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ARTICLE INFO ABSTRACT

Keywords: The hyperbolic Radon transform is a commonly used tool in seismic processing, for instance in seismic velocity
Radon transforms analysis, data interpolation and for multiple removal. A direct implementation by summation of traces with
Multiples different moveouts is computationally expensive for large data sets. In this paper we present a new method for
Interpolation fast computation of the hyperbolic Radon transforms. It is based on using a log-polar sampling with which the
g};{} main computational parts reduce to computing convolutions. This allows for fast implementations by means of

FFT. In addition to the FFT operations, interpolation procedures are required for switching between coordinates
in the time-offset; Radon; and log-polar domains. Graphical Processor Units (GPUs) are suitable to use as a
computational platform for this purpose, due to the hardware supported interpolation routines as well as
optimized routines for FFT. Performance tests show large speed-ups of the proposed algorithm. Hence, it is
suitable to use in iterative methods, and we provide examples for data interpolation and multiple removal using

this approach.

1. Introduction

In the processing of Common-Midpoint gathers (CMPs), the
hyperbolic Radon transform has proven to be a valuable tool for
instance in velocity analysis (Clayton and McMechan, 1981;
Greenhalgh et al., 1990); aliasing and noise removal (Turner, 1990);
trace interpolation (Averbuch et al., 2001; Yu et al., 2007); and
attenuation of multiple reflections (Hampson, 1986). The hyperbolic
Radon transform is defined as

Ruf (7, q) = /_mf(\/r2 + g7, x)dx, @

where the function f (¢, x) usually corresponds to a CMP gather. Here,
the parameter g characterizes an effective velocity value; and t
represents the intercept time at zero offset.

Several versions of Radon transforms are used in seismic proces-
sing, e.g., straight-line, parabolic, and hyperbolic Radon transforms. In
many applications there is a need for a sparse representation of seismic
data using hyperbolic wave events. One way to get sparse representa-
tions is by using iterative thresholding algorithms with sparsity
constraints (Daubechies et al., 2004; Sacchi and Ulrych, 1995).
Popular applications using such representations are seismic data
interpolation and wavefield separation (Jiang et al., 2016; Trad, 2003).
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Since iterative schemes for computing such representations require the
application of the forward and adjoint operators several times, it
becomes important to use fast algorithms to limit the total computa-
tional cost.

Note that the direct summation over hyperbolas in (1) has a
computational complexity of O (V?), given that the numbers of samples
for the wvariables 1, x,7,q are O(N). There are many effective
(O (N?1log N)) methods for rapid evaluation of the traditional Radon
transforms, or the parabolic Radon transform, see Beylkin (1984);
Fessler and Sutton (2003); Schonewille and Duijndam (2001). The
hyperbolic Radon transform is, however, more challenging.
Nonetheless, a fast (O (N?log N)) method for hyperbolic Radon trans-
forms was recently presented in Hu et al. (2013). The method is based
on using the fast butterfly algorithms described in O'Neil (2007) and
Candes et al. (2009), and versions addressing computational efficiency
are presented in Poulson et al. (2014), Li et al. (2015b, 2015a) and Li
and Yang (2016).

A fast method for the standard Radon transform was proposed
in Andersson (2005) by expressing the Radon transform and its adjoint
in terms of convolutions in log-polar coordinates. To use this approach,
it is necessary to resample data in log-polar coordinates, and this
requires some interpolation method. An important property of such a
scheme is that since the interpolation procedures are performed in the
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Radon and image domains, the errors will be kept local. On the
contrary, the interpolation errors in the frequency domain will create
global non-systematic errors when switching back to the time-space
domain. Since these non-localized errors contribute to the general
structure of the function, they have to be mainly controlled.

Computationally efficient algorithms for GPUs were presented for
the log-polar-based approach in Andersson et al. (2016). In this paper
we propose to use the same approach and construct algorithms with
complexity O (N?logN) for evaluation of the hyperbolic Radon trans-
form. We present computational performance tests confirming the
expected accuracy and the computational complexity, as well as
predicted computational speed-ups for parallel implementations.
Finally, we present several synthetic and real data tests using the
hyperbolic Radon transform for data interpolation and multiple
attenuation.

2. Method

To begin with, we note that functions f(z, x) describing CMP
gathers are symmetric with respect to x=0. Hence, by introducing

- F(E P
(5, y) = LY

TeN="55 @

it follows that

Rif () =2 TP, de =2 / TF @+ gy, vy, .

The resulting expression in (3) has a form of the Radon transform over
straight lines, and a fast algorithm for the evaluation of this was
presented in Andersson et al. (2016), referred to as the log-polar Radon
transform which is based on rewriting the key operations as convolu-
tions in a log-polar coordinate system. In Section 2.1 we briefly recall
the construction of the log-polar Radon transform and discuss how to
adjust this method for optimal performance when processing seismic
data, and in Section 2.2 we introduce coordinate transforms as well as
sampling/interpolation requirements for accurate evaluation of
Ruf (7, @).

The fact that the hyperbolic Radon transform can be computed by a
combination of a change of variables along with an application of the
regular Radon transform implies that it can be evaluated using many
different methods for computing the regular Radon transform, includ-
ing methods with an hierarchical decomposition of the Radon trans-
form (Basu and Bresler, 2000; George and Bresler, 2007), methods
based on Fourier slice theorem (Beylkin, 1995; Fessler and Sutton,
2003), or chirp-Z transforms (Averbuch et al., 2006). In Andersson
et al. (2016) a thorough comparison between fast implementations of
Radon transform is presented, and where the log-polar implementation
has an advantage with respect to computational performance in
comparison to other approaches.

Another important aspect is the computational accuracy.
Depending on how large approximation errors that are acceptable,
different computational speedups can be achieved. For some applica-
tions rather low level of accuracy (i.e., errors of say 10%) could be
acceptable. This could for instance be the case of event detection (but
not removal). In this paper, we aim at keeping an accuracy level of a
couple of digits, since this seems to be enough for most seismic
applications. The accuracy level will be dependent on the interpolation
error, and we show that this error can be reduced if higher order
interpolation kernels are used.

Different algorithms also have different behavior in terms of how
interpolation errors propagate. In this regards, the proposed method
has an advantage, since the interpolation takes place in the measure-
ment domain rather than in the frequency domain, which will keep
errors more localized.
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2.1. Log-polar Radon transform

The standard Radon transform (cf. (3)) can be written in terms of a
double integral

R @) = [ [T6.056 - = gy, @

where 6 denotes the Dirac distribution. In Andersson et al. (2016) one
works with the log-polar coordinates

— P ' 2= <
{s =e 'C?S(g ) )7 cos(0)’
y = e’ sin(@"), g% = —tand. )

By introducing ¢ (6, p) = (cos(@) — e”), it turns out that the Radon
transform can be efficiently evaluated using the log-polar Radon
transform

Ruf (0. p) = cos(@) [ [T @, p)e"c0 =0, p = prdp'der

where, by abuse of notation, we use the same notation f for both
coordinate representations.

However, the above representation is not suitable for treating
functions 7 with support near the origin, since the origin is represented
by p = —co. A way around this obstacle is to make a translation so that
the support of 7 is moved away from the origin, and then work with
functions supported within a subset of a unit circle-sector of opening
angle f as in Fig. 2, right. In this figure the procedures of scaling and
rotations are also applied in order to make a proper fit and connection
to the interval for variable g from (4). The scale parameter, the rotation
angle, as well the opening angle § will be defined in what follows. With
this setup, the function f in log-polar coordinates and its log-polar
Radon transform Rlpf (@, p) both have compact support. In this work
we consider a simplified version with one circle-sector, because the
hyperbolic Radon transform is typically computed for some small
interval in the slowness variable g, which is directly related to the angle
B. In contrast, three circle-sectors were used in Andersson et al. (2016),
see Fig. 3. This is because that paper was aimed at treating data arises
from line integrals for all directions, and in this case it is necessary to
split the directional interval into at least three parts. The log-polar
Radon transform is computed for each of these parts. Computations for
all three intervals were done by using a formula for symmetric
intervals, cf. (Andersson et al.,, 2016, Formulas 2.5, 2.6), where
preliminary rotation procedures were applied to process non-sym-
metric intervals, see transformations T,, and S,, from Andersson et al.
(2016), Formulas 2.9, 2.12. The final formula for computing the Radon
transform by using preliminary rotations and the log-polar Radon
transform for the symmetric interval reads as (Andersson et al., 2016,
Formula 2.13).

To make this work consistent with our previous paper (Andersson
et al., 2016), we deal with a symmetric interval for variable 6, i.e.
0 € [—p/2, /2]. Note, that other non-symmetric intervals of size § can
be considered as alternatives, but after rotation procedures (similar to
transformations T,, and S,, mentioned above) they would give the same
end result as using a symmetric interval to begin with. We will refer to
the implementation of Ry, for values 6 € [—$/2, /2] as the algorithm of
partial Ry.

With this in mind, we now briefly explain how to make slight
modifications to the above scheme, better suited for the processing of
CMP gathers. A simplified synthetic example of a typical CMP gather is
shown in Fig. 1. Note that the function continues outside the maximum
limits given by x and t, leading to a truncation of (3), (which can be
seen e.g. as the circular artifacts in Fig. 1). Also note that there is no
data in the region above a line t=kx, i.e. high offset x and small time
intercept t, so to decrease the amount of computations we may ignore
this piece. In the coordinates (s,y) this triangle is again a triangle, but
with equation s = k%y. We set y = arctan k2. Thus, we are in practice only
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Fig. 2. Region of interest (trapezoid) for data evaluation (left). Scaling, rotation and translation for the log-polar setup (right).

interested in evaluating (4) for data 7 on a right trapezoid with the
form illustrated in Fig. 2, left. Besides, one is usually also interested
only in values of (7, ¢) in a limited range [zuin, Tmax] X [Gin> D)

In order for this to correspond to a symmetric interval of 6, we set
B = arctan(g?2, ) — arctan(g%,) and modify the relation between 6 and g
in (5) as follows

0 = a — arctan(g?),

where a = (arctan(g?, ) + arctan(gZ,,))/2. For a particular value of 0 the
output of the partial R, correspond to integrals over lines whose angle
with respect to the vertical axis is 6. In order for these to correspond to
desired values of g, one needs to rotate 7 so that the ¢ axis makes an
angle a with respect to the horizontal axis in Fig. 2, right. Moreover,
due to the problems at the origin,  needs to be dilated and translated
so that it fits within the circle sector of radius 1 and opening angle S, as
in Fig. 2, right. This has the effect that the trapezoidal support is
inscribed inside a square with side length a, located so that three of its
corners lie on the border of the sector. It can be shown that

sin(f3)
\/sin(2a)sin(ﬂ) + cos(f)(sin(Qar) + sin(f)) + 1 ’

a sin(a + %)tan(ﬁ) acos[a + %)tan(é)
2 ’ V2 '

0O =0

The line L; passes through the fourth corner of the trapezoid and is
orthogonal to the border of the sector; the distance from the origin Og
to the line L; is indicated by a, and indicates the first non-zero
contribution to the partial Ry,.

In summary, we are interested in the values of the log-polar Radon
transform in the range [—é, g] X [log(a,), 0]. With this setup the log-

polar Radon transform can be computed in terms of the finite

23

convolution

b
5 0 ~ ,
cos(0) | Zg Jogian 7 @ 20" E@ =0, p = prdp'de’

= cos)F (F(F O, p)en) @, p)-FL@. $))(O, p).

Riof 6, p) =

(6)

Here, ¥ denotes the two-dimensional Fourier transform. We use the
notation (@, p) for the reciprocal variables of (6, p). The function
£(@, p) can be accurately evaluated numerically (in a precomputing
step) in contrast to ¢ (0, p) which is defined in terms of distributions
and is discontinuous along a curve, see (Andersson et al., 2016,
Chapter 3) for a detailed description. To avoid wrapping effects, zero-
padding is applied in the log-polar domain. The effects of the
convolutions are schematically illustrated in Fig. 3. The trapezoid
containing the support of the data is transformed to the shape
indicated by the black points after a change to log-polar coordinates;
the green lines show shifted versions of the function ¢; and the support
after the log-polar Radon transform is applied is indicated by the thick
black curves. By using this scheme we conclude that the rectangle
[-p. 1 x [log(a,), 0] is a good choice for enclosing the support of the
functions, which is needed for the discrete evaluation of the integrals by
means of convolutions in log-polar coordinates.

We now describe how Rj, can be used to recover Rf for a function 7
with support in the unit rectangle. The change of coordinates (s,y) for
the log-polar setup is described by the transformation T,

)=, cos(a) —sin(a))fs — 0.5 + 0,
x)~ “lsin(a) cos(a) J\y — 0.5 0,
as well as the change of coordinates (z, g) for the log-polar setup can be

expressed by S, which can be found by scaling, rotation and translation
procedures for the log-polar setup. Some tedious manipulations yield

@)
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log(ar)

Fig. 3. Conversion to the log-polar domain and effects of computing convolutions. (For interpretation of the references to color in this figure, the reader is referred to the web version of

this article.)

[a(r2 - %)cos(a) + aw + O,

()
7 + (a(r2 - %)sin(a) - a%(a) + 02)45]

¢

with ¢ = tan(a — arctan(g?)).

Moreover, we introduce two transformations for switching to log-polar
coordinates according to relations (5):

p(r) = log(\t* + x?) P 72) _ (log(z* cos(—arctan(g?)))
\x)~ arctan(f) 2]~ — arctan(g?) 8)
To the end, by introducing linear operators

TF =F (TP Sg=g(57's3")

the Radon transform over straight lines and its adjoint operator can be
computed (up to a scaling factor) by

Rf (z. q)
R¥g(t, x)

SR (I (@, ),
T‘IRf;(Sg)(t, X).

2.2. Hyperbolic coordinates

Let f be a CMP gather measured on the rectangle
((t,x):0<t<T,0<x<X),

which we treat as a function on all of R? which is 0 outside this
rectangle. Note that

xT [ /Olf(Tt, Xx)3 (T — 72 + g% ) dd

X[ : fra, Xx)a[t - \/ @ITY + qzng]dxdt

R () (7. @)

XRh(f<T~,X->>(§, %)

C)

which allows us to assume that fis given on the rectangle [0, 1] x [0, 1]
to begin with. Upon corresponding rescaling of 1:=% and q:=%, we are
interested in evaluating R;f on the rectangle

{(T, 61)1 Timin <7< 1’ 9min < q < qmax}’
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where T,,,;, corresponds to the arrival of the first event in the rescaled
coordinates.

Now we recall the expression (6) representing the finite convolution
for computing the log-polar Radon transform. It can be rapidly
evaluated in terms of FFT if the log-polar samples (0, p) are given on
an equally spaced grid. Since data is assumed to be sampled in the (t,x)
domain, a resampling is needed. We propose to do this using cardinal
B-spline interpolation (De Boor, 1978; Unser, 1999), since this type of
interpolation is particularly well suited for GPU implementations (cf.
Ruijters et al., 2008). This technique is related to that used for fast
unequally-spaced Fourier transforms (USFFT) (Beylkin, 1995; Dutt
and Rokhlin, 1993), in the way that the interpolation is conducted by
smearing data in one of the domains, and the compensating for that
effect is done in the reciprocal domain.

In (6) we have to compute ¥ (?(9, p)ef’)(67 , p) which we can write as

F((Fer)*B:)(@, p)

770, p)en)@, p) = -
10.0en 0. p 7B:@. )

(10

where Bj is the cubic (cardinal) B-spline. Here we only consider
frequencies @,p)ina rectangle L, where |FB; @, p)| does not become
too small.

By using the coordinate transformations (2), (7) and (8) let

@, x) 12
=PT
['7(!7 x)) : (XZ)
be log-polar coordinates that correspond to the coordinates (2, x?) in
the time-offset domain. In these coordinates (10) takes the form

«;(/ JEER ey, 08,0 - 0. - n)drdx)(é, »)

FB3(@, )

F(f (6, p)en)@, p) =

1n

where the division by 2x is related to the transformation (2). However,

9(g.m)

the Jacobian determinant J(z, x) = )

‘ is a easily seen to consist of

smooth bounded functions multiplied with 2x (coming from the
derivative of x*), which cancels out this seeming singularity at x=0.
Subsequently the integrals and the Fourier transforms above can be
well approximated using the trapezoidal rule and FFT for approxima-
tive evaluation of 7. If (¢, x;) are regular sampling points in the time-
offset domain, we introduce the approximation to (11) by
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f{z,»k %ev“ﬂw(q, x)Bs (6 — ¢ (), %), p = n(1), xm)(é, )
g@.p)=c -

FB;@, )

)

where c is a constant related to the sampling intervals. This approx-
imation is then accurate for values of (9, 7) in the rectangle L
mentioned above.

As outlined in the previous section, this allows us to efficiently
compute approximations of (6) on a regular lattice in the log-polar
coordinate system (6, p) via the formula
Ripf (0. p) = cos(O)F (5@, p)-FL(@. p))(O. p). (12)

The final interpolation from the log-polar (9, p) lattice to the Radon
(7, g) lattice can be done by using cubic B-splines and a slight
modification of (12). Here, we again employ the transformations (7)—
(8). In this case, let

¢ (T, q) 72
=P,S
(11(1, q)) : (qz]
be the log-polar coordinates that correspond to the coordinates (2, ¢?)

in the Radon domain. The interpolation from the log-polar (9, p) lattice
to the Radon (z, ¢) lattice can then be done by using (a discrete version

of)
0
-/l;)g (ar)

X(p — 0, n — p)dpdo,

14 A oA 5 oA
NP [T(wy >]
2

FB5(@, p)
(13)

where x; denotes the characteristic function of the set L.

Numerical evaluation of the approximations (11) and (13) appear
to be well-suited for parallel computations, particularly on GPUs. For
FFT we make use of the high-performance cuFFT library, efficient GPU
kernels can be constructed for the smearing operations and for the
vector multiplications. The discrete version of the operator Ry, as
explained in the previous sections, will be denoted by R;.

3. Reconstruction techniques

The adjoint operator for the hyperbolic Radon transform R is
defined by using the inner product equality

(Ruf, &) = {f, Ri'g),

for arbitrary f and g. The operator is easy to construct by using the
approach with switching to log-polar coordinates, essentially by rever-
sing the order of the operations. With the adjoint operations at hand,
one can consider iterative methods for representing f by sparse sums of
hyperbolic wave events, and related interpolation and reconstruction
techniques. A popular such method is based on the soft thresholding
method for obtaining sparse representations proposed in Daubechies
et al. (2004). In this setting it means to consider the minimization of

a4

| Ri¥g = f1B +mll g Il (15)

for some choice of sparsity parameter pu.
By a simple modification of Theorem 3.1 in Daubechies et al.
(2004), this minimization problem is solved by the iterations

g" =82, "+ AR (f - RYg"D)), n=1,2,.., (16)

where ¢° is arbitrary, c is a positive constant such that ¢ || R, || < 1, and
S, is a soft-thresholding function defined as

v+ﬁ, ifvs—ﬁ,

2 2

S,(v) =40 if vl < £
() =40, >
v—ﬁ, ifvzﬁ.

2 2
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To perform interpolation in the case of missing data, let S be a
subset of the (z;, x) grid where we do have measurements of f. We are
then interested in minimizing

> Rig =P ) +ull g lhs

(tj,xk)ES
which, defining f to be 0 where data is missing, is solved by the iteration

8" =S2,(8" "+ Ry (f — xR, n=1,2, ...

Here xs is the characteristic function of S. Again, this scheme is
efficiently evaluated using the fast implementation of R, explained in
the previous section.

4. Discretization

In this section we derive guidelines for how to choose discretization
parameters. For simplicity, we assume to work with regular sampling
in the time-offset, and in the Radon domain; but the log-polar-based
method can be easily generalized for unequally-spaced grids in these
two domains.

In order to apply FFTs, samples in log-polar coordinates
@, p) e [—g, g] X [loga,, 0] must be chosen on an equally spaced grid.
By using coordinate conversions for the log-polar setup given by

t,x 2
Pt 0] _ pT().
n(t, x) x?
In order to maintain accurate interpolation, we choose the sample

spacing in 6 and p with respect to the largest distance between sample
points in the ¢ and 7 variables, i.e.,

A6 > rrnaX(Ic/J(t,-, X)) — @@+ At x)l, o, %) — @, 5 + Ax)]),
¥k

Ap > max([n(tj, xx) — n(t; + AL, x|, (), i) — n(tj, x5 + Ax))).
tj.Xk

a7

This choice will determine the log-polar frequency range that can be
covered, which in turn determines the resolution in the (z, ¢) (Radon)
domain. The quadratic behavior in the time sampling can be fairly well
described in terms of the log-polar sampling, as long as time range is
not too large. In the case of large time ranges, it can be beneficial to
split the time-offset and Radon domains in parts and consider the log-
polar Radon transform for each of these parts, in order to avoid too
large differences in sample densities.

For instance, for small values of 7 the grid for the Radon domain
becomes more dense and samples Ad, Ap should be chosen to be
smaller. Suppose that we have already rescaled f according to (9), and
note that the function is 0 until the arrival of the first event at 7,,,;,. We
may then split the integral in the following way

frl- /o]f(t’ 0)B(t = 7> + ¢’ dxdt
ffa‘ /O]f(l’ xSt — \/m)dxdz
+ [ @056 =+ g e

for some a between T7,,;;, and 1. For numerical evaluation of the first
integral by using the log-polar based method samples in 6, p deter-
mined according to (17) become more dense, see Fig. 4 for a schematic
description. The red dots in Fig. 4b indicate log-polar samples after
conversion to discrete coordinates in the (t,x) domain illustrated in
Fig. 4a. Equally spaced samples in the log-polar domain (gray dots) are
chosen with respect to maximal distances between points (17). Fig. 4c
demonstrates samples in the log-polar domain corresponding to small
values of t (located above the gray line in Fig. 4a). The splitting
procedure is not computationally intensive and can be applied several
times to achieve accuracy for small values of 7.

Ruf (7, q)

(18)
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(a) Grid (t,z) with splitting

in t coordinate coordinates

(b) Grid (t,z) in log-polar
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Ap | i
ABL py

oy

(¢) Part in log-polar coordi-
nates for small values of ¢

Fig. 4. Grids for conversion between time-offset and log-polar coordinates. Splitting in t variable, (a) Grid (t,x) with splitting in ¢ coordinate, (b) Grid (t,x) in log-polar coordinates, (c)

Part in log-polar coordinates for small values of t.
5. Accuracy tests

The proposed method uses cubic B-splines for data interpolation
and therefore does not have provable error estimates. Here we aim at
seismic applications in which case the data are band-limited (in
particular, band-pass filtering is applied at the preprocessing step)
and a limited accuracy level of several digits is sufficient in most
applications. Thus in this section we study accuracy levels when
processing synthetic and real CMP gathers which have different
frequency content.

To begin with, we provide some numerical examples illustrating the
error (versus a slow direct sum) of the log-polar-based method and its
dependence on the frequency content of the data, the sampling rate,
and the number of splittings applied in accordance with formula (18).
For the sake of quality comparisons, we perform similar tests as the
ones presented by Hu et al, 2013 for the fast hyperbolic Radon
transform based on fast butterfly algorithms. The method of (Hu et al.,
2013) is available in the open source software package Madagascar
(Fomel et al., 2013). We analyze the dependence of accuracy on the
following main factors:

e Sampling rates,
e Interpolation orders,
o Number of splittings by formula (18).

To study the sampling rates, we consider two synthetic CMP gathers
generated using Ricker source wavelets of peak frequencies 10 and
40 Hz, respectively, see Figs. 5(a), (b). The corresponding frequency
content is illustrated in Figs. 5(d), (e). Moreover, the hyperbolic Radon
transform of the data sets is illustrated in Figs. 5(g), (h).

For the first test, a synthetic CMP gather is generated using a Ricker
wavelet of 10 Hz, and sampled using N=2014. This data set is then
resampled to sizes N =2°, 20, 2! 212, This test is thus made to
illustrate the behavior of different sampling rates, and we should
expect increased accuracy with increased values of N. For the second
test, we generate a synthetic CMP gather for (2! x 2'2). Parts of this
gather are then to conduct tests of smaller data sizes. Specifically, the
part fi 1. is selected from the gather. In this test, the sampling
density remains the same, and we would thus expect to see a similar
accuracy level for the different values of N.

Up to this point we used cardinal cubic B-splines (Bs) for
interpolation. To study the accuracy dependence on the interpolation
order, we present tests for fourth-order (B,) and fifth-order (Bs) B-
splines. Moreover, we also present tests where either zero, one, or two
splittings are used.

The CMP gathers are defined for (¢, x) € [0, 4] x [0, 5], and the
hyperbolic Radon transform is computed for (z, ¢) € [0, 4] x [0.1, 0.7].
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We check accuracy of the log-polar-based method as well as the method
based on the butterfly algorithm. The fast butterfly algorithm has
several parameters for controlling efficiency and accuracy, for details
we refer to the pages 5, 6 in Hu et al. (2013). The parameter M (N in
the paper) is of the order of the maximum value of the phase function
@ (x, k)l used for the approximation; and the parameters
i iy Gup 9y, cONtrol the number of Chebyshev points. According to
the results presented in Hu et al. (2013), the set of parameters
(g; =9, M = 64) shows an accuracy level of about 0(107%) for typical
images of size 1000x1000. We perform tests for N, =N, =N, =N, =N
where N was chosen as different powers of 2, and for obtaining an
approximate accuracy level of O(107%) we used (¢, = 9, M = N/16) in
accordance with the tests conducted in Hu et al. (2013). As a reference
method, we use a standard C implementation of the direct summation
given by (3). Here cubic interpolation is used for interpolation in time.
Normalized errors compared to direct summation over hyperbolas for
the log-polar-based and for the fast butterfly algorithm are demon-
strated in Fig. 6(a) and Fig. 6(b), respectively. The figures show that
both methods have the same order of accuracy (normalized I errors are
inscribed into figures). The errors for the log-polar-based method are
mostly observed in the region of small time intercept 7 and high values
of slowness parameter g. These accuracy problems can be reduced by
additional splittings of the integral for the hyperbolic Radon transform,
similar to the one suggested in the expression (18).

Test results are shown in Table 1 and 2. The first table shows
relative accuracy levels for data sets constructed with making use of the
wavelet of peak frequency 10 Hz. The table shows improvement of
accuracy with increasing data sizes. It also confirms that higher order
interpolators sufficiently improve accuracy and make it close to the
accuracy of single precision arithmetics. Another conclusion from the
table is that one splitting is enough to avoid large accuracy problems
near t=0.

The second table in turn shows relative accuracy levels for data sets
constructed by using parts of the CMP gather with sizes (22 x 2!2)
which in turn was generated by the wavelet of peak frequency 40 Hz. As
expected, the table shows the same order of accuracy with increasing
data sizes, except the case N=512 where aliasing effects occur. Both
tables show favorable accuracy of the log-polar-based method with Bj
spline interpolation.

We also check accuracy for the real CMP gather shown in Fig. 5(c).
It has higher frequency components (Fig. 5(f)), and its hyperbolic
Radon transform has more complicated structure, see Fig. 5(i). Table 3
shows the log-polar-based method has a favorable accuracy level.

6. Performance tests

In this section we will check the performance of the log-polar-based
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Fig. 5. Data for accuracy tests.

method and compare it to the performance of the fast butterfly
algorithm. The tables in the previous section show that the log-polar-
based method using the cubic interpolation and one splitting in
variables (according to (18)) behave similarly in terms of accuracy as
the fast butterfly algorithm with g;=9 Chebyshev points and M/16 as
the maximum value of the phase function. Thus, we compare the
computational times for these setups. For testing we used two
implementations of the butterfly algorithm. First is the Madagascar
implementation (Hu et al., 2013) which has convenient interface and
works reliably for large 2D data sets. As pointed out during the review,
there exist newer versions of the butterfly algorithm than the ones
presented in Hu et al. (2013) and Poulson et al. (2014). Some
drawbacks of this initial formulation were discussed in Li et al.
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(2015b). Better versions of the algorithm were proposed, i.e. the
butterfly factorization in Li et al. (2015a), and the interpolative
butterfly factorization in Li and Yang (2016). Matlab implementation
of the latter algorithm was publicly available for testing. This imple-
mentation is substantially faster but unfortunately we were able to run
tests for the hyperbolic Radon transform only for the data of sizes up to
(512x512) because it gets quite memory demanding.

Table 4 demonstrates computational time results for the fast
butterfly algorithm; for the CPU and the GPU versions of the log-
polar-based method; and for the direct summation over hyperbolas.
Direct summation over hyperbolas so as the CPU version of the log-
polar-based method were implemented with Intel MKL and 8 OpenMP
threads. The table confirms the complexity of the proposed methods
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Fig. 6. Normalized error structure of computing the hyperbolic Radon transform for the log-polar-based method and for the fast butterfly algorithm.

Table 1

Relative errors of applying the hyperbolic Radon transform for different data sizes
(N X N) by using fast butterfly algorithm and the log-polar-based method for different
setups. Test 1 - wavelet of peak frequency 10 Hz.

Method N
512 1024 2048 4096
Fast butterfly 3.9e-02 7.1e-03 4.2e-04 7.0e-05
Bj; - no split 1.2e-01 2.3e-02 2.0e-03 8.1e-04
Bj; -1 split 8.8e—02 3.5e-03 3.6e-04 4.1e-05
B3 -2 splits 6.8e-02 1.8e-03 2.6e-04 3.8e-05
B, - no split 1.3e-01 2.0e-02 2.1e-03 7.9e-04
B, - 1 split 4.7e-02 9.3e-04 8.6e-05 3.2e-05
B, - 2 splits 2.8e-02 5.4e-04 6.4e-05 2.4e-05
Bs - no split 9.5e-02 2.1e-02 1.3e-03 7.9e-04
Bs - 1 split 2.8e-02 4.6e—04 5.7e-05 2.1e-05
Bs - 2 splits 1.8e-03 2.7e-04 5.1e-05 1.9e-05
Table 2

Relative errors of applying the hyperbolic Radon transform for different data sizes
(N X N) by using fast butterfly algorithm and log-polar-based method with different
parameters. Test 2 - wavelet of peak frequency 40 Hz.

Method N
512 1024 2048 4096
Fast butterfly 1.2e-02 8.3e-03 7.7e-03 7.3e-03
Bj; - no split 6.2e-02 3.2e-02 3.3e-02 2.8e-02
Bs - 1 split 6.5e-03 5.3e-03 5.1e-03 5.4e-03
Bj -2 splits 5.1e-03 4.4e-03 4.4e-03 5.0e-03
B, - no split 5.8e-02 3.5e-02 3.2e-02 3.6e-02
B, - 1 split 4.6e-03 1.3e-03 9.6e-04 9.3e-04
B, - 2 splits 4.4e-03 7.4e-04 7.3e-04 7.9e-04
Bs - no split 4.5e-02 3.1e-02 3.3e-02 2.7e-02
Bs - 1 split 3.4e-03 6.1e-04 7.2e-04 6.5e-04
Bs - 2 splits 2.2e-03 4.8e-04 4.5e-04 4.4e-04
Table 3
Relative errors. Real CMP.
No split 1 split 2 splits
Bs 5.7e-02 8.1e-03 5.4e-03
B, 3.1e-02 6.6e-03 4.6e-03
Bs 2.3e-02 5.3e-03 4.4e-03

Fast butterfly: 1.2e—02

and shows that a substantial performance gain is obtained by using
GPUs. It is common in GPU computing that time to copy data between
host and device memory constitute an essential part of the total
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computational costs (for our tests it takes ~30% of total time). This
time can be neglected in the case of using iterative schemes since it is
then possible to keep all data in the GPU memory. For the tests
performed, we have used a standard desktop with an Intel Core i7-3820
processor and NVIDIA GeForce GTX 970 video card with PCI Express
x16 graphic interface. We also show the operator application time after
the interpolative butterfly factorization (Li and Yang, 2016) but only for
sizes (512 x 512) since the transform can not be evaluated for greater
sizes due to memory demands.

All computations for the tests described above were performed in
single precision. It is interesting to check GPU performance also for
double precision. The processing power of GeForce GTX 970 in single
precision is more than 30 times higher than the power for double
precision, hence one can expect sufficient increase of total computa-
tional times in this case. According to Table 5 the algorithm slowdown
for double precision in comparison to single precision is approximately
equal to 4. This slowdown is explained by memory bandwidth limita-
tions; see Kirk and Wen-Mei (2016), Ch. 5.1, 20.3 for details. FFT and
interpolations constitute the most essential part of the total computa-
tional costs. These operations actively utilize GPU memory leading to a
slowdown in arithmetics. Furthermore, time-consuming CPU-GPU
data transfers for single precision are 2 times lower than the times
for double precision. Tesla K20m is more adapted for computations in
double precision than GeForce GTX 970 since processing power in
single precision for K20m is only 3 times higher than for double
precision. The obtained implementation of the log-polar-based method
in double precision for this GPU is 2 times slower than the imple-
mentation in single precision (see Table 5).

In Fig. 7 we show the output of the adjoint operator for the
hyperbolic Radon transform, as well as ¢! regularized reconstruction
given by (15). Since the adjoint transform is computed by reversing the
order of operations (corresponding adjoint ones) for the forward
transform, it does not arise problems with accuracy of the inner
product test (14). The proposed algorithm passes the test with a
relative error O (10~5) for single precision, and with O (10~'2) for double
precision.

Table 6 shows computational times using a GPU implementation of
the proposed log-polar-based hyperbolic Radon transform, and 64
iterations of the iterative scheme (16). The table also contains times for
single iteration of the forward and adjoint operators. Implementation
of the adjoint operator is 10-15% slower than the implementation of
the forward operator due to different GPU memory latency: number of
cache hits for the forward operator is higher than for the adjoint
operator. Performance indices of this kind depend on the GPU
architecture. One can also see that in comparison to the GPU results
in Table 4, the times for the forward operator, as well as for the adjoint
operator, are lower due to a limited number of host-device data
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Table 4
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Computational time (in sec) for the hyperbolic Radon transform via direct summation over hyperbolas, fast butterfly algorithm and via the log-polar-based method (CPU and GPU),

speed-up compared to the direct summation.

N Direct sums CPU Fast butterfly, Madagascar, CPU Fast butterfly, int.fact., CPU" Log-polar CPU Log-polar GPU, GTX 970
Time Time Speed-up Time Speed-up Time Speed-up Time Speed-up
2° 4.8¢ + 00 1.1e + 00 4.3 1.6e-01 30 3.3e-02 145.5 2.6e-03 1828.1
210 4.0e + 01 4.5e + 00 9.0 - - 1.2e-01 344.4 9.6e-03 4220.2
2 3.2e + 02 1.8e + 01 17.8 - - 4.7e-01 682.4 3.5e-02 9018.3
212 2.5 + 03 7.3e + 01 33.7 - - 2.0e + 00 1257.7 1.4e-01 17,036.3

# Time of the MATLAB implementation of the fast butterfly algorithm via interpolative factorization; tests for sizes more than (512x512) are not presented due to memory problems.

Table 5
Computational time (in sec) of the log-polar-based method on different GPUs for single
and double precision.

N GeForce GTX 970 Tesla K20m
Single Double Slowdown Single Double Slowdown
2° 2.6e-03 1.0e-02 3.8 3.8e-03 7.6e-03 2.0
210 9.6e-03 3.8e-02 3.9 1.3e-02 2.7e-02 2.1
ot 3.5e-02 1.4e-01 4.0 5.0e-02 9.9e-02 2.0
22 14e-01  5.7e-01 4.1 2.2e-01  4.2e-01 1.9

transfers. Host-device data transfers take 20-30% of the total compu-
tational time; for instance, taking difference between times for the
forward operator for N =22 from Table 4 and Table 6 we have
0.14 s — 0.11 s = 0.03 s or 27% which is mostly caused by data transfers.

7. Applications

In this section we mention some applications of the fast hyperbolic
Radon transform. These are fairly standard, but the examples could be
of practical interest due to the substantial computational speedup of
the proposed implementation of the hyperbolic Radon transform.

7.1. Multiple attenuation

A well-known method for the attenuation of multiple reflections in
CMP gathers is based on conducting the attenuation in a Radon
domain. Here, multiples and primaries can be separated due to their
differences in moveout. We have tested method described in Chapter 3
for the synthetic CMP gather in Fig. 8(a). Fig. 8(c) illustrates the Radon
data, and note that the primaries and multiples are difficult to separate.
The corresponding result after using 30 soft-thresholding iterations is
illustrated in Fig. 8(d). The black line indicates the border between
primaries and multiples, and Fig. 8(b) shows the reconstructed
primaries.

Offset, = (km)

4

(a)

Table 6
Computational time (in s) for 64 soft-thresholding iterations.

N Total time Average time per iteration
Forward operator Adjoint operator
27 8.1e + 00 1.9e-03 2.3e-03
210 3.1e + 01 7.4e-03 8.7e-03
2t 1.2¢ + 02 2.9e-02 3.2e-02
212 4.6¢ + 02 1.1e-01 1.3e-01

7.2. Interpolation

Here we show some examples where we use soft-thresholding for
conducting interpolation in cases of missing traces in the sampling
setups. The CMP gather in Fig. 9(a) contains 50% randomly missing
traces. Fig. 9(b) shows reconstruction results after 30 soft-thresholding
iterations. To control the obtaining results, we also consider synthetic
CMP gathers with 90% of missing traces, see Figs. 10a,c. In spite of the
low amount of given data, it is still possible to reconstruct the structure
of the waves (Fig. 10(b)). Moreover, varying the parameter of soft-
thresholding (i, see Chapter 3), one can improve the reconstruction
quality. Here, the increase of the parameter y leads to a better accuracy
for low-amplitude events; conversely, high-amplitude events can be
reconstructed with smaller values of u. In Fig. 10(d) we show a result of
the reconstruction with soft-thresholding iterations where the para-
meter p was increased by 10 times compared to the one used for
reconstructions in Figs. 9(b) and Fig. 10(b).

7.3. 2D field data

As an example of real data processing, we consider a CMP gather
from the Canterbury data set (Lu et al., 2003), see Fig. 11(a).
Attenuation of the multiples was carried out after applying the
reconstruction method from Chapter 3 with 40 soft-thresholding
iterations and the related muting procedure (Fig. 11(d)). The part of

(b)

Fig. 7. Output of the adjoint operator for the hyperbolic RT (a), and the result from using 30 soft-thresholding iterations from (16) (b).
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Fig. 8. Multiple attenuation with 30 soft-thresholding iterations.

the Radon image corresponding to multiples was taken back to the
time-offset domain (Fig. 11(c)) and subtracted from the initial CMP
gather (Fig. 11(b)).

8. Discussion
8.1. Non-hyperbolic moveouts

In this work we have dealt with the hyperbolic moveout
t(x) = 7> + ¢*x*. The proposed method can be trivially adapted for
the parabolic Radon transform where the moveout is given by

Offset, x (km)
2 3

(a) 50% missing traces

t(x) =7+ gx*> (can be used for small offsets or after the normal
moveout correction). Several other moveout types are used in seismic
processing as listed in Fomel and Stovas (2010) . Let us mention a few
examples of these non-hyperbolic moveouts: #(x)> = ¢ + ¢,x? + g3x*
and 1(x)? = ¢, + ¢,x> + gx*/(1 + ¢,x?) (associated with seismic aniso-
tropy of the model); #(x) = g, + /¢, + ¢3x> (associated with vertical
heterogeneity of the model).

All of these moveouts describe monotonous dependence of time on
the offset. Thus we can use a change of coordinates similar to formulas
(2) and (3) in order to rewrite the corresponding Radon transform into
the form appropriate for the log-polar change of variables. It should be

Offset, x (km)

(b) Reconstruction

Fig. 9. Interpolation into missing traces with the soft-thresholding algorithm.
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Fig. 10. Interpolation into missing traces with the soft-thresholding algorithm.

noted that the sampling rate should be chosen properly for each case.

8.2. 3D data processing

The proposed method can be extended for processing of three-
dimensional data sets. The hyperbolas in the three-dimensional case
are described by three parameters, in contrast to the two-dimensional
case where only one parameter is needed. This means that if all three
curvature parameters are to be present, the hyperbolic Radon trans-
form would map three-dimensional data set onto four-dimensional
data sets, and this is often not useful in practice. Therefore, it is
common to consider cases where only two parameters are used. Let us
begin by studying

o0 0
Ru(t, g5 @) = / / F2+ ‘Illez + @x7, 31, X)dxdx.
—c0 J—c0

As an intermediate step, introduce

Rof (T, q, %) = /_ F72+ g2, xi, x)dx.

For each fixed x, the operator R, can be rapidly evaluated by the log-
polar-based method. With this operation, the 3D cube containing the
variables (¢, x;, %) is transformed to a 3d cube described by the
parameters (z, g, y). Next, let us consider the hyperbolic Radon trans-
form of the function R,f with respect to variables z, x. It follows that
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LR + 473, ay, w)dx
®©  roo 2
= f_mf_mf(\/( 2+ g;x%3) + gl x, n, xz)dxldxz

= /_: /_:f(\lfz + qyx5 + g7, %, w)dy

= Rhf(r’ ql’ CIz)

The computation of the three-dimensional transform can thus be made
in two steps, where each step computes the two-dimensional hyper-
bolic Radon transform with regard to (z, x;) and (z, x) variables,
respectively.

As an alternative, the hyperbolic Radon transform for a three-
dimensional CMP gather after anisotropic moveout correction is also
considered in Hu et al. (2015), Formula 7. It is given by

Ref @ o= [ [P+ pOF =) + 2axm, i x)dnde

This problem can be addressed by making a change of coordinates
between (x;, %) and (x? — xZ, x%). In new variables the transform can
be dealt with as a combination of two-dimensional hyperbolic Radon
transforms.

8.3. Memory problems

Seismic data is characterized by large data sizes, therefore most of
algorithm implementations on GPU need communication to transfer
data between host and device memory. The current implementation is
supposed to process a set of two-dimensional data slices simulta-
neously. Computation of the three-dimensional hyperbolic Radon
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Fig. 11. Multiple attenuation for 2D field data.

transform can be also performed as a combination of two-dimensional
data slices, see Section 8.2. If the number of slices is too big, then the
whole data set will not fit into the GPU memory and it is necessary to
divide the set by parts and process each part independently. To
optimize performance one can use CUDA Streams to overlap memory
copy with computations.

Another question concerns the case if a two-dimensional slice does
not fit into the GPU memory. Here we refer to the example of splitting
(18) and recall that a similar procedure can be performed for other
variables. Processing each term in the sum independently allows to
decrease the amount of needed GPU memory and process large two-
dimensional data.

9. Conclusions

A fast log-polar-based method for the evaluation of the hyperbolic
Radon transform has been presented. According to the tests performed,
the method demonstrates reasonable accuracy and favorable computa-
tional costs compared to other methods. The accuracy of the method
can be increased when considering higher order interpolation kernels
for coordinate conversions between time-offset, Radon, and log-polar
domains. Numerical tests show that the GPU implementation is more
than 10,000 faster for large data sets in comparison to a direct
implementation in standard C of sums over hyperbolas, and a
substantial speedup is also obtained compared to alternative fast
methods. A discussion on how to use the method for processing
three-dimensional data sets when computing the hyperbolic Radon
transform for two slowness parameters is also presented.
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