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1. Introduction 

1.1 Simulation versus estimation 

The following problem was raised by Alfaro (1979). A submarine cable has 
to be laid across the straits of Gibraltar. How can its length be predicted if 
the depth of the sea floor has been measured sparsely along its trajectory? 

Fig. 1.1. Part of the actual trajectory and sample data points 

An exact determination of the length requires knowledge of the depth at each 
point of the trajectory. But these are mostly unknown. In a geostatistical set­
ting, they are considered as random and can be estimated by linear regression 
starting from the available data points. This suggests estimating the actual 
length as the length of the estimated trajectory. 

The results turn out to be disappointing. The length of the trajectory is 
seriously underestimated (see Figure 1.2). Clearly, the estimated trajectory 
is much smoother than the actual one. 

Fig. 1.2. Part of the actual trajectory and its estimate from linear regression. In 
this particular example, the estimated trajectory is piecewise linear because the 
linear regression has been carried out using an exponential covariance function 
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What is really questionable in this procedure is not the construction of an 
estimator for the length starting from the depth estimator, but the depth 
estimator itself. Linear regression estimation requires only the mean and the 
covariance function. But the covariance function does not tell us much about 
the length of the trajectories. Figure 1.3 shows realizations of three different 
stochastic processes with the same exponential point distribution and the 
same exponential covariance function. The distributions of their trajectory 
lengths are totally different. 

6 . 0 

4 . 0 

6 . 0 

4 . 0 

o. 
o. 20.0 40 . 0 60.0 BO . O 100 . 0 

6 . 0 

Fig. 1.3. Realizations of 3 different stochastic processes (from top t.o bottom: 
diffusion, tessellation, shot-noise) with the same exponential point dist.ribution and 
the same exponential covariance function 

1.2 Models, simulations and algorithms 

Linear regression was chosen as an estimator because its implementation pa­
rameters (mean and covariance function) can be reasonably inferred from 
t.he available sample dat.a. However, the formal expression of t.he length of a 
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trajectoryl shows that its distribution, and even its mean value, depend on 
much more than a mean value or a covariance function. Finally, the quality 
of the estimator is poor because it is based on available but not relevant in­
formation. This is a rather common situation: the relevant information is not 
always available. In order to improve the estimation of the cable length, we 
have to make assumptions about the relevant information. These assumptions 
are summarized in a stochastic model. Of course, the more appropriate the 
model to the physical reality under study, the more accurate the resulting es­
timation. In some cases, the choice of the model is self-evident. For instance, 
the signal emitted by a micro-probe is blurred by a Poisson noise whose mean 
is proportional to the signal intensity (Da.ly, 1993). In other cases, there is a 
lot of freedom in its choice. 

This book does not deal with the choice and the validation of a stochastic 
model (a book by Matheron (1989) is devoted to these issues). Here we are 
concerned with the way in which to use a model once it has been specified. 

Fig. 1.4. Parts of the actual (top) and of a conditionally simulated (bottom) tra­
jectories 

In some cases, it is pos8ible to devi8e an estimator which suits the problem 
addressed and the model chosen. An alternative and more general approach 
is to generate a realization of the stochastic model. Information is then ex­
tracted from it to produce an estimate of the required quantity. Of course, the 

I Let f be a numerical function defined on [0, 1]. For every finite subdivision a = 
(XQ = ° < Xl < ... < Xn = 1) of [0, 1] we put 

n-l 

£(a) = L 
The length of f is then defined as the least upper bound of the £( a) 

( = sup£(a) 
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estimate will be more accurate if it is derived from a realization that honors 
the experimental data. Any realization of the model is called a simulation. A 
simulation that fits the available data is said to be conditional. By replicating 
the (conditional) simulations, many estimates can be obtained. This yields a 
distribution function with a mean, a variance and confidence limits. 

A computer program is usually required to produce simulations from a given 
model. This is the practical implementation of an algorithm. So a simulation 
algorithm is designed starting from a model. Very often, a given model can be 
simulated via different algorithms. But they are not all equally efficient. The 
implementation of certain algorithms may lead to inefficient programs be­
cause computers have their own limitations, especially in regard to numerical 
precision, speed and memory. 

1.3 Outline of this book 

This book tries as much as possible to be self-contained. It is divided into 
three parts: the tools, the algorithms and the models. 

1.3.1 The tools 

This part gives the statistical, geostatistical, morphological and stereological 
tools necessary for investigating, defining and describing a stochastic model. 

It is well known from probability theory how to characterize the distribu­
tion of a random variable. But how can we characterize the distribution of 
more complicated stochastic models, such as random functions, random sets, 
random point processes, random populations of objects? Chapter 2 examines 
this question. It is followed by a reminder of the main variographic tools used 
in geostatistics (covariance function, variogram and covariograms). Chapter 
4 introduces the integral range to predict how the realizations of a random 
function fluctuate statistically within any bounded domain. This knowledge is 
necessary to check the correctness of a simulation program. The next chap­
ter presents two basic concepts in mathematical morphology (dilation and 
erosion) that can be used to investigate random sets and provide simple de­
scriptions of many stochastic models. People working in the earth sciences are 
often faced with the problem of deducing 3-dimensional information starting 
from unidimensional (drill or bore holes) or bidimensional (outcrop) data. 
Chapter 6 provides some simple, yet not complete answers to that stereo log­
ical problem. 

1.3.2 The algorithms 

Some readers may be surprised that the algorithms are treated before the 
models. In fact, the algorithms presented in this part are either basic or 
genenc. 
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Chapter 7 gives the main algorithms for simulating standard univariate dis­
tributions (uniform, gaussian, Poisson ... ). In the next chapter, algorithms 
based on markovian iterations are introduced. Their flexibility makes them 
particularly suitable for conditional simulations. In addition to a few basic 
algorithms (Metropolis, restriction of a Markov chain, simulated annealing), 
particular attention is focused on iterative algorithms for simulating uni­
formly distributed points in high-dimensional domains, as this is a basic step 
for many conditional simulation algorithms. In principle, infinitely many it­
erations must be run in order to simulate a model correctly. In practice, the 
algorithm has to be stopped after a finite number of iterations, which raises 
the difficult problem of determining its rate of convergence. This is addressed 
in chapter 9. In fact, this problem can be bypassed in some cases by con­
sidering "exact" algorithms that appeared recently in the literature after the 
pioneering work by Propp and Wilson (1995). Chapter 10 contains a short 
review of the topic. 

1.3.3 The models 

This book does not claim to be comprehensive. Except in chapters 16 and 17, 
the models considered here are prototypes. They have been chosen for their 
simplicity, their tractability and their range of applicability. All of them are 
stationary2, univariate3 , and defined on continuous spaces4 5. 

The models considered in this book can be organized according to a certain 
hierarchy. Point processes are at the bottom of this hierarchy. Two of these 
(Poisson point process and Cox process) are studied in chapter 11. The next 
chapter deals with the Poisson fiats as well as the tessellations (Poisson and 
Voronoi) that can be built starting from a Poisson point process. Chapter 
13 is concerned with the boolean model. It consists of taking the union of 
independent random compact sets implanted at the points of a Poisson pro­
cess. More generally, instead of random compact sets, we can consider random 

2 Regarding the gaussian random function with stationary increments of order k, 
we refer to Matheron (1973), Chiles (1977, 1995) as well as Chiles and Delfiner 
(1999). The spatial deformation of a gaussian random function has been investi­
gated by Sampson and Guttorp (1992), Monestiez, Meiring, Sampson and Gut­
torp (1997). See also Vedel-Jensen and Stougaard-Nielsen (1998), and Senoussi, 
Chadoeuf and Allard (2000) for the spatial deformation of a stationary point 
process. 

3 Good references for multivariate models and methods are Wackernagel (1995), 
as well as Chiles and Delfiner (1999). 

4 As mentioned by Hu, Blanc, and Touati (1998), models defined on continuous 
spaces are desirable when their realizations are used as input argument in fi­
nite element programs. The discretization required depends on the values of the 
realizations and cannot be given beforehand. 

5 Because we consider only models defined on continuous spaces, important models 
like the Markov random fields (Besag, 1974; Guyon, 1995) are not treated (even 
if continuous versions of this model are now available (Arak and Surgailis (1989). 
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functions with compact support or converging to 0 rapidly at infinity. Replac­
ing the union by the addition, the supremum or the superposition, we obtain 
three different object-based models respectively called the dilution random 
function, the boolean random function, or the dead-leaves model. These three 
models are presented in chapter 14. Gaussian random functions are then in­
troduced via the central limit theorem. Two of their variations are presented 
in chapter 16. The first one is a random set (excursion set of a gaussian 
random function), the second one is a step function (plurigaussian random 
function). Finally, chapter 17 proposes the composition of a random function 
with stationary increments and a stationary stochastic process. The substi~ 
tution random function thus obtained shows up a large flexibility regarding 
the geometry and the topology of its realizations. 

Each of these models is defined. Its main properties are reviewed, and algo­
rithms to simulate it conditionally or not are given and demonstrated. 

A final comment: an abundant geostatistical literature is devoted to simula­
tions. But the word simulation does not necessarily have the same meaning 
as in the present book. Sometimes the simulations are produced by an algo­
rithm based on an incompletely specified model, or even no model at all. The 
outcomes produced by these algorithms seem to have been obtained from 
computer aided design with a stochastic flavour. Individual simulations are 
very nice, but there is very little variability between them. This tends to give 
users the mistaken impression that they have tighter control over the reality 
than they really do, and can lead to some appallingly wrong decisions. This 
book only presents algorithms that are based on sound stochastic models. 



Part I 

The tools 



2. Investigating stochastic nlodels 

In this chapter we review the statistical description of several classes of 
stochastic models (random functions, random sets, random point processes 
and random populations of objects) that will be encountered throughout this 
book. This review is preceded by a brief reminder about probability calculus. 

2.1 Definition of a probability space 

A stochastic model is completely specified by a probability space, that IS a 
triplet (Q,A,P), where 

- Q is the set of all possible realizations (or states) of the model. 

- A is the set of events. An event is a family of realizations. 

- P is a probability measure. It measures the frequency of occurrence of each 
event. 

For technical reasons that are not developed here, a family of realizations is 
not necessarily an event. The set A must constitute a (J"-algebra, which means 
that it includes Q and 0 as events, it is stable under complementation (if 
A is an event, then Q\A is also an event), and it is stable under countable 
union and intersection (if (An) is a sequence of events, then UnAn and nnAn 
are events). 

The probability measure P is defined on A. It satisfies P(0) = 0 and P(Q) = 
1. Moreover, P(Q\A) = I-P(A) for any event A. Finally, P is (J"-additive, i.e. 
P(UnAn) = Ln P(An) for any sequence (An) of pairwise disjoint events. An 
immediate and useful consequence of the (J"-additivity of P is that P(UnAn) = 
limn P(An) for any increasing sequence (An) of events. By complementation, 
we also have p(nnAn) = limn P(An) for any decreasing sequence (An) of 
events. 

In practical applications, A is often defined as the (J"-algebra spanned by a 
family Aa of elementary events, that is the smallest (J"-algebra that contains 
Aa. Similarly, the probability measure P can be completely specified by its 
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values on Aa, provided that Aa satisfies some stability properties l . Explicit 
examples will be given in the next sections. 

2.2 Random functions 

A random function Z is a family of random variables {Z (x)} where x belongs 
to IRd or some subset of it. In the case d = 1, we prefer to speak of a stochastic 
process . Figure 2.1 shows a realization of a random function. 

Fig. 2.1. Realization of a random function 

Clearly, the st.at.istical propert.ies of a random function include t.hose of t.he 
random vectors that constitute it. To each random vector (Z(xd , ... , Z(xn )), 

a cumulative multivariate distribution function 

can be associated. Letting n run through IN and (X l, ... , x n ) through IRd X 

... X IRd , we obtain a family of cumulative multivariate distribution functions. 
This family defines the spatial distribution of Z. 

Remark 2.2.1. In the case when Z takes discrete values, it is often more 
convenient to define its spatial distribution starting from the multivariate 
distribution of its random vectors 

1 For instance, Aa is called a semi-algebra if it contains 0 and D, if it is stable under 
finite intersection, and if the complement of any element of Aa can be written 
as a finite union of pairwise disjoint elements of Aa. Any IT-additive mapping 
P from the semi-algebra Aa to [0, 1] such that P(D ) = 1 can be extended to a 
probabili ty measure on the IT-algebra spanned by Aa. Moreover, this measure is 
unique (Neveu, 196,5) . 
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By definition, the spatial distribution of Z measures the frequency of occur­
rence of events based on finite sets of points. Let Aa denote this class of 
events. A classical theorem due to Kolmogorov (1933) states that the spatial 
distribution can be extended to a probability m easure on the O"-algebra A 
spanned by Aa. Moreover, this measure is unique. 

Remark 2.2.2. As the events of A are based on only finite or countable 
sets of points , assertions like" the realizations are differentiable at x" or "the 
maximum of the random function over a given domain D exceeds the value 
X' which require continuous sets of points are not events of A and therefore 
cannot be measured. 

2.3 Random sets 

A random set is a stochastic model whose realizations are subsets of IRd . 

Typical examples of random sets include those obtained by thresholding a 
random function Z at a given level ,\ (cf. Figure 2.2) 

x = {x E IRd I Z ( x) ~ ,\} 

Fig. 2.2. Realiza t ion of a random set 

Any random set X can be characterized by its indicator junction, defined as 

if x E X 
otherwise 

This suggests specifying the statistical properties of the random set by using 
the spatial distribution of its indicator function. Using remark 2.2.l., it can 
be written 

Fx " ,x ";Y, , .. ,Yp(l , ... , l ; O, ... ,O) P{ Xl EX, "', Xn E X ;Yl rf- X, ··· , Yp rf- X} 
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. )' 
- J 

Fig. 2.3. Specifying the statistical properties of a random set using the spatial 
distribution of its indicator function amounts to probing the random set with finite 
sets of points 

Unfortunately this promising idea does not always work. Consider for instance 
the random set consisting of a single point located in lRd according to a 
gaussian distribution. Its spatial distribution equals zero irrespectively of the 
parameters of the gaussian distribution. In such a case, a probe made up of a 
finite set of points is too thin to determine the location of the point. Bigger 
probes are necessary. Matheron (1975) proposed to resort to open subsets. 

Given an open set G, several events can be considered for describing the 
relative location of G w.r.t. X: 

(1) G is contained in X (G eX). 
(2) G hits X (Gnx # 0). 
(3) G hits XC (G n XC # 0). 
(4) G avoids X (G n X = 0 or equivalently G C XC). 

Since (1) and (3), as well as (2) and (4) are complementary, only two different 
types of events have to be considered, for instance (1) and (4). Let us examine 
them in turn. 

Fig. 2.4. Probing the random set using the inclusion logic leads to the random 
open set theory 
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G is contained in X iff it is contained in the interior _Y of X. Accordingly, 
probing a random set using the inclusion logic does not allow us to distinguish 
between a set and its interior. This leads to the random open set theory (cf. 
Figure 2.4). 

Similarly, G avoids X iff it avoids the closure X of X. Accordingly, probing a 
random set by avoidance does not allow us to distinguish between a set and 
its closure. This leads to the random closed set theory (cf. Figure 2.5). 

Fig. 2.5. Probing the random set using the avoidance logic leads to the random 
closed set theory 

The complement of an open set is a closed set, so both theories are dual 
w.r.t. complementation. However, we usually prefer using the random closed 
set theory rather th an the open one, because random closed sets include 
several classes of models that are very useful for practical applications, such 
as point processes and line networks. 

From now on, we will be mainly concerned with random closed sets (in brief 
RACS). 

At this point , some notation must be introduced . Following Matheron (1975) , 
the family of the closed subsets of IRd is denoted by F. If A C IRd , we write 
~ for the family of the closed subsets that hit A, and similarly FA for those 

that avoid A. 

~ = {F EFl F n A # 0} FA = {F EFl F n A = 0} 

F can be equipped with the a--algebra a-F spanned by the events F G with G 
open. Matheron (1975) showed that probability measures do exist on (F, a-F)' 
The distribution of the RACS X is completely specified by such a probability 
measure. 

Let J{ be a compact (i. e. closed and bounded) subset of IRd . Note that FK = 
UnFG n , where Gn is the open set consisting of the points with distance less 



14 2. Investigating stochastic models 

than ~ from K. Consequently :FK E er F. This makes it possible to introduce 
the avoiding functional of the RACS X. It is defined on the family J( of 
compact subsets of IRd by the formula 

Q(K) = P{:FK } = P{X n K = 0} 

Rather than the avoiding functional, we sometimes prefer to consider the 
hitting functional which is its complement 

T(I{) = P{:FK } = P{X n K oF 0} 

The hitting functional satisfies the following properties: 

i) 0::; T ::; 1 with T(0) = O. 

ii) clearly T(K) ::; T(K U K'). More generally, let (Ki' i E I) be a finite 
sequence in K. We have 

where 1\ denotes the intersection of events. Using the inclusion-exclusion 
formula (Comtet, 1970), this inequality becomes 

2:)-I)#J+1T(K U K J ) 2:: 0 
JCI 

where KJ = UjUKj and #J denotes the cardinality of J. 

iii) Let (Kn) be a monotonic decreasing sequence in K with limit K. Then 

lim T(Kn) = T(K) 
n--++co 

Our reason for studying the hitting functional of a RACS comes from the 
following fundamental result due to Choquet (1954), Kendall (1974) and 
Matheron (1975): 

Theorem 2.3.1. Let T be a functional defined on K, that satisfies properties 
i), ii) and iii) given above. Then there exists a unique probability measure P 
on (F, er F) such that 

In other words, the functional T is the RACS equivalent of the distribution 
function of a random variable. 
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Example 2.3.1. Let X be the RACS made up of a single point uniformly 
located within a compact subset Ko. The hitting functional of X is 

Conversely, theorem 2.3.1. implies that a RACS with the above hitting func­
tional consists of a single point uniformly located within Ko. 

Remark 2.3.1. Matheron (1975) has thoroughly investigated the connec­
tions between spatial distributions and hitting functionals. His results can be 
stated as follows. Let X be a RACS with hitting functional T and spatial 
distribution F. There exist infinitely many RACS's with spatial distribution 
F. Among those. only one, say XI, is separable, i.e. such that XI n D = XI 
a.s. for some countable set D that is dense in JRd. The hitting functional TI 
of XI satisfies TI (K) ::; T( K) for any K E K, with equality if K is a finite 
subset. 

Remark 2.3.2. Let Z be a random function defined on JRd, and let S de­
notes its subgraph 

S = {( x, z) E JRd X JR I Z ( x) 2:: z} 

Suppose that Z is upper semicontinuous. Then S is a RACS of JRd x JR. 
Accordingly, if K E K and z E JR, then S E F(K,z) is an event which takes 
place if and only if maxxEK Z(x) < z (see Figure 2.G). Therefore the maxi­
mum of Z over K is measurable (Matheron, 19(8). Similarly, the minimum 
of a lower semicontinuous function can be made measurable by considering 
its supergraph as a RACS. 

Z(x) 

z 

s 
L-__ ~ ________ ~ ________ ~x 

K 

Fig. 2.6. If Z is upper semicontinuous, its maximum over a compact subset IS 

measurable 

Remark 2.3.3. Instead of considering random open or closed sets, it is also 
possible to consider random regular sets. These sets satisfy 

o 

X=X 
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i.e. X and its complement XC do not present any infinitely thin components 
or any isolated points, which make them quite suitable for modeling physical 
realities such as porous media. This particular class of random set which has 
already been considered by Matheron (l975) is currently under investigation 
by Schrnitt (2000). 

Relllark 2.3.4. Theorem 2.3.1. can be refined when further information is 
available about the RACS X. In the typical case when it is compact and 
convex, Vitale (1983) and Molchanov (1984) have shown that its distribution 
is uniquely determined by the values of P{X C K} for any convex compact 
subset K of lRei. 

2.4 Random point processes 

A random point process in lRei is a random set of lRei , each realization of 
which is made up of a finite or countable number of points (cf. Figure 2.7) . 

0 • 0 0 0 
0 

0 

• 
0 

0 
0 . 0 

• . 0 . • 0 
0 

00 

0 . • • 
0 

0 0 

• 0 

Fig. 2.7. Realization of a random point process. 

In the case when each realization is closed (i.e. the limit of any sequence of 
points of the realization also belongs to the realization), the point process 
is a RACS. Accordingly, its statistical properties are given by its hitting (or 
avoiding) functional. 

A locally finite point process is a typical example of a closed one. This is 
a point process for which the number of points falling within any compact 
subset is almost surely finite. In this case, it is also convenient to describe 
the statistical properties of the random point process by counting the num­
ber of points in certain subsets of space. Clearly, the family of probing sets 
cannot be arbitrary. The one usually considered is the family B of Borel sets 
or borelians, that is the smallest O"-algebra spanned by the open subsets 
of lRd . This family includes closed sets (by complementation) and compact 
subsets, just to mention a few. The bounded borelians are of special inter­
est because the number of points they contain is almost surely finite. More 
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specifically, let N(B) be the random number of points of the process within 
the bounded borelian B (in short B E Ba). Starting from N, it is possible to 
define the spatial distribution of the random point process as the family of 
the multivariate distributions of (N(Bd, ... , N(Bp)) for any p E IN and for 
any B1, ... ,Bp E Ba (cf. Figure 2.8). 

• 

• 

.·0 
Fig. 2.8. Spatial distribution of a locally finite point process 

If K E K, the formula Q (K) = P {N (K) = O} shows that the avoiding 
functional of a locally finite point process can easily be derived from its spatial 
distribution. This means that the spatial distribution provides at least as 
much information about the point process as the avoiding functional. In fact, 
they both provide exactly the same information. It should also be mentioned 
that it is easier to describe the properties of the point process using the 
spatial distribution, but it is easier to establish its mathematical properties 
using the avoiding functional. 

ReIllark 2.4.1. The avoiding functional has a more general range of appli­
cability because it can be used for closed point processes and not only for 
locally finite ones. Kendall (1974) gives the zeroes of a Brownian motion as 
an example of a closed point process which is not locally finite. 

ReIllark 2.4.2. It is also possible to consider weighted point processes by 
assigning a value or weight to each individual point of the process. Formally, 
a weighted point process can be regarded as an ordinary point process defined 
on JRd x JR. 

2.5 Random populations of objects 

In this section, we denote by Kt the family of nonempty compact subsets of 
JRd. The elements of Kt are called objects. A random population of objects 
is a point process on Kt. Each realization is made up of a finite or countable 
number of objects (cf. Figure 2.9). 
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Fig. 2.9. Realization of a random population of objects displayed by superposition. 
Arbitrary gray-tone values have been assigned to the objects in order to distinguish 
between them 

Exactly as for point p rocesses in IRd , if the random population of objects 
is closed (and in particular locally finit e) , then its statistical properties can 
be given by the equivalent of a hitting functional. Of course, this assumes 
that K' has been equipped with a topology. A natural t opology for K' is the 
one induced by t he Hausdorff distance2 . Several charact erizations of compact 
subsets of K' for the Hausdorff topology exist (Matheron, 1975; Schmitt, 
1997), but they are difficult to handle. 

Let K be an arbit rary compact subset of IRd . An important property of a 
locally finite population is that the number of obj ects totally contained in 
K is finit e. A stronger property can be considered, namely that the number 
of objects hitting K is finite. A random population of objects satisfying this 
property is said to be of finite order. In this case, it is possible to define the 
spatial distribution of the random population as t he family of the multivari­
ate distributions of (N (K l) ' ... , N (Kp)) , where N (K) denotes the (random) 
number of objects hi t t ing K . 

Remark 2.5.1. In this approach , the objects in a population are indistin­
guishable. Indeed, the number of obj ects is finite or countable , so it is possible 
to order them. But any order relation would be arbitrary, and would not af­
fect any st a t istics defined on the population . It can also be not iced that the 
description of a population as a point process in K' does not allow two ob­
jects to be identical. If necessary, a weight, such as a multiplicity order, can 
be assigned to each object. An alternative approach is the concept of expo­
nential spaces developed by Carter and Prenter (1 972) in the case of finit e 
populat ions . 

2 The Hausdorff distance between the two nonempty compact subsets of IRd is the 
maximum euclidean distance separating their points. See chapter 5 for a precise 
definition. 
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Exercises 

1 Let A and B two arbitrary subsets of lRd . Show that F AUB = FA n F B, 
but only F C F n F CF. AnB A B AuB 

2 What is the hitting functional of a point randomly located in lRd with 
p.d.f. f? 

3 A random set X is said to be atdodual if X and its complement Xc have 
the same spatial distribution. 
1) Show that P{x E X} = t. 
2) Show that the trivariate distributions of X are completely specified by its 
bivariate distributions. 

4 Let X and Y be two non random populations of objects of finite order, 
and let ny and ny their hitting counting functional defined on K as 

nx (K) = L 1xnK ;t0 

XE,Y 

ny (K) = L 1YnK;t0 

YEY 

Show that n x = ny implies X = y. Does this implication remain true if the 
equality nx = ny holds only on the singletons of K? 



3. Variographic tools 

The investigation of a stochastic model using pairs of points yields significant 
geometric information. This chapter introduces the basic tools of transitive 
and intrinsic geostatistics. These are the covariograms, the covariance func­
tion and the variogram. Particular attention is paid to indicator variograms 
where specific properties and limitations are encountered. 

3.1 The covariograms 

The cases of a function and a set will be considered in turn. 

3.1.1 The transitive covariograrn 

Let. f be an integrable function defined on IRd . 

Definition 3.1.1. The transitive covariogram of f is the mapping 

K(h) = ( f(x) f(x + h) dx JIRd 
Another possible way to define K is to express it as the convolution product 
K(h) = f * /(h) where /(x) = f( -x). The following proposition summarizes 
the main properties of the transitive covariogram. 

Proposition 3.1.1. The transitive covariogram of f satisfies 

i) K(O) = ( f2(x) dx. 
JIRd 

ii) K( -h) = K(h). 

m) fIRd K(h) dh = [fIRd f(x) dx r 
iv) for any finite sequence of points (X a )a=l,n and for any finite sequence of 
real numbers (A a )a=l,n, we have 

n 

L Aa Af3K(xa - x(3) > O. 
a,;J=l 
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The proofs of i), ii) and iii) are straightforward. Regarding iv) 

n 

L )..a)..(3K(xo: - X(3) t )..a)..(31 f(x) f(x + Xa - x(3) dx 
a,(3=l IRd a,(3=l 

t )..0:)..(31 f(x + Xo:) f(x + X(3) dx 
a,(3=l IRd 

L [; >nf(x + xof dx > o. 

3.1.2 The geometric covariogram 

Suppose now that f is the indicator function of some subset X in IRd. The 
volume IXI of X is finite because f is integrable. Let X h denote the set X 
translated by the vector h (see Figure 3.1). Then we have 

K(h) = { 1 (x)l (x+h)dx = { 1 (x)l (x)dx = Ixnx-hl 
JIRd X X JIRd X X_h 

Noting that K(h) = K(-h), we arrive at the following definition: 

Definition 3.1.2. The geometric covariogram of X is the mapping 

Fig. 3.1. The area of the dark domain is the geometric covariogram of X at h. 

Example 3.1.1. The geometric covariogram of a 3-dimensional ball of di-
ameter a is 

._ a3 ( 3 Ihl 1 Ih 13 ) le (h) = Jr- 1 - - - + - - 1 
6 2 0 2 0 3 Ihl:'Sa 



3.1 The covariograms 23 

The properties of the geometric covariogram of X include those of a transitive 
covariogram (Matheron, 1967; Serra, 1982): 

Proposition 3.1.2. The geometric covariogram of X satisfies 

i) K(O) = IXI. 
ii) K(-h) = K(h). 

iii) r K(h) dh = IXI2. 
JIRd 

iv) for any finite sequence of points (X",)",=l,n and for any finite sequence of 
real numbers (A",)",=l,n, we have 

n 

L A",Aj3K(x", - xj3) > O. 
"',j3=1 

v) the (d - 1) -volume of the boundary oX of X can be obtained by integrating 
the derivative K~(O) of K in the direction 0: at the origin over all possible 
directions 

- r K~(O) do: = Wd-lloXI JSd 

In this formula, Wd-l stands for the (d - I)-volume of the unit ball of JRd- 1 

and Sd is the unit sphere in JRd. 

For instance, using formula v), the perimeter p(X) of X if X C JR2, or the 
surface area a(X) if X C JR3 are respectively given by 

11271' 
p(X) = -- K~(O) do: 

2 0 
a(X) = -~ r K~(O) do: 

7r' JS 3 

Remark 3.1.1. It is also possible to define a probabilistic version of the 
geometric covariogram by putting 

for a random set X with a.s. finite volume. Its properties are similar. Note 
in particular 

- r K~(O) do: = Wd-l E{loXI} JSd 
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3.2 The covariance function and the varlOgram 

3.2.1 Definitions and general properties 

Definition 3.2.1. The random function Z is said to be second-order station­
ary if each random variable Z (x) has a finite mean m that is independent of 
x, and if the covariance between each pair of variables Z (x) and Z (y) is finite 
and depends only on x - y 

Cov{Z(x), Z(y)} = C(x - y) 

The constant m and the function C are called respectively the mean value 
and the covariance function of Z. 

Remark 3.2.1. Rather than using the covariance function, people some­
times prefer resorting to a normalized version of it, called the correlation 
function: 

(h) = C(h) 
p C(O) 

Some elementary properties of a covariance function are given below. A com­
prehensive review is given in Chiles and Delfiner (1999). 

Proposition 3.2.1. The covariance function C satisfies 

i) C(O) 2: O. 
ii) C(-h) = C(h). 

iii) The integral of Cover IRd is non negative. 

iv) C is positive definite. This means that for any finite sequence of points 
(X a)a=l,n and for any finite sequence of real numbers p'a)a=l,n, we have 

n 

L ,\,ApC(Xa - x p) 2: O. 
0,,5=1 

The properties of a covariance function are quite similar to those of a transi­
tive covariogram. Indeed, it will be established in chapter 14 that any tran­
sitive covariogram is the covariance function of a second-order stationary 
random function. Statement i) holds since C(O) = V ar{ Z(x)}. Statement ivy 
is also straightforward: 

The proof of iii) which requires spectral arguments (Yaglom, 1986) is omitted. 
See also the section of next chapter devoted to the integral range. 

In general, it is difficult to establish directly that a function is positive def­
inite. Fortunately a classical result by Bochner makes things easier at least 
for continuous functions. 
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Theorem 3.2.1. A continuous function C defined on lRd is positive definite 
if and only if it is the Fourier transform of a positive measure X with finite 
mass 

C(h) = ( ei<h,u> dX(u) 
JIRd 

The positive measure X is called the spectral measure of C. 

For estimation purposes, instead of working in terms of covariance function, 
we often prefer resorting to a more flexible tool called the variogram (Math­
eron, 1971; Chauvet, 1994). 

Definition 3.2.2. The variogram of Z is the mapping 

1 
,(x - y) = "2Var{Z(x) - Z(y)} 

This definition makes sense not only if Z is second-order stationary, but also 
if it has stationary increments (e.g. Brownian motion). In the stationary case 
considered here, the variogram and the covariance function of Z are related 
by the formula 

,(h) = C(O) - C(h) 

from which we derive the main properties of the variogram. 

Proposition 3.2.2. The variogram , satisfies 

i) ,(0) = O. 
ii) ,(-h) = ,(h). 

iii), is conditionally negative definite. In other words, for any finite sequence 
of points (x", )':,,=l,n and for any finite sequence of real numbers (A", )"'=l,n such 
that L",=l,n Aa = 0, we have 

n 

L A",AiJ,(Xa - xl') < O. 
01,1'=1 

The proof of iii) relies on the posi ti ve definiteness of C. 

n n 

L A",AiJ,(X", - xl') L A",AiJ[C(O) - C(XOI - XiJ)] 
"',1'=1 "',1'=1 

n 

L AOIAiJC(X OI - xl') 
01,1'=1 

n 

L A",AiJC(X", - xl') < 0 
01,1'=1 

The following proposition gives a complete characterization of variograms 
(Schoenberg, 1938; Matheron, 1972; Dellacherie and Meyer, 1983). 
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Proposition 3.2.3. , is a variogram if and only if for any t > 0 the function 
exp{ -if} is a covariance function. 

Let us also mention an equivalent of Bochner's theorem for variograms: 

TheoreIll 3.2.2. A continuous function defined on JRd and vanishing at the 
origin is conditionally negative definite if and only if it can be written 

-,(h) = Q(h) + iIRd 1- co~u~u, h > dX(u) 

where Q is a positive quadratic form and X is a positive symmetric measure 
with no atom at the origin and satisfying 

r dX(u) < (Xl 

iIRd 1 + lul 2 

3.2.2 The indicator variograIll 

In this section, the second-order stationary random function Z is the indicator 
function of a random set X. Its variogram can be written as 

or equivalently 

1 
,(x-y) = 2[P{xEX,Y\tX}+P{x\tX,YEX}) 

Let p be the mean value of Z, that is the proportion of points in X. Since 

P{x E X, y \t X} = P - P{x E X, yE X} = P{x \t X, yEX'} 

we have 

P{xEX,y\tX} = ,(x-y) = P{x\tX,yEX} 

Suppose now x and y close to each other. Then the previous formula shows 
that both points lie necessarily near the boundary of the random set. This 
suggests that the variogram of X conveys information about its boundary. 
More precisely, let us define the specific (d - 1) -volume cr( d) of X (i.e. specific 
perimeter in JR2, specific surface area in JR3) as the mean (d - I)-volume of 
the boundary of X per unit d-volume. Starting from formula v) of proposition 
3.l.2 and using ergodicity arguments, Matheron (1967) showed that it can 
be written 

cr(d) = _1_ r ,~(O) da, 
Wd-l iSd 
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where ,~ denotes the first derivative of the variogram at the origin in the 
direction 0' and Sd stands for the unit sphere in IRd . If the variogram has 
parabolic behaviour in the vicinity of the origin, then ,~(O) = 0 for any 0', 

and (j(d) = O. If we also assume X to be topologic ally regular, then this 
implies that the realizations of X are equal either to IRd or to 0. On the 
other hand, if I~(O) = +00 for any 0', then (j(d) = +00, which means that 
the random set is fractal. 
The isotropic case when ,~( 0) does not depend on 0' is also of special interest. 
Let ,'(0) be their common value. Since the (d - I)-volume of Sd is dWd, we 
obtain 

This gives 

(j(d) = dWd ,'(0) 
Wd-l 

in two and three dimensions. 

Now we show that only certain variograms of random functions can be vari­
ograms of random sets. Starting from 

and using 

we have shown that the variogram of a random set must satisfy the triangle 
inequality 

,(x - z) ::; ,(x - y) + ,(y - z) 

Consequently the gaussian variogram ,(h) = 1- exp{ -lhI2} cannot be the 
variogram of a random set. Taking ;L'-Y = y-z = h with Ihl small, this would 
imply 41hl2 ::; 21hl 2 as a first approximation, which is a contradiction. In 
fact, the triangle inequality is necessary but not sufficient for a conditionally 
negative definite function to be an indicator variogram. A conjecture has 
been proposed by Matheron (1993) to characterize the family of indicator 
vanograms. 

Conjecture 3.2.1. Among the family of variograms, the indicator vari­
ograms fulfil! the supplementary inequality: 

n 

L CryCp,(x", - xp)::; 0 
o<,p=1 

for any finite sequence of points (X",)",=I,n and for any finite sequence of 
values (c",)",=I,n in {-I, 0, I} such that La=l,n Ca = 1. 
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At the present time, it is difficult to know what variograms are indicator 
variograms. We have just seen that the Gaussian variogram cannot be an 
indicator variogram. In contrast to this, there exist random sets with the ex­
ponential variogram ,(h) = exp{ -Ihl} (e.g, a Poisson tessellation, see chap­
ter 12). Whether the spherical variogram is an indicator variogram is still 
unknown. 

Exercises 

3.1 What is the transitive covariogram of the function 

{ Ix12} f(x) = exp -~ 

3.2 Let X be a polygon, and let l{ be its geometric covariogram. Prove 
directly that 

r27r 
- la l{~(O) dO' = 218XI 

3.3 What is the geometric covariogram of a line segment whose length is 
exponentially distributed? 

3.4 Show that the random set X and its complement have the same indicator 
vanogram. 

3.5 Let X and Y be two independent random sets with proportions p x' Py 

and variograms 'x' '1" 
1) What are the proportions of X n Y, X U Y and X\Y? 

2) Show that the variogram of X n Y is 

3) Using the result of exercise 3.4, deduce from 2) that the variogram of 
X UY is 

'XUY = qx'y + qy,X -'x'y 

where qx = 1- Px and qy = 1- Py ' 

4) Writing X\Y = X n ye, show that 



4. The integral range 

The integral range is a simple and powerful tool that helps to quantify the 
statistical fluctuations of a stochastic model. Their knowledge is required 
to ensure the correctness of any computer program supposed to produce 
simulations of the model. 

We start with the presentation of a very simple estimation problem in order 
to illustrate the problems encountered. The integral range is then defined 
starting from the variographic tools of chapter 3, and its main statistical 
properties are reviewed. Finally, a procedure is proposed for its practical 
assessm en t . 

4.1 An estimation problem 

Consider a second-order stationary random function Z = (Z (x), x E JRd) 
with mean m, variance 0- 2 and correlation function p. All these quantities are 
supposed to be unknown. All we have is one realization (z(x), x E V) of Z 
in the> hounded domain V C JRd. We want to estimate m. To do this, we can 
consider the average of z over V 

. 1 r 
z(V) = TVT iv :::(x)d.r, 

which is a realization of the estimator 

Z(V) = I~rl i Z(x)dx 

Clearly, this estimator satisfies E Z (V) = m. In other words, it is unbiased. 
To calculate its variance we require the correlation between all pairs of points 
of V, namely 

V or Z(V) = I O-T~I) 2 r. r p(x - y) dx dy 
l iF iF 

We might expect the variance of Z(V) to vanish when the domain V becomes 
infinite. Unfortunately, this is not always the case as the following example 
shows. Define Z (x) = Y where Y is a non-constant random variable. Then 
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Z(V) = Y, so VaT' Z(V) = VaT' Y > 0 which does not tend to 0 when 
V becomes very large. This is the reason why the concept of ergodicity is 
introduced. 

Definition 4.1.1. The second-order stationary random function Z is said 
to be ergodic if 

lim VaT' Z(V) = 0 
V --+00 

This definition1 is not the only possibility (for other definitions, see Yaglom 
(1987), Matheron (1989), Cressie (1991), Chiles and Delfiner (1999)). The 
one considered here is very weak because it just says that Z(V) is an asymp­
totically good estimator of m in the quadratic mean sense. In particular, 
it does not indicate how large the domain V must be for the variance of 
Z(V) to become negligible. The following example shows that different, and 
sometimes unexpected, behaviours can be observed. 

Example 4.1.1. The function 

1 
hE JR 

1 + Ihll' 

is a covariance function in JRd when ° < p ::; 2 (cf. chapter 15). Suppose 
that Z = (Z(x), x E JR) has the covariance function Cl'" We are interested in 
the variance of Z([O, I]) for large values of I. We can expect this variance to 
decrease faster and faster as p increases. Indeed this is effectively what hap­
pens for p < 1 since VaT'Z([O,/]) behaves as I-I'. But for p > 1, VaT'Z([O,I]) 
behaves as 1- 1 . In the intermediate case p = 1, a behaviour as In 1/1 takes 
place. 

4.2 The integral range 

Definition 4.2.1. The quantity 

A = lim IVI VaT' ~(V) 
V -+00 cr-

is called the integral range of Z. 

This limit exists for all usual covariance functions. It is non negative but may 
be zero or infinite. Because of the term cr 2 that appears in the denominator 
as a normalization factor, the integral range has the dimension of ad-volume 
(hence the terminology of correlation length in JR, or correlation area in JR2 

1 Strictly speaking, it is necessary to specify what the limit in V means. We say 
that lim v --+00 f(V) = fo if for any increasing sequence (Vn, n E IN) of compact 
and convex subsets such that Un Vn = md, we have limn--++oo f(Vn) = fo. 
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sometimes found in literature; see Yaglom, 1987). It has a simple physical 
interpretation (Matheron, 1989), at least in the case when it is nonzero and 
finite. Suppose IVI very large w.r.t. A. Then we can write 

()2 A 
Var Z(V) ~ TVT 

Moreover, we can find an integer n such that 

IVI 
-~n 

A 

Combining these two approximations, we finally have 

()2 
VarZ(V)~­

n 

In this formula, the right-hand side can be interpreted as the variance of 
an average of n independent observations with the same variance ()2. This 
suggests that the integral range may be considered as a reference d-volume for 
predicting whether V is big enough for the estimation of m to be sufficiently 
preCIse. 

The integral range has a simple expression in the case when the correlation 
function vanishes rapidly. 

Proposition 4.2.1. If the correlation function p is integrable, then the in­
tegral range can be written as 

A = r p(h) dh 
JIRd 

Proof: Let (Vn, n E IN) be an increasing sequence of convex compact do­
mains converging to IRd . Note that 

where Kn denotes the geometric covariogram of Vn (cf. definition 3.1.2). The 
integrands are bounded by the integrable function Ipl. Moreover, they con­
verge to p(h) since the ratios Kn(h)/Kn(O) converge to 1 (by the convexity of 
the %,'s). Therefore we can apply Lebesgue's dominated convergence theorem 
to obtain: 

A table of the integral ranges for the most common covariance functions is 
given in Appendix 2 at the end of this book. 
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4.3 Practical assessment of the integral range 

In this section, we propose an algorithm to estimate the integral range of a 
second-order stationary, ergodic random function starting from a realization 
(z(x), x E V). 

Suppose 0 < A < 00 , and let W be an arbitrary subdomain of V. In the case 
when IWI » A, the variance of Z over W can be approximated as 

so that 

0"2 A 
VarZ(W) ~ IWI 

10gVarZ(W) ~ log(0"2A) - log IWI 

by taking logarithms. Consequently, the plot oflog Var Z(W) versus log IWI 
should be linear with slope -1 for large values of log IWI. This is what is 
tested in practice. 

1 ' 

W. W2 
1,...-

.,.,. 

"!'" 

". 

Wk v 
Fig. 4.1. The domain V has been divided into k sub domains W j , ••• , W k , all con­
gruent to W . The experimental dispersion variance of the Z(Wi) 's is an estimate of 
Var Z (W) 

The first question is how to evaluate Var Z(W) for each subdomain W. 
Suppose that the domain V can be decomposed into a union of disjoint 
sub domains W1 , ... , yt'k, all of the same size, shape and orientation as the 
domain W (in other words W "divides" V. See Figure 4.1). Then Var Z(W) 
can be estimated by the experimental dispersion variance2 of the z(W;) 's , 
defined as 

k 

s2(WIV) = ~ L [z(W;) - z(V)] 2 
i=l 

2 The corresponding estimator is S2(WIV) = * L~=j [Z(Wi ) - Z(V)f Its mean 
value ES2(WIV) = VarZ(W) - VarZ(V) is precisely what Matheron (1970, 
1978) calls a dispersion variance. In the case when V is very large , the term 
VarZ(V) can be neglected and we have ES2(WIV) ~ VarZ(W) . 
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Consequently, for each division of V into subdomains, we begin by determin­
ing the average of z in each subdomain, then calculate their experimental 
dispersion variance and finally plot its logarithm against the logarithm of the 
size of the subdomains. 

Fig. 4.2. Realization of a random function with a finite, nonzero, integral range 
(spherical covariance with a scale factor of 10). The simulation field is 400 x 400 
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Fig. 4.3. Plot of the experimental dispersion variance versus the subdomain area 
in log-log coordinates. The experimental points tend to be aligned along a straight 
line with slope -1. In this case, the mean of the random function can be estimated 
with good precision 

This algorithm has been applied to a realization of a two-dimensional random 
function with finite and nonzero integral range (see Figure 4.2). The experi­
mental test is shown on Figure 4.3. Several points lie on the same verticals. 
They correspond to rectangular sub domains with the same area but with dif­
ferent side lengths. Note also that there are several sequences of points that 
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appear to lie on monotonically decreasing curves. This is the consequence 
of the additivity formula s2(XIV) = s2(XIW) + s2(WIV) that holds if X 
divides Wand W divides V. For IWllarge enough, the points tend to lie on 
a straight line with slope -l. This plot does not contradict a conclusion that 
the simulation is part of a realization of a model with finite, non zero inte­
gral range. From the equation log V ar{ Z (W)} ~ l. 7 -log I vVI thus obtained 
for large values of log IWI, we may deduce (72 A ~ 1017 = 50.12 by putting 
IWI = l. We then divide by the experimental dispersion variance of a point 
in V (0.98) to get 5l.14 as the estimate of A. In the case considered here, the 
actual value of the integral range is 62.83. 
Starting from the estimate of (72 A, it is not difficult to choose V so that 
VaT Z(V) is smaller than a prespecified value. 

It remains to show that the algorithm does not lead to misleading estimates 
when the condition 0 < A < CXl is not satisfied. 

Fig. 4.4. Realization of a random function with an infinite integral range (hyper­
bolic covariance with a scale factor of 10). The simulation field is 400 x 400 .. ".: .. ,. J e, h., 

'. -I.; I: •• 
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10 100 1000 10000 

Fig. 4.5. Plot of the experimental dispersion variance versus the sub domain area 
in log-log coordinates. The experimental points do not lie along a straight line with 
slope -1. The estimation variance of the mean decreases slowly as a function of 
the subdomain area. Starting from the simulation of Figure 4.4, the mean can be 
estimated with low precision 
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Figure 4.4 shows a realization of a random function with hyperbolic covari­
ance function 

hE 1R? 

This covariance has been chosen because it has an infinite integral range. The 
application of the algorithm to that simulation gives the experimental plot 
on Figure 4.5. The points obtained no longer lie on a straight line with slope 
-1. In this case two interpretations are possible. Firstly, the integral range is 
finite and nOnzero, but the subdomains are not sufficiently large to estimate 
it properly. Secondly, the integral range is infinite (which is actually the case 
for this simulation). In either case, only a low-precision estimate of the mean 
is possible. 

,,ye have already mentioned the existence of random functions with a zero in­
tegral range. The realization on Figure 4.6 has been built using the covariance 
function 

C(h) 1 h. E 1R2 { Ih12} ( Ih 12 ) = exp - a 2 - ~ 

with a = 10. 

Fig. 4.6. realization of a random function with an zero integral range. The simu­
lation field is 400 x 400 

Figure 4.7 shows the plot obtained by applying the algorithm. For large 
subdomains, the points lie on a line with a slope steeper than -1, which 
is very favourable for the estimation of the mean. Note however that if the 
subdomain area had been limited to .500, then a line with slope -1 would 
have been observed, which would not have invalidated the existence of a 
finite, nonzero integral range. It would have resulted in a rather conservative 
estimation of the mean. 
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Fig. 4.7. Plot of the experimental dispersion variance versus the sub domain area 
in log-log coordinates. The experimental points lie along a straight line with a 
slope steeper than -1. The estimation variance of the mean decreases rapidly as a 
function of the subdomain area. From the simulation of Figure 4.6, the mean can 
be estimated with very good precision 

We conclude this section with an example of a random function for which 
the second moment is easier to estimate than the mean. 

Example 4.3.1. Let Z be a unidimensional standardized gaussian random 
function (see chapter 15) with the hyperbolic covariance function 

1 
C(h) = 1 + Ihl hE 1R 

Ten independent simulations have been carried out in the segment [0, I] with 
I = 1000. For each simulation, estimates of the first two moments 

1 t 
z([O, ID = I la z{x) dx 

have been calculated. Here are the results 
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z([O, I]) Z2([0, I]) 
-0.088 0.916 
-0.239 1.087 
0.119 1.046 
-0.032 1.023 
0.119 1.071 
-0.027 1.036 
0.026 0.972 
-0.108 1.037 
0.044 0.979 
0.220 1.118 

It turns out that the mean estimates are rather erratic, whereas those of 
the second moment are not so dispersed. Why does this happen? The sec­
ond moment of Z can be seen as the mean of Z2. In the gaussian case, Z2 
is a second-order stationary random function with mean 1 and covariance 
function 

2 
C2 (h) = (1 + IhlP hEIR 

Now, it should be noted that the integral range of Z is infinite, whereas that 
of Z2 is finite (A2 = 2). This is what makes the difference. 

Exercises 

4.1 Let Z be a second-order stationary random function in IRd , and let V be 
a domain in IRd that is partitioned into n congruent su bdomains (Wl , ... , W,,). 
1) Suppose VV is a random subdomain uniformly selected among the VVi'S. 
Show that 

E{Z(W) I Z(V)} = Z(V) 

2) Deduce that the distribution FTF of Z (W) is less dispersed than that F v 

of Z(V), in the sense where 

for any convex function 'P. (Hint: use Jensen's inequality). 
3) Derive some consequences of this inequality, in particular regarding the 
means and the variances of F and F . v w 

4.2 Suppose that the correlation function p is integrable. 
1) Show that p admits a spectral density, say /. 
2) Show that the integral range of p is equal to (27r)d /(0). 



5. Basic morphological concepts 

The purpose of this chapter is to introduce the two basic concepts of math­
ematical morphology, namely dilations and erosions. Three possible uses are 
given. Firstly, dilation and erosion can be combined to produce two other 
morphological concepts (openings and closings) which have rich structural 
content. Secondly, the Hausdorff distance between objects has a simple mor­
phological interpretation. Finally, the chance of detecting an object by regular 
sampling can be simply expressed in terms of dilations. 

For further reading on mathematical morphology, the reader can consult 
Matheron (1967, 1975) and Serra (1982). 

Here is a brief summary of the notation that will be used throughout this 
chapter. The workspace is the d-dimensional euclidean space, and 0 stands 
for its origin. Let A C lRd . Its complement in lRd and its symmetrical set 
w.r.t. 0 are denoted by AC and A respectively. Given x E lRd, Ax is the set 
obtained from A by translation through vector x. If B is subset of lRd , then 

A Ell B = U Ay AGB = nAy 
yEB yEB 

are respectively the sum and the difference of A by B III the sense of 
Minkowski. 

5.1 Dilation and erOSIOn 

Definition 5.1.1. The point x is said to belong to the set A dilated by B if 
Bx hits A. 

The relation Bx n A oF 0 holds if and only if there exists y E B such that 
x + yEA, or equivalently such that x E A_ y . Consequently, a dilation can 
be expressed as a Minkowski sum 

{x I Bx n A oF 0} 

Note that dilation is distributive w.r.t. set union 
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Fig. 5.1. Example of a set dilated by a square. 

but not w.r.t. intersection (two dilated set.s can intersect even if the corre­
sponding original sets are disjoint). Nonetheless t.he following inclusion holds 

(A n A.') ffi B C (A Efl B) n (A' Efl B) 

Definition 5.1.2. The point x is said to belong to the set A eroded by B if 
Bx is totally contained within A. 

-- - --. , 

r -
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, 
\ 

Fig. 5.2. Example of a set eroded by a square 

Erosion can be writ.ten as a Minkowski difference 

{x I Bx CA} = A 8 B 

Dilation and erosion are dual operation w.r.t. complementation: 

Indeed, this amounts to writing Bx C A ~ Bx n AC = 0. 
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By duality, the dilation properties become 

(A n AI) e B (A e B) n (AI e B) 

(A U AI) e B =:J (A e B) U (AI e B) 

5.2 Opening and Closing 

Definition 5.2.1. The point x is said to belong to the set A opened by B if 
it belongs to a translate of B that is totally contained within A. 

In other words, the set A opened by B is the set swept out by all the translates 
of B included in A. It is denoted by AB. 

-----..,. , , 
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Fig. 5.3. Example of a set opened by a square 

The definition of opening shows that this operation is 

- anti-extensive 

- zncreaszng 

- idempotent 

AB CA 

A C AI ===> AB C A~ 

(AB)B = AB 

Suppose x E AB. Then there exists y E IRd such that x E By and By C A. 
This exactly means that y E (B)x and y E AeB. Equivalently, (B)xn(A e B) 
is nonempty. Therefore an opening can be expressed as a combination of an 
erosion and a dilation: 

Remark 5.2.1. Note in this formula the erosion by B and the dilation by 
B. This is necessary for recentering reasons: if B = {h}, then A 8 B = A-h 
and AB = A- h+h = Ao = A. 
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, , 

Fig. 5.4. Example of a set. closed by a square 

Definition 5.2.2. T he point x is said to belong to the set A closed by B if 
every translate of B that contains x hits A. 

The set A closed by B is denoted by AB . Note that x tI. AB if and only if every 
translate of B that contains x is totally contained within the complement 
XC of X , that is x E ABc. This shows that opening and closing are dual 
operations. Opening a set is equivalent to closing its complement: 

By duality, it is immediately clear that closing is 

- extensive 

zncreaszng 

idempotent 

A C AB 

A c A' =::} AB C A'B 

(AB)B = AB 

Moreover , a closing is a combination of a dilation and an erosion 

5.3 Hausdorff distance 

The aim of this section is to define a distance between objects (nonempty 
compact subsets) of JRd. Let us start with the euclidean distance d(x, y) 
between any two points x and y of JRd. The next step is to consider the 
distance from x from an object Y 

d(x , Y) = mind(x, y) 
yEY 

Now, let X be another object. The maximum distance from a point of X to 
Y is 

maxd(x, Y) = maxmind(x, y) 
xEX xEX yEY 
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Definition 5.3.1. The Hausdorff distance between both objects X and Y is 

d(X, Y) = max (maxd(x, Y) , maxd(y, X)) 
xEX yEY 

It can be readily shown that d satisfies the properties of a distance func­
tion (positivity, symmetry, and triangle inequality). Moreover, the Hausdorff 
distance generalizes the euclidean distance, in the sense that d( {x}, {y}) = 
d(x, y) for any pair of points x and y. This is the reason why the same notation 
d has been used for the euclidean and for the Hausdorff distances. 

Let rE be the ball ofradius r centered at the origin. Observe that d(x, Y) = 
min{r 2': 0 I x E Y EEl rE}. Accordingly maxxEX d(x, Y) = min{r 2': 0 I X c 
Y EEl rE}, and finally 

d(X, Y) = min{r 2': 0 I Xc Y EEl rE, Ye X EEl rE} 

which gives a geometric interpretation of the Hausdorff distance in terms of 
dilations by balls (see Figure 5.5). 

x 

y l 
~----

y 

Fig. 5.5. The diagram on the left shows the object Y clilated by a ball until it 
just covers the object X; similarly on the right, the object X is dilated until it just 
covers Y. The Hausdorff distance between X and Y is the minimum of the radii of 
these two balls. 

5.4 Object detection 

The problem addressed in this section is the detection of an object A C IRd 

from experimental information at the nodes of a regular grid. Assuming that 
its mesh sizes a = (al' ... , ad) have been fixed, then the nodes of the grid can 
be written 
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with k = (kl' ... , kd) E /Zd. The point x = (Xl, ... , Xd) is the unique grid node 
contained within the set 

It is taken as the reference node of the grid. The grid itself is denoted by C x . 

In particular C = Co is the grid referenced at the origin. 

The object A is said to be detected by the sampling grid C x if C x n A#- 0, 
or equivalently if X E A EB G. Since x E D and G = C, it follows that A is 
detected if and only if x E B = (A EB C) n D (cf. Figure 5.6). 

+ SJ 
A 

~ 
0 a l -+-

Fig. 5.6. The object A is detected if and only the reference node of the grid is 
located within B. 

Of course, the sampling grid has an arbitrary position over the object A. This 
can be expressed by assuming that the reference node x is uniformly located 
within D. Then the probability for A to be detected is 

(A) = @l 
p IDI 

It should be pointed out that this probability does not involve the d-volume 
of A but only that of B. This is particularly clear in the case of Figure 5.6 
where the two small components of A do not improve its chance of detection. 
Indeed a point y belongs to B if there exists k E 7Z,d such that y + ka E A. 
From this point of view, B can be interpreted as the set A modulo a. 

It is also possible to estimate the volume of an object by counting the number 
of points of the sampling grid that fall within it. Transitive geostatistics has 
been developped for this purpose. For more information, the reader should 
consult Matheron (1965) or Kieu (1997). 
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Exercises 

5.1 Suppose that the part of a set A located outside a domain D is unknown. 
How does this affect the result of the dilation of A w.r.t B? More precisely, 
establish the following formula 

(X ffi B) n (D 8 B) = ((X n D) ffi iJ) n (D 8 iJ) 

5.2 What is the Hausdorff distance between two balls? 



6. Stereology: some basic notions 

It frequently happens that real-world objects can only be investigated through 
planar or even linear cross-sections (thin slides, polished sections, outcrops, 
drill-holes, ... ). Stereology develops formulae to retrieve 3D information from 
the available 1D or 2D data. A stereological formula is usually based on a 
model which makes assumptions about the geometric properties of the objects 
under study. Of course, the more specific the model, the more information 
can be retrieved. Two different models are presented here. The first one deals 
with convex objects, the second one with polyconvex objects. Both models 
are treated in Hadwiger (1957). Other models can be found in Santal6 (1977) 
and Serra (1982). 

6.1 The convex model 

Definition 6.1.1. A subset of IRd IS said to be convex if it contains the 
segment joining any pair of its points. 

Fig. 6.1. Some examples of convex sets 

6.1.1 The Minkowski functionals 

Let Cd be the family of the compact convex subsets of IRd, d = 1,2,3, .... This 
family is stable under intersection (but not under union), Minkowski sum 
and difference, projection onto an i-flat (affine subspace of dimension i), and 
intersection with an i-flat. We are interested in scalar functions defined on 
Cd that are 
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- increasing: K C Kt implies tj;(K) :::; tj;(Kt). 

- additive: tj;(K U Kt) + tj;(K n Kt) = tj;(K) + tj;(Kt) if K U Kt is convex. 

- motion invariant. 

The d-volume of a compact convex set or the (d -l)-volume of its boundary 
are two simple examples. This class of functions has the structure of a convex 
cone. The following theorem due to Minkowski gives a generating family: 

Theorem 6.1.1. Any function tj; defined on Cd which is increasing, additive 
and motion invariant, is necessarily a positive linear combination of d + 1 
functions denoted by Wo, W1 , ... , Wd 

d 

q;(K) = LAiWi(K) 
i=O 

Moreover the functional Wi is homogeneous with degree d - i. If A > 0, then 
Wi (AK) = A d-i Wi (K). 

These scalar functions are usually called the Minkowski functionals. They are 
defined up to a multiplicative constant. Conventionally, normalization factors 
are chosen in such a way that all functionals assign the same value to the 
unit ball of IRd , namely its volume 

Here r is the classic gamma function 

d 
71"2 

r(o:) = 1+00 e- t t',,-ldt (O! > 0) 

It satisfies r(0! + 1) = O! r(O!), with r(l) 1 and r(~) = VlF. Several 
Minkowski functionals have very simple physical interpretations: 

- Wo (K) = I K I is the d-volume of K. 

- WdK) = loKI/d, where loKI denotes the (d - I)-volume of the boundary 
of K (perimeter in 2D, surface area in 3D). 

- Wd-dK) = Wdb(K)/2, where b(K) stands for the mean breadth of K. If 
b( K, u) denotes the length of the projection of K onto a line with direction 
u (see Figure 6.2), we have 

b(K) = -dl 1 b(K, u)du 
Wd Sd 

- Wd(K) = Wd if K -# 0 and 0 otherwise. 
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K 

u ~ 

Fig. 6.2. Breadth of J( in direction u 

Example 6.1.1. In the case d = 2, let us write WI(K) 
gives at once 

b(K) = .!.18KI, 
7r 

which is a particular case of proposition 3.l.2., v). For a triangle with sides 
a, band c, we obtain 

6.1.2 The formulae 

a+b+c 
b(K) = 

The projection formula. Let Si be an i-subspace with a uniform orienta­
tion: ~ll of the i-subspaces .have the same chance to be selected. The projection 
K .t Si of K E Cd onto Si is a random compact convex set. We denote by 
W?) (I{ .t Si) its Minkowski functionals in S'i. Their mean values are given 
by Cauchy's formula: 

O~j~i<d 

Here is a sketch of the proof. We start by proving that the mean value be­
ing sought is increasing, additive and motion invariant on Cd. According to 
Minkowski's theorem, this function is a positive linear combination of the 
Minkowski functionals. The positive coefficients assigned to the functionals 
are identified by considering the special case when K is a ball. 

Remark 6.1.1. The case j = 0 gives the mean projected i-volume of K 

O~i<d 

Some authors (Miles, 1972) use this formula to define the Minkowski func­
tionals. 

Remark 6.1.2. The usual form of Cauchy's formula is 

1 J W(i)(l"' IS) dS - Wi W' (l"') -C J" '" -} i i - -- d+j-i '" 
id Wd-i 
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with 

_ Wo (d) fli=oWd-j Ci d - - . ----':...,i~--
Wd 1 TIj=o Wj 

The integral is taken over all possible i-subspaces of IRd . The measure dSi 

is not described here (cf. Hadwiger , 1957; Santal6, 1976). Suppose K -# 0. 

In the case j i, Wpl(K -I- Si) = Wi, Wd+.i-i(K) = Wd, and this integral 
becomes 

_1_ J dSi = Wd 0 ::; i < d 
Cid wd-i 

The expected value given above is just the ratio between the two integrals. 

The section formula. All of the i-flats (affine su bspaces of dimension i) 
hitting K are now considered. Each of them can be given the same chance 
to be selected. We thus define a uniform i-fiat hitting K, denoted by Pi . 
Of course, the orientation of a uniform i-flat is not uniform. For instance , 
the elongated convex set of Figure 6.3 has more chance to be hit by a line 
orthogonal to its main axis than by a line parallel to it. 

Fig. 6.3. In general, a uniform line hitting a set does not have a uniform orientation 

Let Fi be a uniform i-flat hitting K. Crofton's formula (Hadwiger , 1957) 
gives the mean value of the Minkowski functionals of the sections of K: 

Wi Wd-j Wj(K) 

Wd-i Wi-j Wi (K) 
O::;j::;i<d 

Example 6.1.2. What is the mean linear section of K? Let us apply 
Crofton 's formula with i = 1 and j = O. This gives 

The Minkowski functionals are then replaced by their physical interpretation, 
and we get 

E {W(1 )(K n P)} = d Wd IKI 
o 1 Wd-l loKI 
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Relllark 6.1.3. The standard form for Crofton's formula is 

0:::; j :::; i < d, 

It does not involve a mean value, but integration over all possible i-flats of 
llffid, .. For more information, see Hadwiger (1957) or Santa16 (1976). 

The dilation forlllula. Let B E Cd. Define B as th.e random set obtained 
froWl' B by a uniform rotation. If K E Cd, then K EB B is a random compact 
convex set. Its mean Minkowski functionals are given by Steiner's formula 

In the particular case when B is the ball of radius A centered at the origin 
(denoted by AB), the previous formula simplifies to: 

Relllark 6.1.4. As an application of Steiner's formula, let K E Cd - 1 . We 
also have K E Cd, so its Minkowski functionals can be defined either in IRd 

or in IRd - 1 . Both sets of functionals are related by the formula 

6.2 The polyconvex model 

Definition 6.2.1. A subset of IRd is said to be polyconvex if it is a finite 
union of convex sets. 

Fig. 6.4. Example of a polyconvex set. 
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Let Rd be the family of all compact, polyconvex subsets of JRd. Rd is stable 
under union and intersection, projection onto i-flats and dilation (but not 
erosion!). Rd is sometimes called the convex ring. 

Can the Minkowski functionals be extended to Rd? If so, are the previous 
formulae still valid? The answer to these questions is the object of the next 
sections. 

6.2.1 Euler-Poincare Characteristic 

Let X denote the function defined on Cd by X(K) = 1 if K is not empty and 
o if not. This function can be extended to the convex ring in the following 
way. Let K E Rd. By the very definition of the convex ring, there exists a 
finite sequence (Ki' i E 1) in Cd such that K = UiEI K i . We put 

X(K) = I)-l)#J-l X(K) 
JCI 

where K J = njEJ K j E Cd. One can verify that the value X(K) thus obtained 

does not depend on the decomposition of K into convex sets. X is called the 
Euler-Poincare characteristic of K. 

The function X has been built to be additive 

.Y(K U K') + .l'(K n K') = X(K) + (K') K, K' E Rod 

Moreover, it has an interesting topological interpretation: 

- In JR, X(K) is the number of connected components of K. 

- In JR2, X (K) is equal to the number of connected components of K minus 
the number of its holes. 

- In JR3, X (K) is equal to the number of connected components of K minus 
its genus, that is the maximum number of closed curves that can be drawn 
on its surface without changing its connectivity (see Figure 6.5). 

6.2.2 Extension of the Minkowski functionals 

The extension rests on the additivity property. Because of it, we should have 

Wi(K) = z.)-l)#J-IWi(K) 
JCI 

for any K E Rd. It remains to show that the righthand side of the equation 
does not depend on the decomposition of K into convex sets. 
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Fig. 6.5. Let J( be a threedimensional compact subset with a smooth boundary. 
The genus of J( is defined as the maximum number of closed curves that can be 
drawn on its surface without changing its connectivity. For instance, the genus of 
a ball is equal to O. That of a torus is 1 

In the case i = d, notice that Wd(K) = wdX(K) if K E Cd. As X is additive, 
this formula is also valid in Rd. 

Suppose now i < d. Since K J E Cd , Crofton's formula gives 

Wi(K ) = -Cl j W?l(K n Fi ) dFi 
J wi id J 

Therefore 

Wi(K J ) = Cl j X(K n Fi) dFi 
id J 

so that Wi(K) can be rewritten 

which does not depend on the decomposition of K. Therefore the following 
definition makes sense. 

Definition 6.2.2. Th e Minkowski functionals of K E Rd are defined by 

Wi(K) = d. jX(I{nFi)dFi 
?d 

O::;i::;d-l 

Remark 6.2.1. The extension of the Minkowski functionals to Rd does not 
change their physical interpretation. For instance Wo(K) is the d-volume of 
K and dW1 (K) the (d-l)-volumeofits boundary. 
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The extension of Crofton's formula to Rd is now straighforward by additivity. 
If K E Rd and 0 ::; j ::; i < d, then 

The same additivity argument shows that Cauchy':o formula is also valid in 
Rd. For 0 ::; j ::; i < d, we have 

1 J C) W -c WJ' (K + Si) dSi = -'-Wd+j-i(K) 
id Wd-i 

In contrast to this, Steiner's formula cannot be extended to Rd. Dilation does 
not commute with intersection. 

Exercises 

6.1 What is the mean linear section of a triangle? 

6.2 Prove directly Steiner's formula for the case of a triangle. 

6.3 Let K E Cd. Suppose that K is open w.r.t. a ball of radius A. Prove 
Steiner's formula for erosions (Matheron, 1978) 

d-i (d .) 
Wi(KSAB) = L ~z Wi+j(K) (-A)j 

j=O J 



Part II 

The algorithms 



7. Basics about simulations 

This chapter deals with the basic simulation algorithms that are indispens­
able for designing more elaborate ones. The case of the uniform distribution 
in ]0,1 [is considered first. Then we turn to the simulation of standard univari­
ate distributions (exponential, gaussian, poisson etc ... ). Finally, we mention 
algorithms for several multivariate distributions (random point on a bounded 
domain, random direction, gaussian vector). 

7.1 Uniform distributions 

7.1.1 Uniform distribution in ]0, 1[ 

The probability density function (p.d.f.) of the uniform distribution on ]0, 1[ 
is defined as 

f(x) = { ~ if ° < x < 1 
otherwise 

Despite its simple form, it is extremely difficult to simulate it properly. More 
or less satisfactory algorithms do exist nowadays. The objective of this section 
is not to give a definitive solution to this ongoing problem, but simply to 
explain some of the difficulties that it raises. 

Let us start with a preliminary remark. It seems paradoxical to produce 
random values using a computer that runs deterministic operations accord­
ing to pre-established rules. Things must be viewed statistically. A sequence 
of values is considered as simulated from f if it shares the same statistical 
properties as a sequence of realizations of mutually independent variables of 
distribution f. Independence and goodness of fit can be checked using stan­
dard statistical tests such as the chi-square test or the Kolmogorov-Smirnov 
test etc ... (Knuth, 1969; Rohatgi, 1976; Rubinstein, 1981). 

This section is devoted to the description of the multiplicative generator 
which rests on a congruential procedure inspired by the game of roulette 
(Lehmer, 1951). Given two integers a and m, one defines the inductive se­
quence by 
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starting from an initial integer Uo (the seed). Then the normation to ]0, 1[ is 
ensured by putting 

Un 
Xn = -

m 

Clearly, the sequence Xn takes at most m -1 values. Matheron (1980) showed 
that the sequence is periodic with period m-I whatever the initial value 
Uo E {I, ... , m-I} provided that the following three conditions are fulfilled: 

- m is a prime number. 

m-I. 1 . b - p = -2- IS a so a pnme num er. 

- aP == -1 mod (m). 

For instance, a = 1000 and m = 2001179 satisfy these three conditions. But 
how can this be checked? 

To verify that m is prime, it is sufficient to check that no prime number 
less than vm divides it (Eratosthenes' sieve). This method is rather fast 
provided that m is not too large (an efficiency indication is obtained by 
extrapolating an asymptotic result of number theory (Hardy and Wright, 
1979): the number of prime numbers less than vm is around 2vm/lnm). 
The third condition is more complicated. If a of:. 0 mod (m), Fermat's theorem 
says that am - l == 1 mod (m). This implies 

m-I 

a 2 == ±1 mod (m) 

At this point, let us introduce the Legendre coefficient defined as 

m-I 

(~) = a-2- mod (m) 

Legendre coefficients satisfy the following properties (Hardy and Wright, 
1979): 

- They are invariant modulo (m) 

- They are multiplicative 

(~) (:) (!) 
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- if a and m are odd prime numbers, the well known law of quadratic reci­
procity by Gauss holds 

- In the case a = 2, we have 

a-1m-1 

( -1) 2 2 

if m == ±1 mod (8) 
if m == ±3 mod (8) 

Using these 4 formulae, let us carry out the calculations for a 

171=2001179. 

C~o) C;3) = C~) 3 (~) 3 (~) (~) 
But 

(~) = -1 

1000 and 

since 2001179 == 3 mod (8). On the other hand, the law of quadratic reci­
procity gives 

5-1m-1 

Gr C~) (~)(-1)-2---2- = (~) (~) 1 

Finally 

( 1000 ) 
2001179 

-1 

as announced. 

In fact, the multiplicative generator does not produce a sequence of numbers 
that are perfectly compatible with the model of independent variables uni­
formly distributed in ]0,1[. Starting from Uo uniform in {I, ... , m - I}, we 
define the sequence Un+1 == aUn mod (m), then we put Xn = Un/m. The 
Xn's are identically distributed with a mean equal to 1/2. Their common 
variance (m - 2)/12171 is asymptotically equal to the model variance 1/12 
as the modulus m becomes very large. Moreover, the correlation coefficient 
between Xn and Xn+1 is approximately equal to 1/a instead of O. 

From now onwards, we assume that we can generate independent uniform 
variables in ]0, 1[. If U stands for one such variable, we write U ~ Unif. 
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7.1.2 UniforlIl distribution on a bounded dOlIlain of lRd 

Let D be a bounded domain in IRd with nonzero d-volume. Our objective is 
to generate a point x uniformly distributed in D (in brief x'" Unif(D)). 

Suppose at first that D is the right parallelotope IT~=l]ai' ai + 1'd with origin 
(al' ... , ad) and sides 1'1, ... , 1'd. If U1, ... , U d are independent and uniform in 
]0,1[, then (al + 1'1U1, ... , ad + 1'dUd) is uniform in D. 

Suppose now that D has a more complicated shape. As D is bounded, it can 
be enclosed within a right parallelotope Do. Let x be a uniform point in Do. 
If x E D, then x is uniform in D. This simple remark provides the following 
acceptance-rejection algorithm: 

AIgorithlIl 7.1.1. (Uniform point in a bounded domain) 

1. Generate x '" Unif(Do). 

2.1. If x E D, deliver x. 
2.2. Otherwise, go to 1. 

Fig. 7.1. Simulation of a uniform point in a bounded domain 

Let N be the number of attempts necessary to get a uniform point in D. 
Clearly, we have 

P{N = n} 

so that 

JEl (1- JEl)n-l 
IDol IDol 

E{N} = IDol 
IDI 

n>O 

This acceptance method is effective provided that Do encloses D tightly. 
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7.2 Non-uniform distribution 

7.2.1 Inversion method 

Suppose that we wish to simulate a random variable X with distribution 

function F (in short X '!!., F). Remember that F is defined as 

F(x) = P{X < x} x E IR 

F is non-decreasing and left continuous, but not necessarily bijective. It is 
nonetheless possible to assign it a pseudo-inverse F- 1 by putting 

F-l(U) = sup{x E lR I F(x) ~ u} u EjO, 1[ 

Algorithm 7.2.1. (Inversion method) 

1. Generate LT ~ Unif. 
2. Deliver F- 1 (U). 

Proof: Note first that F-l(u) < x if and only if u < F(x). Then replace u 
by U ~ U nif. In probabilistic terms, this gives 

p{F-l(U) < x} = P{U < F(x)} = F(x) 

which proves that F-l(U) '!!., F. 

Fix) 

W -------------------~--_r 

v -----------------

-} 

F (U) 
-} 

F (V) 
-] 

F(W) 

Fig. 7.2. Simulation of a distribution using the inversion method 

Example 7.2.1. We say that X follows an exponential distribution with 
parameter a > ° (in brief X ~ Exp( a)) if its distribution function is 
F(x) = 1 - exp( -ax). Since F(x) = u if and only if x = -In(l - u)/a, 
the inversion method amounts to simulating LT ~ U nif and returning 
-In(1- U)/a. Actually, returning InU/a is sufficient since 1- U ~ Unif. 
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Example 7.2.2. A Bernoulli variable with mean p is a random variable that 
takes only the two values 1 and 0 with probability p and q = 1-p respectively. 
The inversion method shows that if U ~ UniJ, then 1 ~ Ber(p). 

u?,q 

7.2.2 Acceptance-Rejection method 

Let J be a non negative function defined in IRd with finite integral. Then 
J can be regarded as p.d.f. up to a normalization factor. Our objective is 
to generate a random vector X having a p.d.f. proportional to J (in brief 
X ~ I). 

The simulation algorithm is based on the observation that simulating a vector 
with density J amounts simulating a uniform point in the subgraph Sf = 
{(x, y) 10:::; y :::; J(x)} of F. More precisely 

Proposition 7.2.1. Suppose that J is non-negative and has a finite integral. 
1) IJ(X,Y) ~ UniJ(Sf), then X ~ J. 
2) IJ X ~ J and U ~ UniJ, then (X, UJ(X)) ~ UniJ(Sf). 

f(x} 

,(X,Y) - Unif(Sf} 
I 

I 

I 

I 

I 

I 

L----+'----------------~~X 
X:"'f 

Fig. 7.3. If (X, Y) is uniform in the subgraph of j, then X follows a p.d.f. propor­
tional to j 

Proof: Part 1 is straightforward: if B is a Borel subset of IRd , we have 

fE J(x) dx 
P{X E B} = flRd J(x) dx 

which shows that X ~ J. Regarding 2, let B be a Bore! subset of IRd x IR 
that is totally contained within Sf. If X = x, then (X, U J(X)) E B with 
probability IB n Lxii J(x), where Lx = {(x, y), yE 1R}. Thus we can write 

P{(X,UJ(X)) E B} = flRdJ(x)IBJ~x~xl dx = flR
d 

IBnLxldx = IBI 

and therefore (X, U J(X)) ~ UniJ(Sf). 0 
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Now let 9 be another non-negative function defined in lRd and with finite 
integral. Suppose that f :s: 9 and that we know how to simulate 9 (by in­
verting its associated distribution function for instance). Let X ~ 9 and 
U ~ U nif. Then (X, U g(X)) ~ U nif(Sg) (part 2 of Proposition 7.2.2). If 
(X,Ug(X)) E Sf, then (X,Ug(X)) ~ Unif(Sf), and consequently X ~ f 
(part 1 of Proposition 7.2.2). This leads to the following algorithm: 

Algorithm 7.2.2. (Acceptance-rejection method) 

1. Generate X ~ 9 and U ~ Unif. 

2.1. If U g(X) :s: f(X)! deliver X. 
2.2. Otherwise, goto 1. 

X-j 

g 

Fig. 7.4. Simulation of f using the acceptance-rejection method 

Finding a function 9 that is a suitable upper bound is an important issue. 
Once 9 has been fixed, the mean number of attempts to get a simulated value 
is equal to 

Example 7.2.3. The p.d.f. of a standard gaussian distribution is 

x E lR 

Note that 
fC f(x) :s: g(x) = V 2; exp{ -Ixl} 

and that if X ~ g, then IXI ~ Exp(I). Writing IXI = -In V with V ~ Unif 
(see Example 7.2.1), the acceptance criterion Ug(X) :s: f(X) can be rewritten 
In U :s: -(In V + IV Hence the algorithm: 
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AIgorithIll 7.2.3. (Standard gaussian distribution) 

1. Generate U, V '" U nif independent. 

2.1. If InU ::; -(In V + 1)2, then generate W '" Ber(0.5) and deliver 
(2W -1)lnV. 

2.2. Otherwise, go to 1. 

This method is rather fast: the mean number of attempts is 

~ 
E{N} = V -; ~ 1.315 

ReIllark 7.2.1. The acceptance-rejection method can be extended to dis­
crete distributions. For instance, the probability system (Pn, n E IN) induces 
the p.d.f. f(x) = PLxJ for any x E [0, +00[. If X", f, then lXJ '" p. 

7.2.3 Ad hoc Illethods 

Poisson distribution. The discrete variable N follows a Poisson distribu­
tion with mean e, in brief N '" P oisson (e), if 

en 
P{N = n} = exp(-e), 

n. 
nE IN 

A well known result in probability says that if independent exponentially 
distributed intervals with mean 1 are concatenated starting from the origin, 
then the number of intervals totally contained within [0, e] has a Poisson 
distribution with mean e. 

I~ 
o 2 3 4 5 6 e 7 

Fig. 7.5. Simulation of a Poisson variable by concatenating intervals with indepen­
dent exponential lengths. In this example the value generated is 6. 

In this approach, the length of the ith interval can be written as -In Ui with 
Ui '" U nif. Accordingly, the value generated is the first index n such that 
- I:7:11In Ui 2: e, or equivalently r17:11 Ui ::; exp( -e). This leads to the 
following algorithm: 

AIgorithIll 7.2.4. (Poisson distribution) 

1. Set N = 0 and T = 1. 
2. Generate U '" Unif and put T = UT. 

3.1. 1fT> exp(-e), set N = N + 1 and go to 2. 
2.2. If not, deliver N. 
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Using this algorithm, the mean number of uniform variables to be simu­
lated is equal to e + l. Consequently, this algorithm is efficient provided 
that e is relatively small. For large e (typically e 2:: 100), the distribution 
of le + 0.5 + VBY J with Y standard gaussian is a good approximation of a 
Poisson distribution. There also exists a acceptance-rejection algorithm that 
is efficient whatever the e value (Ahrens and Dieter, 1982). The upper bound 
is rather complicated and is not presented here. 

Gaussian distribution. Let X and Y be two independent standard gaus­
sian variables. This gives a random point in JR2 which can written as (R,8) 
in polar coordinates. It can be shown that Rand 8 are independent. R2 
follows an exponential distribution with mean 2, and 8 is uniform in [0,211-(. 
This leads to the algorithm proposed by Box and Muller (1958): 

Algorithm 7.2.5. (Standard gaussian distribution) 

1. Generate U, V......, Unif independent. 
2. Deliver v-2ln U cos(2rrV) or Vr--"""'2-"-ln~U""" sin(2rrV). 

Symmetric stable distributions. The most convenient way to character­
ize a symmetric stable distribution is via its characteristic function 

This distribution depends on a parameter a E]O, 2] which characterizes the 
heaviness of its tail. The case a = 2 corresponds to a gaussian distribution 
which has moments of any order. If a E]l, 2[, the mean is equal to 0, but 
the variance is infinite. In the case a ::; 1, even the mean does not exist. 
Despite the rather complicated expression of its p.d.f. (not n~produced here), 
the symmetric stable distribution can be simulated very simply by using the 
following algorithm due to Chambers et al. (1976) 

Algorithm 7.2.6. (Symmetric stable distribution) 

1. Generate U......, Unif(]- %, %D and V......, Exp(l) independent. 
I-a 

I . sin(aU) (cos[(1 - a )U]) " 
2. De zver 1 

COSa U V 

In the case a = 2, this is just the Box-Muller algorithm for simulating a 
gaussian distribution. 



66 7. Basics about simulations 

Uniform direction in lRd . Let (X I , ... , X d) be d independent standard 
gaussian variables. Their p.d.f. is 

1 {xi + ... + x~} f(XI, ... Xd) = --d exp -----"--------"'-
(2rr)2 2 

Since f depends only on the modulus of x = (Xl, ... , Xd), it is isotropic. Hence 
the algorithm: 

Algorithm 7.2.7. (Uniform direction in IRd) 

1. Generate a vector X = ( Xl, ... , X d) whose components are independent 
standard gaussian variables. 

2. Calculate IXI = vXr + ... + XJ. 
3. Deliver the vector X/IX I. 

Exercises 

7.1 Apply the inversion method to simulate the Cauchy distribution 

1 1 
f(x) = ;1+x2 xEIR 

7.2 Let 0 < p < 1 and U ~ U nif. Show that the discrete random variable 
N = llogp (U) J follows the geometric distribution 

P {N = n} = (1 _ p) pn nE IN 

7.3 Let a > 1. Use the inequality exp( _x2 /2) :S X exp( _x2 /2) which is 
valid for x 2: 1 to derive a simulation algorithm for the truncated gaussian 
distribution having the p.d.f. 

fa(x) ex exp {_ x2} 1 
2 x2: a 

7.4 Let fQ be the p.d.f. of a gamma distribution of parameter 0' > 0 

1 
fQ(x) = F(O') e-xxa - l x> 0 

1) How can we simulate fa in the case 0' = 17 
2) If 0' < 1, give the simulation algorithm by acceptance-rejection method 
usmg 

How fast is the algorithm? 
3) Same question as 2) in the case 0' > 1 with 

g(x) = 
(x.\ + 0'.\)2 

where ..\ = J2('t=-r (Cheng, 1977). 
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The problem addressed in this chapter is the simulation of a distribution p 
on (D, A). In the case when the state-space D has an abstract setting or a 
complicated shape, the algorithms presented in the previous chapter may not 
be directly applicable. More general algorithms are then required. 

Since their introduction by Metropolis et al. in 1953, iterative algorithms 
have proved to be quite effective. They consist of generating a sequence of 
random states (Xn , nE IN) in such a way that the distribution of Xn tends 
to p as n becomes very large. For practical reasons, the sequence is often a 
Markov chain, so we give some reminders in the first part of this chapter. 
Then two prototypes of iterative algorithms are reviewed. The first one is 
the famous Metropolis algorithm. It is illustrated by the simulation of a 
Poisson distribution. The second one is a Hit-and-Run algorithm devised to 
simulate a uniform point in a domain in a high dimensional space. Variations 
of this algorithm are closely related to the famous Gibbs sampler (Geman and 
Geman. 1984). A general procedure is also proposed to turn a non conditional 
iterative algorithm into a conditional one. The chapter concludes with a short 
presentation of simulated annealing as a conditional simulation algorithm. 

8.1 Some reminders on Markov chains 

The objective of this section is to give the basic elements required for the 
Markov simulation. For more comprehensive reference on Markov chains, the 
reader can consult Meyn and Tweedie (1993), and also Tierney (1994). 

8.1.1 Markov chain 

Let us denote by Xn the random state at the nth iteration of the algorithm. 
In the general case, Xn depends on all the previous states X o, ... , X n - 1. But 
this is not practical from a computational standpoint, as it is not possible to 
keep a large number of states in memory. Therefore some restrictions have 
therefore to be considered. One possibility is to construct Xn a8 a function of 
X n - 1 uniquely. In this case, X n no longer depends on X 0, Xl, ... , Xn _ 2 once 
X n - 1 is explicitly known. The sequence (Xn , nE IN) is then called a Markov 
chain. 
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A particularly useful feature of a Markov chain is that its simulation is 
straightforward. We start by simulating X o, then Xl given Xo = xo, then 
X 2 given Xl = Xl etc ... This requires an initial distribution Po for Xo and 
the conditional distributions to jump from Xo to Xl, from Xl to X 2 ... Most 
of the time, these conditional distributions need not be dependent of the 
iteration order. All of them are then identical and can be written 

P(x,A) = P{Xk+1 EA 1 Xk = x} 

In this particular case, the Markov chain is said to be homogeneous, and the 
common conditional distribution is called a transition kernel. More precisely 

Definition 8.1.1. A function P from il x A to [0,1] such that 
i) for each A E A, P(., A) is measurable 
ii) for each x E il, P(x,.) is a probability measure on (il,A) 
is called a transition kernel on (il,A). 

One consequence of homogeneity is that the conditional distribution from X k 

to X k +n does not depend on k. It is also a transition kernel on (il, A) and 
can be denoted by 

Because of the Markov property, the pin) are related by 

p(n+1)(X, A) = in p(n)(x, dy) P(y, A) = in P(x, dy) p(n)(y, A) 

with the convention p(O)(x, dy) = Jx(dy) (Dirac measure at x). 

Finally, the distribution of a homogeneous Markov chain can be characterized 
by an initial distribution Po and a transition kernel P. Since mainly homo­
geneous Markov chains are considered in this book, the word homogeneous 
will often be omitted. 

8.1.2 Convergence 

How can we express the idea that p(n)(x, A) is close to p(A)? Meyn and 
Tweedie (1993) consider the total variation norm of the signed measure 
p(n)(x,.) - p. This is defined as 

11 p(n)(x,.) - p 11 = 2 sup Ip(n)(x, A) - p(A) I 
AEA 

Then one possible way to express the convergence of the distribution of Xn 
to p is to require that 

lim 11 p(n)(:x:,.) - p 11 = ° 
n--+oo 
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for all x E Q. Halmos (1969) has shown that the total variation norm of 
p(n)(x,.) - p can also be written as 

11 p(n)(x,.) - p 11 = sup I f [p(n)(x, dy) - p(dy)] f(y) I 
111::;1 in 

so that the convergence implies 

n~.Too in p(n)(x, dy)f(y) = in p(dy)f(y) 

for any bounded measurable function f and for any x E Q. The effects caused 
by the initial state x are no longer perceptible after a sufficiently large number 
of iterations. 

8.1.3 Some features of a transition kernel 

The convergence of p(n) to p implies a number of consequences. 

Let A E A be such that p(A) > O. Because of the convergence, there exists 
n such that p(n)(x, A) > O. In other words, any state can communicate with 
any event of positive occurrence probability. The transition kernel is then 
said to be p-irreducible. 

This result can be refined. If p(A) > 0, then the convergence says that 
p(n)(x,A) > 0 for n large enough. In particular, the greatest common di­
visor of the n's such that p(n)(x, A) > 0 is l. This is usually expressed by 
saying that P is aperiodic. 

o 
.~. 

Fig. 8.1. This figure shows 3 Markov chains defined on the same state-space but 
with different transition kernels. Arrows indicate positive direct transitions. The 
left chain is reducible. The middle one is irreducible but periodic with period 3. It 
suffices to add a loop at one state to make it aperiodic (cf. right chain) 

Let us now start from 

p(n+1)(X, A) = in p(n)(x, dy) P(y, A) 

and let n tend to infinity. By definition of the convergence, the left-hand side 
converges towards p(A). Since P(., A) is measurable and bounded by 1, the 
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right-hand side converges to the integral of P(., A) for p (Halmos' property), 
and we finally end up with 

p(A) = in p(dy)P(y, A) 

The distribution p is then said to be invariant under the transition kernel P. 

If p is invariant under P, then 11 p( n) (x, .) - p 11 is a monotonically decreasing 
function of n. Indeed, by applying the Markov property and the definition of 
invariance, we have 

11 p(n+1)(x,.) - p 11 sup 11 [p(n+1)(x,dy) - p(dy)] f(y)1 
111:::;1 n 

sup 11 [p(n)(x, dz) - p(dz)] 1 P(z, dy)f(y) 1 
111:::;1 n n 

< sup 11 [p(n)(x, dz) - p(dz)] g(y) 1 
Igl:::;l n 

11 p(n)(x,.) - p 11 

But this does not necessarily imply the convergence of p(n)(x,.) to p. Other 
assumptions are required, such as the ones given by Tierney (1994). 

Theorem 8.1.1. Let P be a transition kernel and p a distribution. If P is 
p-irreducible. and aperiodic, and if p is invariant under P, then 

lim 11 p(n)(x,.) - p 11 = ° 
n---+oo 

for p-almost any x E D. 

Remark 8.1.1. Under the further assumption that any event of positive 
occurrence is visited infinitely often by the Markov chain, i.e. 

for any state x and any event A such that p(A) > 0, Tierney (1994) has 
established that the convergence in theorem 8.1.1. takes place not only p­
almost surely, but for every x E D. Suppose that X o follows the distribution 
Po. If we denote by p(n)(po,.) the distribution of X n , then we can write 

lim 11 p(n)(po,.) - p 11= ° 
n--+co 



8.2 Metropolis algorithm 71 

Although it is not directly related to convergence, the concept of reversibility 
is emphasized because of its importance in the design of simulation algo­
rithms. Suppose that p is invariant under P, and let (X, Y) '" p(dx)P(x, dy). 
Then Y '" p, so that X and Y have the same distribution. Reversibility is 
stronger. It says that both vectors (X, Y) and (Y, X) have the same bivariate 
distri bu tion. 

Definition 8.1.2. The transition kernel P is said to be reversible w. r. t. the 
distribution p if 

II p(dx)P(:r, dy)f(x, y) = II p(dx)P(J:, dy)f(y, x) 

for any numerical function that is defined on D x D, and is measurable and 
bounded. 

In the case when f is a product of indicator functions 

f(x, y) = lXEA IYEB A,EEA 

we obtain the following exchange formula 

1 p(dx)P(x. E) = l p(dx)P(x, A) 

The invariance of p under P can be obtained from this by taking E = D. 

8.2 Metropolis algorithm 

Suppose that we want to simulate the distribution p on (D, A) as the limit 
distribution of a Markov chain. The first problem is to construct a transition 
kernel for p. Metropolis et al. (19.53) proposed an elegant solution to this 
problem in the case of a discrete distribution 1 . In this case a transition kernel 
is completely characterized by the transition probabilities P(x, y) for all pairs 
of states x and y. 

The Metropolis algorithm requires a candidate transition kernel Q that is 
symmetric (i.e. Q(x, y) = Q(y, x) for all x, yE D). Starting from state x, the 
idea is to generate a candidate state y from Q(x,.) and to accept it with a 
probability a(x, y) which depends on both states x and y. Of course, y will 
be more often accepted if p( x) is small or p(y) large. Metropolis et al. propose 
the acceptance criterion 

. (P(y) ) a(x, y) = mm p(x)' 1 

1 Continuous versions of Metropolis' solution can be found in the literature (Tier­
ney, 1994: Gaetan and Guyon, 1997). 
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which amounts to considering the transition kernel 

P(x, y) = Q(x, y) a(x, y) = Q(x, y) min (;~~~, L) 

for x =/= y as well as 

P(x, x) = 1 - L P(x, y) 
viex 

It remains to show that a Markov chain with transition kernel P has the 
limit distribution p. According to theorem 8.1.1, it suffices to check that Pis 
p-irreducible, aperiodic and admits p as an invariant distribution. Assuming 
p > 0 on D, then P is p-irreducible and aperiodic if this is the case for Q. 
Regarding the third property, it can be seen that the symmetry of Q implies 
the following reversibility formula 

p(x)P(;r. y) =Q(;:c, y) min(p(y),p(x)) =Q(y, x) min(p(.r),p(y)) =p(y)P(y, x) 

for x =/= y, which in turn implies the invariance 

LP(x)P(x, y) = LP(Y)P(y, x) = p(y) L P(y, x) = p(y) 
x :r: 

In summary, here is the Metropolis algorithm to simulate a discrete, posi­
tive distribution p starting from a candidate transition kernel Q that is p­
irreducible, aperiodic and symmetric. In this algorithm, the test p(y) < U p( x) 
is a mere reformulation ofthe acceptance criterion U < a(x, v). It is of course 
superfluous in the case p(y) 2:: p(x). 

Algorithlll 8.2.1. (Metropolis algorithm) 

1. Let x E D. 
2. Generate y ~ Q(x,.) and [T ~ Unif. 
3. If p(x)U < p(y), then put .r = y. 

4. Goto 2. 

Relllark 8.2.1. There are many versions of the Metropolis algorithm. For 
instance, another acceptance criterion has been proposed by Barker (196,5) 

p(y) 
a(x, y) = p(x) + p(y) x=/=y 

Hastings (1970) has also extended the Metropolis algorithm by considering a 
non-symmetric candidate transition kernel. 
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ExaIllple 8.2.1. Let us come back to the simulation of a Poisson distribu­
tion with parameter () 

(}X 
p(x) = exp(-(}), 

x. 
x E IN 

For the candidate transition kernel, we can take Q (x, x + 1) = Q (x, x-I) = ~ 
if x 2:: 1 and Q(O,l) = Q(O,O) = ~. It is immediately clear that Q is p­
irreducible, aperiodic and symmetric. Choosing Barker's variation leads to 
the transition kernel 

() 

P(x,x+1)= 2((}+x+1) 
x 

P(x,x-1)= ( ) 2(}+x 

and P(x, x) = 1-P(x, x+1)-P(x, x-I). This transition kernel has been used 
to simulate a Poisson distribution with mean () = 100. Figure 8.2 shows the 
evolution of the iterative simulation at various scales. The rate of convergence 
of this algorithm will be studied in the next chapter. 

:[ 
10 

~[ - -

~ -------------------------------------------2 

'" '" ao '00 

f ",0N ~~r'VJN.~ · 
Q 2IXIO 4«lO I!I4XJO 84XIO 10000 

Fig. 8.2. Display at various scales (10, 100, 1000 and 10000) of some iterations 
during a Poisson simulation 
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8.3 A Hit-and-Run algorithm 

The problem considered here is the simulation of the uniform distribution in 
an open subset Q of IRd with finite volume. The importance of this problem 
has been stressed in the last chapter (cf. Proposition 7.2.1). In the present 
case, Q has an arbitrary shape. It is not necessarily bounded, or convex, 
or even connected. To make things even more complicated, the dimension d 
is supposed to be large, typically several hundreds2 . In cases like this, the 
standard acceptance-rejection method fails because the failure rate is too 
high. As an example, suppose that Q is a unit ball in IRd. If it is enclosed 
within a hypercube of side 2, then the mean number of draws per success is 
2djwd. For d = 100, this is equal to 1070. 

8.3.1 A stereological algorithm 

The iterative algorithm given below has been considered by many authors ( 
Turchin, 1971; Smith, 1983; Belisle et al., 1993; Lantuejoul, 1996): 

Algorithm 8.3.1. (Uniform point in Q. Stereological approach) 

1. Let x E Q. 
2. Generate a uniformly oriented line L passing through x (Alg. 7.2.7). 
3. Generate a uniform point y ~ Unif(L n Q). 
4. Put x = y and go to 2. 

Fig. 8.3. Principle of the stereological algorithm. Suppose that the current point 
is x n . A uniformly oriented line Ln is generated through x n . The next point X n +l 

is then uniformly selected in Ln n {} 

2 When carrying out conditional simulations, the dimension of the space is often 
equal to the number of conditioning data points. 
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Why does this algorithm work? Let Xn be the random point produced at the 
nth iteration. The sequence (Xn , n E IN) is a homogeneous Markov chain. A 
direct calculation shows that its transition kernel has the probability density 
function 

P(x, A) = 1 f(x, y) dy xES? ,AEA 

defined by 

2 1 
f(x, y) = dWd f(x, y, S?) Ix _ yld-l y # x, 

where f(x, y, S?) stands for the length of the intersection between S? and the 
line passing through x and y. Note in particular that f is symmetric in x and 
y. This implies that the uniform distribution in S? (noted here u) is invariant 
under P. 

1 1 j dx j 1 dx IAI n u(x)P(x,A)dx = n A f(x , y)dYTill = A n f(y , x)TilI dy = Till = u(A) 

D O" .. " . ". : ~. 

Fig. 8.4. 1000 independent simulations (algorithm 8.3.1 ) have been carried out 
from the same initial point (top left). T he populations of points generated at iter­
ations 1, 2, 3, 5 and 10 are displayed 
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Moreover, P is u-irreducible and aperiodic since any point is accessible from 
any other one at each iteration. Then, according to theorem 8.1.1, u is the 
the limit distribution of the Markov chain. 

Figure 8.4 illustrates how this algorithm works. We have taken [2 to be a 
two-dimensional domain made up of two connected components. The initial 
point has been chosen in the " cloverleaf' component (top left). One thou­
sand uniformly oriented lines have then been generated through this point, 
resulting in 1000 points at the first iteration (top middle). The distribution 
of these points is far from uniform. In particular there is a high density of 
points along the lines passing through the initial point and having a short 
intersection with [2. The 1000 points are used as input for a second iteration. 
Figure 8.4 shows the evolution of the simulation at iterations 2,3,5 and 10. A 
gradual convergence toward uniformity is observed. The rate of convergence 
seems to be quite fast since uniformity has practically been reached by the 
5th iteration. This will be explicitly studied next chapter. 

8.3.2 A uniform Gibbs sampler 

Algorithm 8.3.1 has many variations. Since the intersection of [2 by a line in 
an arbitrary direction may be difficult to determine (in practice, a uniform 
point in L n [2 is usually simulated using the acceptance-rejection method), 
it may sometimes be preferable to generate lines in a finite set of directions 
only (cf. Figure 8.5). In the case when the directions considered are those of 
the coordinate axes, the successive points produced by the Markov chain vary 
in only one coordinate. This is just a Gibbs sampler (Geman and Geman, 
1984). 

To simplify the presentation, let us assume that the d directions of the coor­
dinate axes are independently and uniformly selected at each iteration. Then 
the transition kernel can be written 

1 d 

P(x, A) = d L Pi(x, A) 
i=l 

where Pi(X, A) is the probability that a change in the ith coordinate Xi of 
x transforms it into a point of A. It can be shown easily that u is invariant 
under each Pi. Indeed, denoting by xi the remaining coordinates of x, and 
by Li(X i ) the line parallel to the ith coordinate axis passing through x, we 
have 

In U(X)Pi(X, A)dx 
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•• I .-&Ji' ..... ;., 
.~ .. :, .~., ... 

Fig. 8.5. 1000 independent simulations carried out with lines in two directions 
only. They are displayed at iterations 1, 2, 3, 5 and 10. The initial point is the same 
for all simulations 

o 

Fig. 8.6. In the case when the transitions take place only along the horizontal 
or the vertical direction, the process cannot jump from one component of n to 
another. The Markov chain is not irreducible 
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Accordingly, u is invariant under P. Note also that P is aperiodic if it is 
u-irreducible (the same random direction can be selected twice in a row). 
But P may not be u-irreducible. As a counter-example, consider a domain D 
partitioned into two subsets such that their points differ in two coordinates at 
least (cL Figure 8.6). The possible reducibility of the Markov chain is the only 
theoretical limitation in using the Gibbs sampler for uniform distributions. 

8.3.3 A more general hit-and-run algorithm 

The hit-and-run algorithm presented above can be seen as a particular case 
of a more general algorithm. Suppose that each x E D is assigned a domain 
A(x) C IRd with finite volume. A(x) needs not being totally included within 
D. Consider the following algorithm: 

Algorithm 8.3.2. (Uniform point in D. Local approach) 

1. Let x E D. 
2. Generate y ~ Unif(A(x)). 
3. If y 'I. D, goto 2. 

4 Generate U ~ Unif. IfU < IA(x)1 then put x = y. 
. IA(x)I+IA(y)I' 

5. Goto 2. 

The transition kernel of this algorithm is 

P(x, A) r dy IA(x)1 
JA(x)nA IA(x)1 IA(x)1 + IA(y)1 

1 (IA(X)\DI r dy IA(Y)I) 
+ xEA IA(x)1 + JA(x)nn IA(x)1 IA(x)1 + IA(y)1 

or equivalently 

1 dy (1 dY ) P(x, A) = + 1 1 -
A(x)nA IA(x)1 + IA(y)1 xEA A(x)nn IA(x)1 + IA(y)1 

for any x E D and any AEA. It must be pointed out that in general P is 
not u-reversi ble. However, reversi bili ty is ensured as soon as 

x E A(y) ~ yE A(x) 

holds for any x, y E D. This is typically the case when the A( x) are balls 
of same radius associated with a given metric3 (euclidean or geodesic for 

3 In the case of the euclidean metric, all the A(x) have the same volume. In this 
case, there is no risk in accepting any candidate point in n. Steps 4 and 5 of 
algorithm 8.3.2 can be reduced to "Put x = y and goto 2". 
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instance). Another possibility is to take for each A( x) the subset of D directly 
seen from point x (i.e. the star of x in D). 
In the example of Figure 8.7, the A(x) are Euclidean disks. Their common 
radius has been fixed to a fifth of the width of the domain D. It has been 
chosen small enough so that an important part of each A(x) is contained in 
D, and large enough to allow transitions between both connected components 
of D. 

Because not all pairs of points communicate directly, the rate of convergence 
of Algorithm 8.3.2 is expected to be slower than that of 8.3.1. This is con­
firmed in Figure 8.7 where quasi-uniformity has not been completely reached 
after 30 iterations. As a matter of fact, Algorithm 8.3.2 can be improved in 
a number of ways. For instance, the A(x) can be modified at each iteration. 
This makes it possible to adapt their shape and size to the current location. 

o o o 

o 

Fig. 8.7. 1000 independent simulations carried out using a local approach (cf. 
Algorithm 8.3.2). They are displayed at iterations 1, 3, 5, 10 and 30. The initial 
point is the same for all simulations 
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8.4 Application to conditional simulations 

Let (Q, A, p) be a probability space. Suppose that p can be simulated as the 
limit of a stationary Markov chain with known transition kernel P. Because 
of a set of conditions or constraints, not all states of Q are allowed. Only 
those located within a measurable subset Qc of Q are permitted. Let Ac be 
the O"-algebra induced by A on Qc (A E Ac if there exists B E A such that 
A = B n Qc). Assume that 0 < p(Qc) < l. The problem is to simulate the 
distribution Pc on (Qc, Ac) defined by 

A E Ac 

In what follows, two different algorithms will be considered. The first one 
consists of restricting the transition kernel P to Qc x Ac (Lantuejoul, 1996). 
The second one is the version of simulated annealing proposed by Hegstad et 
al. (1995). 

8.4.1 Restricting the transition kernel 

The principle is quite simple. Excursions outside Qc are forbidden. Here is 
the algorithm: 

AlgorithIll 8.4.1. (Restriction of a Markov chain) 

1. Let x E Qc. 
2. Generate y ~ P(x, .). 
3. If yE QC! put X = y. 

4. Goto 2. 

Fig. 8.8. Simulation by restricting a transition kernel. Starting from the current 
state X n , a transition kernel on n is run to generate a candidate state y. The new 
generated state is then X n +l = Y if yE ne and Xn if not. 

The states generated constitute a realization of a Markov chain on (Qc, Ac) 
with the transition kernel 
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Pc(x, A) = P(x, A) + 1 P(x, Q\Qc) 
xEA 

The invariance of p under P by no means implies that of Pc under Pc (see 
exercise 8.3). However, if P satisfies the further assumption of reversibility, 
namely 

l p(dx)P(;r, A) = 1 p(dx)P(x, B) A,BEA 

then we have for any A, B E Ac 

l p(dx)Pc(x, A) r p(dx)P(x, A) + r p(dx)P(x, Q\Qc) 
lB lBnA 

j p(dx)P(x, B) + j p(dx)P(x, Q\Qc) 
A AnB i p(dx)Pc(x, B) 

Now the division by p(Qc ) shows that Pc is also reversible 

l Pc(dx)Pc(x, A) = 1 Pc(dx)Pc(x, B), 

which is sufficient to ensure that Pc is invariant under Pc 

The pc-irreducibility of Pc cannot be guaranteed by algorithm 8.4.1 because 
it depends on the shape of Qc. This has to be studied on a case by case basis. 

Regarding the aperiodicity of Pc, we have the following result. 

Proposition 8.4.1. If P is reversible and Pc pc-irreducible, then Pc IS ape­
riodic. 

Proof: Let x E Qc and A E Ac such Pc(A) > O. We have to show that 

p~I!)(x,A) > 0 as soon as n is large enough. Consider the sequence (An,n E 
IN) defined as follows 

An = {y E Qc I pry, Q\Qc) > 0, pc(n)(y, A) > O} 

The An's are increasing events of Ac. Let Aco = UnAn. It is intuitively clear 
that Pc (Aco) > 0 because Qc and Q\Qc must communicate. A more formal 
proof is given in the appendix of this chapter. 

As an immediate consequence, we have Pe(An) > 0 for some index n. Now, 

as Pc is pc-irreducible, there exists k such that pJk)(x, An) > O. Moreover, it 
stems from the definition of An that p(!) (y, A) > 0 for any y E An and for 
any index I :::: n. Accordingly 

pc(k+l) (x, A) :::: r pJk)(x,dy) pjlJ(y, A) > 0 
lAn 
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Fig. 8.9. Aoo is the set of states of ne that communicate with A in a number finite 
of iterations and from which a direct transition to n\nc takes place with positive 
probability 

holds for any I 2': il, which establishes the proposition. D 

Because of theorem 8.l.1, the conditions of proposition 8.4.1 are sufficient to 
ensure the correctness of the simulation algorithm obtained by restricting a 
transition kernel. It should be pointed out that the assumption P(De ) > 0 is 
imperative. The algorithm cannot work if Dc almost never occurs. 

8.4.2 Simulated annealing 

Since its introduction by Kirkpatrick (1983) as a way for improving com­
binatorial optimization procedures, simulated annealing has proved to be a 
powerful algorithm for geostatistical simulations, especially when they are 
subject to complicated conditions or constraints (Hegstad et al., 1994). In 
this section we keep the same assumptions and notation as in the previous 
section. In particular the allowed set of states Dc has a positive frequency of 
occurrence. 

A convenient way to account for the conditions or the constraints is to resort 
to an objective function. Let us denote it by C. C is a measurable and positive 
function defined on D. It characterizes Dc in the sense that the value C(x) 
assigned to the state x is equal to 0 if and only if x is allowed. In general C 
is designed so that the smaller C (x), the closer x to Dc. 

The next step is to incorporate the objective function into distributions on 
(D,A). Let us consider the following distributions 

pt(A) ex 1 p(dx) exp { _ C~x)} AEA 

where t is a strictly positive parameter usually called temperature in reference 
to the metallurgical cooling process which inspired the algorithm. The reason 
for introducing this family of distributions is that Pt tends to Pc when the 
temperature becomes very low. More precisely: 
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Proposition 8.4.2. limt---+o 11 Pt - Pe 11= 0 

Proof: For any bounded, measurable function f, we have 

1 1 exp{-~} 
pt(dx)f(x)dx = p(dx) {} f(x) 

.n .n f.np(dy)exp _C~y) 

and since the integral in the denominator is bounded from below by p( [le), 
the dominated convergence theorem can be applied, and we have 

1 1 1 xE.nc 1 lim pt(dx)f(x) = p(dx)-(n ) f(x) = Pe(dx)f(x) 
t----+D .n .n P He .ne 

o 

Proposition 8.4.2 suggests a simulation algorithm for Pe that consists of sim­
ulating the distribution Pt and letting the temperature t decrease simultane­
ously. 

Using a Metropolis type algorithm, it is relatively easy to simulate Pt. Starting 
from x, a candidate state y is generated from P(x,.) (the reversible transition 
kernel used to simulate p) and accepted with probability 

o(x,y) = min (~~~~, 1) 
where we have put h(x) = exp{ -C(x)/t} for short. This gives the transition 
kernel 

Pt(x, A) = J P(x, dy)o(x, y) + 1 A r P(x, dy)[l- o(x, y)] 
A xE J.n 

Checking that Pt is invariant under Pt is straightforward. Replacing Pt by its 
definition, we have 

in pt(dx)Pt(x, A) IX i p(dx) in P(x, dy) min(h(x), h(y)) + 1 p(dx)h(x) 

-in p(dx) 1 P(x, dy) min(h(x), h(y)) 

and both double integrals cancel each other because P is reversible. In­
deed, reversibility plays exactly the same role as symmetry in the standard 
Metropolis algorithm. A similar calculation shows that Pt is also reversible. 

The irreductibility and the aperiodicity of Pt stem directly from those of P. 

Regarding the cooling schedule, things are more complicated. Several authors 
(Geman and Geman 1984; Hajek, 1988; Winkler, 1995) have shown that 
decreasing the temperature too quickly may result in being trapped in a 
local minimum of the objective function. A typical recommended choice is a 
temperature proportional to 1/ In( n + 1) at the nth iteration. 
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Remark 8.4.1. In contrast to the restriction algorithm, the conditions are 
not satisfied at each iteration. Consequently, if the simulated annealing algo­
rithm is stopped after n iterations, then the conditions may not be perfectly 
honored. In order to cope with this problem, one could consider resuming 
the iterations until an allowed state is reached. Unfortunately this does not 
work because even after a large number of iterations the first allowed state 
encountered may be biased. 

Remark 8.4.2. Simulated annealing can also be applied in the case when 
p(Qc ) = 0, but care must be taken to avoid biases. Hwang (19S0) and Lajau­
nie (199S) gives explicit and convincing examples. 

Appendix 

This appendix completes the proof of proposition S.4.1 by showing that 
p(Aoo) > O. 

Suppose p(Aoo) = 0 and consider the sequence 

n>l 

Clearly we have 

h = r p(dy)P(y, D\Dc) = 1 p(dy)P(y, D\Dc) :::; p(Aoo) = 0 
iSLe A= 

More generally, since p(Aoo) = 0 and P(y, Q\Qc ) = 0 if y E Qc \Aoo, we can 
write 

and the reversibility of P implies 

so that we finally have In = 0 for any n 2: 1. When n becomes very large, 
the total variation convergence of p(n)(y,.) to p implies 

which is a contradiction since 0 < p(Qc ) < 1. o 
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Exercises 

8.1 Let 0 < f < l. Show that if P is p-irreducible but not necessarily 
aperiodic, then 

co 

(1 - f) L fn - 1 p(n)(x, A) xED,AEA 
n=l 

is p-irreducible and aperiodic. 

8.2 Show that the candidate transition Q of Metropolis algorithm needs not 
be symmetric if the acceptation criterion is replaced by 

. (p(Y)Q(Y, x) ) 
cx(x, y) = mm p(x)Q(x, y) , 1 

This algorithm (and some other variations) is due to Hastings (1970). 

8.3 Let D = IN, and let P the transition kernel defined by P(x, y) = ~ if 
Y = x + 1 or y = O. 
1) Show that the distribution p(x) = 2-(x+l) is invariant for P, and that P 
is p-irreducible as well as aperiodic. 
2) Apply the restriction simulation algorithm in the 3 following cases 
- Dc = IN\{O} 
- Dc = {2x,x E IN} 
- Dc = {2x + 1, x E IN} 
What conclusions can be drawn? 
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In the previous chapter, we showed how to simulate a distribution as the 
limit of an iterative algorithm. In practice, these algorithms cannot be run 
eternally; they have to be stopped after a finite number of iterations. Of 
course there is no reason for the distribution thus simulated to be identical 
to the limit distribution, and the number of iterations to carry out must be 
chosen so that their difference lies below a prescribed level of acceptability. 
This requires the study of the rate of convergence of the iterative algorithm. 

A considerable amount of literature has been devoted to the determination 
of the rate of convergence of algorithms based on Markovian iterations (in 
particular Nummelin, 1984; Meyn and Tweedie, 1993; Tierney, 1994; Dufio, 
1996). This chapter only deals with two cases corresponding to two different 
assumptions on the transition kernel of the algorithm: 
- If the transition kernel is minorized by a positive measure, then the rate of 
convergence is uniform (section 9.2). 
- If the transition kernel admits an isofactorial representation, then a geomet­
ric rate of convergence is expected in many cases (section 9.3). The integral 
range introduced in chapter 4 can be used to determine it empirically (section 
9.4) . 

9.1 Rates of convergence 

Let p be a distribution on (D, A) that can be simulated as the limit of a 
p-irreductible and aperiodic Markov chain with transition kernel P. As was 
seen in the last chapter, the distance between the nth iterate p(n)(x,.) and 
p can be specified by the total variation of their difference 

11 p(n)(x,.) - p 11 = 2 sup Ip(n)(x,A) - p(A)1 
AEA 

x E D 

This distance depends on the initial state x and the iteration step n. 

Definition 9.1.1. The transition kernel P is said to be geometrically ergodic 
if there exist a positive measurable function Cl: on D and a constant f with 
o < f < 1 such that 

11 p(n)(x,.) - p 11 :::; Cl:(x) fn 
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for any x E Q and any n E 1N l . 

A simple observation shows that this rate of convergence is not very strong. 
Suppose that the Markov chain starts from an initial distribution Po which 
is not concentrated on a unique point. Then after n iterations we have 

11 p(n)(po,.) - p 11 = L 11 p(n)(x,.) - p 11 po(dx) ::; fn L a(x)po(dx) 

from which no conclusion can be drawn unless a is po-integrable. Things 
become more interesting in the case when a is bounded because it is auto­
matically po-integrable. This leads to the following definition: 

Definition 9.1.2. The transition kernel P is said to be uniformly ergodic if 
there exist two constants a > 0 and 0 < f < ] such that 

11 p(n)(x,.) - p 11 ::; a fn 

for any x E Q. 

In this case, we also have 

for any initial distribution Po. Thus the rate of convergence is mainly governed 
by f. It is fast provided that this number is not too close to l. 

9.2 Minorization 

What slows down the convergence of a Markov chain? Mainly, the presence 
of "bottlenecks" that prevent classes of states from communicating easily. 
Figure 9.1 shows an example of a bottleneck. 

1-'1: 1-'1: 

0.5 o.~ . ...e<==---'1:--:;;>~·~·O 0.5 

0.5 0.5 

Fig. 9.1. A small value for T creates a bottleneck in the communication between 
two classes of states. Although not impossible, the transition from one class to the 
other is difficult, which makes the convergence rather slow 

The following assumption guarantees that the bottlenecks, if any, have only 
a moderate influence: 

1 This definition is not standard. Some authors allow ex to take infinite values at 
some states but require it to be p-integrable (e.g. Tierney, 1994). 
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Definition 9.2.1. The transition kernel P is minorized if there exist a prob­
ability measure q on (D, A) and a constant f > 0 such that 

P(x, A) ~ f q(A) x E D, A E A 

The minorization of P gives a minimum chance for a direct transition from 
any state x to any event A. Indeed, it also gives a maximum chance to that 
transition because 

At this point, it can be noted that f ::; 1 (use the inequality of definition 
9.2.1 with A = D). The case f = 1 necessarily leads to P(x,.) = q. More 
importantly, the bounds of both inequalities do not depend on the initial 
state x, which suggests that the communication between the states tends to 
be uniformly favoured by minorization. Not surprisingly, a uniform rate of 
convergence is obtained. 

Theorem 9.2.1. If P is minorized by f q with f < 1, then 

11 p(n)(x,.) - p 11::; 2(1 - ft 

for any x E D. 

A proof by induction of this theorem is given in the appendix of this chapter. 

Example 9.2.1. Let us come back to the hit-and-run algorithm for simu­
lating a uniform point within the open subset Dc IRd (see section 8.3). The 
transition kernel admits a density function given by 

2 1 
f(x, y) = dWd C(x, y, D) Ix _ yld-l 

where £(x, y, D) denotes the length of the intersection between D and the 
line passing through x and y. Suppose that D is bounded with diameter J = 
SUPx,yEr.? Ix - yl. Then £(x, y, D) Ix - yld-l ::; Jd, which gives the minorization 
property 

1 . 2 IDI 1 dy P(x, A) = f(x, y)dy ~ f p(A) wlth f = -d' --::-;t and p(A) = -I-I 
A Wd 0 A D 

It remains to show that the constant ( is strictly less than 1. But a classical 
isoperimetric inequality states that the volume of D is at most equal to 
wd(Jj2)d (volume of a ball with diameter J). Accordingly 

f 
2 IDI 2 Wd (J)d 1 

dWd Jd S; dWd Jd"2 == d2 d - 1 < 1 
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ReIllark 9.2.1. In the case when [2 is unbounded, the previous reasoning 
can no longer be applied. It is even doubtful that there exists f > 0 such 
that the minorization condition P (x, A) 2': fp( A) still holds. The convergence 
of p(n)(x,.) to p is probably not uniform and not even geometric. A weaker 
mode of convergence, such as that proposed by Baxter and Rosenthal (1995), 
seems to be more appropriate. 

ReIllark 9.2.2. Regarding the Gibbs sampler for uniform distributions there 
is no general result, even in the case when [2 is bounded. Roberts and Rosen­
thal (1998) show that a uniform rate of convergence is expected when the 
boundary of [2 is twice differentiable. In the same time, Beslisle (1997) ex­
hibits examples where the convergence can be arbitrarily slow if the boundary 
is sufficiently irregular. 

9.3 Isofactorial representation 

To simplify the presentation of this section, we assume that [2 is discrete 
and that p( x) > 0 for any x E [2. Let L2 ([2, p) be the vector space of the 
numerical functions that are defined on [2 and are square integrable for p 

f E L2([2,p) {:::::::} L l!(x)p(x) < = 
xEn 

A classical result is that L2 ([2, p) is a Hilbert space when endowed with the 
scalar product < f,g > = LXEn f(x)g(x)p(x). The norm attached to the 
element f E L2([2,p) is denoted by 11 f 112 = v< f, f >. 

Let f E L2([2,p). It is not totally obvious that the quantity LYEn P(x, y)f(y) 
is finite for any x E [2. Indeed using Jensen's inequality2 and the inequality 
p(x)P(x, y) ::; p(y) stemming from the invariance of p under P, we have 

( )
2 p(y) . 1 

L P(x, y)f(y) ::; L P(x, y)f2(y) ::; L ~ f2(y) = ~ 11 f II~< = 
yEn yE[2 yE[2 P P 

So it is possible to introduce the function P f defined on [2 as follows 

Pf(x) = LP(x,y)f(y) x E [2 

yEn 

Moreover, we have Pf E L2([2,p): 

2 r.p (LXEr.? xp(x)) :s; LXEn r.p(x)p(x·) for any convex function r.p. 
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L [P f(x)Fp(x) L (L P(x, y)f(y)) 2p(x) 
xEn xEn yEn 

< L L P(x, y)f2(y)p(x) = L f2(y) L P(x, y)p(x) 

L f2 (y)p(y) = 11 f II~< 00 

yEn 

Consequently, the transition kernel P induces an operator in L2 (SI, p) by 
f ---+ P f. This operator is also denoted by P. It is clearly linear, and the 
inequality 11 P f 112 ::; 11 f 112 just established says that it is a contraction. 

Assumption 9.3.1. The operator P admits the isofactorial representation 

00 

P f(x) = L Ai u;(x) < f,Ui > 
i=O 

where (Ai, i E IN) is a sequence of real numbers and the Vi'S (the factors) 
constitute an orthonormal Hilbert basis of L2(SI,p). By convention Uo is the 
vector whose components are all equal to 1. 

Isofactorial representations are associated with Hilbert-Schmidt operators3, 

and more generally with self-adjoint4 and compact5 operators (Dunford and 
Schwartz, 1967; Brezis, 1983). Isofactorial representations are not necessarily 
unique. For instance, the identity operator Id can be expressed in an isofac­
torial form starting from any orthonormal basis of L2 (SI, p) (associated with 
Ai = 1 for each i E IN). As an immediate consequence, any linear combina­
tion of the identity and a self-adjoint. compact operator admits an isofactorial 
expansion even if it is not compact. Moreover it has the same factors as those 
of the compact operator from which it has been derived. 

Explicit examples of isofactorial expansions will be given a little later on. 
For the time being, let us examine the implications of this definition by 
considering particular choicE's of f. 

- If f = l=y (indicator function of statE' y), we obtain 

00 

P(x,y) = Pf(x) = LAiUi(X)Ui(Y)p(y) 
i=O 

3 P is a Hilbert-Schmidt operator if P admits an isofactorial expansIOn with 
Li >.; < 00. 

4 Pis self-adjoint if < Pf,g >=< Pg, f > for any f,g E L2(rt,p). 
5 P is compact if any bounded sequence (fi, i E IN) of L 2 (rt, p) admits a strongly 

convergent subsequence (Pfik,k E IN). If rt is countable, then the identity op­
erator [d is not compact. For instance, the orthonormal basis (u" i E IN) is a 
bounded sequence, but 11 [dUi -[dUJ 112 = 11 u, -UJ 112 = y12, so that (IdUi, i E IN) 
has no strongly convergent subsequence. 
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From this we derive p(x)P(x, y) = p(y)P(y, x), which means that P is re­
versible. This in turn implies that P is self-adjoint. 

- If f = Ui, then the orthonormality property gives at once 

co co 

which shows that the factor Uj is an eigenvector of P for the eigenvalue Aj. 

- If f = P(., y), then a direct calculation gives P f(x) = p(2)(x, y). On the 
other hand 

co 

Pf(x) = LAiUi(X) < P(.,y),Ui > 
;=0 

But < P(., y), Ui >= Ai Ui(Y)p(y) because P is reversible and Ui is an eigen­
vector of P. We thus obtain 

co 

p(2)(x, y) LA; u;(x) Ui(Y) p(y) 
i=O 

More generally, a simple reasoning by induction on the iteration order gives 

co 

p(n)(x, y) = L Ai Ui(X) Ui(Y) p(y) 
i=O 

Here is a consequence regarding the eigenvalues of P. 

Proposition 9.3.1. All the eigenvalues of P lie between -1 and + 1. More­
over, AO = 1 is the only eigenvalue of modulus 1. 

Proof: Since P is a contraction, we can write 

1 = 11 Ui II~ 2: 11 PUi II§ = 11 AiUi II~ = A; 

It follows that I Ai I ::; l. Note also that AO = 1 because of the convention 
Uo = l. Suppose now that IAi I = 1 for some index i > O. Let us choose a state 
x such that u;(x) #- O. Then 

p(x) = lim p(2n)(x, x) 2: lim (A6nu6(x) + A;nU;(X)) p(x) > p(x) 
n ---t CXJ n ---+ 00 

which is a contradiction. D 

We now turn to the evaluation of the rate of convergence of the Markov chain 
with transition kernel P. Since [2 is discrete, the total variation between 
p(n)(x,.) and p can be written as 
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and because of Jensen's inequality 

IIP(n)(x,.)-pI12::::: L (p(n)(x,y) _1)2P(Y) = L [p(n)(x,y)P_1 
yU2 p(y) yEn p(y) 

Now, the reversibility formulap(x)p(n)(x, y) = p(y)p(n)(y, x) can be applied, 
which leads t.o 

Expanding p(2n) (x, x) and using t.he fact that. >'0 = 1 and Uo = 1, we obt.ain 

II p(n)(x,.) - p 112::::: L Arnu;(x) 
i;tO 

At. t.his point, not.hing further can be said wit.hout additional assumpt.ions. 

Assumption 9.3.2. The set of eigenvalues has no accumulation points at 1 
and -1. 

This assumption is not. very st.rong. It is satisfied if P is self-adjoint. and 
compact. because it.s eigenvalues have at most. one accumulation point. at. 0 
(Dunford and Schwart.z, 1967; Brezis, 1983) and more generally if P can be 
written as (1- r)Id + rQ where Q is a self-adjoint., compact t.ransit.ion kernel 
and 0 < r ::::: 1. 

One way t.o express assumption 9.3.2 mat.hematically is to say that there 
exists a constant f with 0 < f < 1 such that. I>'i I ::::: f for anyi -# O. Indeed, 
we can take f = maXi;to I >'i I. Then we have 

II p(n)(x,.) - p 112::::: f2n LUT(X) 
i;to 

1 - p(x) 
p(x) 

on account of the formula Li UT (x )p( x) = 16 . Finally 

Theorem 9.3.1. If P admits an isofactorial expansion and if its eigenvalues 
have no a CCtl m ulation points at ± 1, then P is geometrically ergodic with 

f = maxI>'iI 
i;to 

6 Expand l.=x in the basis and set· = x. 

a(x) = 
1 - p(x) 

p(x) 
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Example 9.3.1. Here we take [2 = IN. P is called a Jacobi transition kernel 
if only direct transitions between neighbouring states can take place. Then 
P is an infinite tridiagonal matrix satisfying P(x, y) = 0 if Ix - yl > 1. 
A slight extension of an argument by Akhiezer and Glazman (1966) shows 
that P is a compact operator on L2(IN,p) if limr---+oo P(x, x-I) = 1. It 
follows from theorem 9.3.1 that the rate of convergence of p(n)(x,.) to p is at 
least geometric. Actually, there is little chance for it to be uniform precisely 
because of the shape of the Jacobi transition kernel which does not facilitate 
the mixing between non neighbouring states. Generally, simulation algorithms 
based on such transition kernels are easy to design and to implement but a 
price has to be paid for that in terms of the rate of convergence. 

As an illustration, let us consider the simulation of the Poisson distribution 

OX 
p(x) = exp(-O), 

x. 
x E IN 

which is invariant under the Jacobi transition kernel defined as follows 

x 0 0 
P(x, x-I) = --, P(x, x) = , P(x, x+l) = --,-------

O+x (O+x)(O+x+l) O+x+1 

Clearly, limP(x,x - 1) = 1, so that P is a compact operator. Therefore a 
geometric rate of convergence is expected. It remains to evaluate the constant 
f as well as the function ex. 

In the present case, an explicit, although tedious determination of all eigen­
values of P is possible, so that an optimal value for f can be given 

f = max I..\il = J 0 
ito 0 + 1 

The smaller 0, the faster the convergence. 

In contrast to this, the evaluation of ex is straightforward. We find explicitly 

ex(x) = 
1 - p(x) 

< p(x) -

Xl 
exp(O)---':' Ox 

For large x, ex(x) can be very large. Accordingly, it is recommended to start 
running the simulation algorithm with a small initial x value. 

Remark 9.3.1. The Jacobi transition kernel P is very similar to the tran­
sition kernel Q produced by the Metropolis-Barker procedure for simulating 
a Poisson distribution (see example 8.2.1). Indeed P and Q are related by 

1 
Q = 2(Id+ P ) 

In other words, at each iteration a transition of Q has the same chance of 
being a transition of P or no change at all. This suggests that Q is half as 
fast as P. Indeed, a direct calculation gives 
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( 1+ )n 
11 Q(n)(x,.) - P 11:s T a(x) 

The fact that Q is geometrically ergodic is not surprising since it admits an 
isofactorial expansion. Nonetheless Q is not compact; its eigenvalues have an 
accumulation point at 0.5. 

9.4 Empirical determination of the rate of convergence 

Suppose also here that the transition kernel P has the following isofactorial 
expreSSlOn 

co 

P(X,y) = LA;Ui(X)Ui(Y)p(y), 
i=O 

(assumption 9.3.1) with no accumulation of eigenvalues at ±1 (assumption 
9.3.2). The problem addressed here is to evaluate the quantity f = supi,tolAil 
empirically. 

A simple procedure is to carry out a simulation for a certain number of 
iterations, say N, then derive an experimental transition matrix and calculate 
its eigenvalues (and eigenvectors). In order to reduce the influence of the 
initial state, the states generated during the first iterations (the" burn-in" 
period) have to be discarded (Geyer, 1992). The reversibility of the Markov 
chain can also be exploited to improve the estimation of the transition kernel 
by recording not only the transitions between iterations nand n + I, but also 
those between nand n - 1. 

Example 9.4.1. This procedure has been tested by simulating the Poisson 
distribution \vith mean 9 = 100 using the transition kernel of example 9.3.1. 
In order to get an idea of the statistical fluctuations on the estimates of f, two 
sets of 10000 tlimulationtl have been carried out. The size of the simulations 
varies from 1000 (first set) to 10000 (second set) iterations. Figure 9.2 presents 
the histograms obtained. The one based on large size silOulations appears to 
be much less dispersed around the actual value of f (0.9950). 

At this point, one realizes that f must be estimated with great precision. A 
change in f from 0.99 to 0.999 implies a rate of convergence 10 times slower. 
From this point of view, the estimation procedure cannot be considered as 
satisfactory. Indeed it is flawed in that it cannot say what should be the size 
of the simulation so as to produce a reliable estimate for f. In what follows, 
we propose a criterion using the integral range introduced in chapter 4 to 
answer that question. 

Let us denote by X a stationary Markov chain with transition kernel P. 
Since P is reversible, there is no inconvenience in assuming X indexed by the 
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0.980 0.985 0.990 0.995 1.000 

0.980 0.985 0.990 0.995 1.000 

Fig. 9.2. Histogram of the estimates of E obtained from 10000 simulations of size 
1000 (top) and 10000 (bottom) 

relative integers. Let J E L2 ([2, p). Then J(X) is a second-order stationary 
stochastic process (but not necessarily markovian) with mean Tnf =< j, Uo >, 
variance a-] = Li,tO < J, 'Ui >2, and covariance function 

Cf(n) = L A!n l < J, Ui >2 

i,tO 

Because the eigenvalues of P do not accumulate at ±1 (assumption 9.3.2) 
the integral range of Cf is finite and equal to 

+00 
1 L 1 L 1 + Ai . 2 

A f = -----,,- C J (n) = 2" -1 ' < j ,Ui > a- a -A' 
f n=-oo f i,tO Z 

(cL proposition 4.2.1). We note that Af is maximum if J is proportional to 
the eigenvectoru1 associated to the greatest eigenvalue A1 different from 1. 

In what follows, we propose to estimate A by using the same procedure as 
before. The only supplementary requirement is that the simulation size must 
be large enough to allow the estimation of Au1 • 
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Algorithm 9.4.1. (Estimation of >.) 

1. Set N to some prespecijied value and simulate the Markov chain X zn 
V = {O, ... , N }. 

2. Estimate the experimental transition kernel P* from the simulation. 
3. Estimate the eigenvalues and the eigenvectors of P*. Let ui be the eigen­

vector associated to the greatest eigenvalue less than 1. 
4. Consider the realisation of ui(X) in V , and plot log s2(WIV) versus 

log I W I for several subdomains W that divide V. 

5.1. If a straight line with slope -1 results, then return the eigenvalue that 
has the greatest modulus less than 1. 

5.2. Otherwise, increase N, extend the simulation of X and goto 2. 

o 9930 0 9935 0 9940 0 9945 0.9950 0.9955 0 9960 

Fig. 9.3. Histogram of the (' values built from 1000 simulations 

Example 9.4.2. This algorithm has been applied 1000 times on the Markov 
chain of example 9.4.1. The size of the simulations range from 300000 to 
900000 iterations. Each simulation produces an estimate of c, and their his­
togram is displayed in Figure 9.3. It is interesting to compare this histogram 
with that at the bottom of Figure 9.2. The statistical fluctuations on the 
integral range of Ul (X) lead to variations on c between 0.9936 and 0.9958, 
with an average of 0.9948 and a standard deviation of 0.0007. As seen above, 
the actual value of c is 0.9950. 

Appendix: Proof of theorem 9.2.1. 

Let us put h(n) (x, A) = p(n)(x, A)-p(A). We have to show that Ih(n) (x , A) I :S 
(1 - f)n. This will be done by induction. 
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Consider first the case n = l. Since p is invariant under P, we have 

p(A) = in p(dx)P(x, A) ~ fin p(dx)q(A) = fq(A) 

Consequently, we can write p(A) - fq(A) = (1 - f)r(A) where r is another 
probability measure on (D, A). In terms of r, the minorization inequality may 
be written 

h(x, A) ~ fq(A) - p(A) = -(1 - f)r(A) 

By complementation, this inequality becomes 

h(x, A) = -h(x, AC ) ::; (1 - f)r(N) 

so that we obtain 

-(1 - f)r(A) ::; h(x, A) ::; (1 - f)r(AC ). 

In particular 
Ih(x,A)I::; 1-f 

Suppose now that Ih(n)(x, A)I ::; (1- f)n for some n ~ l. Since p is invariant 
under p(n), we have 

Now, according to the Hahn decomposition (Halmos, 1969), the signed mea­
sure h(n)(x,.) is the difference of two positive measures with disjoint supports. 
More precisely, there exists Dn E A such that 

A C D~ ===? h ( n ) ( x, A) ::; 0 

Let us separate the positive and the negative part of h(n)(x,.) 

to get an upper bound for h(n+l)(x, A) 

h(n+l)(x, A) < (1 - f)r(AC)h(n)(x, Dn) - (1- f)r(A)h(n)(x, D~) 

(1- f)r(N)h(n)(x, Dn) + (1 - f)r(A)h(n)(x, Dn) 

(1 - f)h(n)(x, Dn) ::; (1 - fr+ 1 

which involves the inequalities obtained for h(y, A) (first line), the fact that 
h(n)(x,.) has a zero integral (second line), and the induction hypothesis as 
well as the positivity of h(n)(x,Dn) (third line). Similarly, h(n+1)(.v,A) can 
be shown to be bounded from below 
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h(n+l)(X, A) > -(1 - f)r(A)h(n)(x, Dn) + (1 - f)r(Ac)h(nl(x, D~) 

-(1- f)r(A)h(nl(x, Dn) - (1 - f)r(AC)h(n)(x, Dn) 

-(1 - t}h(nl(x, Dn) 2 -(1 - ft+1 

and finally 

which is the desired result. 

Exercises 

D 

9.1 Let P be a irreducible, aperiodic and p-invariant transition kernel on 
(D, A). Suppose that a iterate p(n o) of P satisfies the minorization condition 
of definition 9.2.l. Show that P is uniformly ergodic. 

9.2 Let p be a distribution on IN that is the limit distribution of a Markov 
chain with Jacobi transition kernel P. For each n > 0, we put INn = {n, n + 
1, ... }. Let Pn be the transition kernel on INn X INn defined by Pn(x, y) = 
P(x, y) for all x, yE INn except Pn(n, n) = P(n, n) + P(n, n - 1). Show that 
Pn is irreducible and aperiodic. What is its invariant distribution? 



10. Exact simulations 

The previous chapter highlighted the difficulties in determining the rate of 
convergence of an iterative Markov algorithm quantitatively. This is very 
frustrating as the only problem is to generate one state from the target dis­
tribution: then it suffices to run the transition kernel from that state to 
produce as many as desired. 

A decisive breakthrough was made by Propp and Wilson in 1996. They 
demonstrated that knowing only the transition kernel it is possible to simu­
late the target distribution on a finite state-space. To achieve this goal, they 
use a technique called coupling from the past. This chapter describes it in 
terms of backwards iterations as in Diaconis and Freedman (1999). 

Since the publication of Propp and Wilson's seminal paper, considerable lit­
erature has been devoted to exact simulations. New algorithms have come out 
as in Fill (1998). Exact simulations are now possible in infinite state-spaces 
(Murdoch and Green, 1998; Diaconis and Freedman, 1999; Mira et al., 1999; 
Fill et al., 2000). Stochastic geometry constitutes one of the most promising 
fields of applications where original algorithms are being set up for simulating 
point processes (Hiiggstrom et al., 1999; Kendall and M!2lller, 1999) or object 
based models (Kendall and Thonnes, 1999). A comprehensive review of exact 
simulation in stochastic geometry is M!2lller (2000). 

10.1 Propp and Wilson's algorithm 

10.1.1 Principles 

Let [2 be a state-space, supposed here to be finite (unless stated explicitly). 
Let p be a distribution on [2 such that p{x) > 0 for any x E [2. Suppose that 
p is the limit of an irreducible and aperiodic Markov chain with transition 
kernel P 

lim p(n)(x, y) = p(y) 
n---+oo 

x, yE [2 

Let [2Jl be the set of all mappings from [2 to [2. A random mapping F is a 
random element of [2Jl. Its distribution is given by a probability measure p 
on [2Jl 

p(J) = P{F = J} 
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Definition 10.1.1. The random mapping F generates the transition kernel 
P if 

P{F(;r) = y} = P(x, y) x, yE D 

Relllark 10.1.1. Given a transition kernel P, there always exists a random 
mapping that generates P. Take for instance 

/1(/) = IT P (x, f(x)) 
xEn 

The proof is the topic of exercise 10.1. 

Let (Fn, n 2: 1) be a sequence of i.i.d. random mappings that generate P. 
Instead of composing the mappings in direct order (Fn 0·· .oF1 ), we compose 
them in reverse order (Fl 0 ... 0 Fn). Because the random mappings are 
independent, we have 

p(n)(x, y) x, yE D 

Let us also put 
Dn = Fl 0 ... 0 Fn(D) n> 1 

The Dn's constitute a decreasing sequence of nonempty random sets: 

Because D is finite, their intersection Doo 
Moreover we have 

nn>lDn cannot be empty. 

Theorelll 10.1.1. If#f2co = 1 a.s ... then Doo ~ p. 

Proof: Let yE D. We always have 

lim P{y E Dn}, 
n---+oo 

and also 

p(n)(y, y) 

Therefore 
P{y E Doo} 2: lim p(n)(y, y) = p(y) 

n---+oo 

Now suppose that #Dco = 1 holds almost surely. Then it follows p{ Doo 

{y}} 2: p(y) for any y, as well as LYEn P{Doo = {y}} = 1. This is possible 

only if P{Doo = {y}} = p(y) for any yE D. D 

Because oftheorem 10.1.1 the following algorithm works provided that Doo is 
almost surely a singleton. In the initialization step Id stands for the identity 
mapping on D. 
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Algorithlll 10.1.1. (Propp and ¥Vilson) 

1. Set g = Id. 
2. Generate f ~ J.l and put g = go f. 
3. If #g(D) > 1, then goto 2. 
4. Deliver g( D). 

In order to see how this algorithm works in practice, we consider a state­
space D with 4 states. Figure 10.1 shows realizations of the first 3 random 
mappings and their composition. 

r /'" 
f, f~ f, f) f~ f, 

Fig. 10.1. Running Propp and Wilson's algorithm for 3 iterations. Convergence 
has not occurred yet since #fh = 2 (the two states of [J3 are depicted as white 
disks) 

Assuming that a single state has been obtained after 5 iterations, Figure 
10.2 shows a complete run of Propp and Wilson's algorithm. A closer look 
at the figure shows that all trajectories have already "coalesced" after run­
ning h. One might think that the state thus obtained can be regarded as a 
realization of the target distribution. However this is generally not the case 
because the distribution of the first coalescence state may be biased. A simple 
counterexample is proposed in exercise 10.2. 

Still in the case when Doo is sI most surely a singleton, Propp and Wilson 
introduce the (random) number of iterations for coalescence 

N = min{n 2': 1: #Dn = I} 

Proposition 10.1.1. The complementary distribution of N is submultiplica­
tive. 

P{N>m+n} :S:P{N>m}P{N>n} 
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f 5 f J f , 

Fig. 10.2. All trajectories have coalesced after 5 iterations. The common state 
(represented as a whi te disk) can be regarded as a realization of the target distri­
bution 

Proof: For each rn, n 2: 1 consider Dm ,m+n = Fm+l 0·" 0 Fm+n (D). Note 
that N ::; m + n is ensured if Dm or Dm ,m+n is a singleton. Accordingly, N > 
rn+n implies #Dm > 1 and #Dm,m+n > 1. The result follows because #Dm > 1 
and #Dm,m+n > 1 are independent events, and because P{#Qm,m+n > I} = 
P{#Qn > I} = P{N > n}. D 

Other results related to the mean coalescence time can be found in Propp 
and Wilson (1996). 

10.1.2 Condition for a singleton 

The following example shows that Doo is not always a singleton. 

Exalllple 10.1.1. Take D = {x , y} and consider the random mapping that 
swaps x and y or keeps them unchanged with the same probability 0.5. The 
associated transition kernel is 

P = ( 0.5 
0.5 

0.5 ) 
0.5 

P is clearly irreducible, aperiodic and its invariant distribution is uniform . 
However Dn cannot converge to a singleton because both states x and y are 
in the range of each realization of the random mapping. 

Consequently, the fact that the random mapping generates P is not sufficient 
for Doo to be a singleton. Other assumptions are required. This problem is 
now addressed. 

The first step is to extend P to a transition kernel on the family P* (D) of 
non-empty subsets of D using the formula 
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PF(A, B) = P{F(A) = B} A, BE P*(D) 

This new transition kernel is written with a subscript as it depends on the 
random mapping F. Of course PF({X},{y}) = P(x,y). Observe also that 
P(A, B) can be positive only if#A ;::: #B because #f(A) ::; #A for each f E DD 

and each A E D. The iterated transition kernel pj,n) satisfies 

Recall that a state A E P* (D) is said to be recurrent if a Markov chain 
with initial state A returns to A almost surely. Otherwise, A is said to be 
transient. The following characterization of transient or recurrent states is 
standard (e.g. Feller, 1968): 

Theorem 10.1.2. A is recurrent or transient depending on whether the se­

ries with general term pj,n) (A, A) diverges or converges. In the transient case, 

the series with general term pj,nl(B, A) is convergent whatever the state B. 

Len1ma 10.1.1. A recurrent state communicates only with states with the 
same cardinality. 

Proof: Suppose that A is recurrent. If B is accessible from A, then A is also 
accessible from B (if not, A would be transient). The existence of a path 
from A to B implies #A ;::: #B. Similarly, the existence of a path from B to A 
implies #B ;::: #A. Therefore #A = #B. 0 

The following lemma shows how the recurrent and transient states of P* (D) 
are arranged. 

Lemma 10.1.2. If A is recurrent, any B C A is recurrent. If A is transient, 
any B ::) A is transient. 

Proof: Because both parts of the lemma are equivalent, only the first part 
needs to be established. Let A and B two non-empty subsets of D with B C A. 
Denote by CB the family of all subsets of A with the same cardinali ty as B, If 
F1o ... oFn(A) = A, then there exists C E CB such that F1o ... oFn(C) = B. 
Accordingly 

pj,nl(A, A) ::; L pj,nl(C, B) 
GEe B 

Suppose now that A is recurrent. Then we have by theorem 10.1.2 

00 00 

00 = L pj,nl(A, A) ::; L L pj,nl(C, B). 
n=O 

This implies the existence of C E CB such that 
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co 
L pj,n)(C, B) = 00, 

n=O 

and this formula is sufficient to ensure that B is recurrent (theorem 10.1.2). 
o 

Theorelll 10.1.3. #[2co = 1 a.s. if and only if the only recurrent states of 
P* ([2) are the singletons. 

Proof: Let A be a non-empty subset of [2. For each n ~ 1 we have Fl ° ... ° 
Fn(A) C [2n. If A is recurrent, then lemma 10.1.1 implies #F1o ... oFn(A) = #A 
a.s., so #A::; #[2n a.s. Consequently #A ::; minn2':l #[2" = #{lco. Now #[2co = 1 
a.s. gives #A = 1 at once. 

Conversely, suppose that the only recurrent states are the singletons. We are 
going to prove that P{ #{lco = I} = 1. or equivalently, that P{ [2co = A} = 0 
for any A C [2 such that #A > 1. Given the definition of [2co and using 
Fatou's lemmal, we can write 

P{[2co = A} = P{liminf([2n = A)} ::; liminfP{[2n = A} 

But lim inf P{ [2n = A} = 0 because A is transient: by application of theorem 

10.1.2, the series of general term pj,n)([2,A) = P{[2n = A} is convergent. 
o 

Let M be the set of all non-negligible realizations of F (J E M if and only 
if p(J) > 0), and let Mc be the set of all finite compositions of elements 
of M: f E Mc if and only there exist n ~ 1 and h, ... , fn E M such that 
f = fn 0··· ° h· In particular M C Mc. 

Theorelll 10.1.4. The following four assertions are equivalent: 
(1) #[2co = 1 a.s. 
(2) For all x, yE [2 there exists f E Mc such that f(x) = f(y). 
(3) There exists a constant mapping f E Mc. 
(4) For each z E [2, there exists f E Mc such that f([2) = {z}. 

Proof: The implications (4) ===} (3) ===} (2) are trivial. The proof is 
com pleted by showing (2) ===} ( 1) and (1) ===} ( 4). 

Suppose that assertion (2) holds. Let x, y E [2 with x =I y. There exists 
f E Mc such that f(x) = f(y)· We put z = f(x) = f(y)· The mapping f 
is a path from {x, y} to z, but there exists no return path from z to {x, y}. 
So the state {x, y} is transient. This shows that each state of P* (S?) with 

1 The inequality P{liminf An} ::; liminf P{An} holds for any sequence of events 
(An, nE IN). 
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cardinality 2 is transient, from which we derive by lemma 10.1.2 that each 
state with cardinality > 1 is transient. Therefore the only recurrent states 
are singletons, which is equivalent to #Doo = 1 a.s. by theorem 10.1.3. This 
proves (2) ===? (1). 

It remains to prove (1) ===? (4). Suppose that P{ #[loo = I} = 1. According 
to theorem 10.1.1 we know that P{Doo = {z}} = p(z) > 0 for all z E Q. By 
Fatou's lemma, we have P {D= = {z}} ::; lim inf P {Qn = {z} }, from which 
it follows that P {Qn = {z}} > 0 provided that n is large enough. But Dn = 
Fl 0 ···0 Fn(D), so there exist realizations h, ... , fn of F1 , ... , Fn such that 
h 0 .. ·0 fn (D) = {z}. Assertion (4) is thus established with f = h 0 .. ·0 fn. 
o 

10.1.3 Monotonic Monte Carlo 

We now come to a practical point. The original version of Propp and Wil­
son's algorithm becomes unpracticable when the number of states is very 
large2 . Fortunately, algorithmic simplifications may occur in the case when 
the random mapping is increasing w.r.t. a partial order on the state-space. 
The resulting algorithm proves to be sufficiently efficient to make the simu­
lation of Ising's model possible on a 4200 x 4200 grid (the number of states 
of this model is 24200X4200). 

Suppose that Q is endowed with a partial order denoted by ::5. (The pair 
(D,::5) is often called a poset). Recall that a partial order relation is reflexive 
(x ::5 x), antisymmetric (if x ::5 y and y ::5 x, then x = y) and transitive (if 
x ::5 y and y ::5 z, then x ::5 z). The relation x ::5 y can also be written y ~ x, 
which amounts to saying that x is a predecessor of y or that y is a successor 
of x. If x is neither a predecessor nor a successor of y, then x and y are said 
to be incomparable. 

Definition 10.1.2. The mapping f from D into D is said to be increasing 
(in short f/') if f(x) ::5 f(y) whenever x ::5 y. 

Increasing mappings can be characterized simply using the up-sets and the 
down-sets of Q: 

Definition 10.1.3. A subset X of D is an up-set if it contains all SHccessors 
of its elements (x E X and y ~ x implies y EX). Similarly X is a down­
set if it contains all predecessors of its elements (x E X and y ::5 x implies 
yE X). 

2 Another related question is to know whether Propp and Wilson's algorithm can 
work when the state-space is infinite. Diaconis and Freedman (1999) exhibit one 
circumstance where this is possible: the space-state is equipped with a metric 
that makes the realizations of the random mapping lipschitzian. 
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Let U and D be the families of all up-sets and all down-sets of O. Clearly U 
and D are stable under union and intersection. They contain the empty set 0 
and O. Moreover up-sets and down-sets are complementary3. The following 
proposition shows that up-sets and down-sets play the same role for increasing 
mappings as open sets and closed sets for continuous mappings. 

Proposition 10.1.2. The mapping f is increasing if and only if the inverse 
image of each up-set is an up-set, or if and only the inverse image of each 
down-set is a down-set 

Proof: Because up-sets and down-sets are complementary, it suffices to 
establish the proposition for up-sets only. 
Suppose that f is increasing. We want to show that f- 1 (U) E U for each 
U E U. Let x, y E 0 with x E f- 1 (U) and y ~ x. Then we have f(x) E U and 
f(y) ~ f(x) (J ?). Since U is an up-set, it follows f(y) E U or equivalently 
yE f-l(U). Therefore f-l(U) is an up-set. 
Conversely, suppose that the inverse image by f of each up-set is an up-set. 
Let x, y E 0 such that :r ::::: y, and consider the subset Mf(x) = {z EO: 

z ~ f(x)}. Clearly Mf(x) E U, so f- 1 (Mf(x») E U. But x E f- 1 (Mf(x») 
and y ~ x, so yE f-l(Mf (x»). Therefore f(y) E Mf(x), that is f(y) ~ f(x). 
D 

Assume that the transition kernel P can be generated by a random mapping 
F that has all its realizations increasing. Assume further that 0 admits a 
minimal state 6 and a maximal state i such that 6 ::::: x ::::: i for any x EO. 
Let (Fn, n 2:: 1) be a sequence of independent copies of F. Because the Fn's 
are increasing, we can write 

F1 o ... oFn(6) ::::: F1 o ... oFn(x) ::::: F1 o ... oFn(1) 

so that FI 0·· .oFn(O) = FI 0·· .oFn(i) = z implies FI 0" .oFn(x) = z for each 
x E O. We end up with the following algorithm where only the trajectories 
from 0 and i are considered: 

Algorithm 10.1.2. (Propp and Wilson for increasing mappings) 

1. Set g = Id. 
2. Generate f ,...., Jl and put g = 9 0 f· 
3. If g(O) '" g(1), then goto 2. 
4. Deliver g(O). 

3 Let U E U. Suppose that x E fl\U and let y :::: x. If y E U, this would imply 
x E U, which is a contradiction. Therefore yE fl\U and fl\U is a down-set. 
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Fig. 10.3. E xact simulation using Propp and Wilson's algorithm in the case of a 
poset with extremal elements. If the transition kernel is generated by an increasing 
random mapping, then the trajectories cannot intersect. The coalescence of the 
trajectories from the extremal elements guarantees that of all trajectories 

Since P{F1 0 ... 0 Fn(O) = i} = p(n)(o, i) ---+n-+oo p(i) > 0, there exists 
f = h 0 ... 0 fn E Aie such that f(O) = 1. And because f is increasing , we 
have f(x) = i for all x E D. It follows that f is a constant mapping , which is 
sufficient to ensure that [loo is almost surely a singleton (theorem 10 .1.4). The 
random number of iterations N required for coalescence is bounded above by 
min(No,l , N1 ,o), where NO ,l (resp. N1 ,o) is the number of iterations to jump 
from 6 to 1 (resp. from i to 0). 

What are the properties of a transition kernel generated by an increasing 
random mapping? 

Proposition 10.1.3. If P is gen erated by an increasing random mapping, 
then P is stochastically monotonic in the sense that P(x , U) ~ P(y, U) for 
any up-set U and any x ::S y. Equivalently P(x, D) 2: P(y, D) for any down­
set D and any x ::S y. 

Proof: Suppose that the increasing random mapping F generates P. Let 
U E U and x ::S y. Then F(x) E U implies F(y) E U, so 

P(x, U) = P{F(x) E U} ~ P{F(y) E U} = P(y, U), 

which establishes the stochastic monotonicity for up-sets. Now let D E 'D. 
Then D\D is an up-set, so 

P(x, D) = 1 - P(x, D\D) > 1 - P(y, D\D) P(y, D) 

which completes the proof. 0 

Remark 10.1.2. It should be pointed out that a random mapping that 
generates a stochastically monotonic transition kernel is not necessarily in­
creasing. More surprisingly, there exist mono tonic transition kernels that are 
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generated by none increasing random mapping Machida (1999). See exercise 
10.5. 

Example 10.1.2. We are concerned with the exact simulation of the bino­
mial distribution with index k = 10 and parameter r = 0.7 

A transition kernel for p can be obtained using Metropolis algorithm (Barker 
variation). Explicitly, we find 

P(x,x-I) 

P(x,x+I) 

(1 - r)x 
r(k-x+I)+(I-r)x 

r(k - x) 
r(k - x) + (1 - r)(x + 1) 

and P(x, x) = 1 - P(x, x-I) - P(x, x + 1). Because P is a tridiagonal 
matrix, it is not difficult to devise a random mapping that generates P. Take 
for instance 

{

X - 1 
F(x) = x 

x+I 

if U < P (x, x-I) 
if P(x, x-I) ~ U < 1 - P(x, x + 1) 
if U 2 1 - P (x, x + 1) 

where U is a uniform variable on ]0,1[. Note that F(x) = x + 1 and F(x + 
1) = x cannot take place for a given U. In such a case, we would have 
1- P(x, x + 1) ~ U < P(x + 1, x), which is not possible because the entries 
of P satisfy P( x, x + 1) + P( x + 1, x) = 1. Consequently, F is increasing and 
P is stochastically monotonic. 
The random mapping F has been used in algorithm 10.1.2 to produce a set 
of 10000 exact simulations. A first observation is that the statistical prop­
erties of the binomial distribution have been properly reproduced. Special 
attention has also been paid to the number of iterations for coalescence. The 
values on the histogram on Figure 10.4 range from 5 to 53. Their mean is 
equal to 14.123 iterations, which is not much larger than the integral range 
(8.689) associated with the second greatest eigenvalue of the transition kernel 
(see section 9.4). Their standard deviation is 5.472 iterations, which gives a 
coefficient of variation of 0.387. It should be also mentioned that the gener­
ated value is usually not independent of the number of iterations to produce 
it. For instance, there is only one state (5) that can be generated in 5 itera­
tions exactly. Note however that the correlation coefficient between the value 
generated and the number of iterations is quite small (0.07). 
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Fig. 10.4. Histogram of the number of iterations to simulate exactly a binomial 
distribution with parameter 0.7 and index 10 using Propp and Wilson's algorithm 
for monotonic Markov chains 

10.2 Fill's algorithm 

In the case where the state-space Q is partially ordered with extremal states, 
Fill's algorithm can be regarded as an alternative to Propp and Wilson's 
algorithm. 

Let P be the matrix defined by 

p(x ) p (x , y) = p(y) P(y, x) x,yE Q 

P are clearly non-negative entries. Moreover , all the entries of each row add 
up to 1 as a consequence of the invariance of p under P: 

""~ 1 "" 1 ~ P(x, y) = -(x) ~ p(y)P(y, x) = -(x)p(x) = 1 
yEn p yEn p 

Accordingly P is a transit ion kernel. It is called the time-reversal transition 
kernel associated with P. In the case when P is reversible, then P = P. A 
simple calculation shows that the time-reversal transition kernel associated 
with p(n) is pen) for each n > O. 

From now on , we assume that P can be generated by an increasing mapping 
F. In that case, p (n) is stochastically monotonic (see proposition 10.1.3), and 
we have p(n)(i, 0) ::; p (n)(x,O) for each x E Q because {O} is a down-set. 
Accordingly 

p(x) p(n)(i , 0) < p(x) p(n)(x, 0) = p(O) p(n)(o, x) 

Therefore we can write (provided that n is large enough) 
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p(x) < p(nl(o x) ~ p(O) A 

- 'p(nl(l, 0) 
x E [2 

This gives a way to simulate p using the acceptance-rejection method. At 
first a candidate state x is generated w.r.t. the distribution p(n)(o, -). Then 
it is accepted with probability 

p(x) p(n)(i,O) 
ocn(x) = p(n)(o, x) p(O) 

p(n)(i,O) 

p(n)(x,O) 

A candidate state is generated very simply by running the transition kernel P 
n times. The following lemma is useful to simulate an event with probability 
ocn(x): 

Lemma 10.2.1. 

Proof: Because Fl 0 ... 0 Fn is increasing, the event Fl 0 .. • oFn(i) 0 
implies Fl 0 ... 0 Fn(x) = O. Accordingly 

P{Flo ... 0 Fn(i) = 0 1\ Fl 0··· 0 Fn(x) = O} 
P{Fl 0'" 0 Fn(x) = O} 

P{Fl 0 .. , 0 f'n(i) = O} 

P{Fl 0··· 0 F'n(x) = O} 
p(n)(i,O) 
p(n)(x,O) 

o 

Using lemma 10.2.1, it becomes easy to simulate an event of probability ocn(z) 
because a trajectory from x to ° is already available. This is the one that has 
been produced from 0 to x during the generation of the candidate state. We 
finally end up with the following algorithm4 : 

Algorithm 10.2.1. (Fill) 

1. Set n = l. 
2. Put n = n + l. 
S. Generate x ~ p(n)(o, .). Save the states Xo = 0, Xl, ... , Xn = x generated 

between 0 and n. 
4. Put Yn = 1. For i = n, n - 1, ... , 1 generate h ~ fl I h(x;) = Xi-l and 

put Yi-l = h(Yi) . 
5. If Yo =j:. 0, then goto 2. 
6. Deliver x. 
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Fig. 10.5. Exact simulation using Fill 's algorithm. A candidate state x is generated 
by running the transition kernel P. Given the trajectory produced, a new trajectory 
is generated from i using the time-reversal transition kernel F. The state x is a 
simulation from p if the new trajectory terminates at 6 

Figure 10.5 illustrates how this algorithm works. 

This algorithm stops at the nth iteration with probability 

- (n) A A L p (n) (o , x)an(x ) = p ~1 , 0) 
x EJJ p(O) 

Let (Xi, i 2: 0) be the Markov chain with transition kernel P . A slightly more 
elaborate calculation (M0ller and Schladitz, 1998) shows that 

This formula is interesting because the right-hand side member is the product 
of the distribution of x and that of n. As a consequence , the state generated 
is independent of the number of iterations to get it. For that reason Fill's 
algorithm is said to be interruptible (Fill, 1998 ; Thonnes, 1998). 

Exalllple 10.2.1. Algorithm 10.2.1 has been used to carry out 10000 si mu­
lations of the binomial distribution of example 10.1.2. The histogram of the 
number of iterations obtained is reproduced on Figure 10.6. This simulation 
exercise shows that Fill's algorithm performs better than Propp and Wilson 's 
algori thm in the case of the distribution considered. The mean number of it­
erations is slightly smaller (12.281 instead of 14. 123). A bigger difference is 
observed in the standard deviations (1.667 instead of 5.472). The histogram 
produced by Fill's algorithm is much tighter. Its values range between 10 and 

4 Step 2 of Fill's algorithm is usually written as "Put n = 2n". Here the step 
" Put n = n + I" has been considered in order to facilitate the comparison of the 
performances between b etween both algorithms. 
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o 
o 

Fig. 10.6. Histogram of the number of iterations to simulate exactly a binomial 
distribution with parameter 0.7 and index 10 using Fill's algorithm 

19. The independence between the value generated and the number of iter­
ations has been confirmed experimentally. Their correlation coefficient was 
found equal to -0.012. 

Exercises 

10.1 The aim of this exercise is to construct a random mapping that gener­
ates the transition kernel P. 
1) Let E be a non-empty subset of D. Prove the " multinomial identity" 

L IT P (;1; , f (.r ) ) = IT L P (x, y) = 1 

2) Apply this identity to show that the random mapping F with distribution 

fJ(J) = IT P (x, f(x)) 
xES? 

generates P. 
3) Show that the coordinates of F are independent . 
4) Show that #Doo = 1 almost surely. 

10.2 When running the Propp and Wilson's algorithm, the first coalescence 
state may be privileged. This exercise illustrates this problem 
Suppose D = {x , y}, and consider the random mapping that either inter­
changes x and y with probability p or sends all states to x with the comple­
mentary probability q = 1 - p (p, q > 0). 
1) Determine the transition kernel and the limit distribution. 
2) Show that x is always the first coalescence state . 

10.3 Let P be a transition kernel on the finite state-space D with target 
distribution p. Assume that P satisfies the minorization condition 
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P(x, y) 2: fq(y) x, yE fl 

for some probability measure q on fl and some scalar 0 < f < 1. 
1) Show that P can written as a mixture of two transition kernels 

P(x, y) = fQ(X, y) + (1 - f)R(x, y) x, yE fl 

with Q(x, YJ! independent of x. 
2) Using the fact that Q can be generated by a random constant mapping, 
show that the trajectories always coalesce when simulating exactly the target 
distribution P using Propp and Wilson's algorithm. (Observation by Mur­
doch and Green, 1998). 
3) Give an upper bound for the complementary distribution function of num­
ber of iterations for coalescence. 

lOA Show that in the case where the finite state-space fl is equipped with a 
metric d, then theorem 10.1.4 can be replaced by the more flexible statement: 
#flco = 1 a.s. if and only if for each pair of distinct points x and y in fl there 
exists f E Mc such that d[J(x), f(y)] < d(x, y). 

10.5 Let fl = {t, x, y, z} with t :::S x, y :::S z, x and y being incomparable. 
1) What are the up-sets of fl? 
2) Let P be the transition kernel defined as follows 

Show that P is stochastically monotonic 
3) Suppose that P is generated by an increasing random mapping F. Show 
that 

P{F(t) = x} = P{F(t) = x, F(x) = z, F(y) = x, F(z) = z} 
1 

2 

1 
P{F(z) = x} = P{F(t) = t, F(x) = t, F(y) = x, F(z) =;r} = -

2 

and conclude to a contradiction (this counter-example was discovered by 
Machida, 1999). 

10.6 Let (fl,:::s) be a poset. A mapping f from fl to fl is said to be decreasing 
if f(x) C::: f(y) whenever x:::s y. 
1) Show that f is decreasing if and only if the inverse image by f of an up-set 
(resp. of a down-set) is a down-set (resp. an up-set). 
2) Let P be a transition kernel on fl with limit distribution p. Suppose 
that P is generated by a decreasing random mapping. In that case, show 
that algorithm 10.1.2 is still applicable to simulate the target distribution p 

exactly (Kendall 1996,1997). 



Part III 

The models 



11. Point processes 

There are at least three reasons for focussing attention on the particular 
class of random sets composed of the point processes. Firstly, despite the 
rudimentary character of their constitutive elements, point processes can ex­
hibit rather complicated structures (cf. Figure 11.1). Secondly, they can be 
used for modelling a wide range of natural phenomena (trees in a forest, 
precious stone deposits, earthquake epicentres , stars in galaxies, populations 
in settlements ... ). Thirdly, point processes can act as basic ingredients for 
designing more complicated models . 
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Fig, 11.1. A few examples of point processes. From top to bottom, intersections 
of random lines, a cluster process, a repulsion process and purely random points. 
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One-dimensional point processes have been extensively studied and are the 
object of a vast amount of literature. The seminal work by MateI'll (1960) 
still constitutes an excellent statial reference, even if more up to date surveys 
are now available (Stoyan et al., 1987; Daley and Vere-Jones, 1988). 

This chapter deals with two locally finite point processes, namely the Pois­
son point process and the Cox process. In addition to reviewing their main 
properties, the problem of their conditional simulation is addressed. 

11.1 The Poisson point process 

Because of its practical importance, the stationary case is considered first. 

11.1.1 The homogeneous Poisson point process 

As was seen in section 2.4, the statistical properties of this locally finite point 
process can be specified by its spatial distribution. In this chapter, N denotes 
the counting functional of the process. It is defined on the family Ba of the 
bounded borelians of IRd . 

Definition 11.1.1. The spatial distribution of a homogeneous Poisson point 
process with intensity B is characterized by the following two properties: 

i) if A E Ba, then the number N(A) of points in A is a Poisson random 
variable with parameter B IAI where IAI denotes the d-volume of A 

[BIAlln 
P{N(A)=n} = exp{-BIAI} --,-

n. 

ii)if (Ai, i E I) is a finite family of pairwise disjoint elements of Ba, then 
the random variables (N (Ai), i E I) are mutually independent. 

Since the mean value of a Poisson distribution coincides with its parameter, 
the mean number of points within A is equal to BIAI. In particular, B is the 
mean number of points per unit d-volume. 

Remark 11.1.1. It is not obvious that this definition completely character­
izes a spatial distribution. Indeed, let (A;, i E I) be an arbitrary finite family 
of (not necessarily disjoint) elements of Ba, and let (n;, i E I) be a finite 
family of integers. For each subset J of I, we denote by AJ the set of points 
that belong to all the Aj's indexed by J E J and only to them 1. The AJ's 
are pairwise disjoint. Accordingly, property ii) of the definition implies 

1 Formally, AJ = nJEJ A J \ Uk\lJ A k . For instance, A{i} is the set of all points 

contained only in A,. 
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p{ 1\ N(A;) = ni} 
'El 

"""' p{ 1\ N(AJ) = nJ} ~ O""JCI 

L IT P{N(AJ) = nJ}, 
O""Jcl 

in which the sums are over all sequences of integers (nJ, J C 1) such that 
I:J3i nJ = ni for any index i E I. It follows that 

p{ 1\ N(A;) = ni} 
zEI 

by property i). 

The following theorem shows that the points of a homogeneous Poisson point 
process are independently and purely randomly located. 

Theorem 11.1.1. Let A E Ba. If N (A) = n, the n points are independent 
and uniform in A. 

Proof: Suppose N(A) = n, and consider the random closed set made up of 
these n points. Its avoiding functional (cf. section 2.3) can be written as 

P{N(A n K) = 0 I N(A) = n} 

P{N(K n A) = 0 1\ N(A\K) = n} 
P{N(A) = n} 

P{N(K n A) = O} P{N(A\K) = n} 
P{N(A) = n} 

exp{ -elK n AI} exp{ -elA \KI} (elA \~{I)n 
n. 

exp{ -eIAI} [elAlln 
n! 

for each compact set K E K. This completes the proof because IA\KI/IAI is 
the avoiding functional at K of a point uniformly located in A (cf. example 
2.3.1).0 

This theorem leads to a very simple algorithm for simulating a Poisson point 
process within A: 

Algorithm 11.1.1. (Simulation of a homogeneous Poisson point process) 

1. Set X = 0. 
2. Generate n ~ Poisson(eIAI). 
3. If n > O. then for i = 1, ... , n generate Xi ~ U ni f (A) independently. 
4. Deliver X = {Xl, ... , Xn }. 
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Fig. 11.2. Realization of a homogeneous Poisson point process, 

11.1.2 The non-homogeneous Poisson point process 

In this section, the Poisson intensity B is no longer constant. It varies through 
space. In other words, B = (B(x), x E JRd) is now a function that is supposed 
to be positive and locally integrable. For each A E Ba, we denote by B(A) the 
integral of B over A 

B(A) = L B(x) dx 

Definition 11.1.2. The spatial distribution of a Poisson point process with 
intensity function B is characterized by the following two properties: 

i) if A E Ba, then the number N(A) of points in A is a Poisson random 
variable with parameter B(A). 

P{N(A) = n} = exp{-B(A)} [B(AW 
n! 

ii) if (Ai, i E 1) is a finite family of pairwise disjoint elements of Ba, then 
the random variables (N(Ad, i E I) are mutually independent. 

Of course, this definition is merely an extension of 11.1.1. The same remark 
concerning its apparent lack of completeness can be made. 

Suppose that A contains n points of the process. Where are they located? 
The answer is given by the following theorem: 

Theorem 11.1.2. Let A E Ba. If N(A) = n, the n points are independent 
and identically distributed within A w. r. t. the density function B LEA. 

From this theorem, we can immediately derive an algorithm to simulate the 
Poisson point process in A. This is basically the same algorithm as in the 
homogeneous case. The only difference is that the intensity function B is also 
required to simulate the location of the points within A, which is usually 
done by an acceptance-rejection procedure (cf. algorithm 7.2.2). 
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Algorithlll 11.1.2. (Simulation of a non-homogeneous Poisson point pro­
cess) 

1. Set X = 0. 
2. Generate n ~ Poisson(e(A)). 
3. If n > 0, then for i = 1, ... , n generate Xi ~ 0 lEA independently. 
4. Deliver X = {Xl , ... , X n }. 

Figure 11.3 shows a realization of a Poisson point process in superposition 
with its intensity function. 

Fig. 11.3. Realization of a non-homogeneous Poisson point process. Its intensity 
function is depicted by the grey tone background. 

To conclude this section , let us calculate the covariance between the numbers 
of points in two elements A and E of Ba. Writing 

N(A) = N(A n E) + N(A\E ) 

N(E) = N(A n E) + N(E\A) 

and using the independence property in disjoint domains, it follows that 

Cov { N (A) , N(E)} = Var { N(A nE)} 

Now N(AnE) is Poisson distributed with parameter O(AnE), and its variance 
is e(A n E). We have finally shown 

Proposition 11.1.1. If A, E E Ba, then Cov {N(A) , N(E)} = O( A nE). 
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11.2 Conditional simulation of a Poisson point process 

The objective of this section is to simulate a Poisson point process (with 
known intensity function B) subject to the condition that N(A;) = ni for 
some finite family (Ai, i E I) of elements of Ba (see left of Figure 11.4). 
In the case when the cardinality #1 of I is small, it is possible to carry out 
nonconditional simulations and to keep only those that honour the conditions. 
Things are different when #1 is large and when the Ai's are overlapping: the 
rejection rate becomes too high. 

100 

~ 100 

1 1 0 

o 1 1 

1 1 1 

000 

000 

000 

000 

432 

Fig. 11.4. How to carry out a conditional simulation of a Poisson point process 
in AJ UA2 UA3 given that N(AJ) = 4, N(A2) = 3 and N(A3) = 2? The solution 
proposed requires a coding of the simulations that is represented on the right of the 
figure 

Because of the independence property ii) of definition 11.1.2, the part of the 
simulations outside the union of the Ai's is not affected by the conditions. 
As a consequence, the conditional simulation problem really arises only in 
A = UiEI Ai. Here A is chosen as the simulation field. 

Let us start with two preliminary remarks. Firstly, the number of points of 
a simulation is bounded above by n = LiE! ni. Secondly, the conditional 
simulation can be carried out in two steps2 

2 The formula 

P{N(K) = 0 //\ N(Ai) = ni} = -.;;;:-' p{ /\ N(AJ) = nJ //\ N(Ai) = ni} 
'El ~ 0i'JCl 'El 

(nJ) 

x P{N(K) = 0 / /\ N(AJ) = nJ} 
0i'JCl 

shows that the simulation can be carried out in two steps. Regarding the second 
step, the fact that the points of the AJ's have independent locations directly 
stems from the formula 
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i) the joint simulation of the N(AJ )'s, given N(Ad = 7li for each i E /. 
ii) the independent simulation of the points in each AJ given N(AJ) = 7lJ. 

The second step does not present any difficulties because of theorem 11.1.2. 
Only the first one needs special treatment. 
Consider a realization of the Poisson point process such as the one in Figure 
11.4. It can be regarded as a sequence of points (Xl, ... , xp) with p ::; 7l. A 
coding consisting of #/ bits can be associated with each point X j by setting 
the bit of order i to 1 if Xj E Ai and to ° if not. This gives an array of prows 
and #/ columns that is completed by 7l - P rows of 0, as shown on the right 
of Figure 11.4. 

Let Q be the set of all arrays of size 7l x #/ that can be obtained in this way. 
Each element w E Q is assigned the probability 

p(w) ex: 7l0(W)! IT [B(AJ)rJ(w) 
0t-JcI 

where 7lJ(w) denotes the number of rows of w corresponding to points of AJ 
(in particular, 110 (w) is the number ofrows of zeroes in w). Using this proba­
bility measure, it is not difficult to show that the multivariate distribution of 
the numbers (N J, 0 # J C 1) of rows associated with the coding of points of 
AJ coincides with the conditional multivariate distribution of the N (AJ) 'S3 

ex: 

ex: 

LIT I1J! 
0t-JCI 

p{ 1\ N(A J )=7l J II\N(Azl=n i } 
0t-JCI zEl 

Therefore the first step of the conditional simulation amounts to the simula­
tion of distribution p. This can be done using the Metropolis algorithm (cf. 
section 8.2). Let w be the current array. For the next iteration, a candidate 
array is built by selecting uniformly and independently a certain number of 
rows of w, by permuting uniformly their bits indepently along each column 
and by replacing the selected rows by the new ones (see Figure 11.5). The 
candidate array w' thus obtained is then accepted with probability 

P{N(K) = 0 I 1\ N(AJ) = HJ} = P{N(K) = O} x 
OtJCI 

IT P{N(AJ\lCl = HI I N(AJ) = HJ} 
OtlCI 

3 In this formula, the summation is over all finite sequences (H J, J C I) such that 
LJ3i TU = Hi for each index i E I. A multinomial coefficient is introduced to 
account for the fact that the rows of the w's are ordered. 
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a(w, w') 
p(w) + p(w') 

p(w') 

I 0 0 I o 0 
I 0 0 ~ Selection Shuffling 
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0 I 0 
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0 I I I 0 0 0 I 0 0 1 I 
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0 o 0 
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Fig. 11.5. Generation of a candidate array from the current one. Here three rows 
are randomly selected. Their bits are independently permuted along each column. 
This produces three new lines that replace the selected ones. 

This algorithm depends on one parameter, namely the number of rows k 
to be selected. This number must be chosen carefully. If k is too large (for 
instance k = n), then the acceptance rate is very small. Things improve by 
taking k smaller, but then some irreducibility problems may be encountered 
(see Figure 11.6). As the minimum value for k that ensures irreducibility is 
usually unknown, a reasonable solution is to take k random and to simulate 
it at each iteration. For instance, the rows can be independently selected with 
the same probability 1/. Then k has a binomial distribution with parameter 
1/ and index n. 

Finally, here is the algorithm to conditionally simulate the numbers of points 
in the AJ's. 

Algorithm 11.2.1. (Conditional simulation of a Poisson point process. 
First step) 

1. Letw E [2. 

2. Select independently each row of w with probability 1/. 

3. Permute the bits of the selected rows uniformly along each column inde­
pendently. 
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4. Replace the selected rows by the newly generated ones. Let w' be the can­
didate array thus obtained. 

5. Let U ~ u. If (p(w) + p(w'))U < p(w), then put w = w'. 
6. Go to 2. 
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Fig. 11.6. Each of the 6 borelians AI, .. . A6 has 2 connected components, and each 
component is common to 2 of them. If exactly one point is allowed in each borelian, 
then only 2 configurations of points are possible, and at least 3 rows must be selected 
to ensure the transition between both configurations. 

At this point, nothing has been said about how to start running the algorithm. 
Things are quite easy in the case when each A{i} has a positive intensity 
because it suffices to set n{i} = ni for each i E I. 

Remark 11.2.1. Even in the case when e(A{i}) = 0 for some index i E I, 
it is still possible to initialize the simulation by setting n{i} = ni for each 
i E I. Because of Metropolis' acceptance criterion, the initial points are 
rapidly relocated, provided that the conditions are mutually compatible, that 
is Q -# 0. The non-emptiness of Q is related to the existence of solutions to 
the linear system of equations 

i E I 

A clearly necessary condition is that the inequality I:J nj :S I:K nk holds 
for any disjoint subfamilies J and J{ of I such that UJ Aj C UK A k . But 
this condition is not sufficient. As a counterexample, consider the three sets 
Al = {y,z}, A2 = {x,z} and A3 = {x,y} where X,y and z are three distinct 
points of IRd. The necessary condition is clearly satisfied whatever the values 
assigned to nl, n2 and n3, but there is no solution to the system in the case 
when nl = n2 = n3 = l. More generally, let S( ni, i E 1) be the number of 
solutions of the linear system of equations. Its generating function is given 
by 

L S(ni,iE1) ,TIs7' = IT ~ 
IEl 1 - S' 

(ni,iEl) An'''' jEJ J 

(0 :S Si < 1, i E 1) 

as can be easily shown by expanding the right hand side of this formula. 
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In order to illustrate how this algorithm works in practice , we have considered 
a non-conditional simulation of a homogeneous Poisson point process with 
intensity e = 0.0015 in a field 400 x 400 (see top left of Figure 11.7). Ten 
ellipses have been superimposed on the simulation to act as conditioning 
sets. They enclose 149 points and the content of individual ellipses varies 
from 7 to 26. Starting from the initial populat.ion depicted in the top right 
of Figure 11.7, the algorithm has been applied with a selection rate of 0.03 , 
which means that on average 4.5 rows are selected at each iteration . After 
running the algorithm twice for 10000 iterations, the two bottom populations 
were obtained. In both cases, the number of candidate transitions accepted 
is about 3500. With a higher selection rate of 0.05 , this number would have 
dropped to 1500. 

Fig. 11.7. Conditional simulation of a Poisson point process. Top left, a non con­
ditional simulation with the conditioning sets. Top right, the initial population. 
Bottom, two conditional simulations obtained after 10000 iterations. 



11.3 The Cox process 129 

Remark 11.2.2. The algorithm proposed requires the knowledge of the in­
tensities (B(AJ), 0 # J C 1). This does not mean that these intensities must 
be permanently kept in memory, but simply that they must be calculated 
each time they are required. We have designed other algorithms that do not 
rely on the actual value of the B(AJ )'s, but all of them have turned out to be 
extremely inefficient. 

11.3 The Cox process 

Suppose now that the intensity function B is randomized. This gives the Cox 
process (Cox, 1955). 

Definition 11.3.1. A Cox process is a Poisson point process whose intensity 
is a positive, a. s. locally integrable random junction. 

Let 8 denote the random intensity function. By definition, the number N(A) 
of points in A E Ba has a Poisson distribution with (random) mean 

8(A) = L 8(x)dx 

The system of probabilities is therefore equal to 

P{N(A) = n} = E {e-8 (A) (8~)t} 

Unless 8(A) is a.s. constant, N(A) is not Poisson distributed. 

Example 11.3.1. If 8(A) follows a gamma distribution 

f(t) Q,b>O; t>O 

then N(A) has a negative binomial distribution 

P{N(A)=n} = r(Q+n) (_b_)'" (_l_)n 
r(Q)n! b+1 b+1 

Example 11.3.2. If 8(A) has a generalized inverse gaussian distribution 
(Jorgensen, 1982) 

f(t) ~ (P % ) t"-' exp {-at - ~} 
2KO! 2v1ab t 

Q E IR, a, b > 0; t > 0 

where KO! stands for the modified Bessel function of the third kind of order 
Q (Abramovitz and stegun, 1970), then N(A) follows a generalized Sichel 
distri bu tion 
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P{N(A) = n} 

The case et = -~ corresponds to the standard Sichel distribution. This dis­
tribution has been introduced for representing long-tailed frequency data in 
various fields such as linguistics (sentence-length in written prose) and the 
mining industry (stone density in alluvial diamond deposits) (Sichel, 1973; 
1974). 

Clearly, the mean number of points in A is E{N(A)} = E{e(A)}. The 
variance has a more complicated form 

Var{N(A)} = E{e(A)} + Var{e(A)} 

Rather than proving this directly, let us get it as a by-product of the following 
proposi tion. 

Proposition 11.3.1. If A, B E BOI then 

Cov{N(A), N(B)} = E{e(A n B)} + Cov{e(A), e(B)} 

Proof: Let us express the covariance as the difference of two terms 

Cov{N(A), N(B)} = E{N(A) N(B)} - E{N(A)} E{N(B)} 

To calculate the first term, we randomize over all possible realizations of e. 
For each realization, the point process under study is a Poisson point process. 
Then proposition 11.1.1 can be applied to give 

E{N(A) N(B)} = E {E{N(A) N(B) le}} = E{e(A n B) + e(A) e(B)} 

It remains to subtract E{N(A)} E{N(B)} = E{e(A)} E{ e(B)} to obtain 
the desired result. D 

Thus, the covariance between N(A) and N(B) is the sum of two terms. The 
first one results from the Poisson implantation of the points, once that the 
intensity has been fixed. The second one takes the spatial statistical fluctua­
tions of the intensity into account. This covariance formula clearly brings out 
the hierarchic construction of the Cox process. One very interesting feature 
of this point process is that, in contrast to the Poisson point process, the 
numbers of points within disjoint domains are not necessarily independent. 

Suppose now that n points of the Cox process are contained in A. How are 
they distributed spatially? The answer to that question is not as simple as the 
one in the case of a Poisson point process (cf. theorems 11.1.1 and 11.1.2). See 
for instance exercise 11.4. Note however that this does not have any impact 
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on the non conditional simulation of a Cox process because it can be achieved 
by simulating first the intensity function, then the Poisson point process with 
the intensity function generated. The problem of the conditional simulation 
is much tougher. 

Here are the main lines of an algorithm to simulate the Cox process in B E Ba 
subject to the conditions (N(Ai) = ni, i E 1). Details of proof are omitted. 
In this algorithm, the union of the Ai'S is again denoted by A. There is no 
reason to take B = A because the range of the conditions can go far beyond 
A. 

Algorithm 11.3.1. (Conditional simulation of a Cox process) 

1. Simulate 8 in A given (N(A;) = ni, i E 1). Let (B(x), x E A) be the 
resulting family of intensifies. 

2. Simulate 8 in B given (8(x) = B(x), x E A). Let (B(x), x E B) be the 
resulting family of intensities. 

3. Simulate a Poisson point process with intensity function (B( x), x E B) zn 

B given (N(A;) = ni, i E 1). 

The way of carrying out steps 1 and 2 depends largely on the model considered 
for 8. 

In many applications, people are not directly interested in the exact location 
of all the points of the process. They simply want to know how many points 
can be found in some parts of the simulation field. In this case, it is sufficient 
to simulate the number of points in a family of non-overlapping and congru­
ent subsets (Bj, j E J) that cover B. Things are facilitated when each Ai 
coincides with one B i . Then the algorithm takes the form 

Algorithm 11.3.2. (Conditional simulation of a Cox process. Simplified 
version) 

1. Simulate (8(Ai), i E 1) given (N(A;) = ni, i E 1). Let (Bi' i E 1) be the 
generated values. 

2. Simulate (8(Bj),j E J\I) given (8(Ai) = Bi,i E 1). Let (Bj,j E J\I) be 
the generated values. 

3. For any j E J\I, generate N(Bj) rv Poisson(Bj ). 

The first two steps of this algorithm were used by Freulon (1992, 1994) to 
restore electron microprobe images of chemical concentration of steel samples 
blurred by Poisson noise. The Gibbs sampler (cf. section 8.3.2) was found 
quite appropriate for carrying out the first step. In the mining industry, the 
Cox process can also be used to model deposits where the mineralization takes 
place as discrete particles, such as gold grains, heavy minerals or precious 
stones (Kleingeld, 1987). The random intensity 8(A) associated with a region 
A represents all topographic, geologic and geographic factors that affect the 
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particle concentration and indicates the propensity for the region to be rich. 
In this context, conditional simulations and implementation details can be 
found in (Kleingeld et al., 1997). 

Exercises 

11.1 Consider a homogeneous Poisson point process with intensity B in JR. 
Show that the points of the process split JR into independent intervals of 
exponential length with mean value B- 1 . 

11.2 Let x be a point of a Poisson point process with intensity function B in 
JR. What is the length distribution of the interval delimited by the process 
on the right of x? 

11.3 Let X be a planar Poisson point process with constant intensity B. Let 
Y be the set of the distances between the points of X and the origin: 

Y = {d(x,o),xEX} 

Show that Y is a Poisson point process on [0, oo[ with intensity 

By(1") = 2;rB1" 1" > ° 
11.4 Let N be the counting functional of a Cox process with random inten­
sity function 8. Given A, B E Ba with B C A, show that 

P{N(B) = 11 N(A) = I} = E{e-8 (A)8(B)} 
E{ e-8 (A) 8(A)} 

11.5 Suppose 8 ~ Gamma(a, b) and let N ~ Poisson(8). Show that 

8 1 N = n ~ Gamma(a + n, b + 1) 
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A tessellation is a division of space into small units or cells. The cells are 
usually polytopes (polygons in JR2, polyhedra in JR3), but this is not strictly 
necessary. Depending on the application considered, a tessellation can be 
regarded either as a partition of space or as a random function (by assign­
ing each cell a value), or even as a population of cells. Of course, different 
interpretations lead to different statistical characterizations. A brief descrip­
tion of the possible interpretations is given in the first section of this chapter. 
Then we turn to the presentation and the (conditional) simulation of two well 
known tessellation models, namely the Voronoi and the Poisson tessellations. 

12.1 Statistical characterization of a tessellation 

12.1.1 Partition point of view 

As a first approximation, the cells of a tessellation can be modelled as a 
family of bounded subsets partitioning IR d . However, this modeling is not 
satisfactory because it lacks precision. Whereas there is no difficulty to ascer­
tain that a point belongs to the interior of a cell, attributing a point at the 
boundary of two cells to either cell is arbitrary. One way to overcome this dif­
ficulty is to make a clear distinction between the cells and their boundaries. 
In what follows, the cells are modelled by pairwise disjoint bounded open 
sets such that the union of their closures fills the whole space. Accordingly, 
IR d is partitioned into a family of cells (Xi, i E 1) and the union of their 
boundaries UiEIOXi . In the case when each cell is topologic ally connected, 
the tessellation is completely characterized by the cell boundaries. Since the 
cells are open, the union of all cell boundaries is closed and can be statis­
tically described by its hitting functional. This approach was successfully 
applied by Mecke (1983) and Stoyan et al. (1985) to describe tessellations of 
convex polyhedra. 

Unfortunately, this approach can not be applied if the cell are not connected 
(for instance, the dead-leaves model, see section 14.3). In that case, Math­
eron's approach (1969) can be considered. It consists of partitioning JRd into 
the cells (Xi, i E 1) and the points of the boundaries ({x}, x E UiEIOXi). In 
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contrast with the previous approach, the boundaries of the cells are not seen 
as a whole, but as a family of individual points, hence the expression" atom­
izing the boundaries" used by Matheron. Let I,p be the set of partitions that 
can be defined in this way. If X is such a partition, then an element of X is 
either a cell or a point of the boundary of a cell. I,p can be equipped with a 
O"-algebra 0"(1,p) spanned by the events 

9'\ G = {X E I,p I G C X for some X EX} 

for all open subsets G of IRd. Matheron (1969) has shown that probabilities 
do exist on (I,p, 0" (I,p) ) . 

Relnark 12.1.1. The assertion "the point x belongs to a cell" is an event. 
To see that, let us denote by Gn the open ball with centre x and radius 1.. n 
Because the cells are open, x belongs to a cell if and only if there exists a 
neighbourhood of x contained in a cell. Accordingly 

9'\{x} = U 9'\G n E 0"(1,p) 
n>l 

In what follows, we will assume P ( 9'\ {x J = 1 for any x E IRd. 

Remark 12.1.2. Similarly, the assertion "both points x and y belong to the 
same cell" is also an event. The same reasoning holds if we take Gn equal 
to {x, y} dilated by the open ball centered at the origin and with radius 
1.. Because 0"(1,p) is stable under intersection and set difference, (9'\ n 
n . . {x} 

9'\{y})\9'\{x,y} E 0"(1,p) , which means that "x and y belong to different cells" 

is an event. More generally, assertions like "the k points Xl, ... , Xk belong to 
p different cells" are also events. 

From the partition point of view, a random tessellation is characterized by 
a probability measure P on (I,p, dl,p)). It is said to be stationary if P is 
invariant under translation 

P (9'\ ) = P (9'\ ) 
Gh G 

G E g, hE IRd 

12.1.2 Random function point of view 

Here, each cell ofthe tessellation is assigned a value drawn from a distribution 
F with mean m and variance 0"2. The values do not depend on the cells and 
different cells have independent values. Because all points are assumed to 
belong to a cell almost surely (cf. remark 12.l.1), each point x can be assigned 
a random value Z (x). This defines a random function Z whose statistical 
properties can be described by its spatial distribution 
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FX" .Xk(Zl, ... ,Zk) = P{Z(X1) < Zl, ... ,Z(Xk) < zd 
for all k, all set of points (x l, ... , Xk) and all set of values (':1, ... , Zk) (cf. remark 
12.l.2). Suppose that the tessellation is stationary. If p(x - y) denotes the 
probability that both points x and y belong to the same cell, then we have 

E{Z(x)Z(y)} = ((/2 + m 2 )p(x - y) + m 2 [1 - p(x - y)] 

so that 
Cov{Z(x), Z(y)} = (/2 p(x - y) 

12.1.3 Cell population point of view 

For a stationary tessellation, the mean d-volume of the cells, the mean (d -])­
volume of their boundaries etc ... are of interest. In order to calculate these 
mean values, we must at first be more specific about their definition. 

One possible definition consists of assigning the same weight to each cell. 
This is intuitively simple, but technically difficult since a tessellation may 
have an infinite number of cells. Consider first a realisation of the random 
tessellation within a bounded domain. If the tessellation is locally finite the 
domain cOlltains a finite number of cells. One can therefore assign the same 
weight to each cell within the domain and build the empirical histogram of 
any characteristic of the cells. Assume that this empirical histogram con­
verges to some distribution as the size of the domain becomes very large. 
Assume moreover that the distribution thus obtained does not depend on 
the realisation considered. The limit distribution thus obtained is said to be 
weighted in number. 

Another possible definition deals with the characteristics of a single cell only, 
for instance the one that contains the origin (this is possible because the 
origin belongs almost surely to a cell, see remark 12 .l.1). Considering all 
possible realisations of the random tessellation, we get a distribution. This 
distribution does not coincide with the one weighted in number because the 
origin has more chance to belong to a large cell than to a small one. The 
distribution thus obtained is called weighted in volume. 

The relationship between both types of distributions has been established by 
Miles (1961): 

Theorem 12.1.1. Let 1jJ be some characteristic of a cell with d-volume v. 
The distribution weighted in number F (d1jJ, dv) and the distribution weighted 
in volume Fo(d1jJ, dv) are linked by the formulae 

v 
Fo(d1jJ, dv) = E{V} F(d~', dv) F(dtp, dv) 

v- 1 

Eon'-l} Fo(d1jJ, dv) 

where the symbols E and Eo stand for the mean values in number and in 
volume. 
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The distribution weighted in volume is used when the characteristics of the 
cell containing the origin are of interest, while the distribution weighted in 
number is used for the statistical characterization of the total population 
of cells. The cell containing the origin is called the fundamental cell and 
is denoted by Cf. Although the distribution in number does not refer to 
a particular cell, it is nonetheless possible to assign its characteristics to a 
virtual cell, called the typical cell and denoted by Ct . 

Ergodic arguments can be used to show that the probability p( h) that two 
points separated by vector h belong to the same cell, is related to the geo­
metric covariogram K of the typical cell: 

K(h) 
p(h) = K(O) 

12.2 Voronoi tessellation 

12.2.1 Definition and basic properties 

Let X be a Poisson point process with intensity function e in IRd . In order 
to simplify the description, the points of X are usually called germs. In a 
Voronoi tessellation, tlw cells are the zones of influence of the germs of X. 

Definition 12.2.1. The cell C(x, X) associated with the germ 9 of X zs 

C(g,X) = {XEIRd Ilx-gl<~Tlx-hl} 

C(g, X) is a convex polytope limited by a set of hyperplanes that are bisectors 
of pairs of Poisson germs. Figure 12.1 shows an example of a planar Voronoi 
tessellation. 

Fig. 12.1. Example of a planar Voronoi tessellation 

Now, let x be an arbitrary point of IRd . If X # 0, then x has almost surely 
a closest germ. This germ is denoted by g(x, X). Therefore we have 
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Ix - g(x, X)I = min Ix - hi 
hEX 

Of course 9 (x, X) = x if x EX. The cell that contains the point x E IRd is 
C[g(x, X), Xl. It is convenient to denote it by C(x, X). 

The calculations involving Voronoi tessellations are rather difficult. The first 
and already impressive results obtained by Meijering (1953) in 1R3 were ex­
tended by Miles (1974) and M0ller (1989). Using different approaches, both 
obtain the expected value of the total s-volume Fs of the s-facets of the 
typical polytope 

In particular 

( d ) dd 1 
( d - 1) r -+1 r 1+--

E{18C I} = 2y7i(d - I)! 2 d 

t d-l (d + 1) (1) () d r -- r d--
2 2 

To the best of the author's knowledge, little is known about the character­
istics of the fundamental cell. Even its d-volume has no explicit formula. By 
conditioning w.r.t. the germ 9 nearest to the origin, we readily get 

E{ICfl} = () r r e-()[B(o, Igl) U B(x, Ix - gl)ldxdg 
jIRdjIRd 

where ° denotes the origin and B( u, r) stands for the ball with centre u and 
radius r. 

12.2.2 SiIllulation 

FundaIllental and typical cells. Here the tessellation is supposed to be 
stationary. As was said earlier, the fundamental cell is the cell that contains 
the origin. Miles and Maillardet (1982) observed that if a germ is added to 
the Poisson point process at the origin, then the cell of germ ° thus obtained 
has exactly the same statistical properties as the typical cell. To summarize 

v 
Cj = C(o,X) 

V 
Ct = C(o,XUo) 

Both cells can be explicitly constructed by generating the Poisson germs 
one after the other further and further from the origin. Beyond a certain 
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distance, both cells can no longer be modified by the generation of further 
germs. Figure 12.2 shows a simulation result. As can be seen, the explicit 
construction of the fundamental and the typical cells may not require the 
same germs of X. 

Fig. 12.2. Simulation of a fundamental and a typical cell associated with a sta­
tionary planar Voronoi tessellation 

Non conditional simulation. The problem addressed here is the non COn­
ditional simulation of a tessellation with intensity function e within the con­
vex field D C IRd. The main difficulty is to handle the edge-effects. One 
possible way is to generate the Poisson germs one after the other further 
and further from D till all the cells hitting D can no longer be modified by 
the generation of further germs. In the following algorithl!l, D(7)) denotes 
the set of points at a distance less than r from D. We have also assumed 
that we know how to construct the Voronoi diagram of a finite population of 
germs. Various procedures are available. Boissonnat and Yvinnec (1998) give 
an iterative one, while Preparata and Shamos (1985) propose a recursive one. 

Algorithm 12.2.1. (Voronoi tessellation) 

1. Set r = O. Simulate a Poisson point process X with intensity function 
eIED (cf· algorithm 11.1.2). If X = 0, then goto 3. 

2. If Iy - gl < infzE8D (r) Iy - zl for any 9 E X such that C(g, X) n D "# 0 
and f or any y E C(g, X), then deliver X. D 

3. Generate U ~ Uni J , and determine s > r such that e[D(s) ] - e[D(r)] = 
-ln U. Generate x ~ el E8D (s) ' 

4. Set 7> = s and X = X U x. Goto 2. 

How can we run step f!? Let C(g, X) be a cell with germ 9 hitting D. A 
classical result states that C (g , X) is bounded if and only if 9 is contained in 
the interior of the COnvex hull of X\g. In the case when it is bounded, C(g, X) 
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is totally contained in the convex hull of its vertices. Then because D( r) is 
convex, the condition of step 2 is satisfied as soon as Iv- gl < infzE3D(r) Iv - zl 
for any vertex v ofC(g,X) (see Figure 12.3). 

OCr) 

D 

f _ 

Fig. 12.3. If the cell has its vertices closer to its germ than to the boundary of the 
dilated simulation domain D(r), then its shape is not affected by the addition of 
germs outside D(r) 

Remark 12.2.1. Suppose that e is constant. If D = {o} , then the cell 
C(o , X) delivered by algorithm 12.2.1 is precisely the fundamental cell Cf. To 
get a typical cell, C(o, X) can also be considered, but step 1 of the algorithm 
must be replaced by "Set 1> = 0 and X = {o}" . 

Conditional simulation. We now turn to the problem of simulating the 
random fun ction Z built by assigning independent values to the cells of a 
Voronoi tessellation (see section 12.1.2). Let (J be the Voronoi intensity func­
tion , and let be F the valuation distribution . Some conditional data are 
available, namely (Z(c) = z(c), c E C). 
In order to avoid the complications resulting from the introduction of a 
bounded simulation field , we assume here that the Poisson point process 
has an integrable intensity function 

f e(x)dx = {) < CXJ 

llRd 

Firstly, it should be noted that the way to account for the conditioning data 
points depends on the type of valuation distribution considered: 

- If the distribution is discrete, then different cells may have the same value, so 
two conditioning data points with the same value may belong to two different 
cells. In that case, the valuation distribution does affect the geometry of the 
cells. For instance, two points with the same value have all the more chance 
to belong to the same cell when their common value has a low frequency of 
occurrence. 
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- If the distribution is continuous, then different cells almost surely take 
different values, so that two conditioning data points with the same value 
necessarily belong to the same cell. Consequently, the valuation distribution 
does not affect the geometry of the cells. 

Let us start by giving an iterative algorithm for simulating a Poisson popu­
lation of germs with independent values. It is based on the Barker variation 
of the Metropolis algorithm (see algorithm 8.2.1 and example 8.2.1). 

Algorithm 12.2.2. (Voronoi tessellation. Iterative algorithm) 

1. Set X = 0. 
2. Generate a random variable U that takes the values + 1, -1 and 0 with 

probabilities 

P+l = 19 + #X + 1 Po = 1 - P+l - P-l 

3.1. If U = +1, then generate x ~ () and z(x) ~ F. Set X = X U {x}. 
3.2. IfU=-1, thengeneratex~Unif(X). SetX=X\{x}. 

4. Goto 2. 

This nOn conditional algorithm describes the evolution of a Markov chain 
that is reversible (this property is inherited from the Metropolis algorithm). 
Moreover, let Dc be the set of all allowed populations of valued germs. In the 
discrete case, it can be observed that Dc is stable under union (because two 
conditioning data points with the same valuation do not have to belong to 
the same cell). This is sufficient to ensure that irreducibility is preserved if 
algorithm 12.2.2 is restricted to Dc. Accordingly, the restriction technique of 
section 8.4.1 is applicable, and the algorithm 12.2.2 can be made conditional 
by requiring the conditions to be satisfied at each iteration. Here is the algo­
rithm in which the notations Xx = X U {x} and Xx = X\ {x} are used for 
short: 

Algorithm 12.2.3. (Conditional Voronoi tessellation. Discrete case) 

1. Set X = C. 
2. Generate a random variable U that takes the values + 1, -1 and 0 with 

probabilities 

P+l = t9 + #X + 1 
#X 

P-l = t9+#X Po = 1 - P+l - P-l 

3.1. If U = +1, then generate x ~ () and z(x) ~ F. If z(c) = z(x) for 
every c E C n C(x, Xx), then set X = Xx. 

3.2. If U = -1, then generate x ~ Unif(X). If z(c) = z(g(c,XX)) for 
every c E C n C(x, X). then set X = Xx. 
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4. Goto 2. 

This algorithm has been tested on a tessellation with intensity function 
e = 12.5 on the square [-2,2] x [-2,2] and with a discrete uniform valu­
ation distribution (3 possible valuations). Figure 12.4 illustrates the results 
obtained in the simulation field [-1, 1] x [-1, 1]. From a non conditional 
simulation (top left) , .50 data points have been uniformly and independently 
selected (top right). They have been used as conditioning data to produce two 
conditional simulations that are depicted in the second row. Both simulations 
have been stopped after 8000 iterations. 

. 0 
0 0 

0 • • 
• ~ • 0 . .. • • • 0 • 

• • 
0 0 • 0 0 0 

0 
0 0 

0 • 0 
0 

00 
0 

0 
0 , . 

• 0 0 

0 • 

Fig. 12.4. Conditional simulation of a Voronoi tessellation with discrete values. 
Top left, a non-conditional simulation. Top right, the conditioning data set. Second 
row, two conditional simulations 
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The choice of a halting criterion must be based on the rate of convergence 
of the algorithm. One possible way to determine it is to compare the spatial 
distribution Fn of the tessellation produced at the nth iteration and the con­
ditional spatial distribution Foo that we want to simulate. Without entering 
into details, it can be said that this rate of convergence is dictated by the 
evolution of the number of germs of the tessellation. This number evolves 
according to a Markov chain with compact Jacobi transition kernel (see ex­
ample 9.3.1). Let A be its greatest eigenvalue with modulus strictly less than 
1, it can be established that there exists a positive constant a such that 

for any event ;{' affecting the spatial distribution. As was seen in section 9.4, 
the value of A can be obtained by the integral range technique. Explicitly, 
we find A = 0.998, which corresponds to an integral range of about llOO 
iterations. 

The conditional simulation algorithm for the continuous case differs from the 
discrete one in three respects: 

- Firstly, the initialization. Let us write C i = z-l (z;) for each value Zi taken 
by z on C. The family (C, i E J) constitutes a partition of C. The initializa­
tion problem amounts to assigning a point Xi E IRd to each component C i in 
such a way that 

max IXi - cl < min IXi - cl 
eEC, cEC\Ci 

This can be achieved by picking Xi in the domain 

Xi = n C(c, C\Ci) 
cECi 

Of course, if one ofthe Xi's is empty, then no such point can be selected, which 
means that the conditioning data are not compatible with the tessellation 
model. This is exactly what happens if the convex hulls of several Ci's overlap. 
As a result of the initialization, we put Xo = {Xi, i E I}. 

- Because the cell geometry is independent of the valuation distribution, a 
valuation does not have to be generated each time a new germ is inserted. It 
suffices to simulate the germ values once the simulation of the cell geometry 
has been completed. 

- Let [le be the set of all allowed populations of germs (in contrast to the 
discrete case, the germs are not assigned a value). Note that [lc is not sta­
ble under union (two different cells cannot contain equivalued germs), which 
makes the irreducibility of the restricted Markov chain questionable. In order 
to cope with that difficulty, it is convenient to introduce a third operation 
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Fig. 12.5. Conditional simulation of a Voronoi tessellation with continuous values. 
Top left , a non-conditional simulation. Top right, the conditioning data set. Second 
row, two conditional simulations 

beside the insertion of a new germ and the removal of an old one. This oper­
ation consists of replacing an old germ by a new one. Indeed, the replacement 
is just a combination of an insertion and a removal but both are carried out 
in one step. 

These three differences lead to the following algorithm. It is presented using 
the short notations X x = X U {x }, X x = X\{x} and X¥ = (X u {x}) \ {y}. 

Algorithm 12.2.4. (Conditional Voronoi tessellation. Continuous case) 

1. Set X = C. 
2. Generate a random variable U that takes the values + 1, -1 and 0 with 

probabilities 
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1 {J 

P+l = "2 {) + #X + 1 
1 #X 

P-l = "2{)+#X Po = 1 - P+l - P-l 

3.1. If U = +1, then generate x ~ (). If C n C(x, X J,) = 0, or if there 
exists g E X such that cnC(x, X:") = CnC(g, X), then set X = Xx' 

3.2. If U = 0, then generate x ~ () and y ~ Unif(X). If C n C(x, X¥) = 
0, or if there exists g E X such that CnC(x, X¥) = cnC(g, X), and 
ifCnC(y, X) = 0, or if there exists g E xy such that CnC(g, X¥) = 
C n C(y, X), then set X = X¥. 

3.3. If U = -1, then generate y ~ Unif(X). If C n C(y, X) = 0, or if 
there el:ists g E X such that C n C(g, XY) = C n C(x, X), then set 
x=x y . 

4. Goto 2. 

In order to show how this algorithm works, we have considered the same tes­
sellation model as in the discrete case, except that the valuation distribution 
is now uniform over ]0,1[. The two conditional simulations at the bottom 
of Figure 12.5 were stopped after 10000 iterations. The rate of convergence 
of this algorithm has been determined using the integral range technique. It 
turns out to be slightly slower than in the discrete case. The critical eigen 
value has been found equal to 0.9984, corresponding to an integral range of 
1200 iterations. 

12.3 Poisson tessellation 

12.3.1 Definition and basic properties 

A hyperplane ill JRd is specified by two parameters, namely a direction pa­
rameter et and a location parameter p: 

H(et,p) = {x E JRdl < x, et >= p} 

Notice that H (et, p) = H (-et, -p). In order to avoid a double parametrization 
of the hyperplanes, it is common to take p E JR and et in a hemisphere, for 
instance in st, consisting of the points in Sd with positive d-coordinate. 
Using this parametrization, a hyperplane is just a point in st x JR. 

Definition 12.3.1. A network of Poisson hyperplanes is parametrized by a 
Poisson point process in st x JR. 

A Poisson hyperplane network is completely determined by one parameter, 
namely the intensity of the Poisson point process in the parameter space. 
It is called the hyperplane intensity and is denoted by (). In what follows, () 
is supposed to be a positive and locally integrable function. The case when 
() is constant is also worthwhile considering because it leads to interesting 
simplifications. 
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Fig. 12.6. Realization of a Poisson line network represented in the parameter space 
[0, iT[xlR (left) and in Euclidean space (right). The polygons that the lines delineate 
are the Poisson polygons 

Definition 12.3.2. The polytopes delimited by a network of Poisson hyper­
planes are called Poisson cells. 

The Poisson cells are convex as intersection of half-spaces. Their statistical 
properties depend only on a single parameter, the hyperplane intensity B. 

Many results about the moments of the typical polytopes are available. Miles 
(1961, 1974) obtained the expected value of the total content of its s-facets 
(number of vertices and total edge length in JR2, number of vertices, total 
edge length and total boundary area in JR3) 

(d) 2d 1 
E{Fs } = - s 

S Ws (Wd-lB) 

while Matheron (1975) gave the mean value of its Minkowski functionals 

E{Wi(Ct)} = ~ --( 
2 ) d-i 

Wd-i Wd-l B 
O<i<d 

Of course, both sets offormulae provide the same value for the mean d-volume 
of the typical cell and for the mean d - I-volume of its boundary: 

1 ( 2 ) d E{ICtl} = - --B 
Wd Wd-l 

d2 d 1 
E{18Ct l} = -w ( B)d-l 

d-l Wd-l 

Miles (1974) obtained a formula for the mean number of s-facets (number 
of vertices and edges in R2, number of vertices, edges and faces in R 3 ) of a 
typical Poisson cell 
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In contrast to this , little is known about the moments of the fundamental 
Poisson cell. The first three moments of its volume were obtained by Math­
eron (1975). In particular 

E{IC.rI} 

12.3.2 Sirrmlation 

Fundamental and typical cell. In order to simulate the fundamental cell 
of a stationary Poisson tessellation, it suffices to generate the Poisson hy­
perplanes one after the other in decreasing order of proximity to the origin. 
The procedure is continued until the generation of additional hyperplanes no 
longer affects the cell containing the origin. 

o 

Fig. 12.7. Simulation of a fundamental and a typical cell associated with a sta­
tionary planar Poisson tessellation 

The simulation of a typical cell is more tricky (see Figure 12.7) . One possible 
way is to take the intersection between the fundamental cell and the do­
main limited by d random hyperplanes passing through the origin and with 
direction joint density function 

where lal , ... , adl denotes the d-volume of the parallelotope with edges 
al, ... , ad (Miles (1974) . In 2D, this p.d.f. becomes 

f(al , a2) = 217rsinlal-a21 

If d is not too large, then f can be simulated using the acceptance-rejection 
method (see algorithm 7.2.2). 
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Non conditional simulation. The simulation of a Poisson network of hy­
perplanes crossing the convex field D amounts to the simulation of a Poisson 
point process in the domain R(D) E st x 1R associated with D in the pa­
rameter space. Algorithm 11.1.2 can be applied provided that we know the 
mean number of points in R(D), that is the mean number of hyperplanes 
crossing D. 

Consider a hyperplane with direction a. It crosses D if and only if its location 
parameter belongs to a certain subset Ra(D) of 1R (cf. Figure 12.8), so that 
the domain R(D) can be written R(D) = UaES+ Ra(D). 

d 

p(a) 

o 

Fig. 12.8. Specification of the location parameter of the hyperplanes of direction 
a crossing D 

If () is constant, then the mean number of points of R(D) is 

B[R(D)] = B r IRa(D)1 dO' Js+ 
d 

Because D is convex, the length of Ra(D) is exactly the breadth of D III 

direction a and therefore 

B[R(D)] = B d;d b(D) 

where b(D) stands for the mean breadth of D. 

In order to assign independent values to the cells, they must be identified 
individually starting from the hyperplane network. For this, we refer to Bois­
sonnat and Yvinec (1998) and references therein. 

Conditional simulation. The problem is now to simulate a Poisson tessel­
lation with hyperplane intensity () and valuation distribution F in the convex 
field D, given Z(c) = z(c) for all c E C. 

Because of the parametrization of the hyperplanes considered, this problem 
amounts to a conditional simulation of a Poisson point process with intensity 
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function B in R( D). The algorithm developed in section 1l.2 is not applicable 
because the conditions imposed are different. 

Here too, the conditional simulation algorithm depends on whether the valu­
ation distribution is discrete or continuous. Both cases will be considered in 
turn. 

Let us start with the discrete case. The cells take their values in the finite or 
countable set {Zj, j E J}. For each j E J, Pj is the frequency of occurrence 
of Zj. Once again, the idea is to design a conditional simulation algorithm 
by modifying a non conditional iterative algorithm. But things are more 
complicated for the Poisson tessellation because the insertion or the removal 
of a hyperplane may lead to the creation or the disappearance of more than 
one cell. 

Let X = {Xl, ... , Xn(X)} be a population of points that is a realization of the 
Poisson point process in R( D). Its probability density function is 

n(X) 

J(X) C( IT B(x;) 1xiER(D) 
i=l 

Let [le be the set of all allowed populations, and let nj (X) be the number of 
cells of X containing conditioning points of Cj = {c E C Iz( c) = Zj}. Then 
the conditional distribution of the population X can be written as 

n(X) 

Jc(X) C( IT B(x;) 1 xiER(D) IT pji(X) 1 XE.(.lc 

i=l jEJ 

This expression leads to the following algorithm that is a Metropolis algo­
rithm with a twofold acceptance criterion. The first one specifies the number 
of points of the population. The second one validates the insertion of a new 
point or the removal of an old one in accordance with the shape of the val­
uation distribution. In this algorithm {J is used as an abbreviation for the 
mean number of Poisson points of R(D). This algorithm also assumes the 
existence of an initial population X o, that can be any population of points 
associated with hyperplanes that separate the conditioning data points with 
different values (for instance, the bisectors separating the nearest points of 
all disjoint components Cj and Ck of C). This initial population Xo does 
exist with positive probability provided that the convex hulls of the C/s are 
pairwise disjoint. 

Algorithm 12.3.1. (Conditional Poisson tessellation. Discrete case) 

1. Set X = Xo. 
2. Generate a random variable U that takes the values + 1, -1 and 0 with 

probabilities 

{J 
Po = 1 - P+1 - P-1 P+1 = {J + #X + 1 
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3.1. If U = +1, then generate x '" () in R(D). Set X = X U x with 

Probability min (I1 p,?j(Xux )-nj(X) 1) 
jEJ J ' . 

3.2. If U = -1, then generate x '" Unif(X). If the hyperplanes of X\x 
separate all the components Cj of C, then set X = X\x with proba-
b n . (I1 nj(X\x)-nj(X) 1) z z y mm jEJ Pj , . 

4. Goto 2. 

Remark 12.3.1. This algorithm can also be applied to carry out a condi­
tional simulation of a Voronoi tessellation with a discrete valuation distribu­
tion. Indeed, the acceptance criterion is the same as in algorithm 12.2.3. The 
only difference is that no value is assigned to the cells with no conditioning 
data points. 

• 0 

• 0 • 

• 0 •• 
• 0 .0 00 0 • • 0 0 0 • • 0 

• 
• 0 

• • • • • • • 0 

• 
• • 0 • • t • o 

• 0 • 

Fig. 12.9. Conditional simulation of a Poisson tessellation with discrete values. 
Top left , a non-conditional simulation. Top right, the conditioning data set. Second 
row, two conditional simulations 
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In order to illustrate algorithm 12.3.1, we have considered a stationary Pois­
son line network with 20 lines crossing the simulation field on average. The 
valuation distribution consists of three equiprobable values. The two con­
ditional simulations at the bottom of Figure 12.9 have been obtained after 
running 2000 iterations. In this example, the rate of convergence is fast be­
cause the different components of C can be separated easily by random lines. 
Using algorithm 9.4.1, the integral range obtained is about 90 iterations, 
which corresponds to a critical eigenvalue of 0.98. 

Let us now turn to the case of a Poisson tessellation with continuous val­
uation distribution. This case is much simpler because the values and the 
geometries of the cells are independent (as for a Voronoi tessellation with 
continuous values). It suffices to generate the points of R( D) iteratively and 
accept the insertion of a new point or the removal of an old one provided 
that all conditioning points with the same value must lie in the same cell, 
and that all pairs of conditioning points with different values are separated 
by a hyperplane. The proposed algorithm is basically the same as algorithm 
12.2.4, except for two differences: 

- The initialization procedure. In order to get an allowed population X o, one 
possible way is to generate a sequence of independent points in R(D) (for 
instance with density (), but this is not strictly necessary). Let x be such a 
point, and let H(x) be its corresponding hyperplane. The point x is discarded 
if H(x) separates conditioning points with the same value, and kept if not. 
The procedure is continued till all pairs of conditioning points with different 
values are separated by hyperplanes. In order to avoid having too many points 
in the initial step, only those whose hyperplane is the first one to separate 
conditioning points with different values can be kept. 

- Algorithm 12.2.4 works with a replacement step. In the case of the Pois­
son tessellation, this step is possible but not required, because the set of 
allowed populations of points of R(D) is stable under union, which makes 
the procedure automatically irreducible. 

So here is the algorithm, in which the phrase" component of C" refers to any 
subset consisting of all points of C with the same value. 

Algorithm 12.3.2. (Conditional Poisson tessellation. Continuous case) 

1. Set X = Xo. 
2. Generate a random variable U that takes the values + 1, -1 and 0 with 

probabilities 

P+l = {) + #X + 1 Po = 1 - PH - P-l 
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3.1. If U = +1, then generate x '" () in R(D). If H(x) does not split any 
component of C, then set X = X U x. 

3.2. If U = -1 , then generate x '" Unif(X). If the hyperplanes of X\x 
separate all components of C, then set X = X\x. 

4. Goto 2. 
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Fig. 12.10. Conditional simulation of a Poisson tessellation with continuous values. 
Top left, a non-conditional simulation. Top right, the conditioning data set. Second 
row, two conditional simulations 

Some results provided by this algorithm are depicted in Figure 12.10. The 
model considered is stationary with 20 lines crossing the simulation field on 
average, and the valuation distribution is uniform over ]0,1[. Fifty points 
have been uniformly and independently selected from a non conditional sim­
ulation to serve as conditioning data points. Despite the fact that several 
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distant points have the same value (see the 5 points in the yellow cell at the 
bottom), the algorithm converges reasonably fast. The critical eigenvalue is 
approximatively 0.99, which corresponds to an integral range of about 200 
iterations. The algorithm has been stopped after 2000 iterations. 

Exercises 

12.1 Consider a stationary tessellation with discrete valuation distribution. 
Given that the tessellation takes the same value at points x and y, what is 
the probability that both points belong to the same cell? 

13.2 Let X be a stationary planar Poisson tessellation with line intensity 0, 
and let D be a convex compact subset. 
1) Show that the number of lines hitting D is Poisson distributed with mean 

OlaDI· 
2) Let D' be another convex compact subset included within D. Show that 
given one line of the process crosses D, this line crosses D' with probability 

IlaD'I/laDI· 
12.3 What is the geometric covariogram of the typical cell of a stationary 
Poisson tessellation in IRd with hyperplane intensity O? 

12.4 Show that the intersection of a stationary planar line process with 
intensity 0 and an arbitrary line is a stationary point process with intensity 
20. 



13. Boolean model 

Random sets can be constructed by placing independent random objects at 
Poisson points and by taking their union. This simple idea underpins the 
definition of the boolean model. Despite its simplicity, it is methodologi­
cally and practically important, and has been the object of a considerable 
work (Matheron, 1967, 1975; Serra, 1982; Stoyan et al., 1987; Hall, 1988; 
Molchanov, 1997). 

This chapter considers only boolean models that are random closed sets. 
First, the avoiding functional of a boolean model, stationary or not, is cal­
culated (the simplifications that arise in the stationary case are reported in 
the appendix). From this, the algebraic and stereological stability properties 
of the model are easily established. Finally, an iterative algorithm for the 
conditional simulation of the boolean model is proposed. 

13.1 Definition and basic properties 

13.1.1 Definition 

Two basic and independent ingredients are required for the construction of 
a boolean model in JRd 
i) a set of germs, that is, a Poisson point process P with intensity function 
B = (B(x), x E JRd). 
ii) a family (A(x), x E JRd) of independent random non-empty compact sub­
sets of JRd. The subset A( x) is called the object implanted at x and its hitting 
functional is denoted by Tx. 

Definition 13.1.1. A boolean model X is the union of all the objects im­
planted at the Poisson germs 

X = U A(x) 
xEP 

Four realizations of boolean models are displayed in Figure 13.l. Their ap­
pearance depends considerably on the shape of the objects. From top to 
bottom, these are uniform planar cross-sections of balls with constant radius, 



154 13. Boolean model 

segments of lines, typical Poisson polygons (see section 12.3.2), and typical 
Voronoi polygons (see section 12.2.2). 

Fig. 13.1. Realizations of four boolean models. From top to bottom, the objects 
are random disks, segments of lines, Poisson polygons and Voronoi polygons 

Because a boolean model is the union of possibly infinitely many objects, it 
is not guaranteed to be closed. This will certainly be the case if each point 
x E IRd has a neighbourhood hit only by finitely many objects a.s., and in 
particular if the population of objects (A(x), x E P) is of finite order (cf. 
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section 2.5). More precisely, let N(K) be the number of objects hitting the 
compact subset K 

N(K) = L 1KnA (x),t0 
xEP 

A simple calculation shows that the mean of N (K) is 

JJ(K) = ( B(x)Tx(K)dx :SOO JIRd 
Definition 13.1.2. The boolean model is said to be of finite order if 

JJ(K) < 00 VK E K. 

For the rest of this chapter the boolean models under consideration are as­
sumed to be of finite order. 

13.1.2 Avoiding functional 

Let us start by determining the distribution of the number of objects hitting 
the compact subset K. 

Proposition 13.1.1. N(K) is Poisson distributed with mean JJ(K). 

Proof: For each D E K., let us consider the number ND(K) of objects 
implanted in D and hitting K 

ND(K) = L 1KnA(x),t0 
xEPnD 

By definition 11.1.2, the number of points of P n D follows a Poisson distri­
bution with mean 

B(D) = l B(x) dx 

Suppose that this number is equal to n. According to theorem 11.1.2, the n 
points are independently located within D with the same p.d.f. B(-)jB(D). 
Moreover, an object implanted at x hits K with the probability Tx(K) and 
avoids it with the complementary probability 1 - Tx(K). Consequently the 
generating function of N D (K) is 

where 0 :s s :s 1, and by summation 
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In order to extend this result to the whole space, let (Dn, n E IN) be an 
increasing sequence of compact sets covering JRd. Then (NDn(K),n E IN) is 
also increasing and converges a.s. to N(K). Therefore 

and the right hand-side can be recognized as the generating function of a 
Poisson distribution with mean 19(K). 0 

Because P{X n K = 0} = P{N(K) = O}, we deduce 

Corollary 13.1.1. The avoiding functional of the boolean model is 

P{X n K = 0} = e-19 (K) KEJ( 

13.1.3 Stability properties 

Proposition 13.1.2. The following stability properties are satisfied 
i) the union of two independent boolean models is a boolean model. 
ii) a boolean model dilated by a non-empty compact subset of JRd is a boolean 
model. 
iii) the intersection between a boolean model and a compact subset of JRd zs 
a boolean model. 
ivy the cross-section of a boolean model by an i-fiat is a boolean model. 

Proof: Let X' and X" be two independent boolean models with intensity 
functions (j' and (jll, and object hitting functionals T' and T". Because of the 
independence and corollary 13.1.1 

P{(X' U X") n K = 0} P{X' n K = 0} P{X" n K = 0} 

exp { - fJR)(j'(X)T~(I{) + (j1l(x)T~'(K)l dX} 

exp {- fJRd (j(x) Tx(K) dX} 

with (j = (j' + (jll and Tx defined as 

This is the hitting functional of a random object equal to A'(x) with proba­
bility (j' (x) / ((j' (x) + (j" (x)) and to A" (x) with the complementary probability 
(jll (x) / ((j' (x) + (j" (x)). This proves i). 

Let D be a nonempty compact subset of JRd. ii) directly stems from 
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U A(x) Ef) b 
xEP 

Regarding iii), one can also write XnD = UXEP A(x)nD, but this formula is 
not easy to interpret because A(x) n D may be almost surely empty. Instead, 
let us write l 

P{(X n D) n K = 0} p{Xn(DnK)=0} 

exp {- iIR
d 

O(x) Tx(D n K) dX} 
exp {- iIR

d 
O(x) Tx(D) Tx¥:(~:{) dX} 

But Tx(D n K)jTx(D) is the hitting functional of A(x) n D given that this 
object is nonempty. Consequently, X n D is a boolean model with intensity 
function OT(D) and object hitting functional T(D n K)jT(D). 

Let F be an i-flat of IRd. iv) can be deduced from iii) by considering an 
increasing sequence (Dn, n E IN) with limit equal to F. 0 

13.2 Simulation 

The problem is to simulate the boolean model in D, subject to the condi­
tions that two finite subsets Co and Cl must be contained in XC and in X 
respectively. This problem is important in the oil industry. Petroleum en­
gineers require the reservoir geometry as input to run fluid flow simulation 
programs. An algorithm developed by Haldorssen (1983) has been notably 
improved by Chessa (1995). It consists of independently simulating the sand­
bodies (i.e. the objects) that intersect the wells and those that do not. Such 
a dichotomic approach is made possible because of the independence proper­
ties of the Poisson point process. The difficulty with this approach is that the 
distribution of an object intersecting wells depends not only on its implanta­
tion, but also on the number and the location of the wells that it intersects. 
Usually, things become intractable as soon as this number is greater than 1. 

The iterative algorithm described below was designed after a private com­
munication with Matheron in 1990. A preliminary work was then carried out 
by Gedler (1991) under the supervision of the author. Since this conditional 
simulation algorithm is a modified version of a non conditional simulation 
algorithm (by restricting a transition kernel, see section 8.4.1), the non con­
ditional simulation algorithm is presented first. 

1 In the last line, the convention % = 0 is required. 
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13.2.1 Non conditional simulation 

In the proof of proposition 13.1.2, we showed that X n D is a boolean model 
with intensity function B(.)T (D). Accordingly, the number of objects of X nD 
is Poisson distributed with mean 

1'J(D) = f B(x) Tx(D) dx JlR d 

The hitting functional of an object of XnD implanted at x is Tx(Dn·)/Tx(D). 

Definition 13.2.1. A typical object of X n D is an object uniformly selected 
among the objects of X n D. 

A typical object of X n D is implanted according to the density function 
B(-)T (D). Its hitting functional is 

Note in particular that T(D) = 1 and T(K) = ° if K is disjoint from D. 

Proposition 13.2.1. X n D has the same distribution as an union of N 
independent typical objects where N is Poisson distributed (mean 1'J(D)). 

Proof: Let Y be such a union. Its avoiding functional is 

exp{ -1'J(D) T(K)} = exp {- ilR
d 

B(x) Tx(D n K) dX} 

which is exactly the avoiding functional of X n D. D 

As a consequence, a non conditional simulation of the boolean model can be 
obtained using the following algorithm: 

Algorithm 13.2.1. (boolean model) 

1. Set X = 0. 
2. Generate N '" Poisson(1'J(D)). 
3. If N = 0, then deliver X. D 
4. Generate a typical object A '" T. 
5. Set X = X U A, N=N-1 and goto 3. 

This requires the simulation of a typical object. The standard algorithm is 

Algorithm 13.2.2. (Typical object) 

1. Generate x '" B(-)T(D). 
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2. Generate A ~ Tx(D n ·)/Tx(D). 
3. Deliver A. 

If it is difficult to simulate an object implanted at x and hitting D directly, 
a rejection algorithm can be used as an alternative. 

Algorithm 13.2.3. (Typical object (rejection technique)) 

1. Generate x ~ BUT (D). 
2. Generate A ~ Tx. 
3. If AnD = 0, then go to 2. 
4. Deliver AnD. 

Finally algorithm 13.2.1 is modified slightly to make it iterative. This does 
not present any difficulty because the Metropolis algorithm can be used to 
simulate a Poisson distribution (cf. example 8.2.1). The following algorithm 
simulates a boolean model iteratively. More precisely, it simulates the popu­
lation of objects that constitutes the boolean model. In this algorithm, the 
number of objects of population <l> is denoted by #l>. 

Algorithm 13.2.4. (Population of objects of a boolean model) 

1. Set<l>=0. 
2. Generate a random variable U that takes the values + 1, -1 and 0 with 

probabilities 

1J(D) 
P+1 = 1J(D) + #l> + 1 P-1 = 1J(D) + #l> Po = 1 - P+1 - P-1 

3.1. If U = +1, then generate A ~ T and set <l> = <l> U A. 
3.2. If U = -1, then generate A ~ UniJ(<l» and set <l> = <l>\A. 

4. Goto 2. 

13.2.2 Conditional simulation 

Let us start with two remarks. Firstly, the Markov chain in algorithm 13.2.4 
is reversible (this property is inherited from Metropolis algorithm). Secondly, 
the restriction of this Markov chain to the set Qc of all the populations of 
objects that honour the conditions on Co and Cl is irreducible. This stems 
from the fact that Qc is stable under concatenation2 . As a consequence, the 
restriction technique of section 8.4.1 is applicable, and the algorithm 13.2.4 
can be made conditional by requiring the conditions to be satisfied at each 
iteration. Here is the algorithm in question: 

Algorithm 13.2.5. (Conditional boolean model) 

2 If CP, 1[1 E Dc, then the population cP + 1[1 made of all objects of cP and all objects 
of 1[1 is also an element of Dc. 
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1. Generate if> E Qc. 

2. Generate a random variable U that takes the values + 1, -1 and 0 with 
probabilities 

13(D) 
P+l = 13(D) + #l> + 1 P-l = 13(D) + #l> Po = 1 - P+l - P-l 

3.1. If U = +1, then generate A '" T. If A n Co = 0, then set if> = if> U A. 
3.2. If U = -I, then generate A '" Unif(if». If Cl C if>\A, then set 

if> = if>\A. 

4. Goto 2. 

Of course, this algorithm must start with an allowed population if> E Qc. 

One possible way to get one is to simulate a sequence of independent typical 
objects. Each time an object hits Co, it is automatically discarded. The pro­
cedure is continued until the remaining objects completely cover Cl. In order 
to avoid starting with too many objects, it is recommended to keep only the 
objects that are the first ones to cover points of Cl. We therefore have the 
following algorithm: 

Algorithm 13.2.6. (Initialization of the conditional boolean model) 

1. Setif>=0andC=C l . 

2. Generate A '" T. 
3. If A n Co :/; 0 or if A n C = 0, then goto 2. 
4. Set if> = if> u A and C = C\A. 
5. If C :/; 0, then go to 2. 
6. Deliver if>. 

Let N g be the number of objects generated to complete this procedure. In 
the case when Cl :/; 0, a simple calculation shows that the mean value of N g 

IS 

E{Ng } = L (_l)ICI+l T(C U C~ - T(C ) 
GCG, 0 0 
Gt0 

This mean value is finite if and only if P{ Co C (X n D)G, Cl C X n D} > 03 . 

3 Clearly, E{Ng } < 00 if and only if T(Co U {cl) - T(Co) > 0 for every c E 
Cl. In order to exploit these inequalities, let us write X n D as the union of 
#Cl i.i.d. boolean models (X(c),c E Cd. Their common intensity function is 
O(-)T.(D)/#C l . Note that X n D contains Cl as soon as each X(c) contains c. 
Accordingly 

P{Co C (X n D)C, Cl eX n D} ~ IT P{Co n X(c) = 0, Cl C X(c)} 

= exp { - {)~)T(Co)} - exp { - {)~)T(Co U {c})} > 0 
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Fig. 13.2. Conditional simulation of a boolean model. Top left, a non-conditional 
simulation. Top right, the conditioning data set. Second and third row, two condi­
tional simulations, depicted without (left) and with (right) the conditioning data 
points 
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Figure 13.2 displays an example of conditional simulation. The boolean model 
considered here is stationary (intensity e = 0.00766) and the objects are disks 
with exponential radius (mean value 5). The simulation field is 100 x 100. 
One hundred data points (top right) have been uniformly selected from a 
non conditional simulation (top left). They are used as conditioning data 
to produce two conditional simulations (cf. second and third rows) that are 
depicted without (left) and with (cf. right) the conditioning data points. Both 
simulations have been stopped after 2000 iterations. 

The choice of a stopping criterion depends on the rate of convergence of 
the algorithm. One possible way to determine it is to compare the avoiding 
functional Qn of the random set Xn produced at the nth iteration and the 
conditional avoiding functional Qoo that we want to simulate. Without going 
into details, an argument similar to that of Lantuejoul (1997) can be used. 
It exploits the fact that the number of objects of Xn evolves according to a 
Markov chain with a compact Jacobi transition kernel (see example 9.3.1). 
Denoting by X the normed eigenvector associated with the eigenvalue ), that 
has the greatest modulus strictly less than 1, it can be established that 

where c;Po stands for the initial population of objects. As was seen in section 
9.4, the value of), can be obtained by the integral range technique. Explicitly, 
we find), = 0.993, which corresponds to an integral range of about 320 
iterations. 

Figure 13.3 displays the output of the algorithm after 0,100,200,400,800 and 
1600 iterations. Even if it honours all the conditions, the initial output (top 
left) is not a conditional simulation of the boolean model because the Poisson 
intensity has not been accounted for. In particular the number of objects is far 
too small (43 instead of 93 on the average). This number increases gradually 
and seems to stabililize after about 400 iterations (63,76,102,101,91). The 
output obtained at that step (right of second row) looks already very similar 
to a conditional simulation. 

Renlark 13.2.1. Kendall and Thonnes (1998) succeeded in designing an 
exact conditional simulation algorithm in the case when the objects are 
bounded. 

ReIIlark 13.2.2. Algorithm 13.2.5 can be applied when the contraints are 
more general than Co and Cl. As was seen earlier (see section 8.4.1), this 
algorithm can work provided that the set of allowed states [lc is such that 
i) P{[lc} > 0 and ii) the non conditional Markov chain restricted to [lc is 
irreducible. This remark is useful for reservoir engineers who want to incor­
porate more information than just well data in their simulations (dynamic 
data, assumptions from seismic data or even geological interpretations). 
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Fig. 13.3. Running the conditional simulation of a boolean model. From top to 
bottom and left to right, the simulations at iterations 0, 100,200,400,800 and 1600 
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Remark 13.2.3. The boolean model is a special case of object-based mod­
els. A first extension consists of replacing the Poisson point process that spec­
ifies the location of the objects by a spatial birth-and-death process (Preston, 
1977; Stoyan et al., 1987). It is also possible to lift the independence assump­
tion between the objects. In that case, an object is inserted or removed as a 
function of the objects present (and not only their numbers). This leads to 
the concept of spatial birth-and-death process of objects. A typical example 
is the pairwise interaction model considered by Sylverseen and Omre (1994). 
The first version of this model included a fixed number of objects, which al­
lowed its simulation using a Gibbs sampler. This restriction was removed in 
a subsequent paper (1997). Many other extensions are possible, such as the 
Markov jump process of objects. 

Appendix: The stationary case 

In this appendix, we consider the case when 

i) the intensity function B is constant. 

ii) all objects are identically distributed up to a translation. To put things 
differently, let A denote the random object implanted at the origin. Then 
A(x) has the same hitting functional as A shifted to x: 

P{A(x) n K ic 0} = P{Ax n]{ ic 0} = P{A n lC x ic 0} = T(IC x) 

Using these new assumptions, the avoiding functional of X becomes 

But 

P{X n K = 0} = exp { -B fIRd T(K_x) dX} 

f T(lCx)dx JIRd E {fIRd 1 AnK_x;t0 dX} 

E{ f 1 . dX} = E{IAEElr<I} JIRd -xEAEflK 

and finally 

Proposition 13.2.2. The avoiding functional of a stationary boolean model 
with intensity B and object A is 

p{XnK=0} = e-BE{IAEElkl} 
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Let us consider some particular cases for K: 

- If K = {x} is reduced to a single point, then we obtain the probability that 
x does not belong to any object, that is the background proportion 

q = e-e E{IAI} 

- If K = {x, x+h} is a pair of points, then we obtain the bivariate distribution 
of the complement XC of X. Since lA ill i<. I = lA U Ah I = 21AI- lA n Ah I, it 
is convenient to introduce geometric covariogram KA of A (cf. section 3.1), 
and we get 

From this, we derive 

P{x E X,x+ hE Xc} 

P{x E X, x + hEX} 

q_ q2 i KA (h) 

1- 2q + q2 eeKA(h) 

Fig. 13.4. Dilation of a convex set by a segment of line 

- If K = [x, x + h] is a line segment, then lA ill i<.1 is tractable only if A 
is almost surely convex. Let Ihl and a be the modulus and the direction of 
K. We have lA ill i<.1 = IAI + IhIIA"I, where Aa: stands for the projected 
(d - I)-volume of A onto a hyperplane orthogonal to a (see Figure 13.4). 
Consequently 

Assuming moreover that A is isotropic (that is its hitting functional is rota­
tion invariant), then Cauchy's formula (cf. section 6.l.2) can be applied and 
the probability simplifies to 

-e Ihl Wd-l E{18AI} 
qe dWd 

This probability varies as an exponential function of the modulus of h. 
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- If J{ = B( x, r) is a ball with radius r, explicit calculations are also possible 
in the case when the objects are almost surely convex. In this case, Steiner's 
formula (cf. section 6.1.2) can be applied 

and we get 

These formulae are very useful to check the compatibility of a set of ex­
perimental data with a boolean model, as well as to statistically infer its 
parameters. 

Exercises 

13.1 Let X be a boolean model in IRd with constant intensity (J and objects 
A(x) = [x, 2x]. Let X' be another boolean model with intensity (J' = (J2- d 

and objects A'(x) = [x/2, x]. Calculate the avoiding functionals of X and 
X'. What can be concluded about the parametrization of a non-stationary 
Boolean model? 

13.2 Let X be a stationary boolean model in IR with intensity (J. The objects 
of X can be written A(x) = [x, x + L(x)] where the L(x) are independent 
and exponentially distributed with mean a. 

1) What is the probability that both points 0 and 1 belong to X? 
2) What is the probability that an object covers both 0 and I? 
3) Suppose that A(x) covers 0 and 1. What is the distribution of L(x)? 
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There are various ways to construct a random function starting from a pop­
ulation of random objects. Everything depends on the way in which the 
different objects are combined. In this chapter, three combination rules are 
successively considered, namely the addition, the maximum and the super­
position, which give rise respectively to the random token model, the boolean 
random function and the dead leaves model. 

14.1 Random token model 

14.1.1 Definition and basic properties 

The random token model is built from three independent basic ingredients: 
i) a set of germs that consist of points from a stationary Poisson point process 
X with intensity () in JRd. 
ii) a population of objects. This is a family (A(x), x E JRd) of random com­
pact subsets of JRd. The A (x) are independent, and each A (x) has the same 
distribution as a reference random compact subset Aa up to a translation by 
the vector at. Moreover Aa is assumed to have a finite mean d-volume. 
iii) a family of weights (c:(x) , x E JRd) assigned to the objects. These weights 
are mutually independent. They attain only two values ±1 with the same 
probability ~. 

Definition 14.1.1. A random token model is a weighted sum of the indica­
tor functions of the objects implanted at the Poisson germs 

Z(y) = "" c:(x) 1 () L... yEA x 
xEX 

Remark 14.1.1. The random token model is a slight extension of a model 
popularized by Alfaro (1978, 1980) as the random coin model, in which the 
objects are random balls. It is in turn a special case of a more general model 
introduced by Matern (1960, 1986) and Serra (1968) and called dilution ran­
dom function. In this model, the indicator functions of the objects are re­
placed by random functions with integrable transitive covariogram. 
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Fig. 14.1. Realization of a random token model. The objects are random disks 
(uniform planar cross-sections of balls with fixed diameter, equal to a quarter of 
the field height). They are barely visible because of their large density. Each point 
of the simulation is covered by 25 disks on average 

The following proposition shows that the spatial distribution of a random 
token model can be expressed in terms of its Fourier transform: 

TheoreIll 14.1.1. Let J be a finite family of indices. The Fourier transform 
of (Z(Yj), j E J) satisfies 

where 

E exp { i L ujZ(Yj)} 
JEJ 

U K = L Uk 

kEK 

and YL = {Yt, lE L}. 

exp{e L [cosu K -l]PK } 
KCJ 

PK = L (-l)#L\KIAo 8 YLI 
KCLCJ 

Because of its length, the proof is given in the appendix. We now give some 
particular cases of this formula, depending on the choice of the support set 
Y = (Yj, j E J). 

- If Y = {V}, we obtain the Fourier transform of Z(y) 

E{eiuZ(Y)} = ee[cosu-1]EIAol 

Equivalently 

where In denotes the modified Bessel function of order n (Abramowitz and 
Stegun, 1970). 

- If Y = {V, z}, the Fourier transform of (Z(y), Z(z)) can be written using 
the geometric covariogram J{ of Aa 
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eB [cos u + cos v - 2][K(0) - K(h)] 

X eB [cos(u + v) - l]K(h) 

From this we easily derive that the covariance between Z(y) and Z(z) lS 

proportional to the geometric covariogram K of Ao at y - z: 

(P-In <P 
Cov{Z(y), Z(z)} = - ouov (0,0) = B K(y - z) 

Remark 14.1.2. In the case of the dilution random function mentioned in 
remark 14.1.1, the covariance is proportional to the transitive covariogram of 
the random functions used for the objects. 

14.1.2 Simulation 

Because the nonconditional simulation of a random token model is similar to 
that of a boolean model, we directly proceed to the simulation of Z in a field 
D given the conditional data Z(c) = z(c), c E C? 

Once again, we are going to propose a procedure that preserves the condi­
tions at each iteration (see section 8.4.1). The first step is to simulate an 
initial population of objects that is compatible with the data. In the follow­
ing algorithm, objects are generated one after another in the vicinity of the 
conditioning data points. Only those are kept that reduce the differences be­
tween the values of the random function at the conditioning data points and 
the conditioning values. In other words, a newly generated object is kept if 
I Z ( c) - z ( c) I does not increase for any c E C, and even decreases for some 
Co E C. It is discarded otherwise. The procedure stops when all conditions 
are satisfied. 

Algorithm 14.1.1. (Random token model. Initialization of the conditional 
procedure) 

1. Set Xo = 0. 
2. IfLcEc Iz(c)1 = 0, then deliver Xo. 0 
3. Select Co '" Unif{c E Cl z(c) # O}, generate an object A(x) containing 

co, and put c(x) = -sign(z(co)). 
4. If Iz(c) + c(x)1 ::; Iz(c)1 for all c E C n A(x), then insert (A(x),c(x)) to 

Xo and put z(c) = z(c) + c(x) for all c E C n A(x). 
5. Goto 2. 

Remark 14.1.3. Instead of step 1, we could have considered starting the 
procedure with a non conditional simulation. The other steps are unchanged. 
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This initialization procedure has been tested on a random token model with 
Poisson intensity () = 5 and with square objects whose side length are uniform 
on ]0,1.5[. The simulation field is a square 10 x 10 (see top left of Figure 
14.2). Fifty conditioning data points have been uniformly selected for this 
exercise (see top right of Figure 14.2). The simulation of an object containing 
a given point c E C is achieved using the acceptance-rejection method. At 
each attempt, an object is uniformly implanted within the square with centre 
c and side 1.5. In this exercise, 330 iterations were necessary to construct the 
initial population (see the bottom left of Figure 14.2). 
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Fig. 14.2. Conditional simulation of a random token model. Top left, a non condi-
tional simulation. Top right, the conditioning data points superimposed on the non 
conditional simulation. Bottom left, the conditional simulation at the initial stage. 
Bottom right, a conditional simulation 
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The next step is to design the iterative procedure itself. Note at first that 
the insertion or the deletion of an object is not possible because they would 
disrupt the conditioning. The replacement of an object by another one is 
admissible but not fully satisfactory because a procedure based solely on such 
replacements would keep the number of objects in the population constant. 
This is the reason why we resort to a more general form of replacement. It 
consists of selecting a domain hitting the simulation field, and replacing all 
the objects implanted in that domain by new ones generated according to 
the distribution of the non conditional model. The new population of objects 
thus obtained is accepted provided that all conditions are satisfied. 

There is a lot of flexibility with regard to the selection of the domains. The 
simplest one is to introduce a compact subset B of IRd , and to consider all 
the translates of B that hit the simulation field. This leads to the following 
conditional simulation algorithm: 

Algorithm 14.1.2. (Random token model. Conditional simulation) 

1. Set X = .1'0 (cf. algorithm 14.1.1). 
2. Generate x '" Unif(D tfJ 13). Set Y = ((A(y), E(y)) E X lyE Bx}. 
3. Generate N '" Poisson(BIBI). Generate a population Z of N independent 

valued objects implanted in Bx. 
4. IfL,(x\y)UZ c(x) 1cEA(x) = z(c) for all c E C, then put .1'= (.1'\Y) u Z. 

5. Goto 2. 

This algorithm has been used to get the conditional simulation displayed at 
the bottom right of Figure 14.2. In this example B is a square with side 
equal to 1.5. Combined with a Poisson intensity B = 5, this gives an aver­
age replacement of 11.25 objects. This is a high rate: only 1767 candidate 
transitions were accepted after running the simulation for 50000 iterations. 

Remark 14.1.4. In the case when the objects are bounded, Algorithm 
14.1.2 can be made faster by considering only the domains located in the 
vicinity of the conditioning data points. The rest of the simulation is not 
affected by the conditioning and can be simulated once and for all. 

14.2 Boolean random function 

14.2.1 Definition and basic properties 

Introduced by Jeulin and Jeulin (1980) for representing rough surfaces, this 
model has been extensively studied and generalized by several authors (Serra, 
1988; Preteux and Schmitt, 1988). The version presented here is a simple 
variation of the boolean islands (Serra, 1988). The ingredients of this model 
are 
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i) a Poisson point process X with intensity (J in JRd. 
ii) a population of objects (A(x), x E JRd). The objects are independent 
and have (up to a translation) the same distribution as a reference random 
compact set Aa with finite mean d-volume. 
iii) a family of weights (c:(x), x E JRd) assigned to the objects. These weights 
are identically distributed and take positive values Zi < ... < Zn with prob­
ability Pi, ···,Pn· They are mutually independent, but may depend on the 
objects. 

Definition 14.2.1. A boolean random function assigns to each point the 
maximum weight of the Poisson population of objects that contain it 

Z(y) = max c:(x) 
xEX 

YEA(x) 

In this definition we have written maximum and not supremum. Indeed, since 
the objects have finite mean volume, each point of JRd is almost surely covered 
by a finite number of objects. Figure 14.3 shows a realization of a boolean 
random function. 

Fig. 14.3. Realization of a boolean random function of disks 

The union of the objects with value Zi is a stationary boolean model, say Xi, 

with intensity (Ji = (JPi. The distribution of its reference object Ai coincides 
with that of Aa only if the objects and their values are independent. This 
suggests an alternative definition of a boolean random function: 

Z(y) = max Zi 
{ilyEX;} 

From this remark, we find that the maximum of Z over the compact subset 
J{ of IRd is less than Z if J{ belongs to the background of all the boolean 
models Xi associated with values Zi 2: z. 
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Proposition 14.2.1. The distribution of the maximum of the boolean ran­
dom function over a compact subset J{ of IRd is given by 

P{maxZ(Y) < z} = IT e-ei EIA; EB kl 
yEK 

{i I Zi~Z} 

A slightly more general argument gives 

TheoreIll 14.2.1. The spatial distribution of the boolean random function 
is given by 

n n n 

p{;\ Z(Yi) = Zi} IT P{Yi C X;} IT p{ Xi n Y1,i-1 = 0} 
i=l i=l i=2 

for any family (Y1 , ... , Yn ) of finite and pairwise disjoint subsets of IRd , and 
where Y1,i-1 is a short notation for Uj~~Yj. Explicitly 

P{Yi c X;} = L (-l)#Y e-ei EIAi EB YI 
YCYi 

14.2.2 SiIllulation 

The problem addressed here is the simulation of a boolean random function 
Z in the field D, given that Z (c) = z( c) for c contained in a finite subset C 
of IRd . In order to avoid any edge effects, it is advantageous to consider Z in 
D as the maximum of N(D) typical objects, where 
- N(D) follows a Poisson distribution with mean lJ(D) = e EID EB Aal 
- a typical object of D can be written as the intersection between D and an 
object A(x) implanted w.r.t. density function x -+ P{(Aa)x n D:j:. 0} (cf. 
definition 13.2.1). The value assigned to the typical object is that of A(x). 

The conditional simulation algorithm that we propose consists of simulating 
the population X of the objects that constitute the boolean random func­
tion. It is a variation of a non conditional iterative algorithm obtained by 
restricting the population to the set [lc of all allowed populations (cf. section 
8.4.1). At each step, the only changes permitted are either the insertion of a 
new object or the removal of an existing one. A new object can be inserted 
provided that its value does not exceed those of the conditioning data points 
that it contains. An existing object can be removed provided that the condi­
tioning data points that it contains are honoured by the other objects of the 
population. An easy way to get an allowed population to start the algorithm 
is as follows. Typical objects are generated one after the other. We keep only 
those which are compatible with the conditioning data set and which are 
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the first ones to honour a data point. The initial procedure is completed as 
soon as all conditioning data points have been honoured. It is not detailed in 
Algorithm 14.2.1. 

• 
• • 

• 
• • • • • • • • • 

Fig. 14.4. Conditional simulation of a boolean random function. Top left, a non 
conditional simulation. Top right, the same with the conditioning data set. Bot­
tom left, the initial population used to start the conditional simulation algorithm. 
Bottom right, a conditional simulation obtained after 5000 iterations 

Algorithm 14.2.1. (Boolean random function. Conditional simulation) 

1. Generate X E Dc. 
2. Generate a random variable U that takes the values + 1, -1 and 0 with 

probability 
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'13 (D) 
P+l = 'I3(D) + #X + 1 P-l = 'I3(D) + #X Po = 1 - P+l - P-l 

3.1. If U = +1, then generate a typical valued object (A, c). If z(c) :::: e 
for all c E CnA, then set X = X U (A,e). 

3.2. If U = -I, then generate (A,e) '" Unif(X). If for every c E An C 
there exists (A',e') E X\(A,e) such that z(c) = e', then set X = 
X\(A, c). 

4. Goto 2. 

An example of this algorithm is given on Figure 14.4. Each object is a random 
square. The size of its side is 1.5 v'fJ with U '" Unif(]O, ID, and its value 
follows a conditional geometric distribution with parameter v'fJ on {I, ... , 8}. 
So the bigger the objects, the larger their values on average. The simulation 
field is 10 x 10. The top left of Figure 14.4 shows a non conditional simulation. 
On the top right, a set of 50 conditioning data points is superimposed on 
the non conditional simulation. Starting from this data set, the initialization 
procedure has been applied to produce the population depicted in the bottom 
left. The conditional simulation at the bottom right of Figure 14.4 has been 
obtained after running Algorithm 14.2.1 for 5000 iterations. 

14.3 The dead leaves model 

As its name indicates, this model has been devised to imitate falling leaves 
in autumn. The dead leaves overlap and gradually tessellate the ground. 

14.3.1 Definition and basic properties 

This model has many variations. The one considered here is an extension 
by Jeulin (1979) of a model devised by Matheron (1968). It is based on the 
following considerations: 

i) the leaves are independent and nonempty random compact subset of JRd. 

ii) the leaves fall according to a stationary Poisson point process with intensity 
B in JRd x ]-00, 0 [. The leaffallen on the point x at time t is denoted by A (x, t) . 

iii) a categorical value or colour is associated with each leaf. The set of all 
possible colours is finite and denoted by I. All leaves have the same chance 
Pi to be assigned the colour i E I. Different leaves have independent colors. 

iv) all leaves with colour i have the same distribution (up to a translation) 
as a reference random compact subset Ai which has non zero and finite mean 
d-volume. 

As an immediate consequence, the leaves with colour i fall according to a 
Poisson point process with intensity Bi = BPi in JRd x] - 00,0[. Moreover, 
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each point x E IRd is almost surely covered by a leaf at time ° because 
the leaves have a nonzero mean content. This makes the following definition 
possible: 

Definition 14.3.1. The dead leaves model associates to each point x E IRd 

the colour Z (x) of the most recently fallen leaf that covers x. 

Remark 14.3.1. It should be noted that the leaves fall according to a time 
reversible process. Therefore the direction of time can be inverted . This 
amounts to considering the leaves falling according to a Poisson point process 
in IRdx]O , 00[, and defining Z(x) as the colour of the first leaf that covers x. 
This point of view was first mentioned by Jeulin (1979) and further developed 
by Kendall and Thonnes (1999). 

Fig. 14.5. Realization of a dead leaves model 

Figure 14.5 depicts an example of a dead leaves model. The leaves are disks 
and their diameters are uniformly distributed between ° and a maximal value 
(a quarter of the height of the image). On this realization, the uniform size 
of the diameters is not visible for two reasons. Firstly, what can be perceived 
are the areas of the disks and not their diameters. Secondly, the smaller a 
leaf, the more chance it has to be covered by a larger one. 

Let Y be a finite subset of IRd . What is the probability that Z takes some 
specific colour z(y) at each point y ofY? Using remark 14.3.1, this probability 
can be calculated by randomizing on the first leaf A( x, t) that covers points 
of Y. Let L be the set of the points covered and let Y1 = Y\L its complement 
in Y. If the leaf has colour i , then L C A(x , t) and Y1 n A(x , t) = 0 if and 
only if - x E Ai 8 L and -x ~ Ai EB 17. Accordingly we can write 

p{ 1\ Z(y) = z(y)} = 1co e-eEIA EB 171 t o:(t) dt 
yEY 0 

where o:(t) is defined as a sum over all indices i of I and to all nonempty 
subsets L of Z-l (i) 
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o:(t) = L BiEI(Ai S L)\(Ai EEl }\)I p{ /\ Z(y) = z(y)} 
yEY, 

After integration, we obtain 

{ } 
LBiEI(AiSL)\(AiEElYr)IP{I\YEY,Z(y)=Z(y)} 

P /\ Z(y) = z(y) = BEIA EEl YI 
yEY 

Iterating this formula gives us 

Theorem 14.3.1. The spatial distribution of the dead leaves model is 

ord(Y) - -p{ /\ Z(y) = z(y)} = L IT Bik EI(Aik S Lk)\(~ik EEl Yk+r)1 
yEY Y k=O BEIAEElYkl 

in which the sum is extended to all finite sequences Y = (Yo, Y1 , ... , Yn +1) 
satisfying 
i) Yo = Y ;;2 ... ;;2 Yn +1 = 0. The integer n is called the order of Y and 
denoted by ord(Y). 
ii) for each ° ::; k ::; ord(Y), there is an index ik E I such that Lk = 
Yk \Yk+l E z-l(ik). 

Let us now see how this formula can be applied. To simplify the results, we 
will write ai = Bi EIAI and a = L ai· 

- If Y = {y}, then Y = {{y}, 0} is the only sequence allowed. Of course, 
ord(Y) = 0, and 

P{Z(y)=i} = ai iEI 
a 

- IfY = {x, y} with z(x) = i and z(y) = j, then two cases must be considered 
depending on whether i and j are equal or not. If i # j, there are only two 
possible sequences for Y, namely {{x, y}, {x}, 0} and { {x, y}, {y}, 0}. The 
introduction of the geometric covariogram J{i of Ai leads to an interesting 
simplification 

from which we derive 

ai(aj - bj ) + aj(ai - bi) 
a(2a - b) 

P{Z(x) = i, Z(y) = j} i,j E I i # j 

after putting bi = Bi f{i (x - y) and b = L bi . In the case i = j, the calculations 
are similar, but a third sequence { {x, y}, 0} has to be considered. This finally 

P{Z(x) = i, Z(y) = i} 
2ai(ai - b;) + abi 

a(2a - b) 
i E I 
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14.3.2 SiIllulation 

Let us start with the non conditional simulation of the dead leaves model 
in the field D. In the same manner as in sections 13.2 and 14.2, typical 
leaves are introduced to cope with edge-effects. The leaves of colour i hitting 
the simulation field D are located according to a Poisson point process with 
intensity function 1.9 i (x) = (JiP{X E DEBAd in IRdx)O,=[. Its integral over 
IRd is clearly finite 

r 1.9 i (x) dx = (Ji r P{x E D EB Ad dx = (Ji EID EB Ail < = J lRd JlRd 
Let x be a random point in IRd with density function 1.9i . The intersection 
of A(x, t) and D is called a typical i-leaf The hitting functional of a typical 
i-leaf is 

1';(K) = r 1.9i(x)_ p{xE(DnK)EBAddx 
JlR d (JiEIDEBA;I 

Finally, the probability that a typical leaf is an i-leaf is 

(Ji EID EB Ai I 
qi = _ i E I L (Ji EID EB Ail 

iEJ 

Using this notation, the simulation algorithm that consists of assigning to 
each point of D the colour of the first leaf that covers it can be written as 
follows: 

AlgorithIll 14.3.1. (Dead leaves model) 

1. Set Do = D and Z = io rt. I on Do. 
2. If Do = 0, then deliver Z. 0 

3. Generate first i '" q, and then a typical i-leaf A '" 1';. Put Z (x) = i for 
all x EA n Z-l(io) and Do = Do \A. 

4. Goto 2. 

ReIllark 14.3.2. The big advantage of this algorithm which was proposed 
by Kendall and Thonnes (1999) is to provide an exact simulation. An iterative 
algorithm directly based on definition 14.3.1 could be also considered. This 
would require the study of its rate of convergence as well as determining 
an appropriate halting criterion. Note in particular that the criterion that 
consists of stopping the algorithm as soon as the simulation field has been 
completely covered by leaves is biased. Indeed, the "ultimate leaf' that covers 
the last holes has more chance than normal to be large. To determine the 
order of magnitude of this bias, we carried out 10000 iterative simulations of 
a dead leaves model on a circle with perimeter 10. The leaves are arcs whose 
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length is exponentially distributed with mean value 1. Figure 14.6 shows the 
Q-Q plot of the length of a typical leaf versus the ultimate. The mean and 
variance of the ultimate leaf are respectively 2.46 and 2.54 (instead of 1 and 
1 for the typical leaf). 
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Fig;, 14.6. Q-Q plot of the length of a typical leaf versus the ultimate 

The problem of the conditional simulation of the dead leaves model is now 
considered. Let z(c), c E C be the colours that the simulation must honour at 
a finite data subset C of D. Indeed, the exact algorithm proposed by Kendall 
and Thonnes remains basically valid. The only difference is that a typical 
leaf that falls on an uncovered conditioning data point of a different colour 
is systematically discarded. Here is the algorithm: 

AIgorithluJ.u:l!i3.2. (Dead leaves model. Conditional simulation) 

1. Set.'Dd;:=D!and Z = iD ~ I on Do. 
2. IfDo .=0,' then deliver Z. 0 

3. Generate first i ~ q, and then a typical i-leaf A ~ Ti. 
4. Iffo'rany c E A, either Z(c) #- iD, or Z(c) = iD as well as z(c) = i, then 

putZ (x) = i for all x E An Z-l (iD) and Do = Do \A. 
5. Goto 2. 

In order to illustrate this algorithm, we simulate a dead leaves model consist­
ing of Poisson polygons. The simulation field is 10 X 10 and the mean area of 
a leaf is 0.5. The top left of Figure 14.7 depicts a non conditional simulation, 
from which 50 independent and uniform points are selected to be used as a 
conditioning data set. Images of three conditional simulations are also shown. 
To generate each of them between 5000 and 10000 leaves were required. Of 
course many fewer leaves are visible. Their number ranges between 250 and 
450 with a mean value of about 350. 
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Fig. 14.7. Conditional simulation of a dead leaves model. The leaves are typical 
Poisson polygons (same distribution and same proportion for the three colours). 
Top left, a non conditional simulation. Top right and bottom, three conditional 
simulations 

.... ' . .. .... . ... 
. . .... 

~ .. a: . "'0. ' • .-1 
.' ., . 

. . . . . 

Fig. 14.8. Conditional distribution of the colour of the points of the simulation 
field. From left to right, this gives the probability that a point is red, yellow or 
green 
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Replicating the simulations gives us an idea about the impact of the data set 
on the spatial distribution of the conditional model. Starting from a set of 
1000 independent simulations, we have computed the frequency of occurrence 
of each point of the simulation field to belong to a red, a yellow or a green 
leaf (cf. Figure 14.8). From this we can derive an unbiased estimate of any 
conditional distribution based on points of D. 

Appendix: spatial distribution of a random token model 

This appendix gives the proof of theorem 14.l.l. Let D be a compact subset 
of IRd . We first consider the contribution of the Poisson points in D 

"" c(x) 1 () ~ yEA x 
xEXnD 

The Fourier transform of (Z D (Yj ), j E J), defined as 

can be calculated by conditioning on the number and the location of the 
Poisson points in D. Explicitly, we get 

which leads to 

Now, because of the distribution of c(x), this formula simplifies to 

Then we see that LJ'EJ 11] 1 ) = u for some ]{ C J if and only if 
YjEA(x K 

YK C A(x) and YJ\K n A(x) = 0. Accordingly, if we introduce the notation 

PK(x) = P{YK c A(x), YJ\K n A(x) = 0} 

the previous formula becomes 
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In<P (u) = () L [cos u - 1] r p (x)dx 
D K iD K 

KCJ 

Expanding the domain D to IRd gives 

In<P(u) = () L [cos u - 1] r p (x)dx 
K iIRd K 

KCJ 

Finally, the integral can be explicitly calculated by starting from the defini­
tion of PK and using the inclusion-exclusion formula 

r p (x) dx 
iIRd K 

This completes the proof. D 

Exercises 

14.1 Let Z be a dilution random function in IRd defined as 

Z(y) = L E(X) f(y - x) 
xEX 

where 
- X is a Poisson point process with intensity () 
- f is a deterministic function with finite integral 
- E( x), x E IRd is a family of independent weights taking the values ± 1 with 
the same probability! 
What is the covariance function of Z? What happens in the case when the 
integral of f is zero? 

14.2 The notation is the same as in the previous exercise, except that now 
X consists of the nodes of a cubic grid with mesh size a and uniform origin. 
The function f is also assumed to have its support contained within a ball of 
diameter a. What is the covariance function of Z? 

14.3 Using the notation of section 14.3, what is the probability that the 
compact subset B is totally contained within a leaf of type i? 



15. Gaussian random function 

An extremely useful consequence of the central limit theorem is the existence 
of a class of random functions whose spatial distribution depends only on 
their first two moments. These are Gaussian random functions. Their main 
statistical properties are reviewed, the texture of their realizations is exam­
ined, and algorithms are proposed to simulate them, conditionnally or not. 

15.1 Definition and basic properties 

15.1.1 Results froIll probability 

Let Y1 , ... , Yn , ... be a sequence of independent and identically distributed 
random variables. If their mean m is finite, then the strong law of large 
numbers says that the average (Y1 + ... + Yn)/n converges almost surely 
towards m 

lim = m a.s. 
n~+oo n 

In the case when their variance (Y2 is also finite, then the central limit theorem 
states that the distribution of (Y1 + ... + Yn)/n tends to be gaussian around 
its mean value 

where G denotes the standard gaussian distribution function. 

Going further, we can wonder from what value of n onwards the distribu­
tion of (Y1 + ... + Yn ) / n can be considered as gaussian for practical pur­
poses. Provided that the variables have a finite third order absolute moment 
m3 = E{lli - mI3}, an answer is given by the Berry-Esseen theorem (Feller, 
1971; Rao, 1984). This theorem gives an upper bound for the difference be­
tween the standardized distribution of the average and the standard gaussian 
distribution: 
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sup 
yEIR 

{ 
Yl + ... + Yn _ m } 

p n () < y 

Vii 
- G(y) 

where a is a number less than l.32132. 
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Fig. 15.1. The consequences of the law of large numbers and the central limit 
theorem can be illustrated by plotting the average of n independent values as a 
function of n. The top distribution has a finite mean and a finite variance, the 
middle one has a finite mean but an infinite variance and the bottom one has an 
infinite mean as well as an infinite variance 

These basic results are now illustrated by considering the family of p.d.f. 's 
(fk, k 2': 1) defined as 
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X>O 

Consider the case k = 4. The distribution 14 has a finite mean and a finite 
variance, so the law of large numbers and the central limit theorem are appli­
cable. In Figure 15.1 (top), the average of n independently generated values 
has been plotted as a function of n. The curve obtained tends to the mean 
value of 1/3 and stays there. 

For k = 3, the distribution Is has a finite mean but an infinite variance. 
Consequently, the law of large numbers holds, but the central limit theorem 
does not. In that case, the curve (Figure 15.1, middle) tends to the mean 
value of 1/2 with occasional "bumps". 

Finally for k = 2, the distribution h has an infinite lllean. So eVen the law of 
large numbers is not applicable. As can be seen from Figure L5.1 (bottom), 
there are intervals on which the curve is decf(>asing, but from time to time a 
very large value is generated resulting in a :oharp jump in the fUllction values. 
In the long run, the curve tends to infinity (i.e. its mean). 

15.1.2 Definition of a gaussian random fuuction 

Now let (Yn , 17 E IN) be a sequence of independent and identically distributed 
(i.i.d.) second-order stationary random functions. To simplify the notation, 
the }-;, 's have been standardized: their mean is equal to 0 and their variance 
to 1. Consider thf:' random functioll Y (n) defined as 

y(n) = Yl + ... + Y-;' 
fo 

Because of the central limit thRorem, allY linear combination of its variables 

p p 

p 
LAj YI(Xj)+"'+ LAj }-;,(Xj) 

L Aj y(n)(.rj) j=1 i=l 

j=1 

tends to follow a gaussian distribution as 17 becomes very large. This leads 
to the following definition: 

Definition 15.1.1. A random fund ion is said to be gaussian if any linear 
combination of its variables follows a gaussian distribution. 

Let Y be a gaussian random function with mean m and covariance function 
C. The multivariate distribution of (Y(;rt), ... , Y(xp)) is characterized by its 
Fourier transform 
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Since Y is gaussian, 'L:~=l Uj Y (x j) follows a gaussian distribution with mean 

'L:J=l ujm(xj) and variance 'L:J,k=l UjUkC(Xj,Xk). Therefore 

In particular, 1> depends only on m and C. Consequently 

TheoreIll 15.1.1. The spatial distribution of a gaussian random function is 
totally characterized by its mean value and its covariance function. 

Now let (Y(Yd, ... , Y(Yq)) be another vector. Suppose that both vectors are 
uncorrelated, that is C(Xj,Yk) = ° for any j = 1, ... ,p and any k = 1, ... ,q. 
Then the Fourier transform of (Y(Xl), ... , Y(xp), Y(Yd, ... , Y(Yq)) can be 
written as the product of the Fourier transforms of (Y(Xl), ... , Y(xp) and 
Y(Yd, ... , Y(Yq))· It follows that 

TheoreIll 15.1.2. Two gaussian vectors are independent if and only if they 
are uncorrelated. 

15.1.3 Textures of the realizations 

From now onwards, Y denotes a second-order stationary gaussian random 
function with mean 0, variance 1 and covariance function C. As was said in 
chapter 3, C cannot be arbitrary, since the variance of any linear combination 
of the variables of Y must be non negative. This was expressed in chapter 3 
by saying that a covariance function is positive definite. Table 15.1 gives some 
examples of covariance functions. These have been chosen because they have 
totally different shapes. In particular their behaviours differ at the origin, 
near the range or at large scale. The consequences of these differences are 
apparent in the realizations shown on Figure 15.2. 

How can we compare realizations derived from different covariances? The 
scale factor a of the spherical, exponential, stable and Gaussian covariances 
has been chosen so that the realizations behave similarly at large scale. This 
can be done by giving these four covariances the same integral range in two 
dimensions. On Figure 15.2, the simulation domain is 160 times larger than 
the integral range. This is not possible for the hyperbolic covariance which 
has an infinite integral range. As it can be observed, the realisation shows no 
sign of spatial homogeneity. In the hyperbolic case, the scale factor has been 
assigned a value that gives the covariance the same behaviour at the origin 
as the exponential covariance. 



Spherical 

Exponential 

Stable 

Hyperbolic 

Gaussian 

Cardinal sine 
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C(h) = exp { _I:I} 

C(h) = exp {-~} 

C( h ) - ------4rr - , , Ihl 1+-
a 

_ sin {~} 
C(h) - ~ 

a 

Tab. 15.1. Formula for some models of covariance function 

The stable covariance has an infinite slope at the origin, which explains the 
grainy texture of its realization on Figure 15.2. The cardinal sine covariance, 
like the hyperbolic covariance, has an infinite integral range in two dimen­
sions. Its scale factor has been chosen to give it the same behaviour at the 
origin as the gaussian covariance. The cardinal sine covariance is pseudope­
riodic (but not strictly periodic: a covariance function cannot be isotropic 
and periodic in a workspace of dimension greater than one), which leads to 
realisations with a dendritic pattern (see the bottom right of Figure 15.2). 
The width of the dendritic limbs is closely related to the scale factor. 

In all cases, the realizations look continuous. Indeed, Adler (1981) showed 
that the condition 

for some 0 < Co < = and some E > 0 is sufficient for all realizations of Y to 
be continuous almost surely. 
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Fig. 15.2. Realizations of gaussian random functions with different covanance 
functions. From top to bottom and left to right, spherical, exponential, stable, 
hyperbolic, gaussian and cardinal sine covariances 
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15.2 Non conditional simulation 

In this section, the problem of simulating a stationary gaussian random func­
tion with mean 0, variance 1 and covariance function C in a continuous do­
main D of IRd is considered. Based on the central limit theorem, one possible 
procedure consists of simulating a large number of independent standardized, 
stationary random functions (not necessarily gaussian) with covariance C. 
This procedure raises two questions, firstly, how to simulate a random func­
tion with covariance C in general, and secondly, how many of these random 
functions have to be simulated so that the central limit theorem is applicable. 

There are many different methods for simulating a random function with 
specified covariance . They include the dilution , tessellation, spectral and turn­
ing bands methods (see Figure 15.3). We will present them briefly and com­
pare them from various standpoints such as their degree of generality, their 
range of validity and their practicality. Unfortunately, the second question 
cannot be answered by giving some no magic number. However a number of 
criteria are available to decide how many random functions to simulate . This 
will be discussed at t he con cl usion of this chapter. 

Fig. 15.3. Examples of methods t.hat can be used to simulate a gaussian random 
function with an exponential covariance. From top to bottom and left to right, 
the sp ectral method, the dilution method , the tessellation method and the turning 
bands method 
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15.2.1 The dilution method 

This method can be applied in the case when the covariance is proportional 
to the geometric covariogram of a random object A 

In that case, it suffices to consider 

Y(y) = L c(x) 1yEA (x) 

xEX 

yE D 

where X is a stationary Poisson point process in JRd with intensity B, 
(A(x), x E JRd) is a family of independent random objects (each (A(x) has 

the same distribution as A shifted by vector 01), and c is a family of inde­
pendent random weights taking only the two values ±1 with probability ~ 
(see section 14.1). For instance, an exponential covariance can be generated 
using typical Poisson polytopes (see section 12.3.2). It is also possible to take 
random balls, but then the value assigned to a ball depends on its radius 
(Hammersley and Nelder (1955)). 

From a practical point of view, the dilution methods works well when the 
random object A is almost surely bounded. For instance, it is ideal for simu­
lating a spherical covariance function because it is the geometric covariogram 
of a ball. 

Another common case is to have the covariance proportional to the transitive 
covariogram of a function f 

C(h) = B ( f(x) f(x + h) dx JlRd 
In that case, we can take 

Y(y) = L c(x) f(y - x) yE D 
xEX 

For instance, the exponential covariance with scale factor a is proportional 
to the transitive covariogram of the function 

where v = d~ 1 and Kv is the modified Bessel function of order v. This 
approach is possible (see top right of Figure 15.3) but is not easy to implement 
because f is not bounded and does not have bounded support. 
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15.2.2 The tessellation method 

In this method, lRd is partitioned into a stationary population of random 
cells which are assigned independent random values. The covariance of the 
random function thus obtained is equal to the geometric covariogram of the 
cells times the variance of the random values (see section 12.1.2). For instance, 
the exponential covariance can be associated with a population of Poisson 
polytopes (see bottom left of Figure 15.3). 

Provided that we can simulate the tessellation, this method is rather efficient. 
But its degree of generality is limited because many geometric covariograms 
cannot be associated with the typical cell of a stationary tessellation (e.g. the 
spherical covariogram). This raises the question of how to characterize the 
covariance function of a stationary tessellation. So far, the answer is unknown. 

15.2.3 The spectral method 

We know that the covariance C is a positive definite function. If it is also 
continuous, then Bochner's theorem states that it is the Fourier transform of 
a positive measure (the spectral measure), say X 

C(h) = f ei < h,u > dX(u) 
JIR d 

Moreover C(O) = 1, so X is a probability measure. A direct calculation shows 
that if V is a random vector with distribution X, and if U is a variable with a 
uniform distribution over ]0, 1[ independent of V, then the random function 
defined as 

Y(x) = v'2cos« V,x > +27rU) 

is standardized and has C as its covariance function. The spectral method, 
developed by Shinozuka and Jan (1972) among others, makes use of this 
result and is quite general. Algorithm 15.2.1 gives a way of implementing it. 

Algorithm 15.2.1. (Spectral method) 

1. Generate independently VI, ... , Vn '" X and UI , ... , Un'" Unif. 

2. Compute ~ I:~=I cos( < Vk, x> +27rUk) for each x E D. 

The practical set-up of this method requires knowledge of the spectral mea­
sure X and a criterion for deciding the number n of basis functions. The 
second issue is deferred to the next section. Regarding the first, things are 
simple if C is integrable. In this case, X has a density I , say f, and the formula 
linking f and C can be inverted to give 

1 C2 ::::: ICI because -1 ::::: C ::::: 1. So C is square integrable as soon as it is in­
tegrable. A classical result (e.g Rudin (1966)) states that the Fourier transform 
of a square integrable functions is also square integrable. Moreover the corre­
spondence is bijective provided that all functions almost everywhere equal are 
identified. 
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f(u) = _1_ r e- i < u, h > C(h) dh 
(21T)d ) md 

A list of covariance functions and their spectral distributions is given in Ap­
pendix of this book. 

Example 15.2.1. The spectral distribution of an exponential covanance 
with scale factor a has the density 

with p = dtl. It can be simulated either by using the acceptance-rejection 
method, or by interpreting it as a gamma (~) mixture of gaussian distribu­
tions 

100 (ta2)% 21 12 l 1 f( u) = - e -ta u _e-tU- 1 dt 
o 1T j7r 

The spectral method is general but not always efficient. Indeed, the spectral 
measure is easier to sample when it vanishes rapidly at infinity. Because the 
Fourier transform exchanges the properties at 0 and at infinity, the spectral 
method is especially recommended when the covariance function is smooth 
at the origin. 

15.2.4 The turning bands method 

Designed by Matheron (1972a, 1973), the turning bands method is a stereo­
logical device for reducing a multidimensional simulation into unidimensional 
ones. Let us start again with the spectral representation of C. By introducing 
the system of polar coordinates u = (B, p) where B is a direction parameter (B 
spans half a sphere, say st), and p is a location parameter (-00 < p < +00), 
the spectral measure dX (u) can be written as the product of the distribution 
dw( B) of B and the conditional distribution dXe (p) of p given e 

dX(u) = dw(e) dXe(p) 

Using this decomposition, the spectral expansion of the covariance C becomes 

C(h) = 1st [:00 exp{ip < h, e >} dXe(p) dw(e) 

This leads us to consider the unidimensional function 

j +OO 
Ce(r) = -cc exp{irp} dXe(p) 

By Bochner's theorem, Ce is a covariance function, and we have 
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C(h) = r Co« h,e » dw(e) 1s: . 
The idea behind the turning bands method is to reduce the simulation of 
a gaussian random function with covariance C to the simulations of inde­
pendent stochastic processes with covariances Ca. Let (en, n E IN) be a se­
quence of directions of st , and let (Xn, n E IN) be a sequence of independent 
stochastic processes with covariances Can' The random function 

admits the covariance 

As n becomes very large, the central limit theorem implies that the spatial dis­
tribution of y(n) tends to become gaussian with covariance limn ---++ oo c(n). 

This limit is exactly C in the case when ~ L~=l SOk converges weakly to w. 
The turning bands algorithm is the following one: 

Algorithm 15.2.2. (Turning bands method) 

1. Choose a set of directions el, ... , en such that ~ L~=l SOk ~ w. 
2. (ienerate independent standard stochastic processes Xl, ... , Xn with co­

variance functions COl' ... , Can' 
3. Compute In L~=l Xd < .r, ek » for any J' E D. 

Remark 15.2.1. Both step S of algorithm 15.2.2 and step 2 of algorithm 
15.2.1 stem from the application of the central limit theorem. Accordingly, 
they are similar. The only difference is that the spectral method uses stochas­
tic processes exclusively built starting from cosine fUllctions. In that sense, 
the turning band method can be seen as a generalization of the spectral 
method. 

Algorithm 1·5.2.2 does not say how to generate the directions, how to deter­
mine the covariance Ca, and how to build a stochastic process with covariance 
Ca. These questions are now considered in turn. 
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Generating the directions. Suppose here that 'W has a continous den­
sity p on Sd' If ~ I::~=l ISOk converges weakly to the uniform distribution on 

+ IS+I n Sd' then ---:- I::k=l lSokP((h) converges weakly to 'W. Consequently, only the 
isotropic case needs being considered. 

The simplest method is to arrange the (h's regularly on Sd' This approach 
works well if d = 2, but not otherwise. For instance, if d = 3, the maxi­
mum number of regular directions is equal to 15 (Guibal, 1972; Journel and 
Huijbregts, 1978). 

Another method is to generate the ek's independently and uniformly in Sd' 
However this is not fully satisfactory because the convergence of ~ I::~=l ISOk 

to the uniform distribution of Sd is rather slow. 

A third approach is to resort to sequences with weak discrepancy (Bouleau, 
1986). It consists of producing en as far as possible from el, ... , en- l while 
filling in Sd as fast as possible. In three dimensions, Freulon (1992) started 
with the binary and the ternary expansions of each integer n = 1,2, ... 

n = ao + 2al + ... + 2P ap = bo + 3b l + ... + 3q bq 

(ai = 0,1 and bj = 0,1,2) to get 2 numbers Un and Vn between 0 and 1 

ao al ap 
Un = 2 + 4 + ... + 2P+1 

Then he put 

On = (cos(2/Tu n ) \,11- v~ , sin(2/Tun ) )1- v~ , vn ) 

Figure 15.4 compares 3000 independent and uniform points with 3000 points 
generated according to Freulon's algorithm. 

Fig. 15.4. Stereographical projection of 3000 points generated uniformly (left) or 
according to a sequence with a weak discrepancy (right) 



15.2 Non conditional simulation 195 

Deterlllining the unidilllensional covariances. The standard approach 
is to calculate the spectral measure X of C, then derive the spectral measure 
Xa of Ca and take its Fourier transform. 

Considerable simplifications occur when C is isotropic, i.e. it can be written 
as C(h) = Cd(lhl) for some scalar function Cd defined on IR+. In this case, 
all of the Ca are equal to a single covariance function, say Cl. Matheron 
(1972a) gives the relationship between Cl and Cd 

(d - l)Wd 1 11 d-3 
Cd(r) = 2 d - (1 - t 2 )-2-Cdtr ) dt 

Wd 0 

where Wd stands, as usual, for the d-volume of the unit ball in IRd . If d = 3, 
this formula reduces to 

or equivalently 

For d = 2, the relationship between Cl and C2 is more complicated 

Its general solution is 

1,,/2 dC 
C\(r) = 1 + r _2 (rsine) de 

o dr 

(Brooker, 1985; Dietrich, 1995). Because this integral form IS not easy to 
handle, Gneiting (199.5, 1996) derives Cl explicitly for the most commonly 
used covariances C2 . 

Sinlulating the stochastic processes. There is usually a wide choice of 
methods for simulating a stochastic process with a given covariance function 
Cl, which makes the turning bands method very flexible. Of course, the spec­
tral method can be applied, but this just amounts to applying it directly in 
IRd. In what follows, two examples encountered in three-dimensional isotropic 
simulations are discussed. 

Exalllple 15.2.2. Suppose that C3 is an exponential covariance with scale 
factor a. The associated unidimensional covariance is 

r<O 

To simulate Cl, we can consider the dilution stochastic process uSlllg the 
function 
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1 
t? 0 

(Matheron, 1972; Journel and Huijbregts, 1978). The realization shown on 
top of Figure 15.5 is only approximate because f does not have bounded 
support. This is the reason why the following alternative process is preferred 
for simulating Cl. It is a special case of a migration process developed by 
Haas et aL (1967). It consists of generating a Poisson point process that 
partitions 1R into independent exponential intervals of mean length 2a. Each 
interval is split into two halves. The first half is set to -1, the second half to 
+1 (see bottom of Figure 15.5). 

Fig. 15.5. Simulation of a dilution process (top) and a migration process (bottom). 
Both processes can be used to simulate a 3D gaussian random function with an 
exponential covariance using the turning bands method 

Example 15.2.3. Suppose that C3 is a spherical covariance with scale factor 
a. Then 

( 7' 7'3) (\(7') = 1 - 3- + 2-,3 1 a 0' O::;r::;a 

Cl can be simulated by dilution using the function 

f(t) = t 1 a , It I < -,-­- 2 

(Matheron, 1972, Journel and Huijbregts, 1978). The main difference to the 
previous example is that f has bounded support. This makes the dilution 
stochastic process numerically suitable (see top of Figure 15.6). 
Instead of considering a Poisson point process, it is also possible to implant 
f at the nodes of a regular grid with mesh size a and origin uniform in ]0, al. 
In that case f must be multiplied by yI3 to ensure a variance of 1, and this 
gives the simulation displayed at the bottom of Figure 1.5.6. 
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Fig. 15.6. Simulation of a standard dilution process (top) and a regular dilution 
process (bottom). Both processes can be used to simulate a 3D gaussian random 
function with a spherical covariance using the turning bands method 

15.2.5 How many random functions'? 

Suppose that n is fixed. We want to know how close the spatial distribution 
of 

v(n) _ Y1 + ... + Yn 
I - Vn 

is to a standard gaussian spatial distribution? Equivalently, if {Xl, ... , xp} de­
notes an arbitrary set of points, and if P'l, ... , Ap} denotes an arbitrary set of 
real numbers, how far the distribution of L~=l Aj y(n) (Xj) is from a gaussian 

distribution with mean 0 and variance (J"2 = L~,k=l AjAkC(Xj - Xk)? There 
are many ways of addressing this problem. To avoid a lengthy description, 
only the distance approach and the moment approach are considered here. 

The distance approach. This consists of assessing the distance between 
F(n), the distribution of L~=l ..\j y(n) (Xj) and F, that of a gaussian variable 

with mean 0 and variance (J"2. Several distance functions can be considered, 
including 

- the I\·olmogorov distance 

An upper bound of the Kolmogorov distance is provided by the Berry-Esseen 
theorem. 

- the Levy distance 

dL(F(nl,F) = inf{E>O :'t:JYEIRF(n)(Y-E)-E:::;F(y):::;F(n)(Y+E)+E} 

Note that yi2dL (F(n), F) is the maximum distance between the graphs of 
F(n) and F, measured along lines at 135°. 

- the total variation distance 
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It can be established that dL ~ dK ~ ~dTV (e.g. Huber, 1981). 

- the Matheron distance (1984) 

- r [dF(n)(x) - dF(x)] Ix - yl [dF(n)(y) - dF(y)] 
J1R 2 

Note in particular the minus sign that stems from the fact that the mapping 
h --+ -Ihl is conditionally positive definite. The Matheron distance can also 
be written as 

1100 [p(n)(u) - P(u)] 2 - du 
7r 0 U 

where p(n) and P are the Fourier transforms of the distributions F(n) and 
F. 

Unfortunately, all these distances are difficult to handle analytically. But they 
can either be computed or estimated by simulation. 

The lllOment approach. This consists of comparing the moments of the 
random variable 'L:J=l Aj y(n) (x j) with those of a gaussian variable with mean 
o and variance (j2. As all the odd moments are equal to 0, and the variances 
are automatically equal, the simplest non trivial moment to consider is the 
4th moment. 

Because the 4th order moment of a centered gaussian variable is equal to 
3 times the square of its variance, the difference between the 4th order mo-

ment p~n) of 'L:j=l,P Aj y(n) (Xj) and that of a centered gaussian variable with 

variance (j2 can be written p~n) - 3(j4. Tedious calculation shows that 

where P4 is the 4th moment common to each variable 'L:j=l,pAj¥;(Xj). It 
then suffices to choose n so that the difference between the fourth moments 
is less than a critical value. 

Example 15.2.4. Suppose we want to simulate a standard gaussian random 
function Y with exponential covariance (scale factor a). We test the conver­
gence of the 4th moment ofy(n)(x) - y(n)(x+h) to that ofY(x) - Y(x+h). 
The latter is equal to 3(j4 = 12(1- p)2 with p = exp{ -Ihl/a}. In the case of 
the tessellation method or the turning bands method (migration technique), 
we obtain 

(n) 4 4 ( ) ( ) P4 - 3(j = - 1 - P 3p - 1 
n 

The absolute value of this difference is less than f = 0.01 for all 0 < p ~ 1 as 
soon as n is greater than 135. In the case of the spectral method, we obtain 
instead 
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p~n) _ 3cr4 = ~(1 - p)(3p - 1), 
n 

Consequently, only 100 functions only are needed to reach the desired preci­
SIon. 

The number of basic functions that has to be simulated is heavily dependent 
not only the simulation method, but also on the linear combination of interest. 

Example 15.2.5. Consider the same model as in example 15.2.4, but the 
linear combination is now Y (x) - Y (x + h) + Y (x + 2h). In this case, we obtain 

for the tessellation method or for the turning bands method, and 

for the spectral method. Based On the precision f = 0.01 and provided that 
p 2:: 0.3, this leads to n ~ 400 and n ~ 2000 respectively. It should also 
be noted that only 300 basic functions are required for using the spectral 
method when p is close to o. 

This demonstrates that there is no hope of finding a golden number for the 
minimal number of basic random functions under all circumstances. The ma­
terial given in this section can only partially cover the topic and should be 
seen as a set of suggestions or clues for further work. 

15.3 Conditional Simulation 

Let Y be a stationary gaussian random function E JRd) with mean 0, variance 
1 and covariance function C. We want to carry out a simulation of Y that 
honours the conditions Y(c) = y(c) for any c within some finite subset C of 
JRd. 

Definition 15.3.1. The simple kriging estimator (or linear regression) of 
Y(x) on the Y(c) 's is the linear combination 

Y* (x) = L AcY(C) 
cEC 

that minimizes the mean quadratic error E (y* (x) - Y (x))2. 
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It can be shown that the coefficients Ac'S are the solutions of the system of 
linear equations 

L Ac'C(C, Cl) = C(c, xl Vc E C 
c'EC 

The corresponding mean quadratic error (the kriging variance) is equal to 

E (Y*(x) - Y(x))2 = 1 - L AcC(C, x) 
cEC 

The simulation algorithm is based on the following theorem. 

Theorelll 15.3.1. y* and Y - y* are independent gaussian random func­
tions. 

Proof: Any linear combination of variables of y* and of Y - y* is a linear 
combination of variables of Y, and hence follows a gaussian distribution. This 
establishes that the random functions Y* and Y - Y* are jointly gaussian. 
In order to prove the independence of their spatial distribution, by theorem 
15.1.2 it is sufficient to show that any finite linear combination of variables of 
Y* is uncorrelated with any finite linear combination of variables of Y - y* . 
This is so because y* (x) and Y (y) - y* (y) are uncorrelated whatever the 
points x and y of IR d : 

Cov{ Y*(:r), Y(y) - Y*(y)} = Cov {'L Ac(X)Y(c) , Y(y) - 'L Ad(Y)Y(d)} 
cEC dEC 

= 'L Ac(X) (C(C, y) - L Ad(Y)C(C, d)) = 0 
c d 

Therefore Y can be written as a sum of the two independent gaussian random 
functions Y* and Y - Y*. This leads to the following algorithm to simulate 
Y in the domain D: 

Algorithlll 15.3.1. (Conditional simulation of a gaussian random function) 

1. Calwlate the kriged estimates y* (x) = Lc Ac (x) y( c) fOT each x E D. 
2. Simulate a gaussian random function with mean 0 and covaTiance C in 

the domain D and at the conditioning points. Let (z(x), x E D) and 
(z (c) 1 C E C) be the generated values. 

3. Calculate the kriged estimates z* (x) = Lc Ac (x )z( c) for each x E D. 
4. Return (y*(x) + z(x) - z*(x), x E D). 
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Remark 15.3.1. One can verify directly that the conditioning data are hon­
oured. If eEC, then y*(c) = y(c) and z*(x) = z(c), so that y*(c) + z(c)­
z*(c) = y(c) + z(c) - z(c) = y(c). It can be also expected that if x E D 
is beyond the range of the conditioning data points, then the conditional 
simulation at x should not be affected by the data, and therefore should be 
reduced to a non-conditional simulation. This is effectively what happens: 
y*(x) ~ 0 and z*(x) ~ 0, so y*(x) + z(x) - z*(x) ~ 0 + z(x) - 0 ~ z(x). 
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Fig. 15.7. Conditional simulation of a gaussian random function. Top left, a non 
conditional simulation. Top right, the conditioning data points. Bottom left, the 
kriged estimates. Bottom right, a conditional simulation 

To illustrate this algorithm, we have considered a gaussian random function 
with a spherical covariance function (scale factor 40). The simulation domain 
is a square of side length 400. A non-conditional simulation is displayed as a 
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Fig. 15.8. Influence of the data density on the conditional simulation. Top left, a 
non conditional simulation. Top right, second and third rows, 5 simulations condi­
tioned by 25,50,100,200 and 400 points 
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reference image in the top left of Figure 15.7. This simulation has been sam­
pled at random to produce a set of 100 conditioning data points (top right). 
These points have been used as input data for a kriging estimation (bottom 
left) and for a conditional simulation (bottom right). The difference between 
both results is striking. Whereas the kriging result is smooth, the conditional 
simulation has the same degree of spatial variability as the reference image. 
The difference is not as marked when the covariance function is smooth and 
has a long range. 

As the number of conditioning data points increases, the conditional simula­
tion looks more and more similar to the reference image. This can be observed 
in Figure 15.8 where the rderence image (top left) is shown together with 5 
conditional simulations obtained using 25,50,100,200 and 400 data points. 
In order to facilitate the comparison between the conditional simulations, 
all of them have been constructed starting from the same non conditional 
simulation (step 2 of algorithm 15.3.1). Moreover the conditioning data sets 
are nested. It does not require many conditioning data points to get a con­
ditional simulation close to the reference image. This example suggests that 
conditional simulation may be an interesting device for image compression. 

Exercises 

15.1 Starting from 

derive an algorithm for simulating a 3D gaussian random function with hy­
perbolic covariance function. 

15.2 Let C be an isotropic covariance in 3D with a finite integral range. 
Show that the associated unidimensional covariance Cl has a zero integral 
range. 

15.3 Let Y be a standard, stationary gaussian random function with covari­
ance function C. Let (X a )a=l,n be a finite set of points of JRd. To simplify 
the notation, we put Cxy = Cov{Y(x), Y(y)}, Cxa: = Cov{Y(x), Y(xa:)} and 
Ca (3 = Cov{Y(xa:), Y(x(3). 
1) Let Y*(x) = 2:::=1 -\y(x)Y(xa:) and Y*(y) = 2:::=1 A",(y)Y(Xa:) be the 
kriging estimators of Y(x) and Y(y) based on the Y(xa:)'s. Prove that 

n 

Cov{Y*(X), Y*(y)} = I: Cx a: B a (3C(3y 
a,(3=l 

where B is the inverse of the n x n covariance matrix of the Y(xa)'s. 
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2) Now let yS(;r) = y*(x) + y(x) - Y*(x) be the probabilistic version of a 
simulation of the gaussian random function given yS (xa) = Yet for Q = 1. n. 
Show that 

n 

CodYS (x), yS (y)} Cxy - L C xa B a(3C(3y 

a,(3=l 

3) Verify that Cov{ys(.l'), yS(y)} = 0 when x is a conditioning data point, 
say Xa for instance. 

15.4 Prove that the dilution stochastic process with intensity B and function 

f( t) - tl 
O<t<a 

has a spherical covariance function with scale factor a and variance Ba3 /3. 

15.5 Let Y be a stationary random function with variogram,. By definition, 
the (probabilistic version of the) regional variogram of Y in the domain D is 

1 1 ' 2 rD(h) = . . ) [Y(;r + h) -} (x)] dx 
2 J\ (h DnD h 

where 1\ is the geometric covariogram of D (cf. section 3.1). 
1) Show that r D (h) is an unbiased estimator of ,(h). i.e. E {rD (h)} = ,(h). 
2) Show that in the gaussian case the variance of r D (h) is 

Var{rD(h)} = . .\ r h(u+h)+,(v.-h)-2,(u)]2l\(v)du 
2 l\. h) } lRd 

3) Let rbn ) be the regional variogram of}'(n) in D. Show that its variance is a 
weighted average of the variance of r D and of the variance of the (probabilistic 
version of the) regional variogram r D ,i of the Y; 'so namely 



16. Gaussian variations 

This chapter is devoted to two models constructed from gaussian random 
functions. The first one is an excursion set obtained by thresholding a gaus­
sian random function. The second one is a step function that results from 
the joint thresholding of two or more gaussian random functions. It is called 
a plurigaussian random function. 

16.1 Excursion set of a gaussian random function 

16.1.1 Definition and basic properties 

Let Y be a standard, stationary gaussian random function with covariance 
C and variogram ,= 1 - C. Let A be a real number. 

Definition 16.1.1. The A-level excursion set ofY is the random set! 

By construction the excursion sets form a monotonically decreasing family of 
random sets 

In the case when almost all realizations of Y are continuous (cf. Adler's suf­
ficient condition in section 15.l.3, the X.\ are random closed sets. Moreover, 
a theorem by Ylvisaker (1965) (also mentioned in Wschebor (1985)) states 
that Y almost surely has no local extremum at level A in any closed ball of 
IRd. It follows that we almost :;urely have 

Figure 16.1 depicts the excursion sets at level 0 for the six realizations shown 
in Figure 15.2. Totally different patterns are observed and their boundaries 
present a wide range of roughness. The following proposition can help in 
understanding the variety of the geometries obtained. 

1 The usual geostatistical terminology for this model is "truncated gaussian ran­
dom function" (Matheron et al. (1987); de Fouquet et al. (1989)). 
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Fig. 16.1. Thresholding the six gaussian realizations shown in Figure 15.2 at level O. 
These realizations were obtained starting from different covariance functions (from 
top to bottom and left to right, spherical, exponential, stable, hyperbolic, gaussian 
and cardinal sine 
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Proposition 16.1.1. The variogram /).. of X).. is equal to 

Proof: let x, yE IRd with x - y = h. According to section 3.2.2, the indicator 
variogram of X A is 

where g p is the probability density function of a bivariate gaussian distribu­
tion with correlation coefficient p = C( h) = 1 - /( h) 

1 ( 1 u2 + v2 - 2PUV) g (u v) - exp - - -----:--'---
p , - 27rJI=P2 2 1 - p2 

By direct calculation, or by using Fourier arguments (Matheron, 1975a), it 
can be shown that g p satisfies 

From this, it follows 

~(h) = ( ) d d 8 f).. 1+00 82 gp 
~ U,v u v 

8p -(X).. uUuU 

By integration, this gives 

/' (h) = (pI gr(>", >..) dr - ~ t 1 exp (-~) dr 
A In - 27rJp ~ l+r 

and the proof is completed by making the change of variable r = cos(2t) with 
O:St:S%. 0 

In particular, this gives for / (h) ~ 0 

If / has linear behavior at the origin (e.g. exponential or hyperbolic vari­
ograms), then /).. (h) ex: I h 105 , so that X).. has an infinite specific perimeter 
(cf. section 3.2.2, which explains the noisiness of its realizations. In contrast 
to this, if / has parabolic behavior at the origin (e.g. gaussian and cardinal 
sine variograms), then /).. (h) ex: Ihl, and the specific perimeter of X).. is finite. 
Its realizations have smooth boundaries. 
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Remark 16.1.1. In the case A = 0, the formula of proposition 16.1.1 sim­
plifies to 

10 ( h ) = ~ arcsin J I ( h ) 
7r 2 

Remark 16.1.2. It should also be pointed out that the formula of proposi­
tion 16.1.1 induces a bijective correspondence between I).. (h) and I(h). This 
implies that the mapping I --t I).. is one-to-one. Notice that it cannot be 
onto because, as already shown in section 3.2.2, there exist variograms that 
are not indicator variograms. This raises the question of which variograms are 
associated with the excursion sets of gaussian random functions. Proposition 
16.1.1 provides an answer to that question, but this answer is purely for­
mal. More specifically, let 10 be an indicator variogram. According to remark 
16.1.1, 10 is the variogram of a O-level excursion set of a gaussian random 
function if the function I defined as 

is a variogram in JRd. In general this is difficult to prove. As an example, the 
case when 10 is an exponential variogram is considered in Appendix 1. 

16.1.2 Conditional simulation 

In this section, the parameters of the model er = 1 - C, A) are assumed to 
be known. Let Aa and Al be disjoint finite subsets of JRd. Our objective is 
to carry out simulations of X).. in a field D, subject to the conditions a </:. X).. 
for any a E Aa and a EX).. for each a E Al. Such simulations exist since 
P{Aa nx).. = 0,Al ex)..} f. 0. 

In order to simplify the presentation of the algorithm developed by Matheron 
et al. (1987), concise notation is introduced. Let A = AaUA1 . For each a EA, 
we put la =] - 00, A[ if a E Aa and [A, +00, [ if a E Al. Let us assume that 
A is totally ordered. For each mapping Y on A we put by Ya = y( a) and 
define Y A to be the vector whose a th component is Ya . We similarly define 
the random vector YA and the cartesian product lA. In particular, we take 
YA E lA to mean that Ya E la for each a E A. 

The conditional simulation of X).. corresponds to the simulation of Y subject 
to the constraint YA E lA. The statistical properties of Y are given by all of 
the multivariate distributions of the vectors Yx that can be built from any 

finite and totally ordered subset X of JRd (see section 2.2). The p.d.f. of Yx 
given YA E lA can be written 
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where g(YA I YA E l A ) is the p.d.f. ofYA given the constraints YA E lA and 
g(yx I YA = YA ) that of Yx given the conditions YA = YA . This equation 
leads to the following algorithm for the simulation of X.\ : 

Algorithm 16.1.1. (Conditional simulation of an eXCllrszon set of a gaus­
sian random function) 

1. Generate YA ~ gCI YA E I4)' 

2. For each :r E D, generate y(x) ~ g('1 ~4 = yA )· 

'J Return {:r E D : y(x) 2': ..\}. 
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Fig. 16.2. Conditional simulation of an excursion set of a gaussian random func­
tion. Top left, a non conditional simulation. Top right , the conditioning data points 
(the red points belong to the black phase, the green ones to the white) . Bottom, 
two conditional simulations 
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Since step 2 was studied in the previous chapter and step 3 is straightforward, 
only step 1 needs to be detailed. Its object is to produce realizations of YA 

given YA E fA' To achieve this, Freulon (1992, 1994) adopted an iterative 
procedure based on the Gibbs sampler (Geman and Geman, 1984). It consists 
of building a stationary discrete Markov chain (YA (n), n :::: 0) whose state 
space is IRA, and whose equilibrium distribution is the one to be simulated, 
namely g (- I YA E fA)' In what follows we denote by Y~ the vector Y A 

without its a th component. 

A simple way to initialize the Markov chain is to take YA (0) = Y A E fA' 

An alternative is to simulate Ya(O) ~ g(Va) (conditional Gaussian p.d.f.) for 
each a E A. 

Let (an, n E IN) be a sequence of elements of A such that each element is 
encountered infinitely many times (for instance, a periodic sequence or the 
realization of a positive recurrent Markov chain). At the nth iteration, only 
the component of order an is modified. Suppose YA (n) = Y A' Then we put 
ya(n + 1) = ya(n) and simulate Ya(n + 1) ~ g(·lya, fa). 

A A A 

It can be shown that the p.d.f. of YA (n) tends to g(VA ) as n becomes very 
large. However the rate of convergence toward equilibrium is not well known 
and is the object of ongoing research (Chan, 1993; Rosenthal, 1993; see also 
a general discussion by Galli and Gao on recent convergence results). 

The p.d.f. g(·lya ,fa) is the restriction to fa of a gaussian p.d.f. with mean 
A y: = Lb;ta AgYb (kriged estimate of Ya on the Yb's, b f. a) and variance ()~ 

(kriging variance). It can be simulated using the acceptance-rejection method. 

The kriging weights and the kriging variances can be obtained simultaneously 
from the inverse lvf- 1 = [M~lL,bEA of the covariance matrix Iv! = [C(a-

b) 1 a,bEA' It can be shown that 

M - 1 
• ab 

-M- 1 aa 
()2 = 

a (a,b E A) 

Remark 16.1.3. It is also possible to carry out step 1 by resorting to a hit­
and-run algorithm (see section 8.3). This amounts to simulating a uniform 
point in the subgraph of the density function 

If the number of conditioning data points is very large, the matrix M cannot 
be inverted numerically and h cannot be evaluated. In fact, the calculation 
of M- 1 can be avoided altogether. Instead of simulating YA directly, Galli 

and Gao simulate first Z A = M- 1 YA and then derive YA = M Z A' This is 
possible because Z A has a p.d.f. proportional to 

k(ZA) = eXP{--21zt MzA }l 
A MZAElA 
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which depends on M and not on its inverse. 

An illustration of algorithm 16.1.1 is presented in Figure 16.2. The starting 
point is the non conditional simulation shown in the bottom left of Figure 
16.1. From this realization, 400 uniform points have been selected indepen­
dently to act as conditioning data (top right). The bottom of Figure 16.2 
shows two conditional simulations. Because of the large number of condition­
ing data points, the variability of the conditional siJ:?ulations is limited. Note 
however that their connectivity properties are not identical. Pairs of condi­
tioning data points may be connected in one simulation and not in another 
one. Top to bottom percolation takes place in the black phase of the left 
hand-side simulation and in the white phase of the right hand-side simula­
tion. Allard (1993, 1994) devised a conditional simulation algorithm which 
accepts the connectivity relationships between points as conditioning data. 

16.2 Plurigaussian random function 

The excursion sets of (gaussian) random functions are models designed for 
representing physical phenomena consisting of two distinct phases only. One 
way of extending these models to accommodate phenomena with more than 
two phases, say 3 phases, is to threshold the random function Y at two 
different levels ,\ < J1, and to define the 3 phases as {Y < ,\}, {,\ :S Y < J1,} 
and {Y 2: J1,}. This is not always satisfactory in practice because if Y has 
continuous realizations then both phases {Y < ,\} and {Y 2: J1,} cannot be 
in contact. This observation prompted Galli et al. (1994) to design a more 
general model based on thresholding several gaussian random functions. This 
section gives a succinct description of the model and of its implications. For 
a more general presentation, the reader can consult the book by Armstrong 
et al. (2001). This book contains numerous examples from the geosciences. 

16.2.1 Definition and examples 

The basic ingredients required for the construction of a plurigaussian random 
function are 
- two standardized gaussian random functions Y and Z defined on JRd, with 
respective covariance functions Cy and C z' Both random functions are as­
sumed to be independent, although dependency relationships between them 
can be considered in certain cases (Armstrong et al., (2001)). 

- A family (Di, i E 1) of subsets of JR2 constituting a partition (that is 
UiEI Dj = JR2 and Dj n Dj = 0 for i =F j). The indices are numerical or 
categorical. The set of indices I is usually finite, but may be countable. 

Definition 16.2.1. A plurigaussian random function with underlying ran­
dom functions Y and Z, and partition (Di , i E 1) is the random function X 
from JRd to I that satisfies 
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X(x) = i (Y(x), Z(x)) E Di 

Fig. 16.3. The realizations of both underlying gaussian random functions 

Figure 16.3 shows realizations of two independent gaussian random functions 
with the same gaussian variogram. Its scale factor is a tenth of the width of 
the simulation field. Both gaussian realizations have been used to produce 
the realizations of the six different plurigaussian random functions depicted 
in Figure 16.4. Each plurigaussian random function has its own partition 
indicated as a flag below each realization. 

Each partition has three cells. Their size and shape have been designed so that 
all phase occur with the same frequency. Whereas the green and the yellow 
cells are symmetric about the x-axis, the red one is obtained by moving the 
triple point common to the three cells along the x-axis from +00 to -00. 

In the top left partition, the triple point is at +00. In this case, the red cell 
is a horizontal stripe between the yellow and the green one, thus preventing 
the yellow and the green phases to be in contact. Because the shape of the 
cells, (Y(x), Z(x)) belongs to Di irrespectively of Y(x). The realization is 
equivalent to a realization obtained by thresholding Z at two different levels. 

As the triple point moves backward, direct contacts between green and yellow 
cells become possible. Accordingly, the red phase gradually loses its separat­
mg power. 

In the middle left partition, the cells are globally invariant under a 1200 

rotation around the triple point. The three phases turn out to have exactly 
the same statistical properties. Their joint distribution is invariant under 
permutation. There is no preferential contact between any two of them. 

The red cell of the middle right partition is a vertical stripe. The associated 
phase is obtained by thresholding Y below a certain level. In the residual 
space, the green and the yellow phases are delimited by a threshold on Z. 
This hierarchichal construction is perceptible on the realization. The yellow 
and the green phases seem to be partly hidden by the red one. 
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Fig. 16.4. Realizations of six plurigaussian random functions. All of them have 
been built starting from the same realizations of the underlying gaussian random 
functions (see Figure 16.3). Each plurigaussian random function has its own parti­
tion represented by a flag below each realization 
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In the bottom left partition, the green and the yellow cells are contained in a 
small angle that the red cell starts to envelop. Little by little, the components 
of the red phase tend to split into blobs. 

In the last example, the triple point is rejected to -00. This gives a parti­
tion with four horizontal stripes. The red cell is divided into two components 
located above and below the green and the yellow cells. The realization ob­
tained does not depend on Y. It is obtained by thresholding Z at three 
different levels. The red phase is the union of two excursion sets of Z, the 
first one above the largest threshold and the second one below the smallest 
threshold. Because both thresholds have a large amplitude, these excursion 
sets appear as little blobs. Depending on the sign of the threshold, the blobs 
are either surrounded by the green phase or by the yellow one. 

16.2.2 Spatial distribution 

Let x E IRd . The distri bu tion of X (x) is given by 

P{X(x) = i} = p{ (Y(x), Z(x)) E Di} Li g(t)g(u)dtdu 

where g is the standard gaussian p.d.f. 

Let x, y E IRd . In order to get the bivariate distribution of (X (x), X (y)) , we 
can write 

P{X(x) = i, X(y) = j} p{ (Y(x), Z(x)) E Di, (Y(y), Z(y)) E Dj} 

1 .1 gv(t,v)g.;(u,w)dtdudvdw 
(t,u)ED, (v,w)EDj 

where gv and g( stand for the standardized bivariate gaussian p.d.f.'s with 
respective correlation coefficients v = Cy(x - y) and ( = Cz(x - y). The 
next step is to expand gv and g( in terms of Hermite polynomials2 

Let us also put 

00 n 

L ;- Hn(t) Hn(v) g(t) g(v) 
n. 

n=O 

00 (P L, Hp(u) Hp(w) g(u) g(w) 
p=O p. 

2 The Hermite polynomial of degree n is defined here as 

1 dng 
Hn(x) = g(x) dxn (x) 

They constitute an orthogonal basis of £2(IR,g). 

n>O 
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L; Hn(t) Hp(u) g(t) g(u) dt du 

(}n,p(j) = L Hn(v) Hp(w) g(v) g(w) dv dw 
J 

P{X(X) = i, X(y) = j} 

More generally, we have 

Theorem 16.2.1. The spatial distribution of a plurigaussian random func­
tion is given by 

p{i\ X(Xj) = ij} 
jEJ 

for every finite family (x j, j E J) of points of IRd and for every finite family 
(ij,j E J) of elements of I. Here P2(J) denotes the family of two-element 
subsets of J, and IN P 2(J) is the set of mappings from P2(J) to IN. m K and 

n K stand for the integer values taken by rn, n E IN P 2(J) at J{ E P2(J). 
Moreover for each j E J, mj and nj are the sums of the m K and the nK 
extended over all J{ that contain j. Finally, if J{ = {k, I}, then PK = Cy (Xk­
Xl) and (K = Cz (Xk - xl). 

Proof: Let us start with 

p{i\X(Xj)=ij} = p{i\(Y(Xj),Z(Xj))EDij } 
jEJ jEJ 

Let gy and gz be the multivariate gaussian p.d.f.'s of (Y(Xj),j E J) and 
(Z(Xj),j E J). We have 

p{i\X(xj)=ij} = j ... jgy(u)gz(v)I11(uj,vj)ED;dudV 
jEJ jEJ J 

where u = (Uj,j E J) and v = (Vj,j E J). It can be shown that gy and gz 
admit the hermitian expansions (see Appendix 2) 
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It then suffices to replace each multivariate gaussian p.d.f. by its hermitian 
expansion and to integrate w.r.t. each Dij to obtain the desired result. 0 

Of course, further simplifications occur in the case when the Dj's are rectan­
gles or stripes with their boundaries parallel to the coordinate axes. 

16.2.3 Conditional simulation 

The problem addressed now is the simulation of the plurigaussian random 
function X in the field D given the values (ij, j E J) taken at the data points 
(Cj, j E J). 
The design of the conditional simulation algorithm is similar to that of an 
excursion set of a gaussian random function. As it is just a multivariate 
extension of algorithm 16.1.1, we give it without further comment. 

Algorithm 16.2.1. (Conditional simulation of a plurigaussian random func­
tion) 

1. Generate jointly (Y(Cj),j E J) and (z(Cj),j E J) given (X(Cj) = ij,j E 

J) . 
2. For each x E D, generate independently y( x) '" g C I Y (Cj) = y( Cj ), j E 

J) and z(x) '" gCI Z(Cj) = Z(Cj),j E J). 
3. For each x E D return I:iEIi1(y(x),z(x))EDi 

Step 1 can be performed either by running a Gibbs sampler or a hit-and-run 
algorithm. Step 2 consists of the conditional simulation of two independent 
gaussian random functions. To illustrate this algorithm, we have considered 
the plurigaussian random function, one realization of which is depicted at 
the middle right of Figure 16.4 (see the top left of Figure 16.5). From this 
non conditional simulation 400 points have been uniformly selected to act as 
conditioning data. The bottom of Figure 16.5) shows two conditional si mu­
lations. 

Appendix 1: 

In this appendix we are going to show that the exponential variogram 

is the variogram of an excursion set of a gaussian random function at level 
O. According to remark 16.1.1, this amounts to showing that 

-y(h) = 2sin2 (~( 1- e- 1hl)) = 1- cos (% (1- e- 1hl )) = 1- sin (%e- 1hl ) 
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Fig. 16.5. Conditional simulation of an plurigaussian random function. The flag 
is that of median right of Figure 16.4. Top left, a non conditional simulation. Top 
right, the conditioning data points. Bottom, two conditional simulations 

is a variogram, or equivalently that 

C(h) = sin (%e- 1hl ) 

is a covariance function. Because of proposition 3.2.3, it suffices to prove that 
-In C is a variogram. A starting point proposed by Matheron is the product 
expansion of the sine function 

slnx = 

This gives 

C(h) 
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and taking the logarithm 

In C(h) 

Letting h = 0 gives 

7r co ( 1) o = In - + ~ In 1 - -
2 ~ 4k2 

k=l 

Substracting these two expressions, we obtain 

co [( e-2Ihl) ( 1)] In C( h) = -I h 1 + L In 1 - 4J.:2 - In 1 - 4P 
k=l 

The logarithms are now expanded into series 

co co 1 _ e-2nlhl 
In C(h) = -Ihl + L L n4npn 

k=ln=l 

This expression can be simplified by using the Riemann zeta function (( s) = 
",co k- S 
L...,k=l 

InC(h) = -Ihl + f (~!~) (1- e-2nlhl) 
n=l 

Differentiating w.r.t. Ihl and taking h = 0 we obtain 

o = -1 + 2 ~ ((2n) 
~ n4n 
n=l 

The coefficient -1 of 1 h 1 is replaced by this expression and we finally get 

In C(h) = f (~!:) (-2nlhl + 1 - e-2nlhl) 
n=l 

Therefore, to conclude the proof it remains to be shown that the function 
h --+ Ihl - (1 - e- 1hl ) is a variogram in JRd. We do so by proving that I 
admits a spectral representation with a positive density. Using the notation 
1/ = (d + 1)/2, the spectral representations of the linear and the exponential 
variograms can be written as 

Ihl = f 1- cos < u, h > r(l/) _l_du 
JIRd lul 2 7rV lul 2v - 2 

1 - cos < u, h > r(l/) lul 2 du 
lu 12 7rv (1 + lu 12)v 

Hence 
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r(v) r 1-cos<u,h> f(u)du 
7rV JlRd lul2 

with 

f(u) 
1 

lul 2v-2 

Appendix 2: 

1 [1 (lul2 )V] >0 
lul 2v-2 1 + lul2 

In this appendix, we calculate the hermitian expansion of the multivariate 
p.d.f. of the gaussian vector (Y (x j), j E J). 

Let us start with its Fourier transform 

gy (u) = exp (-~ L Uj Uk pjk) 
j,kEJ 

where Pjk stands for the correlation between Y(Xj) and Y(Xk)' In the double 
sum, we distinguish between the terms associated with identical indices and 
the other ones. After a minor change, the Fourier tranform can be rewritten 

Now the right hand side exponential term is expanded 

and so is the power term 

9 y (U) ~ exp ( -~ ~ UJ) 

In this formula, the inner sum is extended over all njk 2: 0 such that 
L,jf:k njk = n. The sum over n is now eliminated. To do this, note that 
for each j E J the term (-iuj) appears raised to a power that is the sum of 
the nkl with either k = j or l = j. Let us denote it by nj. 

But 
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It follows 

The Fourier transform is inverted and we finally obtain 

00 njk 

gy(Y) = L L IT ~k , IT Hnj(Yj)g(Yj) 
j.,tk njk=Oj.,tk Jk· jEJ 

For instance, if J has three elements denoted by 1,2 and 3, then 

00 k j i 

gy (y) = . L P;!2 Pit Pi~3 Hj+k(yd H i+k (Y2) H i +j (Y3) g(Yd g(Y2) g(Y3) 
I,J,k=O 



17. Substitution random functions 

A convenient way to introduce substitution random functions is by analogy 
with mapping techniques. Roughly speaking, a map displays spatial informa­
tion (e.g. relief) coded in a conventional way (e.g. green for plains, blue for 
seas etc ... ). More formally, it can be expressed as Y 0 T where T denotes a 
spatial information function and Y stands for a coding process. 

Similarly a substitution random function is defined as Y 0 T where T is a 
random function (usually called the directing function), and Y is a stochastic 
process (the coding process). There are some limitations on both these ingredi­
ents to ensure that a substitution random function is second-order stationary 
(see section 17.1). However these limitations are mild, and the directing func­
tion and the coding process can often be chosen to produce realizations with 
a prespecified geometry or topology (see section 17.2). The last section deals 
with the conditional simulation of substitution random functions. 

17.1 Definition and mam properties 

Definition 17.1.1. A random function Z defined on IRd is called substitu­
tion random function with directing function T and coding process Y if it 
can be written as 

Z(x) = Y[T(x)] 

The directing random function T is defined on IRd and has stationary incre­
ments. The coding process Y is a stationary stochastic process. T and Y are 
independentl. 

Let x, y E IRd . If T has stationary increments, then the distribution of the 
difference T(x) - T(y) depends only on the vector x - y. More precisely 

T(x) - T(y) ~ T(x - y) - T(o) 

1 This definition may remind readers of the subordination technique used to trans­
form a Markov chain into another one (Feller, 1971). In that case, the directing 
function T is unidimensional and has positive increments. 
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A random function with stationary increments is often defined up to a random 
variable. So there is no loss of generality in assuming T(o) = 0, and we can 
write 

D 
T(x) - T(y) == T(x - y) 

For x = 0, this gives 
D 

-T(y) == T(-y) 

From this it follows T(y) ~ T( -y) provided that the distribution of T(y) is 
symmetric around the origin. 

More generally, to say that T has stationary increments means that for any 
finite sequence (Xi, i E I U {O}) of points of IRd the two random vectors 
(T(x;) - T(xo), i E 1) and (T(Xi - xo), i E 1) have the same multivariate 
distri bu tion. 

To simplify the presentation, the following properties of the substitution ran­
dom functions will be established only in the case when the directing function 
and the coding process are discrete. The generalization to the continuous case 
is immediate. 

Proposition 17.1.1. Z is stationary. 

Proof: We have to show that 

P {/\ Y[T(Xi + h)] = Zi} = P {/\ Y[T(Xi)] = Zi} 
'EI 'EI 

for any finite sequence (Xi, i E 1) of points of IRd , any finite sequence (Zi' i E 
1) of values and for any vector h E IRd . Putting Yi = Xi + h for any i E I, we 
first apply the independence of T and Y to obtain 

P {/\ Y[T(y;)] = Zi} 
'El 

LP {/\ T(y;) = ti, Y(t;) = Zi} 
(t;) iEI 

LP {/\ T(Yi) = ti} P {/\ Y(ti) = Zi} 
(t,) iEI iEI 

Because T has stationary increments we can also write 

P {/\ T(y;) = ti} 
'El 

P {/\ T(Xi) - T(-h) = ti} 
IEI 

LP{/\T(Xi) =ti+t,T(-h) =t} 
tiEl 

On the other hand, the stationarity of Y implies 
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p{/\Y(ti)=Zi} = p{/\Y(ti+t).=Zi} 
'El 'El 

for any t E JR. Consequently, putting Ui = ti + t for any i E I, we can write 

P{/\Y[T(Y;)]=Zi} = L P{/\T(X;)=Ui,T(-h)=t} 
iEl (u,),t iEJ 

x P {/\ Y(u;) = Zi} 
'El 

It remains to apply once again the independence of T and Y to obtain 

P{/\Y[T(Yi)l=Zi} = L P{/\T(X;) =Ui,Y(Ui) =zi,T(-h) =t} 
iEl (Ui),t iEl 

= P{/\Y[T(X;)l=Zi} 
'El 

which completes the proof. 

Proposition 17.1.2. Z has the same point distribution as Y. 

Proof: It directly stems from the independence of T and Y and the station­
arity of Y: 

P{Y[T(x)] = z} L P{T(x) = t, Y(t) = z} 

LP{T(x) = t} p{Y(t) = z} 

p{Y(.) = z} LP{T(x) = t} 

p{Y(.) = z} 

Suppose now that Y admits a finite second-order moment. Proposition 17.1.2 
shows that the second-order moment of Z is also finite. In that case, both Y 
and Z have covariance functions, denoted respectively by Cy and C z' The 
relationship between them is specified by the following proposition, the proof 
of which is left to the reader. 

Proposition 17.1.3. The covariance functions of Y and Z (if they exist) 
are related by the formula 
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Example 17.1.1. If the coding process is defined as Y(t) = V2 cos(wt + qi) 

where qi is uniform on [0, 27r[, then Cy (t) = cos(wt) , so that 

Cz(h) = E{cos(wT(h))} 

Moreover, if the distribution of T(h) is symmetric around the origin, then 
E { sin (wT( h))} = ° and we find that the covariance function of Z (x) and 
Z(x + h) is the value of the Fourier transform of T(h) at the point w 

Cz (h) = E{ eiWT(h)} 

Another interesting feature is isofactorial permanence. 

Proposition 17.1.4. If the coding process is a discrete Markov chain with 
self-adjoint, compact transition kernel, then the bivariate distributions of the 
substitution random function are isofactorial. Moreover, the factors are the 
same as those of the transition kernel of the Markov chain. 

Proof: Suppose that Y has its states in IN. According to section 9.3, its 
bivariate distributions can be written as 

00 

P{Y(s) = i,Y(t) =j} = L>,~-tlun(i)un(j)p(i)p(j) 
n=O 

for any s, t E JR and any i, j E IN. In this formula, p is the point distribution 
of Y. The An'S are the eigenvalues of the transition kernel and the family 
(un, n E IN) of their normed eigenvectors constitute an orthonormal basis of 
L2 (IN, p). It follows 

00 

P{Z(x) = i, Z(y) = j} LE {>.!?'(x-y)l} Un (i) Un (j) p( i) p(j) 
n=O 

for any x, y E JRd and any i, j E IN. 0 

17.2 Some examples 

17.2.1 A basic example 

In this example, we use the construction by Chentsov (1957) for the directing 
function. Let 1i be a network of Po is son hyperplanes in JRd (see section 12.3). 
Consider one hyperplane H in the network. All the points on one side of H 
are assigned the same value + 1, and all the points on the other side the 
opposite value -1. This defines a random function on JRd, denoted by VH , 

which attains only the two values ±1 (the points of H need not be valued 
because H has measure ° in JRd). We proceed in the same way independently 
for all the hyperplanes of the network. Then we put 



T(x) 
HEll 

Hn[o,x],t0 
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for all x E lRd. Note that VH(x) = =fVH(o) depending on whether H splits 
]0, x[ or not. Accordingly 

T(x) 

This implies 
1 

T(x) - T(y) = 2 L [VH(X) - VH(y)] 
HEll 

for any x, y E lRd . In this formula, the summation needs to be extended only 
to the hyperplanes separating x and y. Therefore 

T(x) - T(y) = 
HEll 

Hn[x,y],t0 

Now, the number of hyperplanes hitting [x, y] is Poisson distributed with 
mean BWd_llx - yl where B is the Poisson intensity of 1£ and Wd-l is as usual 
the (d - I)-volume of the unit ball in lRd - 1 (see section 12.3.2 and remark 
6.1.4). It follows that the variogram of T is 

1 1 
2Var {T(x)-T(y)} = 2Bwd-llx-yl 

Figure 17.1 shows a two-dimensional realization of Chentsov's model with 
line intensity B = 10. This realization is displayed in 6 nested squares with 
sides of length 12.5,25,50,100,200 and 400, all centered on the origin. The 
Poisson lines are barely visible because of the large number of lines used. 
About 16000 lines have been used to produce the bottom right image). 

It should also be pointed out that the Poisson intensity acts as a scale factor. 
In the variogram formula it is numerically equivalent to move y away from 
x, or to increase the Poisson intensity B. Indeed, Chentsov's construction is 
one prototype for self-similar models. 

As for the coding process Y, we consider a reversible Markov chain on (0,1) 
with transition kernel 

Its stationary distribution is uniform. 

The coding process has been simulated with p = 0.85, and the realization 
produced has been composed with that of Figure 17.1. A realization of the 
substitution random function is thus obtained (see Figure 17.2). 
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Fig. 17.1. Realization of a directing random function using Chentsov's construc­
tion. It is displayed at six different scales 

Fig. 17.2. Realization of a substitution random function displayed at six different 
scales 
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This figure calls for several comments. Firstly, the realization does not present 
any sign of spatial homogeneity. Indeed, the directing function may assign 
close values to distant points of IRd , so their neighbourhoods have a non­
negligible chance of being coded similarly. In other words, the covariance 
function of the substitution random function has a slow rate of decay. Ana­
lytically speaking, this covariance function is equal to 

Cov{Z(x)' Z(y)} = ~e-A L In(A) (p _ q)lnl 
nEZ 

where A = (JWd_llx - yl is the mean number of hyperplanes separating 
x and y, and where the In's stand for the modified Bessel functions (see 
the Appendix 1 of this chapter). Since In(z) ~ eZ h/27rz when Z --+ +00 
(Abramovitz and Stegun, 1965), we find that 

Cov{Z(x), Z(y)} ~ ~E 1 
4 q V27r(J Wd-l Ix - yl 

It follows that the substitution random function has an infinite integral range. 

If the intensity (J is large, then two neighbouring points of IRd are separated 
by many Poisson hyperplanes. Accordingly, the directing function may assign 
them very different values and there is a good chance that the coded values 
are independent. This explains why the realization of Figure 17.2 has a frag­
mented appearance. However this random set model is not fractal because 
its specific (d - 1 )-volume is finite (explicitly, dWd(Jq /2). 

17.2.2 Geometry 

Is it possible to compel the realizations of a substitution random function 
to respect some prespecified geometry? This question is important in the 
earth sciences where structural information is often available and has to be 
taken into account in simulations. Of course it is not possible to provide 
a general answer to that question because the word geometry encompasses 
many features including size, shape and structure. Two examples are now 
given. 

Stratification. Anisotropies can be generated by considering a variation of 
Chentsov's construction. Each Poisson hyperplane of the network splits IRd 
into two half-spaces. The upper half-space (that contains the points with 
greatest d-coordinates) is assigned the value + 1 and the lower half-space the 
value -1. Keeping the same coding process, realizations like the one in Figure 
17.3 are obtained. 

The covariance function of this substitution random function takes the form 
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In this formula, the vector x - y appears in two places, firstly via the mean 
number ,\ of hyperplanes separating x and y, and secondly via the the prob­
abili ty r that x belongs to the upper half-space limited by a uniform hyper­
plane hitting [x, y] (see Appendix 1). This coefficient r is responsible for the 
anisotropy of the covariance. In two dimensions, we have 

1( x-y ) r = 2 1+ < (0 , 1) , Ix _ yl > 

If x and y lie in the same horizontal hyperplane (i.e. < x - y, (0, .. . ,0,1) >= 
0), then r = ~ and the value of Cov{Z(x), Z(y)} coincides with the one 
given in the previous section where the half-spaces are isotropically valued. 
In contrast to this, if x and y belong to the same vertical line (i.e. < x -
y, (0, ... , 0,1) >= ±Ix - yl) , then either r' = 0 or r = 1. A limited expansion of 
the Bessel functions in the vicinity of 0 or 1 shows that Cov{Z(x), Z(y)} is an 
exponential function of Ix - yl. This is not surprising because the directing 
function T is mono tonic along the vertical, which makes the substitution 
random function markovian along it. 

Fig. 17.3. Realization of an anisotropic substitution random function 

Isopartition. In the previous two examples, the substitution random func­
tion took only two values 0 and 1. In order to extend this set of values, it 
suffices to extend the range of the coding process. To illustrate this, let us 
keep the same directing function as in 17.2.1, and let us choose for the coding 
process a Markov chain on (0 , 1,2) with transition kernel 

The kernel P has been designed in such a way that it assigns to all states the 
same mean sojourn time. Moreover , when leaving a state, every other state 
has the same chance of being accessed. This results in a substitution model 
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where the three facies Z-l(O), Z-l(1) and Z-1(2) have exactly the same 
statistical properties, and where the interactions between different facies do 
not depend on the facies considered. Such a model is called an isopartition. 

Fig. 17.4. Realization of an isopartition obtained by substitution. It may suggest 
a polished section of metamorphic rock 

The statistical symmetry of this model is not perceptible in the realization 
shown in Figure 17.4. A close look at the model parameters can help clarify 
the situation. The directing function has been built using the Poisson line 
intensity B = 5, so the mean number of lines hitting the simulation field 
11.50 x 400 is 15.500. The values of the directing function generated range 
between -82 and 87, which seems quite small in comparison with the number 
of Poisson lines involved. However, assuming the simulation field centered at 
the origin (which is the case here), then the directing function has maximum 
variability at the vertices of the rectangular field. If v denotes one such vertex, 
then the distribution of T(v) is centered and approximatively normal with 
variance BW2_11vl ::;j 6087. This yields a standard deviation of 78, that is 
compatible with the values generated. Regarding the transition kernel, the 
sojourn rate p has been set to 0.8, so on average, the coding process remains 
at the same state for 5 steps. A comparison between the total variability of 
the directing function (87 - (-82) = 169) and the mean sojourn time (5) 
suggests that not many transitions take place in the simulation field. This 
is confirmed if we consider the probability F(fi) for a segment of length fi to 
be totally contained within a single phase. This probability can be assessed 
numerically starting from its formal expression 

) _ Leo 2p"(1- p)2 "L+1 
. 2 krr 2 krr . ( . 2 krr ) 

F (fi - sm - cot ( ) exp -4Bfi sm ) 
n+2 2 2 n+2 2(n+2 

,,=0 k=l 

(cf. Appendix 2). This gives for instance F(10) = 0.054. For fi = 40, this 
probability becomes quite small (0.004) but remains far from negligible. 
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17.2.3 Topology 

Suppose, as before, that the coding process has a finite set of states, say 
(0, 1, ... , n-1). Then the substitution random function can be characterized by 
the n random sets Z-l(O), Z-l(1), ... , Z-l(n -1). These random sets cannot 
be independent because they partition IRd. The dependence relationships 
between them are particularly apparent if they are topological. For instance, 
two random sets may not be in contact, or one random set must be surrounded 
by another one. Is it possible to design models that fulfill these types of 
topological relationships? 

To answer that question, a simple idea is to choose a coding process where 
direct transitions between state i and state j can take place if and only if both 
random sets Z-l (i) and Z-l (j) are allowed to be in contact. This idea can 
be easily implemented in the case when the coding process is markovian but 
requires the directing function to have continuous realizations. This implies 
in turn that continuous time coding processes must be considered instead of 
discrete ones. 

Let TB be a directing function based on Chentsov's model with Poisson in­
tensity e. It is not difficult to establish that the spatial distribution of TB / VB 
tends to be a centered gaussian with the variogram ,(h) = ~Wd_llhl as e 
tends to the infinity2. According to Adler's criterion (1981), a gaussian ran­
dom function with a linear variogram has continuous realizations. 

Figure 17.5 shows simulations of four different substitution random func­
tions. All of them have been built using the same realization of the directing 
gaussian random function. However the coding processes are different. Each 
of them has four states (0, 1,2,3) depicted in red, yellow, green and black 
respectively. The top left coding process tends to favour periodic sequences 
of states. The top right one creates symmetric communications between ad­
jacent states. The bottom left coding process is a chain with two extremal 
states (0 and 3) and two intermediary ones (1 and 2). Finally, the bottom 
right coding process presents a hierarchy: communications between states 0,1 
or 2 require a transition via state 3. Here are the four transition matrices: 

1 1 ( 

0 

Ptr = 2 ~ 

1 
o 
1 
o 

o 
1 
o 
1 

2 This procedure is not significantly different from that used by Chiles (1978) 
for generating gaussian random functions with linear variograms (turning bands 
method). The only difference is that the number ofhyperplanes is random instead 
of being fixed. 
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The sojourn times in each state are exponentially distributed. Their param­
eters have been chosen so that the point distribution of each of the four 
substitution random functions is uniform on {O, 1,2, 3}. These are ao = al = 
a2 = a3 = 0.125 for both top coding processes, 2ao = al = a2 = 2a3 = 0.0625 
for the bottom left one and ao = al = a2 = a3/3 = 0.125 for the bottom 
right one. 

Fig. 17.5. Simulations of four different substitution random functions. All have 
been built using the same realization of the directing random function, which con­
veys them some similarity. The coding processes are different so that the four sim­
ulations have different topological properties 
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17.3 Conditional simulation 

In this section we are concerned with simulating the substitution random 
function Z in the field D C IRd given the finite set of conditions (Z(xa) = 
za,aEA). 

To simplify the presentation, we are going to assume that the directing ran­
dom function T and the coding process Y are discrete. Moreover, it is also 
convenient to resort to the vector notation used in the previous chapter. U s­
ing this notation, the conditions can be concisely written as Z( x A) = Z A with 
xA = (xa,a E A) and zA = (za,a EA). 

Let I be any finite population of indices. Because T and Y are independent, 
the conditional distribution of Z (x I) can be expressed as follows 

P{Z(XI ) = ZI I Z(xA ) = ZA} = LP{T(xA ) = tA I Z(xA ) = ZA} x 
tA 

LP{T(xI ) = tI I T(xA ) = tA}P{Y(tI ) = ZI I Y(t A ) = ZA} 
tI 

This formula shows that the conditional simulation of Z can be achieved by 
first simulating the values of the directing random function at the condition­
ing data points, and then by simulating both the directing random function 
and the coding process conditionally. Here is the algorithmic transcription of 
this formula: 

Algorithm 17.3.1. (Conditional simulation of a substitution random func­
tion) 

1. Generate tA ~ V(T(xA ) I Z(xA ) = zA)' 

2. Generate tD ~ V(T(xD ) I T(xA ) = tA)' 

3. Generate YD ~ V(Y(tD) I Y(t A ) = zA)' 

4· Deliver YD' 

Assuming that we can simulate T and Y conditionally, the only difficulty is 
running step 1. Writing the conditional distribution of T( x A) as 

suggests the following rejection procedure 

Algorithm 17.3.2. (Step 1 of algorithm 17.3.1. Rejection approach) 

1. Generate t A ~ V (T(XA )). 

2. Generate YA ~ V(Y(tA))' 
3. If Y A # Z A' then go to 1. 
4· Deliver t A . 
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This procedure is possible but rather slow because the rejection rate is usually 
very high. For this reason, instead of generating all components of t A in 
one step, an iterative procedure based on Gibbs sampler that updates one 
component of t A at each iteration is more appropriate. 

The initialization of the vector t A is achieved by a nonconditional simulation 
ofT(xA )· 

Regarding the current stage, suppose that the component ta of t A has to be 
updated. Its conditional distribution is 

P{T(xa) = ta I T(x~) = t~, Z(xA) = Z A} IX 

P{T(xa) = ta I T(x~) = t~} P{Y(ta) = Za I Y(t~) = Z~} 

This suggests generating a candidate value t~ from the conditional distribu­
tion of T(xa) given T(x~) = t~ and accepting it with probability 

where 

p = P{Y(ta) = Za I Y(t~) = z~} 

in accordance with Metropolis-Hastings algorithm (Barker's variation). We 
thus arrive to the following algorithm. 

Algorithlll 17.3.3. (Step 1 of algorithm 17.3.1) 

1. Generate fA ~ V(T(xA ))· 

2. Select a ~ Unif(A). 
3. Generate t~ ~ V(T(xa) I T(x~) = t~) and u ~ Unif. 

4. If u ::; a(ta, t~), then put ta = t~. 
5. Goto 2. 

Relllark 17.3.1. Running step 4 of this algorithm presents no difficulty if 
the spatial distribution of the coding process is numerically tractable. This 
case is frequently encountered (e.g. if Y is a Markov chain), but not always. 
An alternative is to replace step 4 by the following procedure. Accepting the 
new value t~ or conversely keeping the old value ta is equivalent to simulat­
ing the distribution (a(t~, ta), a(ta, t~)) on (ta, t~). This distribution can be 
simulated exactly (in the sense of Propp and Wilson) because it is invariant 
under the transition kernel 

P = ( 1- pI pI ) 
P 1-p 

and because simulating P is equivalent to simulating the conditional distri­
butions of Y(ta) and Y(t~). 
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Fig. 17.6. Conditional simulation of a substitution random function. Top left, a non 
conditional simulation. Top right, a set of 100 conditioning data points. Bottom, 
two conditional simulation 

Figure 17.6 shows an example of a conditional simulation of a substitution 
random function. The model used is as in the top left of Figure 17.5. The 
directing function is gaussian with the linear variogram ,(h) = Ihl. The 
transition matrix is P = Ptr and the four states 0, 1,2 and 3 have their mean 
sojourn time equal to 1/ a = 8 in the coding process. The simulation field is 
400 x 400. One hundred uniform points have been independently selected from 
the non conditional simulation (top left) to act as conditioning data points 
(top right). In the present case, explicit formulae exist for the transitions of 
the coding process 

P(t)(i,j) 1 dn 
( ) - exp( -at) -- cosh u + cos u 

2 dun u=at 
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with n = 4 - j + i == (4). So it was possible to run step 4 of algorithm 
17.3.3. The two conditional simulations shown at the bottom of Figure 17.6 
were generated this way using 30000 iterations. Despite the relatively large 
number of conditioning data points and the infinite integral range of the 
substitution random function, the conditional simulations still offer a wide 
range of variability. This can be attributed to the behaviour of the covariance 
function at the origin (finite, but steep slope), which is responsible for the 
amount of details that can be seen on each simulation. This also implies that 
the range of influence of a data point decreases rapidly. From this point of 
view, the conditioning data set cannot be considered as very informative. 

Appendix 1: Calculation of the covanance function of a substitution 
random function. 

Let us consider a model where the directing random function is based on 
Chentsov's construction and where the coding process is a Markov chain on 
(0,1) with transition kernel 

This Markov chain is reversible and its limit distribution is uniform. Direct 
calculations show that the nth iterate of the transition kernel can be written 
as 

This gives 

p(n) = ~ ( 1 
2 1 

1) (p - q )n ( 1 -1) 
1 + 2 -1 1 

p {Y ( t) = i, Y ( u) = j} = HI + (-1) i - j (p _ q) I t - U I ] 

for any t, u E 2 and any i, j E {O, I}. It follows that the bivariate distribution 
of the substitution random function is 

P{Z(x) = i, Z(y) = j} = ~ [1 + (_l)i- j E{ (p _ q)IT(X-Y)I}] 

for any x, yE IRd and any i, j E {O, I}. From this, we derive its covariance 
function 

1 
Cov{Z(x), Z(y)} = 4E { (p _ q)IT(x-Y)I} 

Let ..\ = {lwd-l!X - y! be the mean number of Poisson hyperplanes hitting 
[x, y]. Two cases are now considered: 

- If T is isotropic (this is the standard Chentsov's construction of section 
17.2.1, then T(x - y) is the difference of two independent Poisson variables 
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with common mean >./2. A direct calculation (see also the next case) shows 
that its distribution is 

nE::L: 

where the In's are the modified Bessel functions3 . Therefore 

Cov{Z(x),Z(y)} = ~e->' LIn(>') (p_ q)lnl 
nEZ 

- Suppose now T anisotropic as in the first example of section 17.2.2. Let H 
be a uniform hyperplane hitting [x, y]. The point x belongs to the "positive" 
half-space delimited by H with probability 

r = -- < uo, n > dn 1 1 
Wd-l s(uo)nS(ao) 

where no = (0, ... ,0,1), Uo = (x - y) /Ix - yl is the unit vector in the direction 
of x - y and 

S(Uo) = {nESd :<uo,n>2:0} S(no) = {n E Sd :< no,n >2: O} 

Then T(x - y) is the difference of two independent Poisson variables with 
mean .>..r and >.(1 - r). It follows that if n 2: ° 

P{T(x - y) = n} 

If n < 0, it suffices to permute rand 1 - r, and replace n by -n: 

P{T(x - y) = n} P{-T(x - y) = -n} 

(
1 )-n/2 

e-'>" ~ r Ln (2.>..Jr(1 - r)) 

3 The modified Bessel function of order v is defined as 

It satisfies Iv = Lv if v E ;;Z; (Abramovitz and Stegun, 1965). 
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But I -n = In, so we finally have 

P{T(x-y)=n} = e->.(_r_)n/2 In (2>.Jr(1_r)) 
1 - r 

for any n E L2:. Consequently 

1 () n/2 Cov{Z(x), Z(y)} = -e->' ~ _1_> In (2).Jr(1 - r)) (p _ q)lnl 
4 ~ 1-r 

nEZ 

Appendix 2: Distribution of the extrema of a Poisson random walk. 

Let X be a Poisson random walk on IR+. Jumps with amplitude ±l occur 
at the points of a Poisson process with intensity (). Let a and b two integers. 
We are interested in the probability Fa,b that the trajectory of the process is 
bounded by the values -a and b in the interval [0, tj (see Figure 17.8). 

Fa,b(t) = P{-a::::; min X(u)::::; max X(u)::::; b} 
O<u<t· O<u<t - - - -

b --------------------------------------------

o ~--L-----~_r------------~----~ 

-a 

Fig. 17.8. Example of a Poisson random walk. What is the probability that the 
trajectory remains between -a and b in the interval [0, t]? 

Using a standard renewal argument, we can write 

with the convention Fa,b = ° when a or b are negative. Taking the Laplace 
transform of Fa,b 

we obtain 



238 17. Substitution random functions 

or equivalently 

2 
() 

This shows that all the ifJa,b().) associated with a+b = c fixed are the solution 
of a system of c + 1 linear equations that can be written in matrix form as 

-1 

with a = 2(AaH ). The matrix has the eigenvalues 

, 2), 4. 2 k7r 
Ak = e + SIll 2( c + 2) k=1, ... ,c+1 

and a (normed) eigenvector associated with the eigenvalue ).k is 

r;r; . kl7r 
uk(l) = --2 SIll --2 c+ c+ 

1=1, ... ,c+1 

The solution of the system can be expressed very simply in terms of the ).k'S 

and the Uk'S. Indeed, if I:k f3k Uk is the expansion of the right hand side of 
the system, its solution is I:k f3k / ).kUk. Explicitly, we find 

2 f2. 2k7r k7r 
f3k = eY ~ SIll 2 cot 2(c + 2) 

from which we derive 

. 2 k7r k7r. (b + 1)k7r 
2 c+l SIll - cot ( ) SIll 

__ '" 2 2 c+2 c+2 
c+ 2 ~ . 2 k7r 

k=l )'+2()tSIll 2(c+2) 

Hence 

2 L:C+1 . 2 k7r k7r. (b + 1)k7r 
-- SIll - cot ( ) SIll 2 x 
c+2 2 2c+2 c+ 

k=l 

( () . 2 k7r ) 
exp -2 t SIll 2(c + 2) 
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Observe in particular that the property Fa,b(t) = Fb,a(t) is satisfied as a 
consequence of sin (b+l)k1f = (_l)k+l sin (a+l)k7r and because only the odd 

c+2 c+2 
values of k are involved in the summation. 

Suppose now that a and b are independent random variables whose distribu­
tion is geometric with parameter p. Then we have 

00 

F(t) = L pa+b(1- p)2 Fa,b(t) 
a,b=O 

Explicitly we arrive at 

2pc 1 - p . k1r k1r . k1r 00 ( )2 c+l ( ) 

F(t) = ~ c+2 {;sm22 cot2 2(c+2) exp -2()t sm2 2(c+2) 



Appendix 

This appendix gives the spectral measure and the integral range of some 
covariance functions commonly used. 

Table 1 gives the list of the covariance functions. They are normalized, in 
the sense that their value at 0 is 1, their scale factor is 1 and that they are 
isotropic. Owing to their isotropy, their integral ranges can be calculated by 
changing to polar coordinates 

where Cd denotes the radial form of the covariance C (i.e. C(h) = Cd(lhl)), 
and Wd is the volume of the d-dimensional unit ball. Table 2 gives the integral 
ranges in dimensions 1,2 or 3. Table 3 gives the general expression for the 
integral range of the covariance models that are valid whatever the space 
dimension. 

Table 4 gives the spectral measure of the covariance functions. It is easier 
to calculate a spectral measure when the covariance function is square inte­
grable. In that case, the spectral measure has a density that is equal to the 
inverse Fourier transform of the covariance function 

f(u) = _._1_ r e-i < u, h > C(h) dh. 
(27r)d lIRd 

In the isotropic case, this integral simplifies into 

- 1 1 1 . d/2 f(u) - ( )d/2 -I -I Jv(lulr) Cd(r) r dr 27r u v IRd 

where v = d/2 -1 and Jv denotes the Bessel function of order v. This formula 
has been used to obtain the spectral densities in Table 4. 

Unfortunately, we have been unable to calculate the spectral measure of the 
hyperbolic and of the stable covariance functions. This has been indicated 
with a question mark in Table 4. 
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Table 1. Covariance models 

Model Formula Remark 

Triangular (1 -Ihl) Ilhl :::; 1 d=1 

Cosine cos(lhl) d=1 

Circular ~ (arccos Ihl-lhlVl -lhI2) Ilhl :::; 1 d<2 

Spherical (1-~lhl + ~lhI3) Ilhl :::; 1 d:::;3 

Hyperbolic 
1 

1 + Ihl 

Exponential exp{ -Ihl} 

Gaussian exp{ -lhI 2 } 

Stable exp{ -Ihl"} 0<0':::;2 

Cardinal sine 
sin(lhl) 

d:::;3 
Ihl 

J-Bessel 21' r(f-l + 1) JI'(lhl) d 
f-l> --1 

Ihll' - 2 

K-Bessel Ihll' K (Ihl) 
21'- l r(f-l) -I' 

f-l>0 
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Table 2. Integral ranges in dimensions 1, 2 and 3 

Model Al A2 A3 

Triangular 1 - -

Cosine 0 - -

Circular 
8 rr 

- - -
3rr 4 

Spherical 
3 rr rr 
- - -
4 5 6 

Hyperbolic 00 00 00 

Exponential 2 2rr 8rr 

Gaussian v:rr rr rrv:rr 

Stable 2r (a; 1) rrr(a;2) ~7rr (a;3) 

Cardinal sine rr 00 00 

00 if f-.I :::; ~ 00 if f-.I :::; ~ 00 if f-.I :::; ~ 
}-Bessel 2V1i ref-.l + 1) (2V1i)3 r(f-.I + ~) 

r (f-.I + ~) 4rrf-.l r(f-.I- ;J 

K-Bessel V1i r (f-.I + ~) 
2 rr r(f-.I) 4rrf-.l (2V1i)3 r ~(:) ~) 
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Table 3. Integral ranges in arbitrary dimensions 

Model 

Triangular 

Cosine 

Circular 

Spherical 

Hyperbolic 

Exponential 

Gaussian 

Stable 

Cardinal sine 

J-Bessel 

K-Bessel 

00 

{ ~v'rr)d r(p + 1) d 

r (p + 1 - 2") 

if p ::; d - i 
if p > d - i 
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Table 4. Spectral measures 

Model Spectral measure 

Triangular 
1 1 - cos u 
-
rr u2 

Cosine 
1 
"2 (Ll(du) + tll(du)) 

Circular _1 1; (1~) 
rrlul 2 2 

Spherical _3_ 1 ; 
4rrlul 3 2 C~I) 

Hyperbolic ? 

Exponential 
r (d!l ) 1 

-"-:t.!. -"-:t.!. rr 2 (1 + lul 2 ) 2 

Gaussian 1 ( IU I2 ) (2y17r)d exp -4 

Stable ? 

Cardinal sine 
1 

4rr tllul=ddu) 

1-Bessel 
r(p + 1) 1 

r (p + 1 - ~) rr % d 

(1-luI2r- '1 

K-Bessel 
r (p + ) 1 

T(p)rr (1 + luI 2 r+% 
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In the following, please find the (corrected) colour version of 5 figures 
(12.4, 12.5, 14.7, 14.8, 16.2), and Fig. 12.6 which is incomplete in the Text. 
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Fig. 12.4. Conditional simulation of a Voronoi tessellation with discrete values. 
Top left, a non-conditional simulation. Top right, the conditioning data set. Second 
row, two conditional simulations 
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Fig. 12.5. Conditional simulation of a Voronoi tessellation with continuous values. 
Top left, a non-conditional simulation. Top right, the conditioning data set. Second 
row, two conditional simulations 
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Fig. 12.6. Realization of a Poisson line network represented in the parameter space 
[0, rr[ X 1R (left) and in Euclidean space (right). The polygons that the lines delineate 
are the Poisson polygons 



Fig. 14.7. Conditional simulation of a dead leaves model. The leaves are typical 
Poisson polygons (same distribution and same proportion for the three colours). 
Top left, a non conditional simulation. Top right and bottom, three conditional 
simulations 
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Fig. 14.8. Conditional distribution of the colour of the points of the simulation 
field. From left to right , this gives the probability that a point is red, yellow or 
green 
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Fig. 16.2. Conditional simulation of an excursion set of a gaussian random func­
tion. Top left, a non conditional simulation. Top right, the conditioning data points 
(the red points belong to the black phase, the green ones to the white) . Bottom, 
two conditional simulations 




