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a b s t r a c t

When integrating independently built models, we may encounter components that describe the same
processes or groups of processes using different assumptions and formalizations. The time stepping in
component models can also be very different depending upon the temporal resolution chosen. Even if
this time stepping is handled outside of the components (as assumed by good practice of component
building) the use of inappropriate temporal synchronization can produce either major run-time re-
dundancy or loss of model accuracy. While components may need to be run asynchronously, finding the
right times for them to communicate and exchange information becomes a challenge. We are illustrating
this by experimenting with a couple of simple component models connected by means of Web services
to explore how the timing of their input–output data exchange affects the performance of the overall
integrated model. We have also considered how to best communicate information between components
that use a different formalism for the same processes. Currently there are no generic recommendations
for component synchronization but including sensitivity analysis for temporal and functional synchro-
nization should be recommended as an essential part of integrated modeling.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In integrated modeling we may need to link component mod-
els, which are built under different disciplinary paradigms and
assumptions, use different temporal and spatial scales, as well as
different numeric schemes and methods (Laniak et al., 2013;
Peckham et al., 2013). The fact that we are linking and synchro-
nizing potentially very different components, designed to be
treated under different spatio-temporal settings, may only add to
the uncertainty and variability that can emerge from the integra-
tion process itself. The way space and time are treated can be
further complicated by the different numeric methods used in
components. Using higher order numeric approximations may
compensate for some coarser time and space stepping, but may
make it more difficult to define appropriate synchronization times
and boundaries. Furthermore, components may assume different
functional responses when modeling the same processes. Within
certain domains these functions may be producing quite similar
output, however eventually they can diverge quite significantly
only adding to the overall uncertainty of the integration effort.

The investigation of this uncertainty and its impacts on model
e),
results can be handled using a kind of sensitivity analysis (Wain-
wright et al., 2014). In most of the traditional sensitivity studies
the focus is on model parameters, including initial conditions
(Hamby, 1995). In this research we are specifically looking at
sensitivity to model characteristics that are related to integration,
to module coupling procedures. As such we will be analyzing the
sensitivity of the integrated model to:

1. Variations in time stepping in components and the timing of
their synchronization;

2. Changes in numerical methods used in components;
3. Changes in functional responses assumed in components to

describe the same processes.

The experiments are conducted by varying only one char-
acteristic at a time and keeping all other controls the same. The
observations reported and conclusions drawn from this research
can serve as a starting point to perform further sensitivity analysis
in integrating models. Our analysis is largely for demonstration
purposes to show what we should expect from model coupling
and what are the possible problems that we may run into. We
have used a very simple, classical model, which we split into
components to see how the output will change depending on how
the components are run. While there are some good methods for
parametric sensitivity analysis, including global sensitivity treat-
ment (Saltelli et al., 2008), these methods hardly apply in our case
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Fig. 1. Data exchange pattern between component models. Rabbit model runs with time step 0.4 and fox model runs with time step 0.5.
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when testing sensitivity to how components are organized and
coupled. Therefore we had to resort to the trial-and-error type of
analysis, simply running the model under different arrangements
and reporting the differences observed.

The other reason for doing this analysis is because when
modules are linked using data or message exchange approaches,
there is always overhead involved. Results from one module have
to be collected, packed, sent to another module, unpacked and
included in further calculations. This takes time. For example, in
the analyses that we present below, the split version of the model
runs 13 times slower than when the model is treated as a whole.
Clearly we want, when possible, to minimize the interaction be-
tween components. When doing that, we want to know what can
be gained and what can be lost in terms of accuracy vs.
performance.

The paper is organized as follows. Section 2 provides descrip-
tion of the models and integration framework used to perform the
sensitivity analysis experiments. In Section 3 three categories of
sensitivity analysis experiments with the corresponding observa-
tions are presented. Section 4 presents discussion followed by
conclusions based on the experiments and observations.
1 http://www.simulistics.com/.
2. The models and the integration framework

Two individual component models and a model integration
framework are used to perform this research. The two components
are developed based on the classic Lotka–Volterra predator-prey
model (Volterra, 1926; Lotka, 1956; Voinov, 2008). The original
model mathematically is expressed as:

dX dt aX V X Y/ 1= − ( ) ( )

dY dt cV X Y dY/ 2= ( ) – ( )

where X¼size (or total biomass) of the prey population; Y¼size
(or total biomass) of the predator population; a¼birth rate or
number of offspring per individual per year; V(X)¼so called
trophic function that describes the hunting strategy of the prey;
c¼economic coefficient or efficiency of conversion of prey con-
sumed into new predators; d¼mortality rate or proportion of
predator population dying per year. In the simplest case V(X)¼bx,
where b¼proportion of the prey population consumed by one
predator per year.

To convert this model into an integrated, coupled one, we im-
plemented Eq. (1) as an independent rabbit model and Eq. (2) as
the fox model. In the first model Y is assumed constant and enters
as a parameter, in the second model, similarly, X is constant and is
a parameter. When the two models are run in concert they peri-
odically exchange information about X and Y using the most recent
value of the variable that is calculated in one model and sub-
stituting it for the parameter in the other model. For example, as
shown in Fig. 1, if the rabbit model runs with time step 0.4 and fox
model runs with time step 0.5, then whenever the time is a
multiple of 0.4 the rabbit model will receive the last calculated
value of Y from the fox model, and, similarly whenever the step is
a multiple of 0.5 the fox model will get the latest reported values
of X. Recent values of X and Y are maintained by the model in-
tegration framework. When these two components are run with
the same time steps, and variables are updated on every time step
of the model run, the results are the same as in the original two-
variable Lotka–Volterra model solved simultaneously as a system
of ordinary differential equations.

The rabbit population dynamics model was built using Cþþ
and the fox model was programmed using Java. Both models are
wrapped using Web services so as to enable message-based
communication between them (Fig. 2). The web-based model in-
tegration framework is built to capture model inputs, to facilitate
the communication between them, to manage time steps used, to
manage integration types used, and to display the results.
Whenever computation by the two models is needed, the input
data has to traverse from the integration framework to the Web
service wrappers, then to the Cþþ and Java based implementa-
tion of the models, then finally back to the integration framework.
The integration framework described above is available at https://
github.com/getachewf/mdmif.

As mentioned above, our goal is to study the possible effects of
asynchronous and mismatched coupling in a qualitative way, to
see what can be potentially expected. In real-life models, which
will be certainly of much higher levels of complexity than our
simple model, we may be observing other types of behavior.
However, even with this simple analysis we can observe some
features that are worth mentioning and worth being aware of
when coupling model components.
3. Temporal and functional sensitivity analysis in integrating
models

To conduct a simulation we have to set parameter values for the
model Eqs. (1) and (2) described in the previous section. in setting
the parameters we have adopted the parameter values used in the
Similes documentation,1 and have chosen:

– birth rate for prey, a¼0.5,
– proportion of the prey population consumed by one predator

per year, b¼0.01,
– conversion coefficient of one prey consumed into new predators,

c¼0.01, i.e. 100 units of rabbit biomass consumed produces one
unit of fox biomass,

– mortality rate for predator, d¼0.02.

Additionally, for most of simulation runs, we have chosen the
following initial values: X0¼5,000 and Y0¼45.

In performing the sensitivity analysis we followed the simple
trial-and-error approach. Our sensitivity experiments were mainly
grouped into three sets: (1) classic model, same integration and
functional schemes in both components, (2) classic model, but
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Fig. 2. Models, Web service wrappers, and integration framework.
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different numerical integration methods in component models,
e.g., Euler vs. Runge–Kutta methods, and (3) modified model using
different trophic functions in component models (functional de-
synchronization). The experiments were conducted by selecting
different time steps and initial population values for the models.

In addition to visual comparison of model output we have used
quantitative measures to record sensitivity. Out of the many dif-
ferent techniques used for characterizing model performance
(Bennett et al., 2013) we chose the Mean Absolute Error (MAE) and
the R squared (R2) indices. We selected MAE and R2 methods since
both of them are based on the difference between the base and
predicted values at each point of the time series; they enable us to
quantify the difference in data patterns between the base and
predicted values. MAE measures how close data produced from a
model are to the observed values, and is computed as

n
y yMAE

1

i

i n

i bi
1

∑= −
=

=

where
n¼number of values considered in the computation,
yi¼value of model output for the ith time step,
ybi¼value of base (observed) data for ith time step;
similarly R2 is used to measure how close two data sets are, and

is computed as

R 1
sum of squared distance between the actual and predicted values

sum of squared distance between the actual values and their mean
2 = −

An R2 value close to 1 indicates that there is a good correlation
between the two data sets, whereas a value close to 0 indicates
that they are quite different. MAE values range from zero to in-
finity, making this index especially useful for comparison of data
sets which are highly correlated (R2�1) but quantitatively
different.

The observations from the experiments are summarized in the
following three subsections. We have used the following notations
in the discussion and graphs: ts¼time step; r_ts¼ rabbit model
time step; f_ts¼fox model time step; r_init_pop¼rabbit initial
population; f_init_pop¼fox initial population.

3.1. Sensitivity to asynchronous time stepping

The experiments under this section were conducted to answer
the following question: in linking models with different time steps
how sensitive is the integration output to the difference in the
time steps in component models and to the frequency of in-
formation exchange between the modules (the coupling fre-
quency)? To investigate this we made several model runs with
different combinations of time steps used in components. As it
could be expected, with larger time steps in the component
models the irregularities in model output also increased. Bigger
time steps generally tend to crash the model faster. However,
employing a smaller time step even in one of the models does
have a stabilizing effect. Consider the following cases: (1) Fig. 3
(b) where r_ts¼0.001 and f_ts¼3, (2) Fig. 3(c) where r_ts¼0.1 and
f_ts¼0.01, and (3) Fig. 3(d) where r_ts¼2 and f_ts¼3. The base
trajectory for this experiment is the output of the experiment with
r_ts¼ f_ts¼0.001 in Fig. 3(a), which produced the same results as
the original two-variable Lotka–Volterra model run with ts¼0.001.

The difference in time steps in two component models can be
computed as Δt¼ |r_ts� f_ts|. For the three cases mentioned be-
fore, the differences in time steps can be compared as |Δt1|4 |Δt2
|4 |Δt3|. The graph of the base trajectory and the graphs in case
(1) follow a similar pattern even after 1000 time steps, but the
graphs in (2) and in (3) go to zero after time¼708.3 and 36, re-
spectively. This indicates that (1) smaller differences between time
steps of participating models do not guarantee better accuracy in
the overall performance; and (2) it is not the magnitude of the
difference between time steps that bring irregularities in the
output, but the actual size of the time steps used by the models
that cause the change in behavior. So, in some cases, running one
model with a very small time step while the other model uses a
large one does not really help. To demonstrate the effect of using
smaller time steps in one of the models consider the scenarios
shown in Table 1.

For the scenarios listed in the table the MAE values indicate
that usage of smaller time steps in one of the coupled models
improves the accuracy significantly. We can also observe that
scenario 3 has better accuracy than scenario 2. Consider the MAE
values of scenario 1 in (a) and scenario 7 in (b): clearly the sce-
nario where r_ts¼0.001 and f_ts¼0.1 is closer to r_ts¼ f_ts¼0.001
than to r_ts¼ f_ts¼0.1. The same applies to scenarios 3 and 5. This
shows that increasing frequency of information exchange between
models has significant contribution for getting better accuracy.
However, this comes at a price of longer model runs; e.g. scenario
1 took approximately 61.85 times longer than scenario 2.

The other issue that we investigated here, when using different



Fig. 3. Rabbit (prey) population dynamics when (a) r_ts¼ f_ts; (b) r_ts¼0.001; (c) r_ts¼0.1; (d) r_ts¼2. In all cases initial population of rabbit is 5000 and initial population
of fox (predator) is 45. The base trajectory for this experiment is the scenario with r_ts¼ f_ts¼0.001.
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Table 1
MAE and R2 based comparison of different scenarios where (a) the base scenario is
r_ts¼ f_ts¼0.001; (b) base scenarios are different and case specific. All scenarios
use r_init_pop¼5000 and f_init_pop¼45 and the model run until t¼50 units.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

r_ts 0.001 0.1 0.001 0.5 0.001 1
f_ts 0.1 0.1 0.5 0.5 1 1
MAE 17.71 268.90 85.12 1393.96 158.91 model crash
R2 0.9997 0.9467 0.9954 0.2281 0.9857 model crash

Scenario 7 Scenario 8 Scenario 9

r_ts 0.001 0.001 0.001
f_ts 0.1 0.5 1
Base scenario for MAE
computation

r_ts¼f_ts¼ 0.1 r_ts¼ f_ts¼ 0.5 r_ts¼f_ts¼1

MAE 261.27 1372.59 The base model
crash

R2 0.9495 0.2571 The base model
crash
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time steps for the coupled models, is whether our decision to use a
smaller time step for model A and a bigger time step for model B,
or vice versa, has any effect on the results? Do the two model
components (which look quite similar in terms of the equations
used) have a similar effect on the overall accuracy of the simula-
tion when they are run at finer time steps? As follows from Fig. 4
we do see a difference: the rabbit population dynamics in case
(a) and the fox population dynamics in case (b) when r_ts¼0.1 and
f_ts¼1 have more or less regular patterns. However, the model
crashes if we decide to swap the time steps between the compo-
nents and make r_ts¼1 and f_ts¼0.1. This means that choosing a
bigger time step for model A and a smaller time step for B is not
the same as vice versa. It appears that this decision is not
Fig. 4. (a) Rabbit population dynamics; (b) fox population dynamics, assumin
symmetrical. This can probably be explained by the fact that the
fox numbers are two orders of magnitude lower than the rabbit
numbers. A larger time step in a model with larger sizes of the
variables is more likely to cause the model to crash. The lesson is
that time steps should be chosen taking into account the rates of
change that are calculated in the component models: the models
with larger variables and higher rates deserve smaller time steps.

Generally we see that integration of models with different time
steps can be (1) highly sensitive to the size of the time steps
chosen; (2) quite sensitive to the size of the time steps chosen in
particular component models, and (3) relatively less sensitive to
the difference between the time steps in component models.

3.2. Sensitivity to numerical methods in component models

The experiments under this section were conducted to de-
termine the sensitivity of integration output to different integra-
tion methods in coupled models. As we know, higher order nu-
merical methods are more accurate, but require additional com-
putation time; however, less computation time is needed than if
we try to achieve same accuracy by only decreasing the time steps.
Consider a comparison experiment. In the first case, we set the
time step to 1 and use Euler integration for both models, running
the simulation for 100 time steps. In the second case, to get better
accuracy, we change the time step to 0.1, still using Euler in-
tegration for both models. In the third case we kept the time step
of 0.1 but use the Runge–Kutta method for both models. We ob-
serve that the second and the third cases, respectively, took 9.76
and 59.37 times more run time than the first case. However, we
need both better accuracy and better performance. Would it help if
we use a more accurate method in only one module, while the
other module is run with a lower order method? Can the more
g initial population of rabbit is 5000 and initial population of fox is 45.



Table 2
Effect of using Euler method in one model and Runge–Kutta method in the other
model. We have used r_init_pop¼5000, f_init_pop¼45, and the models were run
for 1000 time steps. The results are compared to the original classic model with
Runge–Kutta method run at time step 0.1. Rr stands for Runge–Kutta method in
rabbit model, Fr stands for Runge–Kutta method in fox model, Re stands for Euler
method in rabbit model, and Fe stands for Euler method in fox model.

r_ts¼ f_ts Re–Fe Re–Fr Rr–Fe

MAE R2 MAE R2 MAE R2

Scenario 1 0.1 695.74 0.60 370.50 0.87 246.55 0.94
Scenario 2 0.3 1892.81 0.012 1544.56 0.06 1003.94 0.34
Scenario 3 0.7 Model crash 1981.56 0.0037 1882.37 0.016
Scenario 4 1 Model crash Model crash 2517.03 0.0005
Scenario 5 1.5 Model crash Model crash Model crash
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accurate calculations in one module help to correct and improve
the accuracy in the other module?

Here we implemented the Euler method in one model and
Runge–Kutta method in the other. Experiments were conducted
for three cases: first both models used Euler method, same as in
the base run. In the second case the rabbit model was solved with
Euler method and the fox model used the Runge–Kutta method. In
the third case, vice versa, the rabbit model used the Runge–Kutta
method and fox model the Euler method. The results from these
experiments are shown in Table 2.

We can see that usage of Runge–Kutta method in even one of
the coupled models can improve overall accuracy. However this
effect quickly deteriorates if the time step is increased. Usage of
different methods in component models is not symmetrical: we
get different accuracy when interchanging the methods. In the
situation where the usage of bigger time steps with Euler in-
tegration crashes, using the Runge–Kutta method even in one of
the models can extend the model run for a longer time, e.g.,
consider scenario 3 and 4 in Table 2.

3.3. Sensitivity to functional responses

Our objective in this subsection is to investigate the sensitivity
of coupling models when the two participating models use dif-
ferent mathematical expressions to describe the same processes.
This can easily be the case when integrating real models, which
have been developed at different times by different teams, using
different assumptions and formalizations for the same processes
represented. For example, in our simple model both modules use a
linear trophic function (Svirezhev and Logofet, 1983) to describe
the interaction between two species, V¼V(x)¼bx, which assumes
that there is a linear relationship between the number of rabbits
Fig. 5. Comparison of trophic functions y¼bx¼0
and the rate of predation: the more rabbits there are, the more will
be eaten. In many real-life situations this is not the best approx-
imation because, for example, there is a certain saturation level for
foxes' appetites, after which they simply cannot continue con-
suming even when there are more rabbits. For this reason, the
classic Lotka–Volterra model can be modified to use more realistic
trophic functions. What will be the behavior of the integrated
model if one module uses one (say linear) trophic function, while
the other model uses another (say, s-shaped) trophic function
(Arditi and Ginzburg, 1989; Voinov, 2008).

Let us assume that now in one of the models we use a Holling
type III function V(x)¼ax2/(h2þx2). For relatively small values of x
both trophic functions, the s-shaped and the linear ones, can be
approximately identical. The two functions will have equal values
when x¼h, which gives us b¼a/2h. On the other hand, we have
already set that b¼0.01, so for example we can let a¼100, and
then h¼5000.

Again, our goal is to see, if through coupling, one model can
‘correct’ the other when they are exchanging information. For ease
of comparison let us call the rabbit and fox components that use
the linear trophic function, Rl and Fl, respectively, and, similarly,
the models that use the s-shaped function, Rs and Fs. As shown in
Fig. 5 for the parameters chosen above the difference between the
linear and s-shaped formalization is quite small when xo8000,
but then starts to increase. We may expect that models with dif-
ferent trophic functions should give approximately similar results,
at least within the range where the gap between the two functions
is small. Beyond this range we would like to see how one model
will be ‘correcting’ the results due to the information exchange
between the two models.

As known from theory, unlike the linear trophic function case,
which produces oscillations in populations of predator and prey,
the s-shaped trophic function results in the population equili-
brating after a few cycles (Svirezhev Yu and Logofet, 1983; Voinov,
2008). This is also what we can see in Fig. 6(a) and (b) where graph
(1) represents the dynamics in the Rl–Fl type of coupling, and
graph (2) shows the results from the Rs–Fs coupling. We will use
these graphs as base runs for further comparisons. If we consider a
mix of trophic functions in component models we find that the Rl–
Fs coupling (graph 3) produces a trajectory qualitatively similar to
graph (1). On the other hand the Rs–Fl coupling (graph 4) appears
similar to graph (2).

The phase portrait diagram for both the rabbit and fox popu-
lations are shown in Fig. 6(c). As expected, we get a spiral instead
of an oval that comes from the analytical solution, because of the
integration error produced by the Euler method we used. Here we
can say that even within the range of Rabbit numbers, where the
two trophic functions are close enough (Fig. 5), the difference
.01x and y¼ax2/(h2þx2)¼100x2/(50002þx2).



Fig. 6. Comparison of different functional synchronizations between models; r_init_pop¼5,000, f_init_pop¼45 and r_ts¼f_ts¼0.1. (a) Rabbit population dynamics over
time. (b) Fox population dynamics over time. (c) Phase portrait for the population dynamics diagram shown in (a) and (b). Euler integration method is used in all cases.

G.F. Belete, A. Voinov / Computers & Geosciences 90 (2016) 162–171168
apparently is large enough to produce a qualitatively different
behavior.

We see that one of the trophic functions plays a dominant role
in determining the trajectory, which is communicated through
some ‘correction’ during information exchange between the two
components. It also appears that the trophic function that is used
for the Rabbit population is the one that determines the overall
performance of the linked model. We can observe that in Rl–Fs
type of linking the trajectory is similar to Rl–Fl, and in Rs–Fl type
of linking the trajectory is similar to Rs–Fs. Why is that and will
this be true in other cases?

First we investigate the coupling of modules that use different
time steps. Consider graphs in Fig. 7 where (a) r_ts¼0.1 and
f_ts¼1, and (b) r_ts¼1 and f_ts¼0.1. In linking components with
linear and s-shaped trophic functions, one ‘corrects’ the data to-
wards the Rl–Fl pattern (oscillations) (graph 1), and the other
‘corrects’ towards the Rs–Fs pattern (equilibrium) (graph 2). The
results show that graph (3), which is produced by the Rl–Fs
coupling, is similar to the Rl–Fl pattern (graph 1). Likewise, graph
(4) which is the result of the Rs–Fl combination has a trajectory
similar to graph (2). Apparently, when linking components with
different trophic functions, whether we use the same or different
time steps in participating models, the data ‘correction’ process of
one of the components will dominate in deciding the pattern of
the integration output. At the same time we see that going to
larger time steps was safe when done for the Fox model (in fact it
appears that the accuracy has even increased since we see less
amplification with time in the oscillations), but not so when in-
creasing the time step in the Rabbit component: here we see that
the model crashed after a few oscillations.

It appears that it is the Rabbit population model that ‘drives’
the overall dynamics: when the Rabbit population uses the linear
function, the overall community model behaves as the linear
function dictates; when the Rabbit population assumes a function
with saturation, the community model also switches to the stea-
dy-state dynamics. May this be because the Rabbits have much



Fig. 7. Comparison of functional synchronization between models over different time steps and population values (a) r_init_pop¼5,000, f_init_pop¼ 45, r_ts¼0.1 and
f_ts¼1; (b) r_init_pop¼5,000, f_init_pop¼ 45, r_ts¼1 and f_ts¼0.1, (c) r_init_pop¼f_init_pop¼100, and r_ts¼f_ts¼0.1. Euler integration method is used in all cases.
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higher population numbers, which therefore makes their dy-
namics dominant in the overall model? In all the previous cases
the initial population of rabbits was 5000 and the initial popula-
tion of foxes was substantially lower-45. This is of course driven by
the ecological considerations behind these models. However per-
haps that is what explains the dynamics of the community model.
To test this we have simulated a community with initial popula-
tion values of 100 for both rabbits and foxes. As seen from Fig. 7
(c) now replacing the trophic function for one of the species does
not substantially affect the overall community dynamics: for both
Rl–Fs and Rs–Fl models we get trajectories similar to the linear Rl–
Fl type. So apparently the initial population values do matter, but it
is yet to be seen why the linear type of performance (oscillations)
appears to be dominant and what exactly it takes to switch to the
saturated type of dynamics (equilibrium).

What we see is that, when integrating components that use
different formalizations for the same concept we should also
perform sensitivity analysis to understand how these differences
play out in the overall dynamics.
4. Discussion

Model integration can result in some unexpected and unin-
tended results (Voinov and Shugart, 2013). In addition to various
issues with model assumptions, semantics, scale, resolution, etc.,
we do need to keep in mind that when linking component models
we may be also adding several degrees of freedom to the overall
coupled system from the various combinations of time-stepping
assumed in the components, as well as from the various numeric
methods and functional responses implemented in them.

Whenwe simulate a system, the way wemanage the time steps
will ultimately influence the output of the simulation (Cellier and
Kofman, 2006). Using smaller time steps, even in one of the
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models, can provide better accuracy in the output. The model re-
sults turn out to be quite sensitive to the choice of combinations of
time stepping applied and care should be taken when deciding
what combination is most efficient.

Similarly, introducing higher order numerical integration
methods in one of the coupled models can give us better accuracy
in the overall output, but we also need to identify to which model
we apply a higher order integration method. Common sense tells
us that applying more accurate numerical schemes has a higher
payback when used in the context of variables that have larger
values and therefore produce higher rates of change in the overall
calculations. This was indeed observed in our experiments, but not
always. Careful sensitivity testing under different combinations of
parameters and initial conditions may be the only solution in this
case.

This dependency on the size of the state variables involved was
also clearly observed in our analysis of sensitivity due to functional
synchronization of models. Switching from one functional re-
sponse to another, assumed in one model or another, can sub-
stantially impact the overall results, producing even a totally dif-
ferent qualitative behavior of the system. Generally, the sensitivity
analysis we performed was rather qualitative and did not quantify
by howmuch one given factor is more important than another one
(Saltelli et al., 2004).

We should definitely keep these findings in mind when doing
research on integration of real models, like for example the in-
tegration of macroeconomic Computable General Equilibrium
(CGE) model with agent based energy market model (ABM) in the
on-going COMPLEX2 project, which actually led us to the analysis
described above. The CGE model simulates interaction of many
economic sectors and it operates at a yearly time step. The model
is written in GAMS,3 while the ABM is developed in NetLogo.4 The
ABM focuses on the residential energy demand and operates
quarterly. In its current state the integrated CGE-ABM model stu-
dies only the electricity consumption dynamics and its impact on
market prices, while an extension of the models towards gas
consumption is envisioned.

At initialization the ABM receives information from the CGE
about distribution of household incomes, aggregate shares of gray
vs. green energy, energy consumption of sectors other than re-
sidential, and aggregate supply of both types of electricity and
their prices. As the simulation goes on, the household agents in
the ABM consider several decisions that influence their energy use,
e.g., switching between green and gray electricity, buying energy
efficient equipment and bulbs, or their actual behavioral, e.g.,
switching off the lights when leaving a room. During each 4th step
of the ABM the electricity market as a whole is taken into account.
The total residential electricity demand is summed up with those
coming from other sectors considered by the CGE, and matched
with the electricity supply, separately for green and gray elec-
tricity. Prices for both types of electricity are determined based on
the prices in the previous period adjusted to the excess of supply
or demand for each electricity type (Niamir and Filatova, 2015).
Currently, the supply of each type of electricity comes from CGE
but it is expected that the supply side will also be disaggregated in
the ABM with a possibility to model technology diffusion. The new
prices are returned to the CGE, which in turn spreads the changes
across all other sectors, re-estimates electricity needs for each
sector and calculates the corresponding CO2 emissions, changes in
sectors productivity (Filatova et al., 2014) and in incomes of
households that are employed in those sectors. The new
2 www.complex.ac.uk.
3 http://www.gams.com/.
4 https://ccl.northwestern.edu/netlogo/.
household incomes and electricity supply for both types of elec-
tricity are returned back to the ABM, which starts its quarterly
activity again.

The two models have been wrapped as Web services to use the
integration framework described above. However the synchroni-
zation process is still to be decided. To synchronize the two models
we have three options: (1) as at present, time step of the ABM can
be set to tabm¼0.25 and for the CGE to tcge¼1. In this case the
challenge is that the ABM has to use constant energy demand
values for simulations at t¼0.25, t¼0.5, and t¼0.75. (2) Time step
for both models can be set to ts¼0.25, and in this case the chal-
lenge is to find relevant data or perform data disaggregation for
every CGE model run. (3) Let tabm¼tcge¼1, now we are making the
ABM to operate on the same time step with CGE, i.e. on yearly
bases. In all options integration output is sensitive to both data
disaggregation process and time steps used. Besides usage of
higher order integration methods in one or both of the models can
improve the output. The optimal solution should be certainly
decided after performing multivariable sensitivity analysis.
5. Conclusion

As in science in general, in modeling “uncertainty is not an
accident” (Saltelli et al., 2008), it is an intrinsic part of it. We have
split a simple classic predator-prey model into two components to
demonstrate that when integrating them back together the output
is sensitive to the time steps assigned to each of the components
when they are run asynchronously. We find that using a smaller
time steps in one of the components is not symmetrical. That is,
sometimes we can gain in performance by allowing a larger time
step in one of the component models without much loss of ac-
curacy, but we should be selective in choosing which component
will be using which time step. It does matter in which component
the smaller time step is introduced.

Higher order numerical integration methods require more
computational time, but introducing them in only one of the
coupled models can significantly improve the accuracy of the
output. However to which of the coupled models we apply higher
order numeric methods is also not symmetrical and does matter.

In integrating models, if the participating models use different
mathematical expressions to represent the same concept, sensi-
tivity analysis on the two expressions needs to be done. For ex-
ample, in our case, the expression used in one of the models was
dictating the pattern of the output.

In this research we have considered only sensitivity of in-
tegration output with respect to three aspects. Depending on the
nature of the models to be integrated we may need to explore
sensitivity to other factors, e.g. spatial resolution. Besides we have
used only one-at-a-time sensitivity analysis approach (Campo-
longo et al., 2007), in which we vary one factor at a time and
measure the variation in the output. Depending on the require-
ment of integration we may need to perform multivariable sen-
sitivity analysis experiments. Trying to compensate for the model
integration overhead by economizing on the accuracy within in-
dividual component models can be a risky idea and certainly de-
serves some careful testing before being recommended in the
context of the full integrated model.
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