (h)- crBA (h) 

hence 

crBc (h) = crBc (h) and cr CA (h) = cr AC (h) 

Consequently 

cr A (h) = 0- cr AC (h) 

crc (h)=- crcA (h) -crcB (h) 

From this it is easy to show that 

crc (h)= cr A (h) +crB (h) 

The next step is to substitute h = 0 into this equation. Since cr(O) is equal to the 
variance, we get 
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and because Pc = 1-(PA -P8 ) 

This means that one of the two facies A or B is not present, which contradicts the 
initial hypothesis. This proves that facies cannot be independent. 

Property 6: One consequence of the triangle inequality 

Matheron (1987) proved that all indicator variograms must satisfy the triangle 
inequality for any two distances, h1 and h2 : 

y(h1 +h2 ):s;y(h1)+y(h2 ) 

This tells us about the behaviour of indicator variograms near the origin. Suppose 
that the behaviour was a power function near h = 0; say y(h) ~ I h I a. . What values 
are possible for the power a.? Let h1 = h = hz. Then 

Consequently a. must be less than or equal to 1. This means that the gaussian 
variogram should not be used as a model for an indicator variogram. Two 
examples of the types of inconsistencies that can arise when unsuitable variogram 
models are used for indicators, are given in exercises 2.3 and 2.4 at the end of the 
chapter. The point in including these examples is to show just how difficult it is to 
give a general characterisation for the variogram of an indicator random function, 
or in other words, of a random set. Matheron (1987, 1989 and 1993) produced 
several papers on this subject. The third one gives results concerning groups of 3, 
4 and 5 points and then makes a conjecture to generalise these. These results are 
relevant in "multi-point" geostatistics. 

Need for a mathematically consistent method 

In the previous section we saw that although indicators are very simple 
themselves, their properties are far from intuitive. For example, most people 
believe that it would be possible for some of the facies or lithotypes to be 
independent of each other, until they have seen the proof to the contrary. Nor do 
they realise that power functions and the gaussian model are not suitable models 
for indicator variograms. Although we have proved that these two models are not 
acceptable, this does not mean that the others can be used. It merely means that no 
counter examples have yet found to them. Perhaps someone will one tomorrow. 
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This raises a troubling question: which variogram models can be used for 
indicators. Or putting it more generally, Bochner's theorem provides a general 
characterisation for positive definite functions (i.e. for the covariances of gaussian 
random functions, and hence their variograms). Is there an equivalent theorem for 
random sets and indicator variograms? To the best of our knowledge there is not 

So we are faced with two options: make ad hoc choices about the indicator 
variograms with the risk of ending up with mathematical inconsistencies, or 
construct a mathematically consistent model. We prefer the second option. The 
way that we have chosen to do this is, as we saw in Chapter 1, by truncating 
simulations of gaussian random functions in a suitable way. The advantages of 
using gaussian random functions are clear: firstly, the normal (gaussian) 
distribution has many nice statistical properties; secondly, there are many ways of 
simulating gaussian random functions. The good properties, from a theoretical 
point of view, of the normal distribution and gaussian random functions include 
• In simple kriging the error is orthogonal to the estimate, so it is independent of 

it. This allows us to condition simulations by kriging. 
• Any positive definite function can be used as the covariance model of a 

gaussian random function. This is not true for other distributions, either discrete 
or continuous. We have already seen this for indicators which are discrete 
variables. In a similar vein, Annstrong (1992) shows that the spherical 
variogram is not always compatible with a lognormal distribution. 

Transition probabilities 

From experimental data, it is easy to compute the proportion of samples 
belonging to a particular facies. Although it is a little more complex, we can also 
calculate the conditional probability of going from one facies to another, or of 
staying in the same facies for points a certain distance apart. We are now going to 
express these transition probabilities in terms of the indicator covariance and the 
proportions. 

First type of transition probability 

The first type of transition probability is just the probability of being in facies Pi at 
point x + h knowing that point x is in facies F; : 
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cij (x,x+h) 

PFi (x) 
where Cii (x, x +h) is the noncentred crosscovariance between lF; (x) and lFj (x+h), 
and PF; (x) is the proportion offacies Fi at point x. 

This is the probability of going from facies F; to facies Fj, not being sure that 
we have a transition between x and x+h. This formula is also correct if j = i. If the 
facies are stationary, then this probability contains essentially the same 
information as the indicator variogram. 

Example of the first type of transition probability 

To illustrate how to calculate this type of transition probability, we have selected 
four neighbouring drill-holes extending from one chronostratigraphic marker 
(N°ll) down to the following one (N°10). Only two facies are present, A and B. 
Observations of the facies were made at 2m intervals down the holes (Table 1). 

Tablel: Facies observed at2 m spacing going from marker Noll down to markerN°10 

Drill-hole N" 92 Drill-hole N°58 Drill-hole N°39 Drill-hole N° 84 
A - - -
B - - -
A A - -
B A - -
A A B -
A A A -
A A B -
B A B -
B A A -
B B A -
B A A -
B A B B 
B A B B 
B B B A 
B B B A 
B B B B 
B A B A 
B A A B 
B B B A 
A A B A 
B A B B 
A B B B 
B B B B 
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As the drill-hole sections are of different lengths and as Marker N°10 is 
considered as the reference level (see chapter 3 for more information on reference 
levels), the sections are given from this level upward rather than from marker 
N° 11 downward, with blanks at the top. Our objective is to calculate the transition 
probabilities. By definition, these depend on the two points x and x+h. 1f the data 
are stationary horizontally (which is often the case), we can average along the 
rows. Similarly, if they are stationary vertically we can average in that direction 
but vertical stationarity is rare in sedimentary rock-types. Here as we only have 
four drill-holes in this example, we will assume vertical and horizontal stationarity 
for simplicity. 

Table 2a shows the numbers of each type of transition (i.e. A4A, A4B, B4A 
and B4B) for a distance of 2m upward while Table 2b shows the number of 
transitions that would be expected, assuming a random distribution of facies. As 
33 of the 75 observations are facies A, the Pr(A) = 0.44 and Pr(B) = 0.56. 
Consequently since there are 71 transitions each 2m long, the expected number of 
transitions A4B or B4A is just 0.44 x 0.56 x 71. In fact, the observed number of 
transitions A4A and B4B is higher than would be expected if the facies were 
arranged randomly, which was expected because of the sequential structure of 
sedimentary facies at this scale. Similarly, Table 3a shows the numbers of each 
type of transition for a distance of 1Om upward while Table 3b shows the 
corresponding number of transitions that would be expected, assuming 
independence. 

Table 2(a) Observed nwnber of transitions for a distance of 2m upward (out of a total of 
71 ), (b) expected nwnber of transitions assuming independence. 

Up to A UptoB Up to A UptoB 
From A 16 13 From A 13.7 17.5 
FromB 15 27 FromB 17.5 22.3 

(a) (b) 

Table 3( a) Observed nwnber of transitions for a distance of 1Om upward (out of a total of 
55), (b) expected nwnber of transitions assuming independence. 

Up to A UptoB Up to A UptoB 
From A 11 8 From A 10.7 13.5 
FromB 14 22 FromB 13.5 17.3 

(a) (b) 

One difference between the observed values in Tables 2 and 3 is that Table 2 is 
almost symmetric around the diagonal but Table 3 is definitely not. The lower line 
representing sections starting with facies B contains 36 out of 55 observations (i.e. 
65% rather than 56%). This indicates that facies B tends to be lower in the 
stratigraphic sequence than facies A; that is, this is evidence of non-stationarity. 
So averaging along the vertical direction is not a valid operation in this case. This 
problem will be encountered again when calculating variograms. 
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Second type of transition probability 

Here we consider the case where there are three or more facies. We are interested 
in the probability of being in facies Fiat point x+h knowing that we are in facies Fi 
at point x but not at x+h. This probability is: 

P(x+heFj I xeF; & x+h~F;) 

_ P[1Fl(x+h}=1 & 1F;(x)=1 & 1F;(x+h)=O] 

- P[1F;(x)=1 & 1F;(x+h)=O] 

_ E[1Fi (x+h) 1Fi (x)[1-1Fi (x+h)]] 

- E{1 Fi (x)[ 1-1Fi (x+ h)]} 

where Cu (x, x+h) is the non centred covariance between hi (x) and 1Fi (x+h). This 
is the probability of going from facies F; to facies Fi, when we know that the facies 
at x+h is not the same as at x. Clearly this probability cannot be computed if j = i. 

Example 

The second type of transition probabilities were calculated in the vertical direction 
for the image shown in Figure 2.5, which was obtained by truncating a gaussian 
with an anisotropic gaussian variogram. The EW range was 50 units compared to 
10 units in the NS direction. Figure 2.6 shows the probability that the second point 
(x +h) lies in facies 2 (or facies 3) given that the first point (x) is in facies 1 and 
that the second one is not in facies 1. We see that for short distance up to about 4 
units the only possible transition is from facies 1 to 2. As the distance increases 
the probability that the second point lies in facies 3 rises steadily to about 0.35. 

As a contrast, the image shown in Figure 2. 7 was obtained by truncating the 
same gaussian random function using a different rock type rule. In the previous 
case, the rock type rule consisted of three intervals in the order: black, then grey 
and then white. Now there are four intervals: black, grey, black and white. 
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Figs 2.5 and 2.6: Simulation of a gaussian random function with a gaussian variogram 
with an EW range of 50 units and a NS range of 10 units (left), and on the right the 
probability of a point at position x + h being in facies 2 (or facies 3, respectively) given that 
the first point at position x lies in facies I and that the second one does not, plotted as a 
function of the distance between the two points 
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Figs 2. 7 and 2.8: Simulation of a gaussian random function with a gaussian variogram with 
anEW range of 50 units and a NS range of 10 units (left), and on the right the probability 
of a point at position x + h being in facies 2 (or facies 3, respectively) given that the first 
point at position x lies in facies I and that the second one does not, plotted as a function of 
the distance between the two points 

Figure 2.8 shows the corresponding transition probability. The essential 
difference between these two is that in the first case the black never touches the 
white whereas it does in the second case. 
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Exercises 

The first two exercises in this chapter are designed to familiarise readers with 
indicator random functions. The next two illustrate the types of inconsistencies 
that arise with unsuitable models for indicator covariances. The last exercise gives 
some rather interesting results on multi-point statistics. 

Exercise 2.1 

(a) Figure 2.9 shows twelve regularly spaced points in a 2D zone containing two 
facies (coloured grey and white). Let F denote the white facies. Write the 
values of the indicators ofF and F in Table 2.4. 

Fig 2.9: Twelve samples are available in an area contains a facies F that is coloured in 
white. Its complement F is shaded grey 

Table 2.4: Values of the indicator for the facies F and its complement 

PointN° 1 2 3 4 5 6 

1f(X) 

1F(x) 

1F(x) + 1F(x) 

Point N° 7 8 9 10 11 12 

1F(x) 

1F(x) 

1F(x) + 1F(x) 
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(b) Calculate the experimental mean and variance of the indicator for F and of its 
complement. Check that the means lie between 0 and 1, and that the variances 
are no greater than 0.25. Under what circumstances would the variances equal 
0.25. 

(c) Calculate the experimental variogram for facies F, and then for its 
complement for up to 3 lags in the EW direction. Plot these. Why are they the 
same? What shape do they have near the origin? 

(d) The next step is to calculate the centered spatial covariances for F and its 
complement, then their cross covariances. Check that the direct covariances 
are identical and that the cross covariances are the negative of these. 

Exercise 2.2 

Assume that a facies F is stationary with probability PF = 0.6 in the area under 
study. Show that the variance of the indicator lp(x) equals 0.24. Suppose that its 
variogram can be modelled as an exponential with a scale parameter equal "a". 
(a) What is the value of its sill? 
(b) Write down the equation for the variogram of its complement. 
(c) Write down the equations for the centred covariance of the indicator for F and 

for its complement. 
(d) Plot the non-centred covariances for these two indicators. 

Exercise 2.3 Inappropriate models for indicator variograms 

This example taken from Matheron (1987) and Armstrong (1992) highlights the 
types of inconsistencies that can arise when inappropriate models are chosen as 
indicator variograms. In this case we are going to show again that the gaussian 
variogram is unsuitable as a model for the variogram of the indicators. 

Consider two points x1 and x3. Let x2 be their midpoint. As each of the three 
indicators can take two values, 0 and 1, there are 8 possible combinations for the 
values of the three indicators. Let ro denote the probability that all three indicators 
take the value 1. That is, 

ro = Pr[1p(x1) = 1p(x2) = 1p(x3) = 1] 

As usual the non-centred covariance is: 

cij = Cp(Xj,Xj) = El1p(Xj) 1p(Xj)j= Prl1p(Xj) = 1p(xj) = 1j 

(a) Show that 

Pr[1F(X1) = 1F(X2) = 1 &1F(X3) = 0] = Cl2 -(I) 
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Hint: split the event [IF (x1 ) =IF (x 2 ) =I] into two mutually exclusive events 

according to the value of the third indicator e.g. 

Pr[1F(x1) = 1F(x2) = 1] = Pr[1F(x1) = 1F(x2) = 1F(x3) = 1] 

+ Pr[1F(x,) = 1F(x2) = 1&1F(x3) = o] 

(b) Similarly show that 

Pr[1F(x,) = 1 &1F(x2) = 0 &1F(x3) = o] =ell -e,2 -e,3 +ro 

Hint: consider the event [1F(x1) = 1 &1F(x2) = 1F(X:J) = 0] 

(c) The contradiction becomes apparent if the three points are set 0.15 apart 
(compared to a scale parameter of 1) and if the probability that 1F(x;) = 1 is 0.1. 

en = ezz = e33 = 0.9 

Calculate the value of the gaussian variogram for a distance of 0.15 and show that 
the following values are obtained for the noncentred covariance: 

e,2 = e 23 = 0.1x0.9x0.494 = 0.0396 and e 13 = 0.1x0.9x0.478 = 0.0430 

Showthat 0S:0.043-ro since Pr[1F(x1 )=1F(x3 )=1&1F(x2 )=0]~ 0 

In the same way, use the fact that 

Pr[1F(x,) = 0&1F(x2) = 1&1F(x3) = o] = e22 -en +e23 -(J) ~ 0 

to prove that ro ~ 0.821. 

Since it is impossible for ro s; 0.043 and ro ~ 0.821, the gaussian variogram model 
is incompatible with indicator data. 
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Exercise 2.4: Another unsuitable variogram model 

At first one might be tempted to think that the gaussian variogram is not allowable 
because it is infinitely differentiable or because it is quadratic near the origin. To 
show that this is not the case, Matheron produced a construction for a variogram 
model 

f(x) = la 2 e-ax -b(2a-b) e-bx j 

where a <b < 2a and a/= 2ab- b2 • 

This is licit for indicators in 1-D provided that ro < b. However he also proved 
that if ro > b, the triangle inequality is not respected. To see this, let b = 0.1, ro = 1 
andh= 0.2. 

Exercise 2.5: Multi-point Statistics 

Covariances and variograms are examples of two point statistics. This exercise 
gives some theoretical results on multi-point statistics. Part (a) shows that once 
one of the three point covariances is known, all the others can be expressed in 
terms of it and of lower order statistics. 

(a) Let 

CFFF (x, y, z) = E(lp (x)1p (y)1p(z)) 

Show that: 

CFFF (x, y, z) = -CFFF (x, y, z) + Cpp (x, y) 

Cppp(x,y,z) = CFfp(x,y,z)-Cpp(x,y)-Cpp(x,z)+Pp(x) 

Cppp(x,y,z) = -CFfp(x,y,z) +Cpp(x,y) +Cpp(x,z)+Cpp(y,z) + 1 

- Pp(x)- Pp(y)- Pp(z) 

By permuting the order of the coordinates show that 

Cppp(x,y,z) = -Cppp(x,y,z)+CFF(x,z) 

Deduce similar expressions for the remaining three point statistics. (Exercise 
2.3 is based on these.) We can now extend this result to higher order multi-point 
statistics. First we need to define the notation. Let 
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More generally, let the covariance for the case where the first (p-k) points belong 
to the facies F and the remaining k points to its complement be 

CF ... F,F ... F(xl> ... xp) = CpP-kpk (xl>··.xp) ._,.... ._,.... 
(p-k) k 

Show that for any two integers k and p 

CpP-k,Fk (xbx2·····xp) = (-l)kCpP (xl,x2•···· Xp) +<I>[ (xl,x2•····xp) J 

The function <I> involves only lower order covariances Cpp-i and proportions. 

This can be deduced by expanding the appropriate product. For example, to find 
Cppp(x,y,z), we expand 

F(x)[l- F(y)}[l-F(z)] = F(x)F(y)F(z)- F(x)F(y)- F(x)F(z) + F(x) 

This gives 

Cppp(x,y,z) = Cppp(x,y,z)-Cpp(x,y)-Cpp(x,z)+Pp(x) 

By permuting the coordinates we can show that any n-point statistics can be 
expressed using the basic n-point covariance CpP (xl>x2 , ... ,xp) and terms 

involving lower order covariances. 

Exercise 2.6: Erosion model 

Consider two models with two facies where A and D are the main facies and 

A, D their complements. Then form a model with three facies, A, B and C, by 
letting A erode D and its complement. 

a) Write the indicators of A, B, C using the indicators of A, and D. 
b) Use the previous results to compute the indicator covariances of A, B, C 

for the case when the facies A is independent of D. 

Exercise 2.7: Porous medium 

Consider a porous media. Let A be the random set describing the pores. The 
porosity of support V is the mean value of the indicator A on the volume V 
centred at the point x. Compute the analytical form of 

a) The covariance of the porosity of support V 
b) The covariance of another indicator F with the porosity of support V. 
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The simplest quantity that can be measured from an image showing different 
facies or lithotypes is the percentage of space taken up by each facies. So the first 
step in a plurigaussian study is to calculate the proportions from the experimental 
data. In the stationary case, we only need calculate the percentage of all the data 
that belong to each facies to get the proportions. However in most practical cases, 
the geology is more complicated. For example, petroleum reservoirs are not 
stationary in the vertical direction because of cyclic changes during their 
deposition. Vertical proportion curves were designed to quantify these changes. 
We will show how to compute and interpret these curves. In more complicated 
cases the proportions vary laterally as well. In that case we build up a 3D matrix 
of proportion curves. Although plurigaussian simulations were first developed for 
the oil industry, they are now used in mining as well. Proportion curves and 3D 
proportion matrices are also used there to estimate the proportions of each rock 
type. 

The first section in this chapter describes vertical proportion curves for the 
simplest case where the reservoir or deposit is stationary horizontally. These 
curves summarise the vertical variability in the proportions. After that we treat the 
more general case of non-stationarity where we use 3D proportion matrices. One 
key factor when calculating vertical proportion curves (VPC, for short) is the 
choice of the reference level. An example is presented to illustrate the impact of 
inappropriate choices on VPC. 

How to calculate vertical proportion curves 

Vertical proportion curves first proposed by Bencher et al (1987) are a simple tool 
for quantifying the evolution in the amount of each facies or lithotype present as a 
function of depth. They are computed along lines parallel to the chosen reference 
level (generally a chrono- stratigraphic marker). The results are presented as a 
graph showing the proportion of each facies at each level. We illustrate this 
procedure using a simple example. 

Figure 3.1 shows five fictive wells each containing five core sections of equal 
length. Three lithotypes which we call sandstone, shaly-sandstone and shale, have 
been recorded. Looking at this figure, we see that there is more shale at the tops of 
the wells than at the bottoms. In fact, all five core sections in the top row are shale 
(i.e. 100% shale). In the second row there is 80% shale and 20% shaly-sandstone. 
At the bottom there is 40% shaly-sandstone and 60% sandstone, but no shale. 
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D Shale 

'· Shaly-
sandstone 

•.:· 

D '•. 

Sandstone 

Fig 3.1: Five drill-holes each containing five core sections of equal length 

These proportions are presented graphically in Figure 3.2. The order that the facies 
are arranged in is important. It must reflect the evolution seen in the geology. In 
this case the interpretation is simple: the grain size at the top of the wells is much 
smaller than at the bottom. This indicates sedimentological evolution from a high 
energy medium at the bottom to a low energy one at the top. 

0% 20% 40% 60% 80% 100% 

Fig 3.2:Vertical Proportion Curve showing the proportion of each facies per vertical level 
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Anastomosed 

Fig 3.3: Conceptual model of the deposition 

Example 1: the Ravenscar sequence 

The Ravenscar sequence which outcrops in cliff faces near Scarborough in North 
Yorkshire, consists of about 200m of siliclastic sediments dating from the Middle 
Jurassic era. The Cleveland basin to which it belongs is a progradation of a deltaic 
system with marine influences. Figure 3.3 (taken from Bencher, Doligez and 
Y arus, 2000) shows a conceptual model of it. 

Fig 3.4: Vertical proportion curve for the Saltwick unit of the Ravenscar sequence 
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Fig 3.5: Vertical proportion curve for the Ellerbeck unit of the Ravenscar sequence 

The Ravenscar sequence consists of seven units. From the top down, these are 
Scarborough, Gristhorpe, Millepore, Sycarham, Cloughton, Ellerbeck and 
Saltwick. Each had a distinctly different depositional environment. For example, 
the Saltwick unit was laid down in a continental environment whereas the 
Ellerbeck unit is characterised by steady changes in the sea level. Figures 3.4 and 
3.5 (from Bencher, Doligez and Yams, 2000) show the vertical proportion curves 
for these two units. The three main channel producing episodes are clearly visible 
in the VPC for the Saltwick unit. In contrast to this, the VPC for the Ellerbeck unit 
shows regular changes from an open marine environment (marine mudstones and 
marls) at the bottom of the unit to continental facies at the top. Intermediate 
lithounits include argillaceous sandstones and transgressive sandstone 
corresponding to the shoreface and clean sandstone from the foreshore and upper 
shoreface. The top of the unit is characterised by a lagoon environment with a 
floodplain, continental mudstone and argillaceous sands. 

Example 2: facies with contrasting anisotropies in a gold deposit 

The Lupin mine in Northwest Canada is a good example of a stratiform banded 
iron formation (BIF) hosted gold deposit. Some of the gold is uniformly 
disseminated in thin, laterally continuous units of sulphur-rich BIF while the rest 
is contained in steeply inclined quartz veins that have overprinted the BIF. See 
Kerswill et al (1996) for more information. The two gold-bearing lithofacies and 
the barren background are present in the schematic vertical cross-section of the 
orebody shown in Figure 3-6 from Roth et al (1998). 
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Host ro.~k (%) 

Fig 3.6 (left): Schematic vertical cross-section of the Lupin orebody showing two 
mineralised lithofacies with contrasting anisotropies on a waste background; Fig 3. 7 
(right): the vertical proportion curve corresponding to Fig 3.6 

Figure 3.7 shows the experimental VPC computed from Figure 3.6, with the 
proportion of quartz vein in dark grey and that of sulphide BIF in light grey. The 
proportion of quartz vein changes gradually reaching a maximum near the middle 
of the cross-section. In contrast to this, the proportion of sulphide BIF is erratic. 
Before this VPC can be used to calculate the thresholds we have to decide whether 
these peaks are representative of genuine geological features in the deposit or 
whether they are due to statistical fluctuations. Looking back at Figure 3.4, we see 
that same problem arose with the VPC for the Saltwick unit of the Ravenscar 
sequence. If the peaks are a real feature they should be modelled. Otherwise we 
should smooth them. Alternatively, the reference level has to be changed. This 
decision can only be made after discussion between the geologist or the engineer 
and the geostatistician. In both of these cases it was decided that the peaks 
represented real features of the deposit/reservoir that should be reproduced in the 
simulations. So the thresholds were set to generate more BIF (or more channels, as 
the case may be) at the corresponding depths. 

Horizontal nonstationarity 

The vertical proportion curves presented in the previous section were computed 
assuming that the deposit/reservoir was at least horizontally stationary. In many 
cases, this is not true. The proportions vary laterally from one area to another. The 
Mill pore and Gristhorpe units of the Raves car sequence in Yorkshire are a typical 
example of this. The depositional environment varied from marine and littoral 
deposits. It is characterised by marine mudstone, wash-over argillaceous 
sandstones through to deltaic environment with a floodplain and fluvial and 
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deltaic channels. Bencher, Doligez and Yarns (2000) constructed a 3D matrix of 
proportion curves to model the evolution in the proportions both vertically and 
laterally. Their first step was to group wells locally and compute a vertical 
proportion curve for each set. The percentage of each of eight lithotypes was then 
kriged at the nodes of a regular grid (Fig 3. 7a) and the kriged estimates were 
recombined to give a vertical proportion curve. As the proportions were kriged 
individually, they do not add up to 100% at each grid node. So the values were 
rescaled to guarantee this. Figure 3.7b shows nine cells from the 3D proportion 
matrix. 

Fig 3. 7a: Kriging VPC onto a regular grid 

D 
D 

• • • • 

shale flood plain 
ar. sand Channel 
Sand channel 
hardground 
ar. sand lagoon 
mudstone lagoon 
sandstone washover 
marine mudstone 

.. ----

Fig3.7b: Nine cells from the 3D proportion matrix computed by Beucher, Doligez and 
Yarus(2000) 
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Having to rescale the proportions to make them sum to 100% is not entirely 
satisfactory. One could envisage using cokriging, but this would result in 
difficulties setting up the structural model (i.e. the variograms and the cross­
covariograms). A more fundamental reason for using a simple technique like 
kriging is that it is then easier to incorporate additional information, for example 
from seismic data. Mouliere (1996, 1998) considered a case where 2D seismics 
gave the cumulative thickness of one lithotype (shaly sandstone) for each unit in 
the formation. So it was important to incorporate this constraint into the 
proportion curves. She proposed two methods for doing this: one based on 
cokriging and the other using kriging. She showed that the simulations obtained 
after taking account of the available seismic information were much more realistic 
than those based on data from the limited numbers of wells that were available. 

Lateral non-stationarity was also encountered by Doligez, Bencher, Fonnesu et 
al (1994) in their study of the Cajigar 2 succession. As the proportions changed 
from one area to another, they constructed a matrix of lithofacies proportions on a 
300m x 300m grid. Each horizontal proportion curve was obtained by averaging 
the percentages of each lithofacies in the three levels above and below, as well as 
the level itself. This has the advantage of maintaining the vertical correlations 
between successive levels, as well as smoothing the results. Whereas in vertical 
proportion curves, the proportions are plotted horizontally as a function of the 
vertical height, the horizontal proportion curves show the proportions on the Y­
axis with horizontal coordinate along the X-axis. 

Non-stationarity can also arise when studying mining deposits. Compared with 
petroleum data, far more drill holes are usually available but there is often no 
chronostratigraphic marker to help interpret the geology. Betzhold and Roth 
(2000) studied the Mantos Blancos copper orebody which is located 45km 
northeast of the city of Antofagasta in the north of Chile. Their objective in 
simulating the orebody was to improve the ore homogenisation procedure by 
providing mine-planning engineers with more accurate images of the key 
mineralogical units. The rocks at Mantos Blancos come from a volcanic sequence 
consisting of andesitic flows and flow breccia at the top, then flow-breccia and 
flows of porphyritic dacite, and at the bottom, flows of augen (quartz-eye) dacite. 

The sequence dips to the southwest at 10 - 20° in the mine area. The 
mineralisation forms an irregular blanket ranging from lOOm to 200m thick. As 
different mineralogical ensembles with similar average grades do not increase the 
grade variability, they can effectively be grouped together and treated as one new 
unit This led Betzhold and Roth to define three ore type classifications: 
• high grade ore comprising chalcocite-bornite ore 
• low grade ore comprising chalcopyrite and chalcopyrite-pyrite ores 
• waste rocks that are not sent to the flotation plant. These include the oxide ore 

(atacamite-malachite), pyrite and the barren rock that is generally found 
beneath the orebody. 

Over the whole field, there is almost 10% of high-grade ore and about 45% of 
both low grade and non-copper sulphide material but these proportions are not 
constant in space. For example, there is much more low grade material near the 
top of the orebody. The proportions have to be modelled as a function of the point 
considered in the field. 
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Fig 3.8: Two sets of proportion curves, an HPC and a VPC, calculated using just over 900 

samples. The horizontal axes are the east-west direction (on the left) and the vertical 

direction (on the right). fu the top diagram, the HPC was calculated close to the surface, 

whereas the VPC came from the Western side of the field. fu the lower diagram both 

proportion curves were computed closer to the centre of the field. The proportions are 

shown as a coloured surface on the vertical axis with high grade ore in black, low grade ore 
in middle grey and poor material in light grey 



Proportions 35 

Proportion curves were computed by a simple moving average procedure that 
was refined and complemented manually to incorporate knowledge about the 
geological characteristics of the site. Figure 3.8 shows two sets of proportion 
curves from a 2D test zone containing just over 900 samples. The horizontal axes 
are the east-west direction (on the left) and the vertical direction (on the right). In 
the top diagram, the horizontal proportion curve was calculated close to the 
surface, and the vertical proportion curve on the Western side of the field. In the 
lower diagram the proportion curves were computed closer to the centre of the 
field. The proportions of the three ore types are shown as a coloured surface on the 
vertical axis: high grade ore in black, low ore in middle grey and poor grade in 
light grey. The sum of the facies proportions is always equal to 100%. It is 
interesting to see how much the proportions of low and poor facies can vary over 
relatively small distances. In contrast the proportion of high grade ore seems more 
regular. 

Choosing the reference level 

The shape of the vertical proportion curve and the resulting simulations depend on 
the choice of the reference level. For oil reservoirs this is a specific geological 
marker which is used to restore the geometry of the reservoir at the time of 
deposition. This level must have been horizontal during sedimentation, and, 
should, if possible, correspond to a time line. That is, it should be a 
chronostratigraphic marker not an erosional unconformity. The reservoir is then 
flattened using this as the reference level. 

Common choices for the reference level are the top of the unit or the bottom. 
Alternatively, a proportional grid could have been used to take account of 
differential subsidence. Figure 3.9 illustrates two of these three possibilities. 
Different reference levels can be used for each reservoir unit, or one serve for 
several of them. 

To illustrate how important this choice is, Bencher (1998, personal 
communication) tested the impact of three possible reference levels on the vertical 
proportion curve and then the simulations. The Ellerbeck unit of the Ravenscar 
sequence which was described earlier in the chapter, was used as an example. The 
correct level is a flooding surface inside the Ellerbeck unit near the bottom. The 
two incorrect levels she considered were the base of the Ravenscar sequence and 
its top (denoted by R1 and R2 respectively). The base is a chronostratigraphic 
marker, the top is an unconformity. Figure 3.10 illustrates these three possibilities. 
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Fig 3.9: Two ways of flattening a reservoir, (a) using the top as reference level, (b) 
proportionately to account for differential subsidence 
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Fig 3.10: Three possible choices for the reference level; the flooding surface inside the 
Ellerbeck formation (the correct choice), the bottom of the reservoir (Rl) and the top (R2) 
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Beucher computed the vertical proportion curves for the three candidate 
reference levels. Figure 3-lla shows the VPC for the best choice (denoted by OK) 
shows a steady gradation in the depositional environment. Starting from the 
bottom these are 
- mudstone coming from an open marine environment, 
- argillaceous sandstone from the low to mid shore, 
- transgressive sandstone, 
- clean sandstone from the foreshore, 
- a mixture of argillaceous sandstone and mudstone from a lagoon environment. 

and finally 
- continental mudstone from a flood plain environment at the top. 
The second VPC (Fig 3.llb) corresponds to reference level Rl which is not the 
correct one. But its irregularities could have been due to cycles within the 
depositional cycles. The third VPC corresponding to reference level R2 is 
obviously incorrect (Fig 3.llc). Figure 3.12 shows one simulation of the unit 
obtained using each of the VPC. The correct one reproduces the type of continuity 
that would be expected at this scale, in this type of depositional environment. The 
lithotypes in the simulation corresponding to Rl are much less continuous and 
would lead to quite different fluid flows. The third simulation for R2 suggests no 
connectivity from one part of the unit to another. 

It is not always obvious which level is the most appropriate for the reference. 
When in doubt, seismic data can sometimes provide guidance because it can give 
an indication of the cumulative thickness of sandstone. This could be compared to 
the cumulative thickness found in simulations. Fig 3.13 shows the cumulative 
sandstone thickness for the three simulations. The differences are quite marked. 
Volpi, Galli and Ravenne (1997) and Ravenne et al (2002) discuss vertical 
proportion curves in detail. The definition of a level has a marked impact on the 
result of the simulation. Onlap or toplap configurations can be produced 
depending on the choice of a reference level with regards to the unit geometry. 

Non-stationarity 

From a geological point of a view, a non-stationarity is characterised by a 
significant lateral change in the lithotype distribution in a reservoir unit, within the 
study area. It often shows up in the horizontal proportion curves as significant 
variations in the lithotype proportions in a given direction. 

As geological phenomena always have some non-stationary aspects, depending 
on the scale of investigation, the choice between stationary or non-stationary 
models is subjective. It implies firstly a classification of the heterogeneity and 
then setting up a hierarchy. The distribution of the relevant heterogeneity will be 
then analysed to determine if it is stationary or not. 

Non-stationarity concerns both object and sequence-based models. In object 
based models, it implies lateral variations of the object frequency. In sequence -
based models, non stationarity can be handled by computing several proportion 
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Fig 3.11a: Vertical proportion curve corresponding to the correct reference level 
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Fig 3.11b: Vertical proportion curve corresponding to the reference level Rl 
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Fig 3.llc: Vertical proportion curve corresponding to the reference level R2 
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Fig 3.12a: One simulation of the unit obtained using the correct reference level 
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Fig 3.12b: One simulation of the unit obtained using the reference level Rl 
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Fig 3.12c: Simulation of the unit obtained using the reference level R2 



40 Proportions 

Fig 3.13a: Accwnulated sand thickness obtained using the correct reference level 

Fig 3.13b: Accwnulated sand thickness obtained using reference level Rl 

Fig 3.13c: Accwnulated sand thickness obtained using reference level R2 
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curves for lithotypes in different areas of the reservoir. This leads to the 
construction of a proportion matrix, in which vertical proportion curves are 
computed in each cell of a grid (Bencher et al, 1993; Doligez et al, 1999). This 
approach is very flexible and gives realistical lateral variation of lithofacies. 
Furthermore, it is easy to integrate soft constraints such as an external drift into 
the computation of the proportion matrix. Geological information derived from 
seismic campaigns can then be integrated in the simulations (Mouliere et al., 
1997; Fournier and Derain, 1997; Johann et al., 1996; Doligez et al., 1999). 



4. TRUNCATION AND THRESHOLDS 

Basic principle in the truncated gaussian method 

In truncated gaussian simulations, the lithofacies are not simulated directly: a 
statioruuy gaussian random function is simulated first, and is then transformed into 
the lithofacies variable by truncation. For example, if we want to simulate two 
lithofacies, F1 and F2, a very intuitive way to transform the simulated gaussian 
variable into facies values is to say " if the numerical value of the simulated 
gaussian is lower than the number t1, we obtain the first facies F 1; otherwise, we 
obtain the second facies F2 ". The value t1 is called a threshold. 

Defining the thresholds 

Let x be any point in the simulated domain, let 1F1(x) and 1n(x) be the indicators 
of the lithofacies F1 and F2 and let Z(x) be the simulated gaussian function at point 
x. The transformation used is described mathematically by: 

1Fl (X) = 1 <=> - 00 :::;; Z (X) < t1 

When we want to simulate a lithofacies variable which can take more than two 
values, we have to define more than one threshold (N-1 thresholds for N possible 
lithofacies values). The ith facies F; is defined by: 

XE}\ <=> 1Fi(x)=1<=>tl-ls;Z(x)<t; 

The thresholds are in increasing order 

And we can obviously have one and only one facies value at each point. 

Transitions between facies 

Provided that the nugget effect in the variogram is zero, the simulated gaussian 
function is continuous. We are going to study the simulated values as we go from 
point x to pointy. 
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Fig 4.1: Examples of possible paths 

For any intermediate value between z(x) and z(y), there must be at least 1 point 
where z takes that value. This is true for every path going from x to y, no matter 
how complicated it is (Figure 4.1). 

This has important consequences. Suppose that the points x and y belong to 
different facies, respectively Fi and Fi, where i < j. Then we will find all the 
intermediate facies Fk (i < k < j) on all paths joining the points x and y (provided 
that the thresholds do not vary in space). Graphically, this corresponds to a 
characteristic pattern of concentric shapes (Figures 4.2 and 4.3). In both cases, if 
we go from a point in the white facies to one in the dark grey, we have to cross the 
light grey. So the contacts that are possible using the truncated gaussian model are 
defined by the ordering of the thresholds, i.e. by the ordering of the facies. 

Fig 4.2 and 4.3: Characteristic patterns of concentric circles generated using an exponential 
variogram (left) and a gaussian variogram (right) 
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Figure 4.4 shows three simulations obtained with different choices of facies 
ordering. In the top figure, the light grey always occurs between white and dark 
grey. In the middle figure, the dark grey forms the buffer between the other two 
colours whereas in the bottom figure it is the white. This relationship is 
summarised in the rocktype rules to the right of each figure. The discretisation of 
the space can attenuate this effect, especially when the properties of the gaussian 
variable allow sharp (but nevertheless continuous) variations (as is the case in 
Figure 4.2). Variation of the thresholds in space can also attenuate this effect, 
especially when some facies disappear locally. 

Link between thresholds and proportions 

Earlier we saw that the proportion of a particular facies F; at point x is the 
probability of having this facies F; at that point x. This can be written as: 

PF; = P(facies at point x = F0 = E[lFi(x)] 

As we have 

we can also write: 

PFi (x) = P(t;_1:::;; Z(x) < t;) = P(-oo < Z(x) < t;)-P(-oo < Z(x) < t;_1) 

PFi (x) = G(t;) -G(t;_1) 

where G(t) is the cumulative distribution function for the standard normal 
distribution N(O,l). (The choice of the normal is entirely conventional). As the 
proportions of each facies are known experimentally, we just invert this 
relationship to deduce the thresholds: 

t1 = a-1 [PF1 (x)] 

t2 = G-1 [PF! (x)+pF2 (x)J 

t; = a-1 [PF1 (x) +pF2 (x) + ... +pFi (x)] 

Once the facies ordering has been chosen, we have a one to one relationship 
between the thresholds and the proportions. This shows a limitation of the 
truncated gaussian method: as the model orders the facies, this ordering must be 
realistic from a geological point of view. (See Figure 4.4) 

Remark: Once the facies sequence is defined, it is of no importance whether 
they are numbered in an increasing order or a decreasing one. By replacing Z with 
-Z, both cases are equivalent. 
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Fig 4.4: Three tnmcated gaussian simulations with the facies ordered in different ways. At 

the top, the light grey always occurs between white and dark grey. In the middle, the dark 
grey forms the buffer between the other two colours whereas at the bottom it is the white. 

This relationship is summarised in the rocktype rules to the right of each figure 
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Non stationary facies 

If the facies are stationary, the thresholds are constant in space; otherwise they 
vary. The example of how to calculate vertical proportion curves given in chapter 
3 is a typical case of vertical non stationarity. Table 4.1 lists the proportions of 
each facies in each level for that example and Table 4.2 gives the corresponding 
thresholds. 

Table 4.1: Proportions of each facies shown in Figure 3.1 

Level (numbered from Shale Shaly sandstones Sandstones 
bottom to top) (F1) (F2) (F3) 

5 100% 0% 0% 
4 80% 20% 0% 
3 20% 80% 0% 
2 0% 60% 40% 
1 0% 40% 60% 

Table 4.2: Thresholds corresponding to proportions shown in Table 4.1 

Level to tl t2 h 

5 -oo 00 00 00 

4 -oo 0.84 00 00 

3 -oo -0.84 00 00 

2 -oo -oo 0.25 00 

1 -oo -oo -0.25 00 

The first and last thresholds are always equal to -ao and oo respectively, and they 
are not taken into account in the N - 1 thresholds (if we consider them, there are 
N+ 1 thresholds). 

In non stationary cases, facies sometimes disappear locally. For example, if the 
ith facies is not present, then t;.1 = t; as occurred in Table 4.2. 

Idea behind the plurigaussian method 

With the plurigaussian method, we simulate several gaussian functions instead of 
one. A transformation is made on the whole set of gaussian functions to obtain the 
facies value. We will illustrate how this is done via a few examples. 
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Example 1: 

To start with, we limit ourselves to two gaussian functions Zt (x) and Z2(x), to 
simplify the graphical display. Figure 4.5 shows the 2D gaussian space and the 
position of two simulated points in this space. As the partition chosen here 
contains only two subsets, we will have two lithofacies (white and grey). At the 
first point x1 the simulated values are Z1(x1) and Z2(x1), which we will shorten to 
z1_1 and z2_1. This pair of values belongs to the subset labelled Ft. This means that 
the white facies will be attributed to Xt. At point x2 the simulated values are Zt-2 
and z2_2. This pair of values belongs to the subset labelled F2, which means that the 
grey facies will be attributed to x2. (N.B. the gaussian functions take all values 
between -oo and +oo. We represent them in a rectangle, to simplify the display.) 

Zl- 2 Zl - 1 

Fig 4.5: Rock.type rule for 2 facies 

Fig 4.6: Rocktype rule with 6 facies. The three points lie in facies N° 1, 2 and 5 
respectively 
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Example 2: 

In this example, we have also two gaussian functions, but there are six lithofacies. 
Figure 4.6 shows the 2D gaussian space with its partition, and the position of three 
simulated points in this space. Here we attribute the facies F1 to point x1, F2 to 
point x2 and F s to point x3. 

Remarks: 

1. In these figures, we see that the limits of the subsets can be rather 
complicated, so we can no longer speak of thresholds. 

2. If we simulate N gaussian functions, they define a theoretical space with N 
dimensions. At any point x, the values of the simulated gaussian functions, 
z1, z2, ... , zN, define the co-ordinates of the simulated value in this new 
space. The facies are labels attached to parts of this space. If we want to be 
able to give a facies to each simulated point, these parts must define a 
partition of the gaussian space. If we have N gaussian functions Zi, and if 
we let Di be the subset of the gaussian space which is labelled as facies Fi, 
we can write: 

3. The gaussian functions need not to be independent. They can be correlated. 

Link with the proportions 

As for the truncated gaussian, the proportion of facies Fi at point x is just the 
probability of having this facies Fi at that point. It can be written as : 

pFi(x) = P (facies at point x = Fi) = E[lFi(x)] 

pFi ( x) = P{[ Z1 (x), ... ,ZN ( x) J E Di} = f gt (zP ... , zN) dz1 ••• dzN 
o, 

where g,;(z1, z2, ... , ZN) is theN-variate gaussian density function with mean 0 and 
variance 1, and 2:: is its correlation matrix. Computing PFi is quite easy when we 
know 2:: and Di, but determining 2:: and Di even when we know all the PFi is 
impossible in the general case because there are an infinity of solutions. To solve 
this problem, we have to impose some constraints on the parameters. 
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Parameter simplification: use of thresholds 

To overcome this problem, we choose to partition the gaussian space into 
rectangles (if we have 2 gaussian functions) or in rectangular parallelepipeds (with 
more than 2 gaussian functions). Figure 4.7 shows an example of one such 
partition with 2 gaussian functions. These rectangular boxes are defined by their 
projections on the gaussian co-ordinate axes. The end points of these projections 
can be considered as thresholds (see Figure 4.8). Each rectangular box is defined 
by 2N thresholds (some of them can be infinite). When we know 2N-1 of them, it is 
possible to invert the equation 

PFi(x)= Jg(z1,z2 , ••• ,zN) dz1 dz2 ••• dzN 
D; 

numerically to find the last unknown threshold. If we have N gaussian functions 
and M facies, we have M x 2N thresholds. As we do not allow "empty space", our 
rectangular boxes constitute a partition of this space. This considerably decreases 
the number of independent thresholds. For example, if we include the infinite 
thresholds, we have: 

M+ 1 thresholds with 1 gaussian function (i.e. truncated gaussian method), 
M+3 thresholds with 2 gaussian functions, 
M+5 thresholds with 3 gaussian functions, 
M+2N-1 thresholds with N gaussian functions, 

which means M-1 finite independent thresholds. 

Choice of the partition 

Even after having decided to use a rectangular partition, there are many possible 
layouts. For example with two gaussian functions and four lithofacies, we have ten 

t2-2 -------o 
-------t2-1 

1 I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

tl-1 tl-2 

Figs 4. 7 and 4.8: Partition in rectangles (left) and thresholds (right) 
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ill] 
Fig 4.9: Rectangle rocktype rules for 4 facies 

possibilities, plus one which is equivalent to the case with only one gaussian 
function. Figure 4.9 shows these partitions. With 6 facies, we have approximately 
140 possibilities. This shows that we will not be able to test all the possible 
partitions. We have to make a choice, and then find a criterion to help us do this. 
Figure 4.10 shows examples of simulations corresponding to two cases from 
Figure 4.9. 

Fig 4.10: Examples of simulations for two of the rocktype rules shown in Fig 4.9; 
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Fig 4.11: Examples of simulations with the same contacts, but with different rocktype rules 

We can see that the facies that touch each other in the rocktype rule are also in 
contact in the simulation. This is a general rule when the proportions are constant, 
and when the simulated field is large enough to be statistically representative. 

This rule is usually sufficient to choose the partition if there are only a few 
facies, but when the number increases, we can fmd several partitions which give 
the same contact possibilities (Figure 4.11). In that case, the shape of these 
contacts can also help us. We have to decide which gaussian function will guide 
the shape of which contact. 

When the proportions vary, some facies can disappear in some parts of the 
simulated field. In that case, the rocktype rule also varies, and the forbidden 
contact will locally disappear. 

Choice of the correlation matrix 

With two gaussian functions, the correlation matrix which can be written as 

L=G ~) 
is consistent provided that -1 < p <1. The values p = ±1 are also authorised, but 
in that case it is better to work with only one gaussian function. 

The covariance matrix must always be positive definite. With more than two 
gaussians, it would be virtually impossible to get a positive definite matrix just by 
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picking values for the terms. It is better to give a consistent model of relationships 
between the gaussians, and then deduce a suitable covariance matrix from this. We 
will not go into more detail here. 

With two gaussian functions, once the rocktype rule is chosen, we still need to 
know the M-1 thresholds and the correlation, p, which gives M unknowns. So we 
need M equations linking the unknowns to the proportion values. We have M 
equations but they are not independent because the partition automatically ensures 
that the proportions sum to 1. As a consequence, we have more variables than 
independent equations. The number of solutions is infmite. Worse, these solutions 
are not equivalent: they give rise to simulations that are quite different. 

For example Figure 4.12 shows two simulations obtained with the same 
partition but different correlations, 0 and 0.6. The shape of the black facies is 
exactly the same in both cases because the first gaussian function is the same, but 
those of the three other facies change. This is easiest to see on the white facies. In 
the right hand simulation where the correlation is 0.6, the white tends to wrap 
around the black, especially in the bottom left comer. In chapter 7, we present a 
case study where correlation will be used to drape one facies over algal bioherms. 
The example given above shows that increasing the correlation coefficient 
introduces a border effect, which looks like the ordering effect we have with only 
one gaussian function. This is the reason why we suggest choosing the value of 
the correlation coefficient arbitrarily, depending on whether we want to have a 
strong border effect or not. Note that the correlation coefficient is a property of the 
gaussian functions: it will remain constant over the whole domain. 

Calculating the thresholds 

When we have chosen the correlation coefficient, we have M-1 independent 
equations of the form: 

PFi(x)= Jg(z1,z2 , ••• ,zN) dz1 dz2 ... dzN 

where the Di are rectangles lti-J, tJ x [si-J, sJ. 

Fig 4.12: Simulations with the same lithotype rule and different correlation coefficients, 
p=O and p=0.6 
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Fig 4.13: Successive groupings to obtain the thresholds 

We have already seen that there are M-1 independent thresholds. This equation 
system cannot be solved analytically, but iterative methods can give us the 
solution. The trial and error method, testing successively all the thresholds, would 
be too slow, because it does not automatically ensure the consistency of the 
partition in rectangles. 

In general, it is better to perform a global optimisation, minimising for example 
the global square error on the proportions. But in many cases, it is possible to 
group the facies and work successively on one gaussian function, then the other 
one (we may have to iterate this procedure). Figure 4.13 shows an example of this. 
Here the trial and error method is very quick, because the partition is 
automatically consistent. The partition we want to obtain is shown on the top line. 
The second line shows the order in which the thresholds are evaluated, starting 
with the top block. 

Generalisation to non stationary case 

As for the truncated gaussian, non-stationarity is obtained via varying proportions. 
This results in varying thresholds for both gaussian functions. The rocktype rule 
must be given including all the facies, even if some of them can disappear locally. 

When simulations show "prohibited" contacts 

Sometimes simulations show contacts which do not exist in the rock type rule 
diagram. In the stationary case, there are two possible reasons for this: one (or 
more) of the gaussian functions is discontinuous, or the discretisation is too coarse 
to show the continuity. This problem occurs much more often in the non­
stationary case. We will demonstrate this in the most common case of vertical non 
stationarity for the truncated gaussian, but the same applies for horizontal non 
stationarity and in the plurigaussian case. 
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F3 

F4 

F2 

Fig 4.14: Equivalent rocktype rules if F3 and F 4 do not appear on the same level. 

When one facies disappears, the two facies which should be separated by it 
come into direct contact. This is obvious when the local rock type rule is shown, 
but can be forgotten when only the global rocktype rule is given. One consequence 
is that the relative position of two facies which never appear at the same level is of 
no importance (see Figure 4.14). What must be taken into account is their 
relationship with the other facies. 

Two facies which are not in contact in the rock type rule can sometimes touch 
if the proportions (and hence the thresholds) vary sharply between consecutive 
levels. This is easy to see on the example below, where there are three facies: 
shale (F1}, shaly sandstone (F2) and sandstone (F3). On level 1, the proportions 
are respectively 60%, 20% and 20%, which gives the thresholds t1 = 0.25 and t2 = 

0.84. On level 2, they are 20%, 20% and 60%, and so the thresholds are t1 = -
0.84, t2 = - 0.25. The gaussian values between - 0.25 and 0.25 represent 20% of 
the histogram. When the value simulated on level 1 is between -0.25 and 0.25 
(which corresponds to the facies shale}, there is a high probability that on level 2 
the simulated gaussian value is located within the same interval. (This of course 
depends on the variogram model). If that happens the sandstone will be directly in 
contact with the shale vertically below it. 

Table 4.3: Schematic representation of the rocktype rules on two consecutive levels, 
respecting the ordering in the threshold values 

Level2 Shale I Shaly I Sandstones 
Sandstones 

Levell Shale 
I Shaly I Sandstones 

Sandstones 



5 VARIOGRAMS AND STRUCTURAL ANALYSIS 

Truncated Gaussian Method 

This chapter describes how to calculate experimental variograms for the facies and 
how to fit models to them. As the codes chosen to represent the facies are purely 
conventional and have no physical meaning (except for their ordering), the only 
representative numbers we can use to compute experimental variograms are the 
facies indicators. (The relationship between the facies indicators and the under­
lying gaussian values is not one-to-one, so we cannot back transform the indicator 
values to get the values of the gaussians). There is a theoretical relation linking the 
variograms of the underlying gaussians and those of the indicators. Rather than 
invert it, we use an indirect iterative procedure to fit a variogram model. But first, 
we show how to calculate the experimental variograms for the facies indicators. 

Experimental variograms and crossvariograms for facies 

In Chapter 2, the definition for the indicator variogram of the facies F was given: 

YF (x, x +h)=.!. Var[IF (x) -IF (x +h)] 
2 

=.!_~[IF (x) -IF (X+ h)]2 )-(E[lF (x) -IF (x +h)] y} 
2 

If the facies indicators are second order stationary or intrinsic with constant mean, 
the second term is zero and the formula simplifies to: 

YF(x,x+h) =.!.E[lF(x)-lF(x+h))2) 
2 

So the formula for computing the experimental variogram for facies F is: 

y;(x,x+h) =-1- ~ ( lF(xa)-lF(x~)Y 
2N LJ lx .. -xpl=h 

where the data points x.. and x~ are separated by the vector h (possibly with a 
tolerance). The summation is carried out over all the data pairs separated by this 
distance, and N is the number of pairs. In the stationary case, this is an unbiased 
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estimator of variogram. In the non-statiornuy case, it is not but we nevertheless 
use it because of the difficulties in getting reliable estimates of the mean 
difference between the two indicators. More information will be given later on 
how to compute the experimental variogram in the non-statiornuy case. 

In exactly the same way, the cross variogram for facies Fi and Fi is defined as: 

Consequently the formula for the corresponding experimental crossvariogram is: 

y*FiFj(x,x+h)=-1- L [ 1Fi(xa)-1Fi(x~)J [ 1Fj(xa)-1Fj(x~)J 
2N lx.-x,l=h 

Linking the indicator variograms to the underlying variograms 

Firstly we consider the truncated gaussian case. If ti-l and ti are the thresholds for 
facies Fi then 

1 
YFi(x,x+h) =l{P(ti_1 ~ Z(x) <tJ+P(ti-1 ~ Z(x+h) <til} 

-P[t;_1 ~Z(x)<ti and ti-l ~Z(x+h)<t;] 

If the correlation function of the gaussian function Z is p(h), the indicator 
variogram is given by: 

ti ti 

YFi(x,x+h)=PFi- J J gp(h)(u,v)) du dv 

where PFi is the proportion of facies Fi and gp(h) is the bigaussian density function. 
The correlation between the two gaussian variables u and v is p(h). Once we have 
chosen the variogram for the gaussian function, we know p(h) and can compute 
the variogram for each facies using the previous formula. 
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Cross-variograms 

In Chapter 2, we showed that the cross-variogram can be written as 

Consequently, for the stationary truncated gaussian case this becomes: 

I; t; 

YFiFi(x,x+h)=- I I gp(h)(u,v) du dv 
ti-1 tj-1 

Truncated Plurigaussian Method 

Variograms 

The experimental variograms and cross-variograms are computed in exactly the 
same way as for the truncated gaussian method. We will give the equations linking 
the indicator variogram models to those of the gaussians for the case with only 
two gaussian functions. They can easily be extended to the general case. As for the 
standard truncated gaussian method, the variogram can be written: 

Y[ IF; ( x),lFi (x +h) J 
= ~{P[ 1Fi (x) = 1 ]+ P[ 1Fi (x +h)= 1]-2P[ 1Fi (x) = 1 and 1Fi (x +h)= 1]} 

In the stationary case, we have 

where D; is the domain in the gaussian space used to define the facies F;. 
Consequently: 

y[lFi (x),IFi (x+h)] =i{P[(~ (x),Z2 (x))e D; ]+P[(~ (x +h),Z2 (x+h))e D; J 

-2P[(~ (x),Z2 (x))eD; and (~ (x+h),Z2 (x+h))en;J} 
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From this we obtain: 

y[lF;(x),lF;(x+h)]=PF;-JJ Jfgl:(u"u2 ,v"v2 ) du1 du2 dv1 dv2 

Di Di 

Here L is the covariance matrix for the four gaussian variables Z1 (x), Z2(x), 
Z1 (x+h) and Z2(x+h) and gi: is the quadrivariate gaussian density. Let p be the 
correlation coefficient between Z1 and Z2. Similarly let pz1 (h) and pz2(h) be the 
covariance functions of the two gaussians Z1 and Z2• With this information we can 
compute 12 of the 16 terms in the covariance matrix: 

Pz1(h) ? I 
? Pz2 (h) 
1 p 

p 1 

The other four values indicated by question marks depend on the coregionalization 
model between Z1 and Zz. A wide choice of coregionalization models is available. 
For example, we can use the standard linear model where Z1 and Zz are linear 
combinations of independent factors. If Y1(x) and Y2(x) are independent N(O,l) 
gaussian functions having the covariances PYI (h) and pyz(h), we can define Z1 (x) 
andZz(x) as 

zl (x) = y; (x) and z2 (x) =p y; (x) +~1- p2 y2 (x) 

where 

Then the covariance matrix L is 

Pz1 (h) 
PPz1 (h) 

1 

p 

Alternatively Z2 could be the derivative of Z1 (in a given direction) or it could 
equal the first gaussian shifted by a vector "a". That is, 

or z2 (x) = zl (x - a) 
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Combinations of these are also possible. For example, one model that covers quite 
a wide range of cases is: 

{zl (x) = y; (x) 

z2 (x) =AI y; (x+a) +A2 y2 (x) 

If we want a specific correlation p between Z1 and Z2, then: 

2 

A = _P_ A = + 1-___,P_~ 
1 Pz1 (a) ' 2 - Pz1 (at 

In that case, the covariance matrix L is: 

1 p Pz1 (h) 
PPz1 (h+a) 

Pzi(a) 

p 1 
PPz1 (h-a) 

Pz2 (h) 
Pzi(a) 

L= 

Pz1 (h) 
PPz1 (h-a) 

1 p 
Pzi(a) 

PPz1 (h+a) 
Pz2 (h) p 1 

Pz1(a) 

where 

p2 [ p2 l Pz2(h)=l(}Pz1(h)+ 1-2(} PY2(h) 
Pz1 a Pz1 a 

As before, pY2{h) is the covariance function of the second gaussian Y 2. 

When the domain D; is a rectangle defined by the thresholds til and t;2 for the 

gaussian function z~. and sil and S;2 for the gaussian function Z2, the equation 

becomes: 

t;z 8iz tiz 8iz 

y[1Fi(x),1F;(x+h)]=PF;-J J J JgL(u1,u2 ,v1,v2 ) du1 du2 dv1 dv2 

Knowing the proportions, the thresholds and the covariance matrix of Z1 and Zz, it 
is easy to compute (and plot) the indicator variograms. 
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Cross-variograms 

We saw in Chapter 2 that the cross variogram model can be written: 

YFiFj(x,x+h)=-±{ E [1Fi(x) lpj(x+h)]+E [1Fi(x) lFi(x+h)]} 

In the stationary case, this gives: 

y[1Fi (x),lFj(x+h)] = 

-iju U, gL(u1,u2,v1,v2 )dl1 du2 dv1 dv2 +U.U. gL(u1,u2,v1,v2 ) du1 du2 dv1 dv2) 

1 J 1 J 

=-JffJ gL(ul'u2,v1,v2 ) du1 du2 dv1 dv2 
D;Di 

Generalisation to the non stationary case 

Experimental variograms 

Non-stationarity makes it more difficult to compute the experimental variograms. 
To understand this, we come back to the formula (for the stationary and intrinsic 
cases): 

y[ lFi (x),lFi (x +h)]=! var[ lFi (x)-lFi (x +h)] 
2 

=±E{[lFi (x)-lFi (x+h)J) 

This expectation should be interpreted as the average of all possible values of 
[1Fi(x)-1Fi(x+h)f over all realisations of the random function. As we have only 
one realisation, we replace the average over all the realisations by the average over 
all the data pairs (separated by the distance h). In general we are allowed to do that 
if the random function is stationary and ergodic. However in our model the 
underlying gaussians are always stationary, nonstationarity is introduced by 
allowing the thresholds to vary. This is why it is meaningful to use the 
noncentered variogram: 



Variograms 63 

Variogram level 
x1 x2 '\... :>4 Xs 

- ------ -----------~-- ------ --------

Fig 5.1: Variogram level 

Although the proportions vary along the vertical direction (i.e. vertical after 
flattening), they can often be considered as constant in the horizontal plane. We 
call this vertical non-stationarity. In this case, the expectations 

are constant when the point x moves horizontally. So we can estimate the 
expectation by an average in space, provided that we average pairs where the first 
point x stays in the same horizontal plane (Figure 5.1). In this way, we obtain an 
experimental variogram for each horizontal level, which is called the variogram 
level. 

Remarks 

In this case, the indicators cannot be isotropic, and so we have to compute 
variograms in different directions. In theory we should fit all these variograms 
simultaneously (using the same parameters for the gaussian function), but this has 
two disadvantages: 

in practice, we usually have hundreds of levels, and it takes too much time to 
check the fit on all these levels; 
if the data come from only a few wells, the statistical fluctuations in the 
variograms computed level by level are too important, and we cannot fit these 
variograms at all. 

These are the reasons why we average all the variogram levels rather than 
fitting a model to them all directly. It should be kept in mind that this average is 
no longer a variogram but a mean variogram. It is still possible to fit it, so we have 
to find a model for it 

Another point to note is that when all the wells cross all the levels vertically, 
there is no difference between this average level by level and the average in the 
whole space. Otherwise, these averages are different 
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For the cross variograms, the basic formula 

is exact for the stationary case, but should be centred for the non-stationary case. 
For the reasons given above, we have chosen not to centre it because we use the 
relation with the noncentered covariance. Depending on the type of (non-) 
stationarity, the average will be calculated over the whole space, or level by level, 
as for the simple variograms. When the cross variograms are computed level by 
level, we average them again to obtain a mean cross variogram. 

Indicator variogram model (truncated gaussian model) 

We now present the variogram model for the non-stationary case. Earlier in the 
chapter we saw that for the stationary case, the variogram for the indicator 
function lFi(x) is: 

1 
yFi(x,x+h) =i{P[ti-1 :5: Z(x) <t;]+P[ti_1 :5: Z(x+h) <til} 

- P[ ti-l :5: Z(x) < ti and ti-l :5: Z(x +h)< ti] 

As the thresholds now vary with location, the equivalent formula is: 

Y [ }Fi (X), lFi (X + h) J = 

±{P[ ti-l (x) :5: Z(x) < ti (x)]+P[ti-l (x+h):5: Z(x+h) <ti (x+h)] 

-2P[ ti-l (x) :5: Z(x) < 1i (x) and ti-l (x +h):::; Z(x +h)< 1i (x+ h)]} 

where ti-I and ti are the thresholds for the facies Fi . This can be written as: 

where PFlx) and PFi(x+h) are the proportions of facies Fi at points x and x+h, and 
gp(h) is the same bigaussian density function as in the stationary case. The cross 
variogram model is given by: 
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Variogram and cross-variogram model (truncated plurigaussian 
method) 

The variogram equation is now: 

Y [ lFi (X), lFi (X +h)] 

= ~{P[(Z1 (x),Z2 (x)) e Di (x)] +P[(Z1 (x+h),Z2 (x+h)) e Di (x+h)] 

-2P[(Z1 (x),Z2 (x)) e Di (x) and (Z1 (x+h),Z2 (x+h)) e Di (x+h) ]} 

That is, 

y[lFi (x),lFi (x+h)] = 

_!_[PFi(x)+pFi(x+h)-2 JJ JJ gl:(u1,u2,v1,v2) du1 du2 dv1 dv2] 
2 D;(x) D;(x+h) 

where I: is the same covariance matrix as in the stationary case. 
When the domain Di(x) is a rectangle defined by the thresholds til (x) and ti2(x) 

for the gaussian function Z1. and sil (x) and si2(x) for the gaussian function ~. the 
equation becomes: 

The cross variogram model is given by: 

Y[ (1Fi (x),lFj (x +h))]=_!_{ JJ JJ gl: (ul, U2, VI, V2)dul du2 dvl dV2 
2 o,(x)Di(x+h) 

+ Jf JJ gl:(u1,u2,v1,v2)du1du2 dv1dv2 } 

D;(x+h)Dj(x) 
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Comparing variogram models for indicators and gaussian 
functions 

Only the stationary case will be discussed here in detail. In the non stationary case, 
the proportions vary and this has various effects on the individual variograms. The 
impact on the mean variogram is much more complex as can be seen from the 
examples given in the section on ''variogram fitting". 

Sill of the indicator model 

In the stationary case, the sill of the indicator variogram for facies Fi is equal to 
pPi(l- pP;). As there is no link between the sill of the indicator variograms and that 
of the gaussians, we can choose any sill for the latter and the standard normal 
N(O,l) is the simplest choice. In the case of non stationarity, we can no longer 
speak of a sill. The variogram shape for long distances can be rather complicated; 
it need not stabilize. This often happens for vertical variograms. This long distance 
shape is completely controlled by the proportions. 

Shape of the indicator model 

We are now going to see which features of the variogram of the gaussian functions 
reappear in the indicator variogram. Figure 5.2 shows a gaussian variogram with a 
range of 50, and the corresponding indicator variogram for the truncated gaussian 
model. We already know (see Chapter 2) that the indicator variogram cannot have 
a zero derivative at the origin. We see here that the indicator variogram is linear 
near the origin. The curvature near the origin which is characteristic of the 
gaussian variogram has disappeared. 

Now look at Figure 5.3 which shows an exponential variogram with the same 
practical range of 50, and the corresponding indicator variogram (same proportion 
and same rock-type rule as in Figure 5.2). In this case, the overall shape of the 
indicator variogram for the exponential is closer to that of the exponential than for 
the gaussian variogram in Figure 5.2. In general, there is less difference between 
the shapes of the indicator variograms than between those of the underlying 
gaussians. So it is not possible to determine the type of model or its parameters 
from the indicator variogram. In top of this as will be seen in the next section, 
changes in the proportions have are marked impact on their shape. So the choice 
between a gaussian variogram and an exponential is made by studying the 
consequences of this choice on the resulting simulations, especially the continuity 
and regularity of each facies, rather than the shape of the variogram. 
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Fig 5.2: Gaussian variogram (above) and the corresponding indicator 
variogram 
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Fig 5.3: Exponential variogram (above) and the corresponding indicator variogram 

Practical range of the indicator model 

The previous figures correspond to the facies F1 in the rocktype rule given in 
Figure 5.4. Figure 5.5 shows the indicator variogram for facies F2 using the same 
exponential variogram and the same proportion (33%) as in Figure 5.3. These 
figures clearly show that the practical range of the indicator variogram depends on 
the position of the corresponding facies in the rocktype rule as well as the practical 
range of the gaussian function variogram. 
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Fig 5.4: Rock-type rule 

Figures 5.6 and 5.7 show what happens to this indicator variogram when the 
proportion is increased from 33% to 50% or decreased to 15%, respectively. As 
expected in the first case, the sill increases (a proportion of 50% gives the 
maximwn sill in the stationary case). We see that the practical range has increased 
too. In the latter case, the practical range decreases as does the sill. This shows 
that in the same way that we cannot choose the variogram model for the gaussian 
function just by looking at the shape of the indicator variogram, we cannot deduce 
its range directly from that of the indicator variogram. 

Anisotropies 

If the gaussian function model has a geometric anisotropy, the isovalue lines in the 
variogram map are ellipses. Figure 5.8 shows the isovalue line for the indicator 
variogram corresponding to 90% of the sill for the rocktype rule depicted in 
Figure 5.4. The two gaussian functions have exponential variograms with a 
geometric anisotropy with ranges of 25 and 100. The long axis of continuity is 
oriented north-south for the first gaussian function Z1, and east-west for the other 
gaussian function Z2. These are independent. 

For facies Ft and F2, the isoline curves are still ellipses, as the truncation is 
carried out on only one gaussian function. The shape is more complicated for 
facies F3 and F4 (as they have the same proportions and are symmetrical in the 
rocktype rule, their variograms are the same). The result looks like a combination 
of the two ellipses in perpendicular directions. 

Figure 5.9 was obtained in the same way as Figure 5.8 except that the 
anisotropy axes have been rotated for Z2. The long axis is now north-east/south­
west. We immediately see that the isolines for facies F1 and F2 have not changed, 
as the truncation for these facies is made only on Zt which has not changed. 
However, the isolines for facies F3 and F4 have changed markedly. Here the 
ellipses with both sets of main anisotropy axes are superposed. 
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Fig 5.5 : Comparison of the indicator variograms for facies F 1 and F 2 
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Figs5.6 (left) and 5. 7 (right): Comparison of the indicator variograms for facies F 1 and F 2 
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Variogram fitting 

As the principle behind variogram fitting is the same in Truncated Gaussian case 
and in Plurigaussian case, both cases will be presented together. 

Stationary case 

We now use the theoretical relation between the variograms of the underlying 
gaussian variables and the facies indicators to fit models to them. We first choose 
a model for the gaussian function, to calculate the equivalent indicator model and 
to plot this. The key point in the variogram fitting is to have good quality 
experimental variograms in order to compare them with the model. The examples 
shown in Figures 5.8 and 5.9 show what is required (at least 4 directions are 
required to define the variogram model in a given plane). If the data do not allow 
us to compute all these experimentally, we need additional information, for 
example from the geologist. 

In the plurigaussian case, if some facies are defined by truncating on one 
gaussian function only, it is better to fit them first. Once the values of the 
parameters for this gaussian have been fitted, then the facies using the second 
gaussian function can be fitted. 

Figure 5.10 shows an example of fitting a vertical variogram in the stationary 
case. Note that this vertical stationarity is not common. In this particular case, 
experimental vertical proportions show a slight vertical non stationarity, which 
can be interpreted as statistical fluctuations as there is no clear trend. 

Non stationary case 

The variogram fitting is done the same way as in the stationary case. We have to 
average the theoretical variograms in the same way as the experimental 
variograms. In the non stationary case, the long distance variations are completely 
controlled by the proportions. Figure 5.11 shows the same experimental variogram 
as in Figure 5.10, but the slight vertical non stationarity has been taken into 
account during the fitting process. 

Note that the long distances are better fitted here (see black circle). Even in the 
stationary case, it can be easier to fit the variogram with a non stationary approach 
taking into account the experimental fluctuations of the proportions. The 
stationary proportions will be used for the simulation, together with the fitted 
variogram model. If the case is clearly non starionary, we can choose to smooth 
the proportions for the simulation in order to reduce their experimental 
fluctuations, but the fitting must be done with the raw proportions. 
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Fig 5.8: For the facies of Figure 5.4, isolines representing y(h)=90% of the sill. Long 

anisotropy axes of the gaussian random functions are perpendicular 
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I 11 Zl 
diltaHce(m) 

31 

Fig 5.10: Example of stationary variogram fitting 

I 11 

Vertical variogram 

II 

dBtaHce(m) 

Fig 5.11: Example of use of the raw varying proportions in a stationary case 

Figure 5.12 shows a variogram fitting in a non stationary case. Its shape is 
completely irregular, due to the marked variability in the proportions. Figure 5.13 
shows the variogram model obtained using the same ranges but computed using 
smoothed proportions. 
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Fig 5.12: Non stationary variogram fitting using raw proportions 
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Fig 5.13: Non stationary variogram computed using smoothed proportions. 

Smoothing has produced quite marked changes particularly near the origin. In 
some cases it has been impossible to get a good fit after modifying the proportions 
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Transition probabilities 

We saw earlier that transition probabilities are simple to compute when we know 
the non-centred covariances of the indicator functions : 

[ I ] cij(x,x +h) 
Px+heFjxEFj= () 

PFi X 

and 

[ I ]- cij(x,x+h) 
Px+he~ xefj andx+h~Fj- () ( ) 

PFi x -Cii x,x+h 

These non centred covariances are easy to compute for the plurigaussian method: 

Cij(x,x+h)= fJ fJ gE(upu2,vpv2) du1 du2 dv1 dv2 
D;(x) D;(x+h) 

and 

Cn(x,x+ h)= JJ JJ gE (uP u2, v~' v2) du1 du2 dv1 dv2 
D;(x) D;(x+h) 

This gives the following transition probabilities : 

JJ JJ gE(ui,u2,vi,v2) 
p [X+ h E Fj J X E F; J = _o,-'-(x-'-) _DJ'-'-·(x_+h-'-)-------,---,---------­

PFi (x) 

and 

P[ x+h E FjJx E F;andx+h~ 11] 
JJ JJ gE(u1,U2,V1,v2)du 1du2dv1dv2 

D,(x) D;(x+h) 

PFi(x)- JJ JJ gE(upu2,V1,v2)du1du2dv 1dv2 
o,(x) o,(x+h) 

We see that these probabilities provide the same information as the non centred 
covariances. They differ from variograms because they are not symmetrical in 
general. For example, these probabilities are not symmetrical if the proportions 
vazy in the direction of the vector h, even if the gaussian functions have 
symmetrical covariances: 
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JJ JJ gi:(u1,u2 ,v1,v2 ) du1 du2 dv1 dv2 

D;(x) D;(x+h) 

=F- JJ JJ gi: (u1,u2 , v~> v 2 ) du1 du2 dv1 dv2 

D;(x) D;(x+h) 

These probabilities can also help to infer the value of the correlation p between the 
gaussian functions, especially the second one: 

[ I ] cij(x,x+h) 
Px+hEFi xEF; andx+h~F; = () ( ) 

PFi x -Cii x,x+h 

Finally, they are easy to compute experimentally in the stationary case provided 
that there are enough data points to be able to compute reliable statistics. For 
example, we can only compute the second one if we have enough points with the 
facies Fi at level x, and enough points which are not in facies Fi at level x+h. 



6 GIBBS SAMPLER 

Our ultimate objective is to simulate a gaussian random function with a specified 
covariance structure, given the observed lithotypes (facies) at sample points. As 
the lithotypes are known at these points, the corresponding gaussian variables 
must lie in certain intervals but their values are not known. So we need to simulate 
a gaussian random function subject to interval constraints. A two step procedure is 
used to do this. Firstly a Gibbs sampler is used to generate gaussian values at 
sample points that have the right covariance and belong to the right intervals. 
Once we have this set of point values, any method for conditionally simulating 
gaussian random functions can be used; for example, turning bands together with 
a conditioning kriging, sequential gaussian simulations, LU decomposition, etc. 
See Chiles and Delfiner (1999), Lantuejoul (2002) or Deutch and Journel (1992). 
As these techniques are well known, we will not dwell on them here. 

One difficulty in writing this chapter is that readers come from widely differing 
mathematical backgrounds. Those who are more interested in the practical 
applications would prefer a user-friendly approach whereas the mathematically 
inclined want proofs of the results, particularly on the convergence of the Gibbs 
sampler. To cater for both points of view, we have divided this chapter into two 
parts: the first half gives a "maths-lite" presentation, the second half provides the 
theory. 

The first half starts out by explaining why a two step procedure is required, 
then gives examples to illustrate how a Gibbs sampler works and what is meant by 
convergence. The second part begins by reviewing the key properties of gaussian 
distributions that will be required later in the proofs. The next section proves that 
the two step procedure described in the first part of the chapter is effectively 
equivalent to simulating subject to interval constraints. Then the kernel operator 
for the Gibbs sampler is determined. As the Gibbs sampler involves an iterative 
procedure, it is important to prove that this converges. The last part of the chapter 
is devoted to proving this. 

Part 1 : Why we need a two step simulation procedure 

The aim of this section is to highlight the difficulties of simulating gaussian 
random functions subject to interval constraints. To do this we consider three 
simple cases where there are only two points: 
1. with no constraints, 
2. with interval constraints on one variable and 
3. with interval constraints on both variables. 
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In the first case, the conditional distribution of Z(x) given Z(y) turns out to be a 
gaussian distribution but this is no longer true in the other two cases. The 
conditional distributions are merely proportional to gaussians. 

Simulating Z(x} and Z(y} when there are no constraints 

Consider two gaussian variables Z(x) and Z(y) with a correlation coefficient, p. In 
order to simulate Z(x) given Z(y) we need to know its conditional distribution 
which can be deduced from the joint distribution of the two variables: 

( ) 1 { (u 2 +v2 -2puv)} gu,v= exp- 2 
21t~1-p 2 2(1-p ) 

where u and v represent z(x) and z(y) respectively. This can be rewritten as 

g(u, v) = _1_ exp{- (u- pv)z }-1-exp{-vz} 
cr..Ji;i 2cr 2 ..Ji;i 2 

where cr2 = 1 - p2. The second term is just the marginal distribution of Z(y). The 
first is the conditional distribution that we are looking for. It is clearly a gaussian 
distribution with mean, pv, and variance cr2• The equation can be written as 

g(u, v) = gv (u)g(v) 

This is equivalent to the well-known decomposition: 

Z(x) = pZ(y) + crR(x) 

where R(x) is a N(0,1) residual that is independent of Z(y). If we estimate Z(x) 
given z(y), the simple kriging weight equals p, and the SK variance is cr2 = 1 - p2• 

To simulate pairs of values of Z(x) and Z(y), we first draw two independent 
N(0,1) values for Z(y) and R(x), then we substitute them into the decomposition 
formula to get Z(x). Alternatively we could say that we draw one realisation v of a 
N(0,1) variable for Z(y), followed a N(pv,cr2) variable for Z(x). In that case, we 
use the marginal distribution of Z(y) to draw a realisation of it, then the 
conditional distribution of Z(x) given Z(y) to draw the other value directly. This is 
only possible because the form of the conditional distribution is so simple. 

Simulating Z(x} and Z(y} when Z(y} belongs to an interval 

In this case Z(y) is known to lie in a specified interval, I, and we want to simulate 
the pair of variables, Z(x) and Z(y), given that Z(y) lies in that interval. The joint 
density of the two variables is now 

h(u, v) = k g(u, v)l1 (v) 
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where 11(v) is the indicator function for the interval I and k is the nonnation factor 
required to ensure that the integral of h(u, v) sums to 1. So the joint density is 

h(u,v)=--exp- P 1 {-1 (u- v)2 } 

cr..fi;. 2 cr 2 
k {-1 v 2

} ..fi;, exp T- 11 (v) 

This can be written as 

h(u, v) = hv (u) h(v) 

It is clear that h(v) is the marginal distribution of a gaussian variable Z(y) 
restricted to the interval I. To show that it is the marginal distribution, we just 
have to prove that 

Jhv(u) du = 1 
!II 

Integrating h(u, v) with respect to u gives 

J h(u,v)du = J-1-exp{ (u-p:)
2 

}du 
!R !R cr ..{i;. 2cr 

As the first term on the right hand side is just the integral of a N(pv,cr2) variable, it 
equals 1, which gives us the required result. In order to simulate these we use the 
same interpretation as before: first simulate Z(y) in the interval I then simulate 
Z(x) given that Z(y) e I. The first simulation is just a truncated gaussian; the 
second one corresponds to simulating an independent N(pv,cr2) variable. That is, 
we are still using the classical decomposition. 

But there is a fundamental change in the marginal distribution of Z(x). To see 
this, we integrate the joint density with respect to v. 

Jh(u, v) dv = Jk g(u, v) l,(v) dv 

!R !R 

=J-1-11(v)exp{- (v-pu) 2 }dv 
!R cr ..{i;. 2cr 2 

k { u2
} x ..fi;, exp - l 

If we let t = v - pu, then v e I ~ t e I - pu and the first term on the right becomes 

J ~ lr-p.I (t) exp{--;} dt = E[lr-pu] 
!R cr-v 2n 2cr 
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1 { u2
} Jh(u,v)dv=k ~exp =--- x Pa(I-p u) 

~ v2rc 2 

This shows that the marginal density of Z(x) given that Z(y) E I, is no longer 
gaussian. It is proportional to a gaussian density but is multiplied by the 
probability that the first variable lies in the interval, I - pu. To illustrate the impact 
of this change, we have plotted this distribution for two intervals: [-0.5, 0.5] and 
[2, 3], and for two different correlation factors, -0.5 and 0.8. Figures 6.1 and 6.2 
present the resulting curves. 

Fig 6.1: Probability densities functions for the marginal distributions for the two intervals, 
for the case where p = -0.5 together with the N(O,l) density for comparison purposes 
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Fig 6.2: Probability densities functions for the marginal distributions for the two intervals, 
for the case where p = 0.8 together with the N(O,l) density for comparison purposes 
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Simulating Z(x) and Z(y) when both belong to intervals 

Now suppose that Y(x) belongs to I1 and Y(y) belongs to I2• Their joint density is 

h(u, v) = kg(u, v) 11, (u) 112 (v) 

where k is the appropriate normation factor. 

_ k { (u-pv)2
} 1 { v 2

} h(u, v) - ~ exp - 2 11, (u) ~ exp - - 11 (v) 
crv2rr. 2cr v2rr. 2 ' 

As expected, the marginal distributions are no longer gaussian or even truncated 
gaussian. Integrating with respect to u gives 

f h(u, v) du oc ~Per, (I1 - p v) exp{-v
2

} 1,, (v) 
m "\/~ 2 (1) 

Similarly integrating with respect to v gives 

[ h(u, v) dv oc .Jk Per, (12 - p u) exp{ -~2 } 11, (u) 
(2) 

Because of the increasing difficult in simulating these distributions directly as the 
number of interval constraints increases, we rapidly reach the point where direct 
simulation is no longer practicable and we have to resort to an indirect approach 
such as the Gibbs sampler. 

These examples suggest the idea of using a two step procedure to conditionally 
simulate gaussian values when some of them are constrained to lie in specified 
intervals. The two steps are: 
1. Generating gaussian values at data points, in the prescribed intervals and with 

the right covariance structure, and then 
2. Using any algorithm for conditionally simulating gaussian random functions 

given the values generated in step (1). 

We have given an ad hoc justification of why a two step procedure is needed. A 
formal proof is given in the second half of the chapter. 

Direct simulation using an acceptance/rejection procedure 

Having seen that the first step is to generate a set of gaussian values at sample 
points, the next question is how should this be done. We might be tempted to try 
an acceptance/rejection procedure, by generating gaussian values with the right 
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covariance structure and rejecting those lying outside the specified intervals. If 
only ten or twenty samples were available this could be done directly using an LU 
decomposition (i.e. a Cholesky decomposition of the covariance matrix). The LU 
decomposition could be carried out for much large matrices (up to about 500 x 
500). The limiting factor in the procedure is the rate of rejection. For example, 
suppose that ten samples were available and that there were only two facies each 
present 50% of the time. Then if there was no spatial correlation (pure nugget 
effect), the probability of getting all ten values in the right intervals would be 1 in 
210; that is, about 1 in 1,000. This procedure becomes prohibitively slow as the 
number of samples increases. As there are usually hundreds or thousands of data 
in mining and petroleum applications, another approach is needed. This is why we 
have to resort to more complicated methods. 

Gibbs sampler 

Statisticians routinely use iterative methods based on Markov chain Monte Carlo 
simulations (MCMC, for short) for sampling complicated distributions and for 
estimating parameter values. The best known are the Hastings-Metropolis 
algorithm and the Gibbs sampler. The latter is a particular case of the Hastings­
Metropolis method. See Meyn and Tweedie (1993), Cowles and Carlin (1996) and 
Robert (1996) for information on these methods. Freulon (1992) and Freulon and 
de Fouquet (1993) adapted the Gibbs sampler to truncated gaussian simulations. 
To introduce this technique, we present an example to show how this method 
works and to illustrate the concept of convergence. 

Four sample example 

Suppose that there are only two lithotypes F1 and F2, and that they are present in 
equal proportions. So it is natural to use a zero threshold to separate them. 
Negative gaussian values correspond to F1; positive ones, to F2. Figure 6.3 shows 
a simplified well or drill hole containing four samples, with the top two belonging 
to F1 and the other two belonging to F2. The gaussian values assigned to the top 
samples must be negative, the others have to be positive. 

The procedure relies on the standard decomposition of the gaussian random 
function into its simple kriging estimate and an orthogonal residual. 

Z(x) = Z8K (x) +cr8KR(x) 

where the index SK denotes the simple kriging estimate or its variance and R(x) is 
a N(O,l) residual. Note that for gaussian random variables, the SK estimate equals 
the conditional expectation. 



Gibbs Sampler 83 

Fig 6.3: Simplified well or drill hole containing 4 samples 

EXponenffalvariogr.am 

Suppose that the four samples are 1m apart and that the underlying variogram for 
the gaussians is an exponential with a unit sill and a scale parameter a= 2m (i.e. a 
practical range of 6m). The SK weights for estimating the top point using the other 
three points as data are: 

/...2 = 0.61, /...3 = 0, /...4 = 0 and cr;K = 0.63 => cr8K = 0.79 

(Points are numbered from the top down). By symmetry the weights are the same 
but in the reverse order when kriging the fourth point from the other three. 

The weights for the second point (or similarly the third one) are: 

A-1 = 0.44, /...3 = 0.44, /...4 = 0 and cr;K = 0.46 => cr8K = 0.68 

As the configuration does not change from one iteration to the next the weights 
remain the same. 

Step 1: Initialising the procedure 

The first step consists of choosing gaussian values that belong to the appropriate 
intervals. Here we select (-1, -1, + 1, + 1). 

Step 2 : lter.ative procedure 

Simple kriging is applied to the points in turn. For example, the value of the top 
point is kriged using the other three points as input data. Then we move down to 
the second point and krige it using the initial values for the points below it and the 
new updated value for the top point. After completing the second point we move 
down to the third one which is kriged using the updated values for the points 
above it and the old value for the point below it. Similarly for the fourth point. 



84 Gibbs Sampler 

When all the points have been updated by kriging, one iteration has been 
completed. 

Point No 1 
The kriged estimate for Z(xi), abbreviated to Z(l), based on the initial values (i.e. 
-1, + 1, + 1) for the other three points is: 

Z8K(l) = -1x0.61+1x0+1x0 = -0.61 

And the corresponding residual must satisfy 

R(1):o;;-(-0.61) 10.79=0.77 

Suppose for argument's sake that we draw a value of 0.52 (from a N(0,1) 
distribution). Then the updated value would be 

Z(l) = -0.61+0.79 X 0.52 = -0.20 

Point No 2 
The kriged estimate for Z(2) based on the initial values for Z(3) and Z(4), and the 
updated value ofZ(l) is: 

ZsK (2) = -0.20x0.44 + 1x0.44 + 1x0 = 0.42 

The corresponding residual must satisfy 

R(2) ::;; 0.42 I 0.68 = 0.62 

If we draw a value of -0.75, then the updated value of Z(2) is 

Z(2) = 0.42 + 0.68 X- 0. 75 = -0.09 

PointNo3 
Following the same procedure, the kriged estimate for Z(3) and the inequality to 
be satisfied by its residual are 

Z8K(3) = -0.20x0-0.09x0.44+1x0.44 = +0.40 

R(3);;::: 0.40 I 0.68 = 0.59 

lfwe draw a value of 0.28, then the updated value ofZ(3) is 0.21. 



Gibbs Sampler 85 

PointNo4 
In the same way, the kriged estimate for Z(4) and the inequality to be satisfied by 
its residual are 

ZsK (4) = Ox(0.20) +Ox(--0.09) +0.61x0.21 = 0.13 

R(4):2::-0.13 /0.79=-0.16 

Drawing a value of 0.63 would give an updated value of0.63 for Z(4). 

Results 

Table 6.1 summarises the intermediate results during first iteration. This updating 
procedure is repeated iteratively, in general for several hundred or several 
thousand iterations. Table 6.2 shows the results of the first five iterations. 

Table 6.1: Successive steps in the first iteration of this Gibbs sampler 

Initial 

F1 -1 -0.20 -0.20 -0.20 -0.20 

F1 -1 -1 -0.09 -0.09 -0.09 

Fz +1 +1 +1 +0.21 +0.21 

F1 -1 -1 -1 -1 +0.63 

Table 6.2: Results of first five iterations of the Gibbs sampler 

Point No Initial No 1 No2 No3 N°4 N°5 
Point 1 -1 -0.20 -0.37 -1.34 -0.34 -0.13 
Point2 -1 -0.09 -0.35 -0.24 -0.31 -0.20 
Point 3 +1 +0.21 +0.15 +0.05 +0.19 +0.20 
Point4 -1 +0.63 +0.86 +0.10 +0.26 +0.32 

Alternative updating strategies 

In the previous example, individual points were sequentially updated. A variant of 
this consists of sequentially updating from the top down, then from the bottom up 
on the next iteration. 



86 Gibbs Sampler 

Blocking factor 

It is also possible to update blocks of points simultaneously. For example, the 
four points could be grouped into two blocks each consisting of two points. There 
are three possible groupings of this type: 

Points 1 & 2 and Points 3 & 4 
Points 1 & 3 and Points 2 & 4 
Points 1 & 4 and Points 2 & 3 

In the first case, the values of the top two points are updated using the values of 
the other two as the conditioning data (i.e. using kriging) and simulated in the 
right interval with the right correlations, and vice versa for the other pair. We will 
illustrate this procedure later in the chapter and will show that suitably chosen 
blocking strategies can significantly improve the speed of convergence. 

Experimentally testing convergence 

Having seen how the procedure works, several questions need to be answered. 
Firstly, does the algorithm converge? If so, after how many iterations? What 
factors affect the speed of convergence? How should we choose the initial values? 

Burn-in period 

In this section we illustrate the difference between the initial burn-in period and 
the subsequent stationary part of the Markov chain. To do this we continue the 
previous example but the variogram is changed to a gaussian model with a 
practical range of 3. So the correlation between adjoining samples is 0.95. Five 
hundred iterations of the corresponding Gibbs sampler were run starting from a 
very extreme set of initial values (+5,+5,-5,-5). This choice lengthens the initial 
burn-in period, making it visually much more obvious. 

Figure 6.4 shows the output for each component as a function of the number of 
iterations. The values of the first component (top left) decrease steadily from the 
initial value of +5 until they are below 1.0. The curve seems to stabilise after 
approximately 100 iterations so the burn-in period must be at least this long. 
Similarly for the third and fourth components. But it appears to be much shorter 
for the other component (bottom left), about 20 iterations. This shows that the 
burn-in period need not be the same for all components in a Gibbs sampler. In 
MCMC theory it is well-known that different states can have different rates of 
convergence; see Meyn and Tweedie (1993, p362-363). 
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Fig 6.4: Output of the Gibbs sampler for all 4 components for 500 iterations, starting from 
initial values of (+5,+5,-5,-5). The second component (lower left) seems to stabilise after 
about 20 iterations components whereas the other three are much slower. They take at least 
100 iterations to reach their stationary distribution 

I 

Fig 6.5: Output of the Gibbs sampler for the first of 4 components for 500 iterations, 
starting from initial values of (+5,+5,-5,-5). Compared to Fig 6.4, the correlation between 
adjoining points has been increased from 0.95 to 0.98. Note the increase in the burn-in 
period 
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The implications of not necessarily having the same burn-in period for all 
components are important in practice. When there are only four components it is 
possible to check the convergence of all of them but if there were 1000 samples it 
would be virtually impossible to inspect the output of the Gibbs sampler for all 
1000 components. We could only check a few of them visually and we might have 
the bad luck to choose those with shorter burn-ins. Inspecting the results for 
selected components gives us an idea of the burn-in period but it is not foolproof. 

Effect of the range on the bum-in period 

Several factors including the range of the variogram and the number of 
components have a marked effect on the length of the burn-in period. To illustrate 
the effect of the range, we repeated the previous example using a practical range 
of 5 instead of 3. This increases the correlation between adjoining samples from 
0.95 to 0.98. Figure 6.5 shows the output. 

Whereas the burn-in period for the first component was about 100 beforehand, 
it is now closer to 500. Conversely decreasing the range would decrease the burn­
in period. Looking at Figure 6.5 we also notice how smooth the curves are 
compared to the corresponding ones in Figure 6.4. The strong serial correlation 
between successive values makes it more difficult to determine whether the 
Markov chain has converged. 

These two examples show that it is not simple to judge whether a Gibbs 
sampler has reached its stationary distribution just by studying the output from a 
single run (even a ve:ry long one). It would be better to run a large number of 
samplers in parallel and study their output after 1, 5, 10, ... , 50 iterations and so 
on. Ideally we should compare the experimental distribution of the output with 
the stationary distribution. How could this be tested experimentally? 

A multivariate normal distribution is fully specified when the means and the 
covariance matrix are known. By extension, a truncated gaussian is fully defined 
when the truncation thresholds are known together with the means and the 
covariance matrix for the full distribution. Having said that, it is clear that after 
truncation the means are not going to be the same as before. See Eqns (1) and (2). 
Nor are the variances or the correlations. In the case under study, the four 
components come from a quadrivariate normal distribution with the covariance 
matrix given in Table 6.3. Because of the high correlation between adjoining 
samples, its density is an elongated cigar shape. Figure 6.6 shows a diagram 
representing the bivariate densities of X1 and Xz, and Xz and X3 respectively. 

Table 6.3: Quadrivariate covariance matrix for the 4-sample case 

r0.~5 0.80 

0.61 

0.95 0.80 

1 0.95 

0.95 1 

0.80 0.95 

0.61] 
0.80 

0.95 

1 
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Fig 6.6: Schematic representation of the bivariate densities ofX1 and X2 (left) and of 
X2 and X3 (right) 

The impact of different types of truncations is evident from these. In one case, we 
are dealing with the elongated part of the ellipse whereas in the other, it is merely 
a triangular "comer". Intuition can often be misleading when trying to guess the 
properties of truncated gaussian distributions. For example people expect the 
marginal distributions in this example to be "half gaussians". The marginal 
distributions given in Figure 6.7 show just how wrong intuition can be and also 
confirms what was shown in the two variable case given at the beginning of the 
chapter. 

Parallel runs 

Up till now we have illustrated the difference between the bum-in period and the 
stationary part by focussing on individual components. An alternative is to run 
many Gibbs samplers in parallel and study the results after a certain number of 
iterations. Figure 6.8 plots the first and second components for 50 parallel runs. 
Figure 6.8 (a) shows their locations after a single iteration; both started out from 
an initial value of +5. Figures 6.8 (b), (c) and (d) give the output after 5, 10 and 50 
iterations. As expected, the centre of the cloud moves downwards and disperses 
outward from this. Initially the distribution is far from the target cloud but as the 
number of iterations increases, it steadily tends toward it. 

,-

-
-

r-

~ 
Fig 6.7: The marginal distributions ofX1 and ofX3, from the 4 component example 
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Fig 6.8: The values of the first and second components after I iteration (top Ieft), then 5 
(top right), 10 (bottom left) and 50 iterations (bottom right) starting out from initial values 
of +5 (as indicated by the crosshairs) 
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Part 2: Gaussian framework 

Basic properties of a single gaussian 

Let Z be an arbitrary gaussian vector of dimension p+n. Let W1, ••• Wp-tn be its p+n 
components. Assume its covariance matrix L has an inverse L-1. Its density is: 

g(w1, w2, ... wp+n) = (2n)Cp:n)'2ILI exp{ -~(w -mr L-1 (w -m)} 

where w and m are column vectors with m = E(Z) and where ILl is the determinant 
of the covariance matrix. 

We split the vector Z into two parts X and Y, of dimension p and n 
respectively, which correspond to the p data points and the n target points to be 
simulated. Partitioning the covariance matrix in the same way we obtain: 

(LXX LXY) 
L= t 

LXY Lyy 

where Lxx and Lyy are the covariance matrices of X and Y, respectively, and LXY 
is the cross covariance matrix between X and Y. Let A be the vector defined by 

A=L-1 L XX XY 

It is easy to see that its ith column consists of the weights for the minimum 
variance linear estimate of the ith element of Y using the vector X as information. 
If the data are regionalised variables, the weights are just the simple kriging 
weights when estimating the (p + i)th component of Z using the first p values as 
data. Let R be the covariance matrix of the residuals when estimating Y from X; 
that is, R= cov(Y- AtX). It is well known (see for example Galli & Gao (2001) that 
the inverse of the covariance matrix L-1 can be written as 

L-1 =[LxX1 +AR-1At -AR-1] 
-R-1At R-1 

If we let u and v be the vectors containing the first p components of w and the 
remaining n components then 
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Now we use this decomposition to express the gaussian density given earlier as 
the product: 

g(u, v) = k gu (v) g(u) 

where the normation constant k is just 

g(u)- 1 exp{-.!. u1 L-1 } 
- (2nY'21Lxx I 2 xx u 

and 

Both are normal distributions; the first has zero mean and covariance Lxx, the 
second has mean A 1I and covariance R. As their integrals are equal to I, the 
normation factor k turns out I, which was not obvious initially. The first one g(u) 
is the marginal distribution of the vector X. The second is the conditional density 
of Y given X. It is still gaussian but its mean now equals the minimum variance 
estimate of Y given X, and its covariance matrix is R, the covariance matrix of the 
residuals. 

Extension to the plurigaussian case 

Although the plurigaussian algorithm can be described in a more general 
framework (Galli, Bencher et al, 1994) we will consider the most commonly used 
case where there are two gaussian random functions Z1 and Z2 with zero mean and 
unit variance and where the lithotype rule is defined using rectangles. That is, if a 
data point x belongs to the facies Fk then the pair (Z1(x), Z2(x)) has to lie in the 
rectangle~. This is equivalent to saying that Z1 (x) belongs to the interval 11,k and 
Zz(x) belongs to the interval lz,k . 

As before we want to simulate at n points (for example, on a grid) given the 
facies information at p data points (i.e. given that the two gaussians lie in certain 
intervals at the p points). Let Z be the vector of length 2(n+p) consisting of the p 
data pairs followed by the n target pairs: 

zt = (Z1(x1), Z2 (x1)···Z1(xp), Z2 (xp), 

p sample points 

n target points 
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The joint density of the target values and the data can be written as: 

h(u, v) = k g(u) gu (v) <p(u) (3) 

where g(u) is the 2p variate gaussian density of the data. The next term is the 2n 
variate gaussian density of the points to be simulated centred by the simple 
cokrigings. Its covariance is the covariance of the residuals. Finally, the last term 
is the product of the indicators: 

p 

<p(u) = fi IRk (u) 
k=l 

Because of the way we chose to write Z each indicator depends only on 
u2k+l and u2k+2 • 

The goal of the simulation is to sample from h(u,v). Integrating with respect to 
v we find that the product kg(u)<p(u) is the marginal density corresponding to the 
data points. However as in the examples with two points at the beginning of the 
chapter, the distribution of the points to be simulated is not gaussian. Instead their 
density h(v) is (up to a factor) the product of the gaussian density and the 
probability that the data points lie in the domain D translated by the cokriging of 
the data points using the values of the points to be simulated. That is, 

h(v) = k' g(v) PR (D- .i\lv) 

The domain D is the product of the rectangles ~ (i.e. hyper-rectangle in 9tP). The 
matrix A contains the weights for cokriging X given Y. In fact, it is the matrix of 
the weights when estimating Z1 and Z2 at the data points using the values of both 
variables at the points to be simulated. So if Z1 and Z2 are independent, the 
weights are just the SK weights, as before. Alternatively if they are correlated, the 
weights are the simple co-kriging weights. So A satisfies the equation: 

LyyA=LXY 

Finally the index R in the gaussian probability PR denotes the covariance matrix of 
the cokriging residuals. 

Conditional simulation 

Equation (3) shows that in order to sample from h(u, v), we have to work in two 
steps. 
1. At data points draw a gaussian vector (ZJ(XJ}, Zz(x1), ... Z1(Xp}, Zz(xp)) 

satisfying the constraints (with density g(v)<p(v)). 
2. Once the gaussian values satisfying the constraints are known, we have only 

to simulate a gaussian vector having the (co) kriging with previous values as 
its mean and the covariance matrix of the residuals. That is, it is a classical 
conditional gaussian simulation. 
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The difficulty lies in step 1. As we cannot sample from the required density in a 
single step, we have to resort to a Gibbs sampler. 

Implementation of the Gibbs sampler for the model used 

It is quite simple to implement the two step procedure when the two gaussians Z1 
and ~ are independent When they are correlated it suffices to consider two 
independent gaussians Y1 and Y2 as was shown earlier. This considerably 
simplifies the two steps of the simulations. Here we assume that the Gibbs sampler 
updates points one after another (i.e. with a blocking factor of 2). This means that 
at each step we have to draw a point according to the conditional density knowing 
the values at all points except one. So its conditional density is a noncentered 
truncated plurigaussian of dimension 2 and the mean is the cokriging. If the 
gaussian values (Z1(xk), Z2(xk)) belong to the rectangle, ~=Ik1 xlk2, then 

Y(x )el1 and Y(x )e 12k-pY1(xk) lkk 2k ~ 
"(1-p ) 

For simplicity let the second interval be lk2(Y~.p). So now we have only to 
simulate two independent gaussians, firstly Y 1 in the interval I 1 and then Y 2 in the 
interval 12(Y~.p). And the means are just the two simple krigings of Y1 and Y2. 
The same decomposition of Z1 and Z2 into two independent gaussians is also used 
in the second step which is a bivariate conditional simulation. As expected the 
conditioning by cokriging reduces to two simple krigings in Y1 and Y 2. At the end 
Y1 and Y2 are recombined to give Z1 and~-

To summarise: 

The simulation method is quite straightforward: first simulate two independent 
gaussian random functions Y1 and Y2 with values in the appropriate intervals at the 
data points, then use these values as conditioning data to simulate two independent 
gaussian random functions at target points. 

Convergence from a theoretical point of view 

The untruncated case 

The Gibbs sampler is known to converge in the untruncated gaussian case. See 
Barone and Frigessi (1990), Amit and Grenader (1991), Roberts and Sahu (1997) 
or Galli and Gao (2001). In fact, the Gibbs Sampler corresponds to Gauss-Seidel 
iterations on the inverse of the covariance matrix. This can be proved by 
expressing the inverse of the covariance matrix c-1 as D(l - L - U) where D is the 
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block diagonal part of C 1, L and U are lower and upper block triangular matrices 
and I is the identity matrix. Then the iteration matrix of the Gibbs sampler can be 
written as A= (I- Lr1 o-1u. So the rate of convergence depends on its spectral 
radius p(A). A simple proof based on relating these iterations to linear fix points 
iterations is given in Galli and Gao (2001). 

The iteration is: 

y<n+1)= Ay<n)+ (I_ Lr1 R(n+1) 

where R(n+1) = LR y<n+I)_ Here LR is the lower triangular part of the Cholesky 
decomposition of o-1 and v<n+1) is a vector containing independent N(O,l) 
components. Consequently the covariance matrix ofR(n+1) is D-1. The equation can 
be written in a more compact form. 

y<n+1)= Ay<n)+ lJCn+1) 

where the covariance matrix oflfn+I) is 

Blocking factor 

Galli and Gao (200 1) also demonstrated the importance of the block size used in 
the Gibbs sampler (i.e. in the matrices D, Land U) for geostatistical applications. 
The most natural choice for D is simply the diagonal terms of C 1. This 
corresponds to blocks of size lxl. Other choices are possible and these can 
significantly increase the speed of convergence. 

To illustrate its impact, we compare the spectral radius for the lx1 blocking 
size with that for the 2x2 case for the 4 sample example considered earlier in the 
chapter. In that case the covariance matrix is of the form: 

C=[ ~ 
a a2 

a'] 1 a a2 

a2 a 1 a 
a3 a2 a 1 

and so 

[I a 0 

;] 
c-1- 1 a -(a2 + 1) a 

-(a2-1) ~ a -(a2 +1) 

0 a 
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In this case, it is not difficult to calculate the various matrices and hence find the 
spectral radii for the two block sizes and also if the points are arranged in a 
different order. 

Block size of 1 (order: 1, 2, 3, 4) 

[' 0 

0 

~] D=-1- 0 -(a2+1) 0 

(a2-1) 0 0 -(a2 + 1) 

0 0 0 

[Ob 0 

j] 0 b2 b 
b=-a-A=CI-Lr1u= b2 where 

0 b3 (a2 +1) 

0 b4 b3 

and hence the spectral radius p(A) is the largest root of the equation: 

')..2 [f..2 -3b2f..+b4] =0 

That is, it is 

p(A) =bz 3+.J5 <1 
2 

since 

Block size of2 (points 1&2 and 3&4) 

1 [~ -(a:+1) ~ ~~l 
D=(a2-1) ~ ~ -(a:+1) 

and hence the spectral radius p(A) is the largest root of the equation: 



~ p(A) =.Ji. 

Block size of2 (points 1&3 and 2&4) 

1 r~ -(a?+l) ~ ~~l 
D=(a2 -l) ~ ~ -(a~+l) 

[

0 0 

0 0 
A= 

0 0 

0 0 
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and hence the spectral radius p(A) is the largest root of the equation: 

')} [t..2 -3b2A.+b4 ] =0 

So it is the same as in the first case: 

p(A) = b2 3+.J5 <1 
2 

Convergence in the truncated gaussian case 

In his thesis Freulon (1992) considered two iterative ways of simulating truncated 
gaussian random functions. The first was based on work in the field of statistical 
mechanics by Metropolis (1953) while the second is the Gibbs sampler (see 
Geman and Geman,l984). The procedure given above follows the second of these. 
Freulon (pp58-65) proved that both procedures converge to a truncated gaussian 
distribution, for the total variation distance, but his demonstration of their 
ergodicity only works for the case where the constraint is a compact (i.e. a closed 
and bounded interval). Secondly it does not provide any way to compute the rate 
of convergence because it is the minimum of k{x,y) on D x D which is difficult to 
evaluate because of the denominator. In order to obtain more general results, we 
need to work in a more general framework, and so we introduce Markov chains. 
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Markov chains 

Here we give an intuitive introduction to Markov chains. For more precise and 
more complete descriptions see Numelin (1984), Meyn and Tweedie (1993) or 
Gikhman and Skorokhod (1969). A Markov chain is a chain :x<0l, :x<1>, ... ;x!nl ... 
with the property that for n greater than 1: 

E(X(n) I x<n-1)' .... X(!)' x<O)) = E(X(n) I x<n-1)) 

So a chain is fully determined as soon as we know the transition probabilities from 
one state to another. Here the possible states are not countable so they are 
characterised by an integral kernel k, (x,y). If the kernel does not depend on the 
position in the chain, ie kn(x,y)=k(x,y) the chain is said to be homogeneous. We 
will only consider this case. 

Two integral operators 

We can define two integral operators from this kernel. 

(1) Iff(x) is a density then the operator g(y) = Kf(y) as defined below is a density: 

g(y) = Jk(x,y)f(x)dx 
s 

Furthermore, if fis the density of the (n-1)"1 iterate then g(y) is the density of the 
nth one. 

(2) Let h(x) be the conditional expectation oft(x<n)) given :x<n-1). Then 

h(x) = E(t(X(n)) I x<n-1) = x) = Jk(x,y)t(y)dy 
s 

The two operators can be expressed in a more symmetrical way by letting 

k(y,x) = k(x,y) 

In that case 

KFt(y) = J k(x, y)t(x)dx 
s 

Let K(n) be the iterated operator, that is, 

K(n) (f)=K(K(n-l)(f)). 

Similarly let KF (n) be 

KF (n) (t)=KF (KF (n-l)(t)) 
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Finally let k(n)(x,y) be the corresponding kernel. The operator K(n) expresses the 
relationship between the density of J&l and that of~). In contrast K/n) gives 
the conditional expectation of a function of~) given J&l 

E(t(X(n+p)) I x(p)) 

Note that for a homogeneous chain the joint distribution of the iterates :x<n-+p) and 
:x<n) is: 

g(n+p) (x,y) = k(n) (x, y)f(P) (x) = g~n) (x)f(n+p) (y) 

Here (Pl and :fn-+p) stand for the marginal densities obtained by running the chain. 
The last equality holds because of Bayes Theorem. 

lfwe let k*(y,x) be the transition kernel corresponding to reverse passage from 
y to x, then g~nJ (x) corresponds to k*(n)(y,x). So we get: 

(4) 

Stationary distribution 

We say that a chain has a stationary distribution if the influence of the initial point 
:xeo) disappears after some time. More formally a chain has a stationary 
distribution if P(J0nl EAixC0l) tends toward 11(A) for any measurable set A, 
whatever the initial state xC0l. In our case this is equivalent to k<nl(x,y) -t'IT(y). The 
chain is said to have an invariant distribution 'IT if there exists a distribution 11(x) 
such that 

n(y) = J k(x, y)n(x)dx. 
s 

Clearly a stationary distribution must be an invariant distribution. Assuming that 
11(x) is an invariant distribution, and applying (4) with p = 1, n = 1, and f(x) = 11(x) 
we get: 

g<2l(x,y) = k(x,y)n(x) = k*(y,x)n(y) (5) 

Irreducible chain 

A Markov chain is said to be 'V irreducible if for each x in the support of a 
measure \j/, and for each measurable set A such that 'V(A) > 0, there exists an 
integer p ~ 1 such that 

P(XCPl eAIXcoJ =x)>O 
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A chain is said to be periodic if there exists an integer d :?: 2 and a sequence of 
nonempty disjoint sets Dw .. Dd-I i = 1, ... (d-1) such that 

'v' i = 1, ... ,r-1 and 'v'x E Di, K(x,Di) = 1 where j = (1 +1) modulo d 

A chain is aperiodic if it is not periodic. Note that if a chain is irreducible with 
p=1, then it is aperiodic. 

Distance metric and convergence 

To define convergence we first have to define a distance criterion. One of the 
most commonly used distances is total variation (TV). The fact that a measure ILn 
converges toward a measure 11 for this distance, implies that for any bounded 
measurable function f we have convergence of the expectation. That is, 

llj.ln- j.I.IITV ~ 0 implies that J (j.ln- j.t)(dx)f(x) ~ 0 

for any measurable bounded function f. This can be written as 

En(f) ~E(f) 

We have the following convergence result for Markov chains. 

Theorem 1 (Tierney, 1994 and 1996) 

If a chain is an irreductible aperiodic markov chain with transition kernel k and an 
invariant distribution 11 then: 

Although this result is interesting, its usefulness is limited because of its 
generality. Secondly it does not give the rate of convergence. Stronger results can 
obtained in L 2 type spaces, provided one makes some additional assumptions 
about the compactness of the integral operators defined previously. Here we will 
restrict ourself to the case where the state space S is compact. For the truncated 
gaussian case this excludes unbounded intervals. From a practical point of view, it 
means adding two additional facies with inlmitesimal proportions which are not 
seen in the data in order to bound the interval by a large value. 

For that case the previous result provides a method to estimate the speed of 
convergence in practice, at least for reasonably small spaces. In the case of 
truncated gaussian this means a reasonable number of constraints. The idea is to 
estimate the transition operator while running the chain as was proposed by 
Lantuejoul (2002). But here the chain has a continuous state space, so it is not 
possible to consider all possible transitions. 
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Given a finite partition of S, that is, a family of disjoint sets A; such that 

we consider the transition matrix: 

This can be estimated reasonably by running the chain for a long enough time. 
Then we can compute the eigenvalues of paij· So the question is now: How close 
are these eigeinvalues to those of K.? Our assumptions are 

1. The state space S is compact. 
2. The kernel k is continuous 
3. The assumptions of theorem 1 hold. 

The first and second assumptions ensure that K will map C(S) to C(S). This is 
easy to verify because for continous functions on a compact, there is no problem 
inverting the limit and the integral. Then using a result in Yosida (1978, p 277) we 
can show that this new operator K considered from C(S) to C(S) is compact. The 
convergence result of theorem 1 ensures that the eigenvalues of K are lower than 
or equal to 1, and that it has one and only one eigenvalue 1, which is associated to 
the eigenvector 11. This is easy to show because the set of bounded measurable 
functions on S includes continuous functions. Consequently 

Sup IJ(k<n>(x,y) -n(y) }f(y)dyl :s; llk(n) -nil 
feC[S); lfJsl S TV 

If there were a distribution g7:11 such that KF(g) = cg with c :2: 1, then K<n>F (g) 
would equal eng and the integral 

J (c n g(y) -n(y))dy 
s 

would not converge to 0. This, in turn, implies that llk(n)_'IT llrv would not converge. 
Finally if we define 

Pl1 (f)(t) = ~~;I L, f (u)du for t in A; 

We see that when 
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And finally it can be shown that this corresponds to a Galerkin approximation. See 
Chatelin (1983, pp170-174). That guarantees the convergence of P8 toward k as 
1~1 tends toward 0. Interestingly, the rate of convergence depends on the 
derivability of k (see exercice 4.39 p 191 in Chatelin (1983). Furtheremore the 
convergence of eigenvalues is also ensured and bounds are known. 

The Gibbs Sampler 

Let n(x)be the density of the vector (X~, ... Xn), and let n(x; I X;_,x;+) be the 
conditional density of X; given (X;_,X;+) where 

X;_= (Xp ... ,X;_1) and Xi+= (X;+p··Xn) 

By convention 

X 0_ = 0 and Xn+ = 0 

The Gibbs sampler modifies all the coordiantes of the vector, one after another, 
using the newly simulated one and the former ones. 

Note that X; may be either a single component or a block of components. In 
the latter case we should speak of the block Gibbs sampler, but for simplicity we 
will call it a Gibbs sampler even if we are using a blocking factor. 

The transition kernel for one iteration of the Gibbs sampler from x toy is: 

n 

k(x,y) = IJn(y; I Y;-,xi+) 
i=l 

The positivity condition is said to hold if the support of 7r is the product of the 
supports of its marginal distributions. This turns out to be true in our case 
provided the constraints are products of unions of intervals. 

Using this positivity condition we can establish the Hammersley Clifford 
decomposition (Besag, 1974). It is easy to show that 

n(x) = n(x1 I x1_,x1+)n(x1_,x1+) 

_ n(x1 I x1_, xi+) ( ) 
- 1t Y1 xl_,xl+ 

n(yl I xl_, xl+) , 

By repeating this operation on tr(Y1, x1_, x;+) we obtain: 

n 

IJn(x; I Y;-,xi+) 
n(x) = i=l n(y) 

n 

IJn(y; I Y;-,xi+) 
i=l 

(Hanunersley Clifford) 
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The denominator is k(x,y) and the numerator is the kernel k*(y,x) corresponding 
to one iteration of the Gibbs sampler from y to x in the reverse order. So we can 
rewrite the Hammerseley Clifford decomposition in the following way: 

7t(x)k(x, y) = 7t(y)k* (y, x) 

Integrating this gives 

J 7t(x)k(x,y)dx = J 7t(y)k*(y,x)dx 

= 1t(y) J k • (y, x)dx 

= 7t(y) 

(6) 

Consequently 1t is an invariant distribution of the Markov chain with transition 
kernel k(x, y) and also of the Markov chain with transition kernel k*(y,x). 
Equation (6) could be obtained directly from equation (5) without the positivity 
assumption but with the assumption that 11 is the stationary distribution of the 
chain. 

Truncated Gaussian case 

In the truncated gaussian case 

1t(X) = K g(x)l0 (X) 

where K is the normalisation constant and ln(x) is the indicator of constraints. We 
will only consider constraints which are products of unions of intervals. So the 
positivity condition holds because the conditional distributions 1t(x; 1 x;_,x;+) are 
truncated gaussians whose domain is the union of intervals corresponding to the 
constraint for the ith component. Let the inverse of the covariance matrix of X be 

C 1 =D(I-L-U) 

where D is the block diagonal part of the inverse of C, and U and L are the upper 
and lower triangular parts. 

Using the results for the non truncated gaussian case, it is easy to show that the 
transition kernel is: 

_.!.(y-Ax)':E(y-Ax) 
k(x,y) = k(x)e 2 ln(y)ln(x) 

where k(x) is a normation factor whose value depends on x and 

A=(I-L)-1U andL=(I-L)1D(I-L) 
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Similarly, 

1 - t- -* * --(x-Ay) l:(x-Ay) 
k (y,x) = k (y)e 2 10 (y)l0 (x) 

where 

A= (1- ur'L and~= (1- U)1D(I- U) 

It is then quite obvious that the conditions for theorem 1 hold so the Gibbs 
Sampler converges toward our candidate distribution 'IT, for the total variation 
distance. 

Then the kernels are continuous, in the support of n, and if D is compact the 
two operators K and KF corresponding to the truncated gaussian case define 
compacts operators from C(D) to C(D). So we can apply the approxinlation 
method described earlier to estimate the eigenvalues, and to estimate the speed of 
convergence experimentally. It is also interesting to note that provided the 
constraints are the product of compact intervals, the minorisation condition holds. 

Definition 

We say that the kernel k(x,y) satisfies the minorisation condition if there exists a 
density 'ljJ, and a parameter 0 < p < 1 such that 

V xED \:1 yED k(x,y) ~ p'ljJ(y) 

Theorem2 

If the constraints D are compact the kernel k(x,y) of the transition operator 
satisfies the minorisation condition. 

Proof 

1 t --(y-Ax) l:(y-Ax) 
k(x, y) = k(x)e 2 10 (y)l0 (x) 

As the proof depends on the properties of convex sets, we start out by reviewing 
some basic facts about them. 

A point v in a convex is extremal if it cannot be written as a convex 
combination of other points in the convex. In a polyhedral convex such as y-A(D}, 
the extremal points are just the vertices of the polyhedra. 

Because D is compact and k(x) is continuous, it is bounded below by a 
parameter c which is greater than 0 because k(x) ~ P(D-Ax}, and its minimum is 
reached at at least one point Xo and P(D - AXQ) > 0. 

In order to minimise the exponential term we have to maximise the exponent. 
Let u = y-Ax. This is equivalent to maximising 
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subject to the constraints 

u E y-A(D) 

As the function is continuous and as the set y - A(D) is compact, the minimum is 
attained. Because I: ~ 0, the function is stricly convex. 

It is well known that the maximum of a convex function on a convex is reached 
at extremal points of the convex. See for example Rockafellar (1970). Now each 
extremal point ofy- A(D) is of the form y- A(x;) where X; is an extremum in D. 
There are 2n extremal points x; in D, they are the vertices of the hyperrectangle. 
Let T; be the points y whose corresponding extremal point is x; .. By definition D is 
the union of the T; and we can write: 

I t 

k( ) "I ( ) -2(y-Ax,) E(y-Ax,) 
x,y >c"'-' T, y e 

i 

1f we let f(y) denote 

I t f (y) = c L 1r; (y) e -2<y-Ax, l E(y-Ax, l 

i 

we find that 

1 = Jk(x,y)dy > Jf(y)dy > 0 
D D 

lfwe let p be the integral of f over D we can define the density f(y) = f(y)/ p. We 
find that: 

'lty ED, 'ltx ED k(x,y) > pf(y) with p <1 

This minorisation condition ensures the convergence of the Gibbs sampler in L 1• 

See for example, Robert and Polson (1994). 

Comments 

The Gibbs sampler is a very powerful simulation method. It is not difficult to 
establish its convergence in the truncated gaussian case. However it is far more 
difficult to find its rate of convergence experimentally, even in the case of 
compact constraints which considerably simplies the problem. For this case we 
proposed a finite rank operator which approximates the transition operator (which 
is compact). 



7 CASE STUDIES AND PRACTICAL EXAMPLES 

Choosing which simulation method to use 

Simulation methods fall into two broad classes: pixel methods and object-based 
methods. Before presenting any practical examples, it is important to decide which 
method would be the most appropriate for the problem under study. So we first 
review the pros and cons of two classes of models, sequence-based pixel methods 
such as the truncated gaussian and plurigaussian simulations, and object-based 
methods, in particular boolean simulations. As this book focuses on plurigaussian 
simulations, we do not intend to present boolean simulations here. Interested 
readers can consult Matheron (1968, 1975), Lantn<5joul (1997a, 1997b and 2002) 
Chiles and De1finer (1999), and Molchanov (1997). Sequence-based pixel 
methods and boolean simulations can also be combined to get the best of both 
approaches. These are called nested simulations. 

Sequence-based pixel models 

As their name suggests, sequence-based models are well suited to simulating 
geological configurations where lithotypes are organised in sedimentary 
sequences. Within a sedimentary sequence, lithotypes are correlated both 
vertically and horizontally. According to Walther's law, vertical successions of 
lithotypes also imply a lateral correlation between the lithotypes. Another 
advantage of pixel simulations is that they realistically reproduce the facies 
interfingering. Sedimentary sequences occur at different scales, and their 
organisation is a function both of auto and allocyclic processes. For example, 
fluvial channel sequences are characterised by a particular succession of lithotypes 
from base to top as the channels filled. The progradation of a shoreface which is 
mostly controlled by relative sea-level variations also shows a typical vertical 
succession of facies from offshore to foreshore. Over the past ten years, 
tremendous progress has been made in sequence stratigraphy and this has led to a 
much better understanding of the facies architecture of depositional sequences of 
different orders, in a wide range of depositional environments. 

Even though the relative volume of facies and their geometric 
organisation (the facies partitioning) changes according to sequence organisation 
and although the sequences are usually non-stationary, proportion curves have 
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proved to be a simple but highly effective tool for imaging sequences and for 
quantifying the associated non-stationarity. As they measure the relative 
proportion of lithofacies, both vertically and horizontally, they provide a good 
way of describing the spatial distribution of the lithofacies. They can guide the 
geologist in his interpretation and can help to define the reservoir layering 
(Eschard et al., 1999). 

Vertical proportion curves give information on the facies partitioning 
within the sequences and indicate the stratigraphic levels where the main vertical 
permeability barriers can be expected, which is important in reservoir 
characterisation. 

Computing horizontal proportion curves also helps in understanding the 
spatial distribution of the lithofacies and the geometry of the reservoir. Their 
representativity depends on the well spacing and distribution in the area to be 
simulated When calculated in different directions across the field, they can show 
whether there are any major lateral facies variations in the study area. 
Furthermore, they can aid in deciding whether there is non-stationarity. When the 
relative proportions of facies vary significantly laterally within a reservoir unit, 
then non-stationarity is present. 

In sequence-based pixel models, the correlation between facies is 
quantified by the vertical and horizontal variograms. In standard geostatistical 
studies, the range of the variogram has a direct geological significance; here the 
relationship is indirect. It is a function of the size of the heterogeneity, but also of 
its spatial frequency. The type of variogram used in the simulations also has a 
strong impact on the way the simulated facies are organised. Exponential 
variograms, for example, are appropriate when facies transition is progressive. On 
the contrary, gaussian variograms generate more "rounded" shapes in simulations. 

Many depositional systems can be simulated well by sequence-based 
pixel approaches. They can handle carbonate depositional systems, which are 
often characterised by a cyclic organisation of facies and progressive facies 
interfingerings. In clastic depositional environments, the approach is also suitable 
for deltaic or shoreface sediments which are organised in transgressive-regressive 
cycles. Internal heterogeneity within fluvial sand sheets can also be simulated in 
this way. These types of reservoirs often show an internal sequential organisation 
which can be reproduced easily by sequence-based models. 

One difficulty in the method is computing reliable horizontal variograms 
from wells because the well spacing is generally greater than the mean 
heterogeneity size. Different variogram ranges can then be tested, and the one 
which provides the best fit with production data is chosen (Eschard et al., 1998). 
Alternatively, data bases on analogous reservoirs or outcrops can be used to give 
an idea of the range. 

Object-based models 

Object-based models were designed to simulate geological objects which have a 
well-defined geometry. These generally correspond to sedimentary bodies isolated 
in a non-reservoir matrix (e.g. fluvial channels in floodplain mudstones). 
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Similarly, shale breaks with a specific geometry within a massive sandstone unit 
can also be generated as objects. Different types of objects can be simulated 
together. Attraction or repulsion functions can also be applied to promote or 
prevent connections between different types of objects. Objects also can be 
superposed with erosion or preservation rules. The vertical frequency of the 
objects can be computed at different levels from the well data. 

Generally speaking, object-based simulations require a great deal of a priori 
geological information. First, the geologist has to determine and classify the 
different types of objects from the well data. Then, he has to impose a simplified 
shape on them. This requires a good knowledge of the geological setting, and also 
the possibility of consulting reservoir data bases containing the geometry (width 
versus thickness, etc) and shapes (sinuosity, etc) for each depositional 
environment This information generally comes from outcrop studies, from 
observations of comparable modem depositional environments or from well­
documented subsurface fields. It is generally summarised in the form of cross 
plots and frequency diagrams in which the variability of the measured parameters 
is shown. This variability is often high for a given sedimentary object because the 
shapes and the amalgamation rate of the objects depend on their location within a 
sequence (Eschard et al., 1999). During periods when there is little space available 
for sedimentation, channels deeply incise the floodplain mudstones, and the 
amalgamation rate of fluvial channels is high. When this space is large, the 
floodplain aggrades, and channels become less incised in floodplain mudstones. 
However, although this type of information is critical for controlling the object 
size, it is rarely available in reservoir data bases. 

Siliclastic reservoirs can often be simulated by object based methods. The most 
classical objects that are simulated with this approach are fluvial channels and 
crevasse splays in a matrix composed of floodplain mudstones. Channels can 
either be straight or sinuous, isolated in the floodplain or amalgamated. Crevasse 
splays are connected to the channels. 

Nested simulations 

Nested simulations combine object and sequence-based pixel models. Typically, 
the objects are simulated first, then filled with lithotypes using a sequence-based 
simulation. This approach is generally used to simulate large geological objects 
which present internal heterogeneities. For example, the heterogeneity in fluvial 
and estuarine channels corresponds to mudstone plugs deposited within the 
channels. The object, the channel, is simulated first, then filled by heterogeneous 
material using a sequence-based algorithm. 
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Building up the reservoir or orebody model 

The first step in a plurigaussian simulation of an orebody or a reservoir is to 
calculate the proportions of each facies. But even before doing this, we have to 
make a series of preliminary choices. We have to define the lithotypes to be 
studied, to divide the reservoir or orebody into units, to choose the references 
levels to be used for flattening each unit and finally to choose the parameters of 
the grid to be simulated. 

Step 1: Defining the lithotypes 

The lithotypes constituting the orebody or reservoir have to be defined from the 
available data: core samples, well logs and seismic data. They have to honour the 
geological information, and where applicable, the petrophysical information. In 
general, the geologists define more facies than can reasonably be simulated. So 
these have to be grouped into lithotypes. 

The definition adopted is crucial, firstly in the data integration process and later 
in the simulations themselves. For example, as well as reproducing the geology of 
the reservoir realistically, reservoir simulations must reproduce the key reservoir 
properties (porosity, relative permeability, capillary pressure, etc) from a fluid 
flow point of view. This implies reconciling the geological and petrophysical 
descriptions of the reservoir when the lithotypes are first defined. Furthermore, the 
lithotype data base must be homogeneous in all the wells. 

Step 2: Dividing reservoir or orebody into units 

Reservoirs generally consist of several stacked units. Their geology may differ 
from one unit to another. So each unit must be simulated independently with 
different parameters. Variogram ranges and anisotropies are generally different for 
each of the units. Sometimes the geostatistical techniques used can vary from one 
unit to another, depending on their geology. It is not possible to correlate 
lithotypes across unit boundaries, and moreover the simulation grid follows the 
geometry of the units. This is why the definition of the reservoir units is a such 
critical step in reservoir modelling. 

Step 3: Defining the reference level 

The reference level for the simulation is a specific geological layer which is used 
to restore the geometry of the orebody or reservoir at the time of deposition. This 
level must have been deposited horizontally during sedimentation and should, if 
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REFERENCE LEVEL 

Figs 7.1 and 7.2: Onlap (above) or toplap (below) configurations are produced depending 
on the choice of a reference level relative to the unit geometry 

possible, correspond to a time line. The reservoir is then flattened using this as the 
reference level. Different reference levels can be used for each reservoir unit, or 
one can serve for several of them. 

As for the definition of the lithotypes, the choice of the reference level has a 
marked impact on the result of the simulation. For example, onlap or toplap 
configurations can be produced depending on the choice of a reference level with 
regards to the unit geometry (Figures 7.1 and 7.2). 

Step 4: Choosing the grid spacing 

The grid size is in theory directly dependent on the size of the heterogeneities to 
be reproduced in the simulation. The detail needed in a simulation also depends on 
the recovery process used to produce the reservoir. Gas is less sensitive than oil to 
small scale reservoir heterogeneities. Fields developed with horizontal wells 
generally require very detailed reservoir models. From a geological point of view, 
it is tempting to simulate as much detail as possible, but in practice, the number of 
cells is limited by computer capacity. Because of the limitations on :fluid :flow 
simulators, the fine grid simulated has to be upscaled to a coarser one. Within each 
cell of the latter grid, the upscaling algorithm has to summarise all the values in 
the fine grid in a single value. This is quite simple for porosity where it means 
taking the average, but it is more difficult for permeability. Only approximate 
solutions exist (unless we run a :fluid :flow simulator for each cell of the coarse 
grid, and that would be prohibitively time consuming). Consequently many 
different upscaling techniques exist and so differences may appear in the 
simulation depending on which upscaling method is applied, especially when the 
number of cells is very large. 
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Petroleum applications of the plurigaussian approach 

The geostatistical methods presented above have their limitations when applied in 
complex geological settings. In some cases, the reservoir architecture presents 
complex facies transitions which cannot be simulated with mono-gaussian 
techniques. Similarly, boolean models are only suitable when only a few types of 
sedimentary bodies are present and when their shapes are well defined. The main 
advantage of the plurigaussian approach is its ability to handle complex facies 
relationships, both vertically and laterally, in a pixel simulation. For example, it is 
possible to impose different anisotropies onto the gaussian functions. Furthermore, 
different types ofvariograms each with its own range and anisotropy, can be used 
for each gaussian function. The combination of all these parameters makes the 
approach very :flexible. 

Constructing the lithotype rule with geological constraints. 

As the theory of the lithotype rule construction has already been described, we 
will illustrate it with several examples to show how the rules can be chosen a 
priori depending on the geological context. As usual, lithotypes are represented by 
different colours and the surface occupied by each one in the matrix is a function 
of the relative proportion of facies computed in wells. Complex facies transitions 
can then be reproduced by changing the relative position and surface of the 
lithotype in the matrix. 

If only one gaussian function is used, the lithotype rule only shows superposed 
bands, with each band representing a lithofacies. When colours are in contact in 
the lithotype rule, the corresponding lithotypes will be connected in the 
simulation. Consequently the ordering of the facies in the lithotype rule must then 
respect a sedimentary sequence in order to correctly reproduce facies inter­
fingerings in the simulation. One of the most common sequences encountered 
corresponds to the progradation of a shoreface (top of Figure 7.3), in which 
offshore, shoreface, foreshore and coastal plain deposits are organised in a 
prograding sequence. Its lithotype rule is also shown in Figure 7.3. 

Simulation of reservoir with complex facies transitions 

The lithotype rule also makes it possible to simulate complex geological settings, 
especially in carbonate depositional systems. For example, it is difficult to 
simulate the irregular shape and complex internal architecture of algal or reefal 
bioherms with classical object or sequence based models (Van Buchem et al, 
2000). In this case, the lithotype rule is used together with the vertical proportion 
curve as a kind of facies substitution diagram to reproduce the sequential 
organisation of the facies. 
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COASTAL PLAIN 

LYTHOTYPE RULE 

Fig 7.3: Lithotype rule with only one gaussian function used to simulate a prograding 
sequence. Facies ordering is respected in the rule 

Figure 7.4 shows algal mounds in the Paradox basin, of Pennsylvanian age, which 
were studied in outcrops along the San Juan River (Grammer et al., 2000, and Van 
Buchem et al, 2000). The algal bioherms correspond to bioconstructions with 
irregular rounded shapes which were constructed in a mixed carbonate and silici­
clastic open shelf. The carbonate shelf ftrst prograded (facies 1 to 3), and then 
when a certain water depth was reached, incipient mounds (facies 4) started to 
develop in the shelf setting. 

A 

- Black laminated mudstone [][] Incipient algal mound facies 

[!] Sponge mudstone facies .. Algal mound facies, initial stage 

.. Intermediate facies .. Algal mound facies, final stage 

--v-v- Exposure surface ·0. ' .. Intraformational Breccia 

[2] Skeletal bioclastic facies 

- Quartz sand facies 

[I] Non skeletal facies 

~ Root traces 

Fig 7.4: Geological model of Pennsylvanian algal mounds in outcrops (from Galli et al., in 
press) 
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Fig 7.5: Lithotype rules for the upper (on the right) and lower units of Paradox basin 

After this initial stage, the mounds themselves started to grow, and different stages 
of construction have been observed (facies 5: initial stage, facies 6: final stage). At 
the end, the mounds have an irregular rounded shape with a height of more than 
20m compared to the surrounding shelf. When the algal mound growth stopped, 
the inter-mounds troughs where progressively filled by in situ shelf sediments and 
material falling from the mounds. These deposits now form flanking beds in 
outcrops (facies 7), with the beds onlapping the mound relief. Finally, clastic 
deposits (facies 8) were deposited in the shelf setting during subsequent relative 
sea-level drops. On top of the sequence, karstification often restricted marine 
carbonates (facies 9) during emersion. 

The lithotype rule corresponding to this complex geological setting is shown in 
Figure 7.5. Firstly, the series was divided in two units: the lower unit corresponds 
to the platform progradation, whereas the algal mounds are located in the upper 
unit. The lithotype rule of the lower unit is simple as only one gaussian function is 
used for its simulation. Its vertical proportion curve also reflects the 
progradational pattern of the shelf. 

- ------- - - ----- ... . ---------- --- - - - - ---- ----- - -- -- -- t- - ------ - - -- ----- -- -- -- - - - -
I I 
I I 

B 
Fig 7.6: Cross section in a simulation of the Pennsylvanian algal mounds using the pluri­
gaussian approach. The mound geometry is realistically reproduced (compare with the 
geological model in fig. 7.4) 
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In the upper unit, the lithotype rule is more complex because of the spatial 
organisation of the mounds and intermound facies. The intermound facies (facies 
7) can be in contact with the two mounds facies (facies 5 and 6) and with the 
sandstones capping both the mounds and the inter-mounds deposits (facies 8). The 
simulation in Figure 7.6 reproduces the geometry of the mounds in this shallow 
marine platform setting, very realistically both in section and in plan view. 

Simulation of the effects of primary diagenesis in complex reservoir 

Plurigaussian simulations are particularly suitable for simulating interdependent 
phenomena which interacted during sedimentation or just afterwards. Moreover, 
the two phenomena can have different anisotropies, and can be correlated or not. 
The effects of the primary diagenesis, which affect the sediments just after burial, 
can be simulated with this approach. 

The Paradox basin algal mounds described earlier are a good example of the 
effects of primary diagenesis. During relative sea-level drops, the topmost part of 
the mounds was altered when the mound top is emerged. This alteration is a 
function of the initial carbonate texture and porosity. The flanking beds which 
were deposited after this episode, were not affected. A new facies corresponding 
to this alteration of the reef was added into the lithotype rule (facies 9). It is in 
contact with both the flanking beds laterally, the mound core below and the 
sandstones above. The simulation in Figure 7.7 reproduces the altered facies 
capping the mounds. 

Fig 7.7: Simulation showing the altered facies capping the mounds. The altered facies 
corresponds to the light grey colour on top of the dark algal mound 
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UNIT Ill 

FACIES 

ITJ : FORE-REEF 
-: REEF CORE (SEAWARD) 
w : BACK-REED 

[!] : LAGOON 
- :CEMENTED LAYER 

: REEF-CORE (LANDWARD) 

1km 

Fig 7.8: Synthetic model of a reef complex from which a pseudo-well data-base was 
compiled for simulation purposes 

A synthetic case study of a reef reservoir was carried out in order to test the ability 
of the plurigaussian method to simulate this type of reservoir. It is based on the 
Miocene reefs observed in subsurface by Grostch and Mercadier (1999). In this 
synthetic case (Figure 7.8), the reef growth occurs in three stages. Each stage is 
characterised by a specific organisation of the facies. The basal unit (unit III) 
corresponds to the initial stage of the reef growth when no lagoon had developed 
inside the reef. The middle unit (unit II) corresponds to the growth stage of the 
reef. Back-reef and lagunal deposits were well developed inside the reef. The 
topmost layers of unit II were cemented during a relative sea-level drop when the 
topmost part of the reef emerged. Unit I is the final stage of the reef growth. 
According to Grotsch and Mercadier (1999), cementation can specifically affect 
the core reef exposed to the ocean but not the lee-side where porosity is preserved. 

Six facies were differentiated for the simulation: fore reef (facies 1), core reef, 
basin-ward (facies 2), back-reef (facies 3), lagoon (facies 4), cemented facies 
(facies 5), and core-reef landward (facies 6). Facies 5 corresponds to a cemented 
horizon which affected facies 2, 3 and 4 in unit II. The cemented horizon 
constitutes a significant permeability barrier within the reservoir, and so it is 
important to reproduce it in the simulation. Three litho-stratigraphic units were 
then used for the reservoir simulation, each with a specific facies distribution. The 
simulation was processed in a proportional grid within a unit, in order to get 
correlation lines parallel to the top and bottom of each unit. 



LYTHOTYPE RULE 

UNIT Ill 

I 
UNIT I 

GAUSSIANVARIOGRAMS 
LOftO RANGES 

Case Studies 117 

VERTICAL PROPORTION 
CURVES 

UNIT Ill 

UNIT II 

UNIT I 

Fig 7.9: Vertical section extracted from a plurigaussian simulation of the reefal complex 
which was divided into three units. These are shown with their lithotype rules (left) and 
their vertical proportion curves (right). 

In unit III, the truncated gaussian algorithm was used with a simple lithotype rule 
(Figure 7.9). In unit II, the plurigaussian algorithm was applied in order to respect 
the complex relationship between the facies. The cemented facies (facies 5) can be 
in contact with facies 2, 3 and 4 but facies 5 cannot be in contact with facies I. 
The vertical proportion curve also constrains facies 5 only to the topmost part of 
the unit II. In unit I, the porous core reef (facies 6) is only present in the lee side 
oriented towards the continent. The lithotype rule prevents contact between facies 
6 and 4. Gaussian variograms were used for the two gaussian functions in order to 
respect the rounded shape of the reef facies belts. The continuity of the facies 
distribution was also ensured by using long variogram ranges of the 6000m in the 
East-West direction and 15000m in the North-South direction. This anisotropy 
imposes an ellipsoidal shape on the simulated reef. The results of the simulation 
are shown in Figure 7.9 in a vertical section across the reef, and in Figure 7.10 in 
plan view. The complex internal organisation of the reef has been reproduced well 
in the simulation. 

Simulating progradational patterns 

In a progradational sequence, the facies are organised in a logical order from the 
deepest facies at the base of sequence to the shallowest on top. Laterally, the 
geometry of a progradation is marked by oblique clinoforms each corresponding 
to a depositional surface. 
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LONG RANGE 

•• 1{1 

• 'J!I 

UNIT II UNIT Ill 

Fig 7.10: Plan view of the reef simulation, using a gaussian variogram with a long range in 
Unit IT (a) and ill (b). See Fig 7.9 for unit names 

The facies belts are then organised obliquely with their dip corresponding to the 
direction of progradation (Figure 7.11). In it lithofacies I is separated from 
lithofacies 4 by lithofacies 2 and 3. The first gaussian function controls the 
thresholds of lithofacies I and 4, and the second, lithofacies 2 and 3. An 
anisotropy was added to simulate the dip of facies 3 within facies 4. 

Simulation of fractures affecting a specific facies. 

Fracturing which affects some reservoirs after burial can also be simulated with a 
stochastic approach (Cacas et al. , 2001). Fracture networks are simulated as 
objects in a reservoir matrix. In many cases, there is a relationship between the 
fracture distribution and the initial lithotypes because the mechanical properties of 
the latter depend on their lithology and textures. When stressed during burial and 
tectonic deformation, fracturing affects the lithotypes differentially. Some of them 
end up intensively fractured, whereas others do not. So it is important to correlate 
the fracture distribution with the lithotype. 

Fig 7.11: Simulation of a progradation 



44 . 

34 . 

24 . 

14 . 

4 . 

.,; .. 
:=· 

Case Studies 119 

44 . 

34 . 
24 . 

14 . 

4 . 

Fig 7.12: Simulation of fractures only affecting one facies within the Pennsylvanian algal 
mooods 

We simulated algal mounds with fractures in them. We consider that only the 
mound facies (facies 5 and 6) have been fractured significantly. The distribution 
of the facies was simulated first with the plurigaussian method. Then, fractures 
were only simulated in the mound facies. Figure 7.12 presents the results. 

Testing the impact of simulation parameters. 

Different tests were carried out to evaluate the sensitivity of the simulations to 
variations in input parameters. The synthetic reef case study presented in Figure 
7.8 was used as a reference to evaluate the effect of changing the type of 
variogram model and its range. The influence of the range was tested on unit II. 
In the reference simulation (Figures 7.9 and 7.10), the horizontal ranges used were 
6000m and 15000m in the X andY directions respectively. In Figure 7.13, smaller 
ranges were used (X= 1500m, Y=l300m). 

SHORT RANGE 

Fig 7.13: Testing the variogram range influence on the reefal complex described in Figure 
7.8. The figure shows a plan view of the reef using variograms with short ranges. Compare 
with Figure 7.10 in which the same plan was simulated with a long range 



120 Case Studies 

1000 2000 

distance (m) 

3000 4000 

Fig 7.14: Testing the variogram model. The simulation represents a cross section of the reef 
complex described in Figure 7.8. An exponential variogram model was used here. Compare 
with Figure 7. 9 in which the same reef complex was simulated with a gaussian variogram 

Comparing the two simulations shows that the range reduction has dramatic 
consequences on the shape and distribution of the facies belts. Small isolated reefs 
are produced by the smaller ranges. The sensitivity of the simulations to the 
variogram model was then tested. In the reference simulation, two gaussian 
variograms with ranges of X= 6000m, Y=l5000m, Z= 5m were used for each 
gaussian function. Figure 7.14 shows the results produced using exponential 
variograms with similar ranges to the reference simulation. The consequences of 
this change are again very important. The facies are more scattered in the 
simulation using an exponential variogram models than in the one using gaussian 
variograms. So the type of variogram model can have important consequences 
when computing facies connectivity within a reservoir. 
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Introduction 

You will find a CD containing two free programmes called pluri_demo_simu and 
pluri_demo_ vario plus a set of colour images, in the pocket in the back cover of 
this book. These two programmes were designed to allow users to discover 
plurigaussian simulations by "playing" with them. The first one makes it possible 
to visualise simple plurigaussian simulations and to see how changes in the input 
parameters affect the resulting images. The second one is more technical. It 
illustrates the relationship between the indicator variogram and those of the 
underlying gaussian random functions (RFs for short) that are truncated to give 
the indicators. For each programme we provide a set of graded exercises showing 
how to run the programme and how the key parameters affect the simulated 
images or the indicator variograms, as the case may be. 

Installation 

The package is written in java for the user interface and in C/C++ for the 
computing algorithm. It runs on INTEL compatible platforms under win95, 
win98, winnt4.0, win2000 or linux (tested on RedHat distributions) and on 
SPARC platforms under Solaris 7/8. 

Installation instructions for Windows users 

On the CD, the directory Windows contains 2 files: 

• Jre117Bi-win32.exe 

• PluriDemo.zip 

To install: 

: the java runtime environment, necessary to 
run the demo programs 

: the archive containing the demo programs 

1. Download the two files into a temporary directory. 

2. Install the java runtime environment by running the file Jre117Bi-win32.exe 
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3. Unzip the archive file Plurillemo.zip in the destination directory (for example 
in C:\Program Files 

Installation instructions for Solaris users 

On the CD, the directory Sun-Solaris contains 1 file: 

• PluriDemo.tar.Z : the archive containing the demo programs 

To install: 

1. Download the file in a temporary directory (for example ltmp ). 

2. Check you can start the command java or appletviewer, if not, ask your 
system manager. 

3. Uncompress the archive file Plurillemo.tar.Z: 
uncompress PluriDemo.tar.Z 

4. Extract the files in the destination directory (for example in: lusr/local) 

cdiNSTALL_DIR (for example: /usr/local) 
tar xvfTEMP _DIR!PluriDemo.tar 

5. Edit the 2 scripts pluri_ demo_ simu and pluri_ demo_ vario in the directory 
INSTALL_DIR!PluriDemolsparc-solaris and set the environment variables 
as appropriate for your installation. 

6. Modify your PATH environment variable (for csh/tcsh users: setenv PATH 
INSTALL_ DIR/PluriDemo/sparc-solaris:$PATH). 

Installation instructions for Linux users 

On the CD, the directory Linux-x86 contains 2 files: 

• jre118_v3-glibc-2.1.3.tar.bz2 the java runtime environment, 
necessary to run the demo programs 

• PluriDemo.tar.gz the archive containing the demo 
programs 
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To install: 

1. Download the 2 files into a temporary directory (for examplehmp). 

2. Install the package containing the java runtime environment. 

Choose an installation directory INSTALL_DIR (for example /usr/local) 
cd INSTALL_DIR 
tar -IxfTEMP _ DI:Rljre118 _ v3-glibc-2.1.3.tar.hz2 

3. Extract the PluriDemo files in the destination directory (for example in· 
/usr/local) 

cd INSTALL_DIR 
tar zxvfTEMP _DTR/PluriDemo.tar.gz 

4. Edit the 2 scriptspluri_demo_simu andpluri_demo_vario in the directory 
INSTALL_DTR/PluriDemolsparc-solaris and set the environment variables 
as appropriate for your installation. 

5. Modify your PATH environment variable (for csh/tcsh users: setenv PATH 
INSTALL_DTR/PluriDemo/11nux:$PATH). 

Description of Pluri_Demo_Simu 

The user has to select two underlying gaussian images, out of 12 preprogrammed 
images. The variograms used to generate these images consist of 3 exponential 
models, 3 gaussian models, 3 cardinal sine models and 3 sphericals. Next the user 
must choose the "rock type rule" which defines the number of facies and the 
relationship between them. Thirty-six rock type rules are currently available. 
Lastly the user specifies the proportions of each facies. In the stationary case, 
these would be the same at all points in the area under study but as oil reservoirs 
are usually nonstationary in the vertical direction, it is instructive see what 
happens if the proportions can be varied. So this program allows the user to vary 
the proportions linearly from the top of the image to the bottom. Now you can 
start using the programme. 

To start the programme in a Windows environment double-click onto the 
file: 

C:\Program Files\Pluridemo\windowslpluri_ s.hat 
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PluriDemo 

First Gaussian Variable . . . I Exp1 

Second Gaussian Variable . . . I Gaus2 

Rock type rule: 

Vertical Proportions 

Proportions 

(i Constant -.) Variable 

Fig 1: Screen that comes onto the screen when pluri_demo_simu is started 

To staff the programme in a so/aris or /inux environment type in the 
command: 

pluri_ demo_ simu & 

Choosing two of the underlying gaussian images 

The program contains 12 preprogramrned images that were obtained by simulating 
standard gaussian random functions with different variograms (3 exponentials, 3 
gaussians, 3 cardinal sines and 3 sphericals). If you click on the rectangle 

first gaussian variable I. 



Freeware 125 

a new panel will pop up showing the 12 simulated images. Although the three 
images in each row have the same type of variogram model, they have different 
ranges and anisotropies. Table A1 lists the parameters of these 12 models. 
Compare the images in the top row (exponentials) and the bottom one (sphericals) 
with those in the other two rows. The images generated using the exponentials and 
the sphericals have a patchy appearance compared to the smoother images given 
by the gaussian and cardinal sine models. This is due to the linearity of the 
exponential and spherical models near the origin compared to the quadratic shape 
of the other two. To change the simulated image being used, just click on the 
image you want. Its name should appear beside the corresponding rectangle. For 
the first example we will continue with the default values for parameters; that is 

first gaussian variable I 

lsecond gaussian variable I 

Table Al: Parameters of the variogram models used to generate the 12 images. (N.B. 
Angles are measures counter-clockwise starting from east) 

Variogram Long Short Orientation 
Type Range Range 

Exp1 Exponential 35 20 170° 
Exp2 Exponential 105 25 40° 
Exp3 Exponential 60 6 95° 
Gaus1 Gaussian 50 7 oo 
Gaus2 Gaussian 40 30 120° 
Gaus3 Gaussian 40 18 60° 
Sine1 Cardinal sine 70 55 20° 
Sine2 Cardinal sine 150 20 140° 
Sine3 Cardinal sine 90 35 85° 
Sph1 Spherical 80 15 100 
Sph2 Spherical 60 30 160° 
Sph3 Spherical 60 50 35° 

Choosing the rock-type rule 

The thirty-six possible rock-type rules are displayed in 4 rows in the middle of the 
pluri-demo panel. This collection is by no means exhaustive. We chose to limit the 
programme to the rules that generate three, four or five facies, not more. The two 
in the top left corner contain only three facies; the next ones contain four facies 
and so on. Secondly, only rectangular partitions have been used because it 
simplifies the calculation of the thresholds once the proportions are given. 
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Fig 2: Diagram representing a rock rule 

Each square icon is a symbolic representation of the thresholds separating facies. 
The horizontal axis representing the first gaussian variable goes from -ao on the 
left to + oo on the right; and similarly for the second gaussian variable on the 
vertical axis. Figure 2 shows an enlarged version of the first rule shown in the top 
left corner. 

Now to explain how to interpret the diagram. As the square is divided into three 
regions coloured orange, yellow and green, this rule generates 3 facies. Any point 
in the top left area would have a negative value for the first gaussian whereas its 
value for the second gaussian would have to be greater than a certain threshold. 
Similarly any point in the top right area would have a positive value for the first 
gaussian whereas its value for the second gaussian would be greater than that 
threshold. Finally any point in the bottom region could have any value for the first 
gaussian but its value for the second gaussian would be less than the threshold. 

In this case we are using two thresholds, one for each gaussian. Their values 
determine what proportion of each facies there is. Decreasing the value of the 
threshold on the second gaussian would decrease the amount of the green facies 
but would increase the amounts of yellow and orange. In the default case the 
facies are programmed to have equal proportions (here 33%). We will start with 
this as our first example. 

Exercise A1 : Default values for parameters 

Set the parameters to their default values : 

Wirst gaussian variable J 

!Second gaussian variable J 

IRock type rule J 

!constant proportions I 33%, 33% & 33% for facies 
throughout the area. 
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Now click on the run button. The panel that appears on the screen (Fig Al) is 
divided into four quadrants. The resulting plurigaussian image appears in the 
bottom left quadrant. The two images that were used in constructing it are shown 
in the top two quadrants. The bottom right square shows the rock type rule that 
was used to generate it. The green foreground in the plurigaussian image 
corresponds to the lowest values of the second gaussian. The contour lines around 
the green foreground are smooth because its variogram is gaussian. The contour 
separating the orange from the yellow is broken up because the corresponding 
variogram is exponential. 

Exercise A2 : Inverting the two images 

What do you think would happen if we reversed the images that were used for the 
first and second gaussian variables? (See Fig A2). That is, if we keep the same 
rock type rule and the same proportions but put: 

Wirst gaussian variable I 

lsecond gaussian variable I 

Exercise A3 : Effect of anisotropy 

To see how anisotropy affects the results, set the first gaussian to Gausl which has 
a strong east-west anisotropy and reset the second gaussian to Gaus2. Keep all the 
other parameters the same. That is, 

Wirst gaussian variable I 

lsecond gaussian variable I 

!Rock type rule I 

!Constant proportions I 33% for each facies 
throughout the area. 

The background in the resulting image (Fig A3) now has a marked east-west 
anisotropy 
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Exercise A4 : Changing the amount of each facies 

Keeping the same ooderlying gaussian images, we now increase the proportion of 
green by sliding the first bar from 33% to 60%. Note the second bar automatically 
drops, so as to maintain a total of 100%. Now slide the second bar up to 25%. The 
third one moves down to 15% to compensate. Now click on run, giving Fig A4. 
There is much more green now (60% instead of 33%). Although it is less obvious, 
there is now more orange than yellow. 

Exercise AS : Changing the rock-type rule -four facies 

To change the number of facies we have to change the rock type rule. For 
example, the top left one has three facies but the third one from the left in the top 
row has four. Change to this rock type rule, keeping the same ooderlying gaussian 
variables and accepting the default proportions (25% each). 

Wirst gaussian variable I 

!Second gaussian variable I 

!Rock type rule I 

!constant proportions I 

ITE 
25% for each facies 
throughout the area. 

Figure A5 shows the new image. Does the green colour ever touch the red or 
the yellow? Looking back to the rock type rule, you can see that the colours do not 
touch there either. The green is always surroooded by a halo of orange. Work out 
which colours can touch? (Note: if the pixel size used to print the images is too 
large, colours which should not touch appear to do so. With smaller pixels the 
intermediate colours would show up.) 

The next big step in learning about plurigaussian simulations is to allow the 
threshold to vary. But before we do this, we give the reader some exercises to try 
for himself/herself. 

Exercise A6 

Set the parameters to: 

Wirst gaussian variable I 

!second gaussian variable I 



!Rock type rule I 

!Constant proportions I 33% for each facies 
throughout the area. 
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Compared to Exercise 1, we have reversed the first and second gaussian 
variables and the rock type rule has been rotated through 90°. The resulting image 
(Fig A6) is exactly the same. At first glance it seems as if these two rock rules are 
equivalent (provided that the rock rules are reversed), but this is only true if the 
proportions are constant throughout the area. As we will see in Exercise 5, this is 
no longer true when the proportions are variable. This is why we have included 
both rules. 

Exercise A7 

Set the parameters to: 

first gaussian variable I 

!second gaussian variable I 

!Rock type rule I 

!constant proportions I 20% for each facies 
throughout the area. 

Before clicking on run, try to imagine what sort of image will be produced. 
How many facies will there be? Which ones will touch each other? What will the 
directions of anisotropy be? Now click on run and see whether you were right (Fig 
A7). 

There is an important difference between this rock type rule and the other 35 
rules that are available in Pluri-demo. In all the other rock type rules including the 
one shown below there is at least one line of demarcation going right from -oo to 
+oo (either horizontally or vertically). 

!Rock type rule I 

We could call this a primary line of demarcation. The other line is a secondary 
demarcation. The (one or more) facies delimited by a primary demarcation can be 
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simulated first. Those delimited by a secondary demarcation can be simulated in 
what remains, and so on for lower order demarcation lines. 

It would be possible to simulate the three facies shown in the rule above by 
successive applications of standard simulation packages. In the first gaussian 
variable, all points where the value is less than the threshold would belong to the 
green facies; those with larger values could be either orange or yellow. The split 
between these two colours is determined by the value of the second gaussian. This 
is not true of the 5 facies rule given above. This type of image can only be 
generated using the values of both gaussians simultaneously. 

Exercise AS 

Figure A8 shows a plurigaussian image that was generated using constant and 
equal proportions and the following rock type rule. Can you work out which of the 
12 underlying simulated images were used for the first and second gaussian 
variables? 

!Rock type rule I 

Exercise A9 

Figure A9 shows a plurigaussian image that was generated using the Gaus3 image 
for the first gaussian variable and the Sph2 one for the second variable together 
with constant and equal proportions. Can you work out which rock type rule was 
used? (Figure A9b gives the answer). 

Variable proportions 

Having seen how plurigaussian simulations work in the stationary case, we now 
treat the more realistic case of vertical nonstationarity. 

Exercise A10: Variable proportions 

The simplest way to demonstrate how the variable proportions work is by using 
the same basic data as in Exercise 1: 

first gaussian variable I 

!Second gaussian variable I 
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!Rock type rukl 

However we will vary the proportions :from the top to the bottom. Instead of the 
button for constant proportions, click on 1\'ariable I. Now we have to define the 
proportions at the top and the bottom of the image. The default values for the 
proportions are 33% each. To accentuate the effect of changing the proportions set 
the proportion of green to 0% at the top and 100% at the bottom. Any remaining 
proportion is divided equally between the yellow and the orange. The program 
automatically varies the proportions linearly :from the top to the bottom. So 
halfway down, there will be 50% green, 25% yellow and 25% orange. As the 
program has to calculate the thresholds for each vertical level so that the 
proportions vary linearly, it takes more time to react than for constant proportions. 
Now click on run. Figure AlO shows the results. 

Compared to Exercise 1, the images in the top two squares remain the same. 
The most obvious changes occur in the bottom right square which now shows 
three diagrams instead of one. The long diagram on the left shows the proportions 
varying linearly :from 50% yellow, 50% orange and 0% green at the top, to 100% 
green, 0% yellow and 0% orange at the bottom. The little square at the top right 
shows the rock type rule at the top (with no green) while the lower square shows it 
at the bottom of the image (all green). 

Looking at the simulated image in the lower left quadrant, there is, as expected, 
no green at the top and correspondingly, no yellow and no orange at the bottom. 
The proportion of green increases steadily going down the image. 

Exercise A11: Variable proportions on two gaussian variables 

Replace the exponential in the first gaussian variable by one with an anisotropic 
gaussian variogram and see how the resulting image changes (Fig All). 

Wirst gaussian variable I 

!second gaussian variable I 

!Rock type rule I 

tfop proportion! 

!Bottom proportion I 

0% green, 50% yellow, 50% orange 

100% green, 0% yellow, 0% orange 

The green foreground (controlled by Gaus2) is the same as before but the edges 
between the orange and the yellow are smooth rather than being "furry". 
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Exercise A12: Working out which rock type rule was used 

Figures A12 and A13 show plurigaussian images that were created using Gaus3 
and Gaus2 as the two underlying gaussian variables. By looking at the number of 
facies and which ones are in the foreground and the background, deduce which 
rock type rule has been used and also what the top and bottom proportions were. 
The answers are given in Figures A14 and A15. 

Limitations of the program 

As this program was designed to demonstrate how plurigaussian simulations 
work, it does not have the full capacity of commercial software. This paragraph 
outlines its main limitations: 

D The program is limited to two independent gaussian variables. No allowance 
has been made for correlations between the variables. 

D Twelve simulated images were pre-programmed. The user cannot generate 
more images with the same variogram models or with others. 

D Only 36 rock type rules are available. To simplify the calculation of thresholds 
the partition is rectangular. Then the number of facies was limited to 3, 4 or 5. 
Even with these restrictions the catalogue of rock type rules is by no means 
exhaustive. For example each colour only appears once. 

D The program allows for nonstationarity in the vertical direction (but no other) 
and then only a linear change in the proportions from top to bottom. In practice 
the cyclic changes in the geological environment over time mean that the 
variations are far more complex. 

D Lastly, the program gives only nonconditional simulations. No conditioning 
data can be included. But the conditioning step is possible in practical cases. 

Description of Pluri_demo_vario 

The second demonstration programme, Pluri_demo_vario, was designed, as its 
name suggests, to show what the indicator variograms corresponding to different 
types of underlying random functions look like. Exercises B l-B7 are designed to 
show you how the programme works. The next exercise illustrates the variogram 
for a truncated gaussian (i.e. only one gaussian RF). The other exercises involve 
plurigaussians (i.e. two or more RFs). 

The programme asks the user to specify the types of variogram for the two 
underlying gaussian RFs together with their anisotropies and their ranges (or their 
practical ranges). Then it calculates and plots the corresponding indicator 
variograms and cross-variograms. The first screen is similar to that for Pluri­
demo-simu. The same thirty-six rock-type rules are available, the proportions of 
each facies can be varied by moving the slide bar. One important difference 
between the two programmes is that this one allows the user to choose the 
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anisotropy for each underlying RF. The user specifies the main direction of the 
anisotropy (an angle between oa and 180° measured counter-clockwise starting 
from east) and the ratio. Another difference is that the user can include a nugget 
effect. 

To start the programme in a Windows environment double-click onto the 
file: 

C:\Program Files\Pluridemo\windowslpluri_ v.bat 

To start the programme in a solaris or /inux environment type in the 
command: 

pluri _demo_ vario & 

Exercise 81: Default values for parameters 

In the first exercise we use the default values for all the parameters. So the first RF 
has an isotropic exponential variogram whereas the second one has an isotropic 
gaussian variogram. Both have ranges of 50m. The proportions for the facies are 
50% green, 33% orange and 17% yellow. Calculate the simple variograms by 
clicking on the "compute" button (Fig Bla). In order to see the cross-variograms 
rather than the simple variograms, click on the box marked "variograms", then 
slide to "cross-variograms" (Fig Blb). Note that in contrast to the simple 
variograms, the values are negative. Can you explain why? Click on the box "file" 
to return to the main panel. 

Now we change the range of the exponential to 20m instead of 50m by sliding 
the bar. At this point the variogram models under study are: 

Modell: Exponential, range= 20m, 
direction= 0°, 

Model 2: Gaussian, range = 50m, 
direction= 0°, 

anisotropy ratio= 100% 
%nugget= 0% 

anisotropy ratio= 100% 
%nugget= 0% 

Calculate the corresponding simple variograms (Fig Blc). The green variogram 
remains the same as before but the range of the yellow one shortens. 
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Exercise 82: Changing the variogram model 

Change the first model from an exponential to a gaussian RF. So now we have 
two gaussian RFs with ranges of 20m and 50m respectively: 

Modell: Gaussian, range= 20m, anisotropy ratio= 100% 
direction= 0°, %nugget= 0% 

Modell: Gaussian, range= 50m, anisotropy ratio= 100% 
direction= 0°, %nugget= 0% 

Calculate their simple variograms (Fig B2a). Note that although both gaussian 
models are quadratic near the origin, the indicator variograms are not. They are 
always linear. 

Now we are going to change the proportions of each colour. Slide the 
proportions bar to give 60% green, 20% yellow and 20% orange. Plot the simple 
variograms (Fig B2b) and the cross-variograms for Facies 1 (Fig B2c). Note how 
the sill of the green variogram increases compared to Figure Bla. Secondly the 
yellow and orange variograms are the same (or they would be if their proportions 
were exactly the same) and so one covers up the other. 

Now look at the cross-variograms. The one shown in yellow is actually the 
cross-variogram between Facies 1 (yellow) versus Facies 3 (green). In order to get 
the other cross-variograms (e.g. for Facies 2), click on the box "facies", then onto 
Facies 2 (Fig B2d). Whereas the green one decreases monotonically, the yellow 
decreases at first then rises up again. 

Exercise 83: Changing the rock-type rule 

Now change the rock-type rule from three facies to the one with four shown 
below, with 30% green, 30% orange, 20% yellow and 20% red. (Both RFs still 
have gaussian variograms with ranges of 20m and 50m respectively). 

Calculate the simple variograms (Figure B3a) and the cross-variograms (Figure 
B3b). In the first of these, the green variogram is not visible. The orange covers 
the green because their proportions are identical and their positions in the rock­
type rule are symmetrical. The red variogram is different from the yellow one 
even though both are present 20% of the time. This is because they are not 
symmetrical. 

The two underlying variograms are now: 

Modell: Gaussian, range= 20m, 
direction= 0°, 

anisotropy ratio = 100% 
%nugget=O% 



Model 2: Gaussian, range= 50m, 
direction= 0°, 
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anisotropy ratio= 100% 
%nugget=O% 

Exercise 84: Effect of anisotropy 

The anisotropy of the variogram models has a marked effect on the indicator 
variograms. Using the same rock-type rule and the same RFs as in exercise B3 
(with gaussian variograms with ranges of 20m and 50m), click on the button 
"Show Anisotropies". This produces a 2D diagram showing the distance at which 
each variogram reaches 90% of its sill value as a function of direction (Fig B4a). 
In this case we see three circles coloured yellow, orange and red. The outer one in 
red has a radius of about 40m whereas the orange and yellow ones have radii of 
about 25m and 20m respectively. What do you think happened to the green circle? 

Now change the anisotropy ratio for the longer range gaussian (i.e. with a range 
of 50m) from 100% to 50%. Plot the anisotropy diagram (Fig B4b). The circles 
have changed to ellipses. The red range in the NS direction has dropped from 
about 40m to about 22m. Up till now the variograms have all been isotropic so 
there was no point in changing the "Computation Direction" but now it becomes 
interesting to compare the different directional variograms. Fig B3a shows the 
simple variograms in the east direction (0°). Slide the computation direction bar to 
90° and recalculate the simple variograms (Fig B4c). The sills are, of course, the 
same but the ranges are much shorter. 

This time we increase the range of the first model from 20m to 50m, change its 
anisotropy ratio from 100% to 50% and change the main anisotropy direction from 
0° to 90°. So its long range will be NS whereas the long range of the second 
structure is EW. The variograms and the computation angle are now: 

Modell: Gaussian, 

Model 2: Gaussian, 

range = 50m, anisotropy ratio = 50% 
direction= 90°, %nugget= 0% 

range= 50m, 
direction= 0°, 

anisotropy ratio = 50% 
%nugget= 0% 

Computation direction = 90° 

Plot the anisotropy diagram (Fig B4d). There is a dramatic change in the 
shapes, especially for the orange facies. Now let's increase the range of the first 
structure from 50m to lOOm while holding the anisotropy ratios constant at 50% 
(Fig B4e). We can produce even more dramatic effects by reducing both the 
anisotropy ratios to 20% (Fig B4f). Looking back at the rock-type rule, we see that 
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the red and yellow facies depend on cut-offs on only one RF and their variogram 
diagrams stay elliptical. It is the orange facies which depends on cut-offs on both 
RFs that produces the really unusual diagrams. 

Modell: Gaussian, 

Model 2: Gaussian, 

range= lOOm, anisotropy ratio= 20% 
direction = 90°, % nugget = 0% 

range= 50m, 
direction = 0°, 

anisotropy ratio = 20% 
%nugget= 0% 

Computation direction = 90° 

Now change to the five facies rule shown below with 12% green, 12% orange, 
12% yellow, 52% red and 12% blue. Set both the variogram ranges to lOOm with 
anisotropy ratios of 20%. The first structure is oriented at 90° (i.e. NS) whereas 
the second one is oriented EW. The anisotropy diagram is particulaily interesting. 
(Fig B4g). As expected, the variograms for blue and green aie identical and 
symmetrical with the opposite pair (yellow and orange). The cross shaped 
variogram for the red facies is particulaily unusual. 

Exercise 85: Adding a nugget effect 

In order to see the impact of a nugget effect on the indicator variograms, we use 
the first rock-type rule (top left comer) with the default proportions (50% green, 
33% orange and 17% yellow). Set the variogram models to gaussians with ranges 
of lOOm and anisotropy ratios of 20%. As before the first one is oriented NS 
whereas the second is EW. Starting out with no nugget effect, calculate the 
variograms in the EW direction i.e. 0° (Fig B5a). Successively increase the 
amount of nugget effect present in the second structure to 25%, 50% and finally 
100%. Figs B5b to B5d illustrate the evolution. Note the change in shape 
(particulaily for the green facies) as the percentage of nugget effect increases. 

Modell: Gaussian, 

Modell: Gaussian, 

range= lOOm, anisotropy ratio= 20% 
direction= 90°, %nugget= 0% 

range = lOOm, 
direction= 0°, 

anisotropy ratio = 20% 
%nugget= 0, 25, 50, 100% 

Computation direction = 0° 
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Now change the direction for the variogram calculation to NS (90°) and 
recalculate the four variograms. (Fig B5e to B5h). 

Exercise 86: Truncated gaussian case 

First set the rock-type rule to: 

Then change the proportions of each colour so that there is no green, 50% red, 
30% yellow and 20% orange. As there is no green, the first gaussian plays no 
effective role and so it comes back to a truncated gaussian rather than a 
plurigaussian. Sketch the corresponding rock-type rule. 

Now set both variograms to gaussians with ranges of 50m (with no anisotropy 
and no nugget effect). Plot the simple variograms (Fig B6a). Note the relative 
positions of their sills. These, of course, depend on the proportions of each facies. 
Now plot the cross-variograms for the red, orange and yellow facies. Fig B6b 
gives the one corresponding to facies 2 (orange). 

Modell: Gaussian, 

Model2: Gaussian, 

range= 50m, 
direction= 0°, 

range= 50m, 
direction= 0°, 

anisotropy ratio = 100% 
%nugget=O% 

anisotropy ratio= 100% 
%nugget= 0% 

Computation direction = 90° 

Now change both variogram models to cardinal sines and plot the 
corresponding variograms (Fig B6c) and the cross-variograms for Facies 2 (Fig 
B6d). The hole effect in the parent variogram is passed on to the indicator 
variograms. 

Modell: Card sine, 

Model 2: Card sine, 

range= 50m, 
direction = 0°, 

range= 50m, 
direction= 0°, 

anisotropy ratio= 100% 
%nugget= 0% 

anisotropy ratio= 100% 
%nugget= 0% 

Computation direction = 90° 
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Exercise 87: Beatriz's example 

Set the rock-type rule to the following with 25% per facies. 

08 
Set both variograms to gaussian models with scale factors of 25m and 75m 
respectively (no nugget effect and no anisotropy. Calculate the indicator 
variograms (Fig B7a) and the cross variograms for Facies 3 (Fig B7b). Without 
changing the other parameters, change the rock-type rule to the following: 

EE 
Calculate the simple indicator variograms and the cross variogram for Facies 3. 
Fig 7c & d). Compare them to those obtained earlier. 
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