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High performance computing is absolutely necessary for large-scale geophysical simulations. In order to
obtain a realistic image of a geologically complex area, industrial surveys collect vast amounts of data
making the computational cost extremely high for the subsequent simulations. A major computational
bottleneck of modeling and inversion algorithms is solving the large sparse systems of linear ill-condi-
tioned equations in complex domains with multiple right hand sides. Recently, parallel direct solvers
have been successfully applied to multi-source seismic and electromagnetic problems. These methods
are robust and exhibit good performance, but often require large amounts of memory and have limited
scalability. In this paper, we evaluate modern direct solvers on large-scale modeling examples that
previously were considered unachievable with these methods. Performance and scalability tests utilizing
up to 65,536 cores on the Blue Waters supercomputer clearly illustrate the robustness, efficiency and
competitiveness of direct solvers compared to iterative techniques. Wide use of direct methods utilizing
modern parallel architectures will allow modeling tools to accurately support multi-source surveys and
3D data acquisition geometries, thus promoting a more efficient use of the electromagnetic methods in
geophysics.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Geophysical exploration techniques aim to determine various
physical properties both in the shallow and deep interior of the
Earth. Electromagnetic (EM) tools are applied in different areas of
geophysics such as hydrocarbon and mineral exploration, geo-
thermal reservoir monitoring, CO2 storage imaging to name a few.
These techniques utilize low-frequency EM energy to map varia-
tions in the subsurface electrical conductivity and characterize the
geological structure at depths ranging from a few tens of meters to
several kilometers. Recently emerged controlled-source electro-
magnetic (CSEM) imaging technologies in marine and land en-
vironments are receiving special attention today. Marine CSEM
method has become a common tool in industry for reducing am-
biguities in data interpretation, reducing exploratory risk and its
small environmental footprint because of its unique ability to re-
liably extract information on fluid properties of the geological
structures. Land-based EM techniques are often applied for re-
servoir monitoring, while airborne methods have found wide use
in hydrogeological investigations. The academic and industrial
uzyrev).
developments of various EM technologies are reviewed in Chave
and Jones (2012), Constable (2010), Key (2012), Pellerin (2002),
Siemon et al. (2009) and Streich (2015).

The modeling and inversion of the three-dimensional EM data
in the frequency domain requires considering many sources and
frequencies. The computational cost is enormous and the use of
high performance computing (HPC) is mandatory. Deriving a so-
lution requires 80–90% of the total computational time be spent
calculating thousands of large sparse systems of linear equations.
The progress in numerical mathematics and parallel computing
during the last decades has permitted using direct methods for the
large linear systems with millions of unknowns. Direct solvers are
used in many academic and industrial fields, such as condensed
matter physics, fluid dynamics, biomechanics, structural analysis,
aerodynamics as well as many others. These methods are espe-
cially efficient for multisource problems since the expensive ma-
trix factorization part of the solution needs to be performed only
once, and then multiple solutions are rapidly obtained by rela-
tively low cost back solve operations. In this context, parallel direct
solvers have been successfully applied in seismic (Operto et al.,
2007; Brossier, 2011) and EM (Blome et al., 2009; Streich, 2009)
modeling and inversion.

Several evaluation studies have been published on direct solver
performance including sequential tests (Gould et al., 2007), early
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evaluation of two distributed-memory solvers (Amestoy et al.,
2001) and recent massively parallel tests for real-valued systems
from solid mechanics (Koric et al., 2014). In geophysical modeling
publications, usually one type of solver is used and no comparative
analysis is given (with a few exceptions, such as Pardo et al. (2012)
and Kordy et al. (2016)). There is not a comparison in the existing
literature of direct solvers on modern multi-core architectures
applied to complex linear systems with many millions of un-
knowns arising from geophysical applications.

In this paper, we present evaluation and comparison of several
state-of-the-art parallel direct solvers on one of the world’s most
powerful supercomputers. The complex linear systems arise from
different electromagnetic modeling problems in geophysical ex-
ploration. The remainder of the paper is organized as follows. In
Section 2 we give the necessary background on the physical pro-
blem and numerical approaches and iterative and direct linear
solvers are described in Section 3. In Section 4 we analyze the
dependence of computational and memory demands on the
number of unknowns in the linear system and determine the
largest problems that can be solved on modern shared-memory
and distributed-memory platforms. We show large-scale multi-
source modeling examples that previously were considered un-
feasible with direct solvers and report scalability in Section 5. The
maximum performance achieved was 97 TFLOPS on 65,536 cores
resulting in, to our knowledge, a new record in sparse matrix
factorization. Section 6 contains concluding remarks and a brief
description of our plans to apply the outcomes of this work in the
near future.
Fig. 1. Illustration of an unstructured 3D mesh for EM modeling. Different types of
EM signal, natural or artificial, interact with conductive or resistive targets and
cause substantial responses that can be measured at the surface.
2. Modeling approaches

Electromagnetic field behavior at low frequencies used in
geophysics is governed by the diffusive Maxwell’s equations that
in the frequency domain are (Jackson, 1999)

ωμ σ∇ × = ∇ × = + ( )iE H H J E, . 1

Here E is the electric field, H is the magnetic field, ω is the angular
frequency and J is the electric current source. It is common in
geophysics to eliminate H by substituting it from the first equation
of (1) into the second, obtaining the second-order partial differ-
ential equation for the electric field

ωμσ ωμ∇ × ∇ × − = ( )i iE E J. 2

For Earth materials, the magnetic permeability μ is usually
assumed to be equal to the constant free space value μ0. Dielectric
permittivity can be safely neglected at typical frequencies used for
geophysical exploration making the electric conductivity σ the
main characteristic of the medium. Electrical anisotropy is taken
into account by treating it as a transversely-isotropic tensor σ̄ .
Generally speaking, air is insulating ( σ = 0), but in numerical
modeling its conductivity is usually set to some small value
without significant loss of accuracy (see Section 3). In order to
avoid the source singularities and reduce the air layer effect, the
electric field is often split into the sum of the primary and sec-
ondary field contributions = +E E Ep s. In this case, the governing
equation becomes

ωμ σ ωμ σ σ∇ × ∇ × − ¯ = ( ¯ − ¯ ) ( )i iE E E . 3s s p p0 0

After this equation is solved, the magnetic field can be inter-
polated from the electric field values using Faraday’s law. This
formulation is convenient and simple, and is used in the majority
of industrial modeling codes. The main disadvantages of this ap-
proach are the numerical problems caused by the nullspace of the
curl operator (Hiptmair, 1998) and lower accuracy of the magnetic
field components that are interpolated from the electric ones. In-
stead of solving the electric field equation we can use the common
practice of reformulating the problem in terms of vector and scalar
potentials ΦV, (Biro and Preis, 1989; Haber et al., 2000; Jahandari
and Farquharson, 2015). In this case, the following system con-
sisting of a vector and a scalar equation is to be solved

ωμ σ Φ ωμ σ Φ∇ + ¯ ( + ∇ ) = − ¯ ( + ∇ ) ( )Δi iV V V , 4.1s s s p p
2

0 0

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ωμ σ Φ ωμ σ Φ∇⋅ ¯ ( + ∇ ) = − ∇⋅ ¯ ( + ∇ ) ( )Δi iV V . 4.2s s p p0 0

Both formulations (3) and (4) are considered in this evaluation
study. The current numerical modeling techniques applied to
electromagnetic problems in geophysics are the finite-difference
(FD) and the finite-element (FE) methods, although other methods
such as integral equations have also received widespread use. The
FD method was the most popular numerical technique in EM
modeling during the last two decades (Rodi and Mackie, 2001;
Siripunvaraporn et al., 2005; Commer and Newman, 2008; Kelbert
et al., 2014) because of its relatively simple formulation, con-
venient grid building and ease of adaptation to new computer
architectures. FE schemes support completely unstructured me-
shes that allow mesh refinements (Fig. 1) and make irrelevant the
geometrical complexity of topography or bathymetry. They are
particularly flexible in adapting to the shape of geological bodies
and thus allow for highly accurate numerical simulations (Zehner
et al., 2015). The discretization with either of the above-mentioned
methods results in a large sparse system of linear equations with
complex numbers for each frequency and source position

= ( )Ax b. 5

This paper assumes that the complex matrix A is symmetric,
non-Hermitian and indefinite. Its sparsity structure is determined
by the underlying discretization method and grid type. The matrix
obtained from Eq. (3) using the FD method and structured grids is
13-diagonal banded, while discretization of Eq. (4) for the un-
structured FE meshes leads to a general sparsity pattern. The
matrix A is highly ill-conditioned for most realistic cases.

A geophysical forward modeling code can be used as a stan-
dalone program for survey planning, feasibility study and aca-
demic purposes, though it often serves as a part of an inversion
framework. In this case, every iteration of the inversion algorithm
involves the solution of multiple systems (5). The computation of
the data misfit gradient (Tarantola, 2005), in turn, leads to the
adjoint problem that requires the solution of the same number of
systems with matrix A transposed and different right-hand-sides
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(RHS). If a second-order minimization scheme such as Gauss–
Newton is employed, additional solves would be required for each
Hessian matrix–vector product. A total number of linear systems
to be solved can be estimated as

× × × ( )N C N N , 6iter f s

where Niter is the number of iterations required to converge (a few
tens to hundreds), C is the constant depending on the minimiza-
tion algorithm (usually 3–5), Nf and Ns are respectively, the
number of frequencies and sources (or receivers considering re-
ciprocity) in the survey. Ns typically, is in the order of tens to
hundreds for land CSEM studies, while it reaches thousands in
modern large-scale marine CSEM surveys and airborne electro-
magnetics (Siemon et al., 2009; Newman, 2014). Consequently, the
whole inversion of a large dataset using the traditional approach
may require a solution of up to several millions of complex linear
systems each having millions of unknowns. There is a current
trend to combine various EM techniques or use them together
with the seismic methods that resolve geological structure with
higher resolution and can constrain the interpretation of the EM
measurement (Hu et al., 2009). The differences between the con-
strained and unconstrained inversions are shown in Fig. 2. In this
case, we aim to locate as accurate as possible the thin resistive
body that may be a hydrocarbon reservoir. Due to the diffusive
nature of the electromagnetic field, standalone EM inversion
produces a very blurred picture. The anomaly is clearly visible, but
its position and dimensions are not precise. When the target
boundaries are known from the seismic data, EM inversion can be
constrained by these results leading to a much better quality of the
restored model. A focused image of a target with sharp boundaries
can be achieved, for example, by the incorporation of prior in-
formation about known geological structures within the regular-
ization functional (Newman and Hoversten, 2000; Zhdanov, 2009).
In this way, one can preserve known structural boundaries within
the inversion domain where rapid changes in the conductivity are
allowed, and impose smoothness constraints elsewhere. On the
contrary, this may introduce an apparent resolution into resistivity
images which cannot be justified by the inherently diffusive nat-
ure of low-frequency EM fields. Either this scheme or the so-called
Fig. 2. Real model (top) and the results of the unconstrained standalone EM in-
version (middle) and constrained by the seismic results (bottom). Color represents
electric conductivity at logarithmic scale. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
joint inversion process (when seismic and electromagnetic para-
meters are inverted simultaneously) brings an accelerated com-
putational challenge.

Modeling different source positions in one survey can be per-
formed in several ways. A local grid for each source greatly
minimizes the dimensions of the problem, however, at the cost of
interpolation of all data between different grids in the inversion
process (Commer and Newman, 2008). Since the FE method sup-
ports unstructured tetrahedral meshes that allow for complicated
geometries and arbitrary mesh refinements, one mesh can be
created for all sources. Our experiments show that adding several
tens or hundreds of source/receiver positions to the original tet-
rahedral mesh does not lead to a large increase in the number of
elements. This approach has been applied routinely to the con-
ventional FD codes that use structured orthogonal grids and hence
are less flexible in local mesh refinements. The main reason for
creating a global mesh is its effectiveness with a direct solver used
for the solution of (5), i.e. performing one matrix factorization and
re-using it for forward and adjoint modeling with all sources. This
allows to reduce the cost of forward modeling within an inversion
from (6) to approximately ×N Niter f tasks (each task now includes
a matrix factorization and multiple solves). Also, from the com-
putational point of view, direct solvers are advantageous with the
second-order inversion methods, such as Newton or Gauss–New-
ton, which converge in much less iterations than the first-order
methods (Pratt et al., 1998).
3. Linear solvers

3.1. Direct and iterative methods

The choice of a robust and efficient solver is critical for the
performance of a frequency-domain modeling code. Linear solvers
can be divided into two broad groups: iterative and direct meth-
ods. In 3D problems, the scale of the geometry required to give
meaningful results has, until recently, been accessible only to
iterative solvers such as Krylov subspace methods because of their
low memory and computational requirements. Robustness of
iterative methods is dependent on the condition number of the
system matrix and hence they require the utilization of robust
preconditioners in real-size applications. At the end of the 20th
century many iterative solvers and preconditioning techniques
were proposed; see Barrett et al. (1994), Saad (2003) and refer-
ences therein. In some cases, a problem specific preconditioner
will be highly effective, yet it is often difficult to parallelize the
code without losing either its efficiency or scalability on modern
HPC platforms. Koric et al. (2014) has recently explored several
configurations of solvers, preconditioners, and their parameters in
the libraries PETSc and hypre and found that no iterative pre-
conditioned solver combination could correctly solve the highly
ill-conditioned system of equations from the structural finite ele-
ment simulations.

Nearly a decade ago, two things changed in ways that trans-
formed the landscape for sparse linear solvers making room for
other methods in geophysical modeling codes. As explained in the
previous section, the increasing number of source and receiver
positions in CSEM methods became a serious computational
challenge. Conversely direct solvers that had been considered
impractical before in 3D cases, became feasible in realistic pro-
blems. These realistic problems show the main benefit from the
computational point of view in the run-time efficiency for multi-
source problems. If a single mesh can include all source positions
of the survey, (5) becomes a system with multiple RHS. In this
case, the number of sources has a smaller impact on the compu-
tation time of a direct solver compared to the cost of the matrix
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factorization. Direct methods while avoiding convergence pro-
blems of iterative solvers, they are much more expensive in terms
of memory due to fill-in in triangular factors. A wider use of direct
solvers on parallel systems was also restricted by the fact that
some packages suffered from a poor computation-to-commu-
nication ratio.

The most widely used direct methods are variants of Gaussian
elimination and perform the solution of sparse systems of linear
equations by factorizing the coefficient matrix. Several types of
factorization can be computed depending on the matrix properties
(Golub and Van Loan, 1996)

= ( )A LL 7.1T

= ( )A LDL 7.2T

= ( )A LU 7.3

The factorization (7.1) is known as the Cholesky factorization
and is available only for symmetric positive definite matrices. Our
case of symmetric indefinite matrices allows for a LDLT factoriza-
tion (7.2) that’s speed performance outpaces the general LU de-
composition (7.3). Once the factorization is computed, two addi-
tional triangular solves are needed to obtain the solution, for ex-
ample, a forward solve LDy¼b and a backward solve LTx¼y. This
phase requires considerably less computational time than previous
factorization.

The condition number of the system matrix is greatly affected
by the chosen conductivity of the air layer σair . Since the con-
vergence of iterative methods may stagnate for very small (more
realistic) values of σair , in first 3D applications it was chosen as
10�4 or 10�5 S/m. These values may lead to inaccurate modeling
results, especially for high frequencies. For low frequencies the
first term in Eq. (2) completely dominates the second term in the
regions with very low conductivity (i.e. air), making the iterative
solution inaccurate unless a special technique is used for numer-
ical stabilization (Demkowicz and Vardapetyan, 1998). When using
an iterative method, the researcher often has to compromise ac-
curacy of the solution with the computational effort. Direct solvers
typically do not have these limitations and we can choose σair as
10�8 or 10�10 S/m ensuring the absence of any numerical errors
caused by the unrealistic representation of the air.

3.2. Solvers used in this study

For this evaluation we have selected three direct solver
packages listed in Table 1. Our selection criteria included a parallel
implementation for modern architectures, continuous develop-
ment, support of the code, and a wide range of sparse matrix types
and factorization/ordering algorithms supported. The last point is
important from a computational point of view, since even though
a general factorization algorithm can be applied to a symmetric
matrix, a specific symmetric factorization will be performed much
faster. For example, a popular solver SuperLU_DIST (Li and
Table 1
Direct solvers included in this survey. (MF – multifrontal, SN – supernodal).

Name Version Method Implementation Academic license

MUMPS 5.0 MF Distributed Free
(MPI, limited
OpenMP)

PARDISO 5.0 SN Shared Free, user-locked for
1 year(OpenMP, limited

MPI)
WSMP 15.01 MF Distributed Free, limited for 90

days(MPI, OpenMP)
Demmel, 2003) with recently added OpenMP and CUDA support
does not take advantage of matrix symmetry and consequently
was not included in this study. We have also excluded solvers that
can be used only as parts of more general application software.
Some of the packages in Table 1 are freely available to academic
users in the full version, while it is necessary to purchase a license
for the others.

As it can be deduced from its name, MUMPS (“MUltifrontal
Massively Parallel Solver”) by Amestoy et al. (2001, 2006) is a
distributed-memory multifrontal package for solving sparse sys-
tems of linear equations with the matrix that can be either un-
symmetric, symmetric positive definite, or general symmetric.
MUMPS is implemented using a fully asynchronous approach with
dynamic scheduling of the computational tasks. It supports real
and complex systems in single or double precision, and is able to
compute a Schur complement matrix, determinant and condition
number estimates. The parallel version of MUMPS requires MPI,
BLAS, BLACS, and ScaLAPACK libraries to be installed on the
system.

The shared-memory solver PARDISO (Schenk and Gärtner,
2004; Kuzmin et al., 2013) uses a combination of left- and right-
looking supernode techniques for factorization. It supports a wide
range of sparse matrix types and computes the solution of real or
complex, symmetric, structurally symmetric or nonsymmetric,
positive definite, indefinite or Hermitian sparse linear systems on
shared-memory multiprocessing architectures. A new MPI-based
version for distributed-memory architectures has been im-
plemented in PARDISO 5.0, however it is only available for real
symmetric indefinite matrices. In this study we were only able to
evaluate in a shared-memory environment.

The Watson Sparse Matrix Package, WSMP (Gupta et al., 1998;
Gupta, 2002), is a distributed-memory multifrontal solver with
hybrid MPI/Pthreads parallelization. It comprises two parts, one
for solving symmetric systems (with positive-definite, quasi-defi-
nite, and indefinite matrices, with or without diagonal pivoting)
and one for general systems (Gupta, 2007). WSMP was primarily
developed as a highly scalable parallel code and allows using
multiple MPI processes on one shared-memory node; the best
performance is observed with 2–8 threads per MPI processes. The
parallel symmetric factorization is based on the multifrontal al-
gorithm described in Liu (1992).

Solving a sparse linear system includes three main tasks: or-
dering and symbolic factorization, numerical factorization and the
solution (forward/backward substitutions and optionally iterative
refinement). When A is sparse, the triangular factors L and U ty-
pically have nonzero entries in many more locations than A does.
This phenomenon is known as fill-in, and results in increased
memory and time requirements of a direct method to solve a
sparse system with respect to the size of the system. During the
first phase, an ordering algorithm is typically applied to minimize
fill-in during factorization and to provide more parallelism. PAR-
DISO can use either the nested dissection algorithm from the
METIS package (Karypis and Kumar, 1998) or the minimum degree
algorithm. WSMP by default uses graph-partitioning based or-
dering techniques and has an option to use a minimum local fill
ordering. MUMPS has, perhaps, the widest choice of ordering
options, including several variants of minimum degree algorithms,
minimum fill, PORD, METIS and SCOTCH. The proper choice of
ordering algorithm is crucial due to the large impact on the per-
formance (Pardo et al., 2012). For example, METIS-based ordering,
which is perhaps the most widely used with MUMPS, was con-
firmed as superior to the default option. In order to make this
evaluation objective, in the tests below, we have used the METIS-
based ordering for MUMPS and the default ordering algorithms for
PARDISO and WSMP. In symbolic factorization, the precomputa-
tion of the nonzero pattern of the factors helps to predict the
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memory requirements of numerical factorization as the dis-
tributing of data and computation among processing units in a
parallel implementation.

In utilizing a direct method solver, the largest cost is matrix
factorization. The factorization can be performed in several dif-
ferent ways, offering a trade-off between efficiency, parallelism
and memory usage. The established techniques are left-looking,
right-looking, and multifrontal algorithms (Duff and Reid, 1983;
Liu, 1992; Gould et al., 2007). For very large matrices, special
versions of the solvers are available that use 8-byte integers. When
the system is so large that the factors cannot fit into main memory,
some direct solvers provide an out-of-core (OOC) mode. OOC
mode writes and reads from secondary storage are typically much
slower than working with the main memory (Avron and Gupta,
2012), so we did not consider OOC mode in this paper. The main
objective of this study is to investigate how different parallel im-
plementations can take advantage of large amounts of distributed
memory, multicore processors and low latencies and increased
bandwidth of modern interconnect network technologies.
Table 3
Direct and iterative solution of the M1 system. RHS is the solution time for a single
4. Numerical examples

Full-scale performance and scalability tests of shared-memory
direct solvers have been performed up to 65,536 cores of the
sustained petascale system of Blue Waters. Capable of a peak
performance of 13.3 PFlops, Blue Waters at University of Illinois’
National Center for Supercomputing Applications, USA is one of
the most powerful supercomputers in the world. It combines
22,640 XE compute nodes (two 8-core AMD 6276 processors and
64 GB of memory each) with 4224 XK nodes (one 6276 processor
and one NVIDIA Kepler K20X GPU accelerator with 2688 cores; 32/
6 GB of memory), all connected by the Cray Gemini torus inter-
connect. The solvers were linked with AMD ACML math library for
Basic Linear Algebra Operation (BLAS) operations and take full
advantage of increased memory bandwidth and SSE instructions
of XE6 architecture.

4.1. Test matrices

For this study, we have chosen four test systems resulting from
large-scale EM problems. Two independent FE and FD modeling
codes (Puzyrev et al., 2013, 2015) used for the simulations were
developed in Barcelona Supercomputing Center. Table 2 sum-
marizes the test matrices varying from 1 to 8 million degrees of
freedom (DOFs). The condition number, as a direct indicator of ill-
conditioning, is driven by several factors, including irregular ele-
ment shapes, conductivity contrasts between the materials, high
anisotropy and realistic air conductivity. M5 represents a complex
FE case with many refinement positions in the mesh (size of ele-
ments ranging from 3 m to 3000 m at the boundaries) and hence a
very high condition number. M8 is also a challenging example for
direct solvers whose condition number cannot be even estimated
with high degree of confidence, so we provided an approximate
value. Both these matrices are built from the complex model
shown in Fig. 6 of Puzyrev and Cela (2015). The original model was
Table 2
Test matrix characteristics.

Name Method Size NNZ Cond. number

M1 FE 1,012,432 31,756,326 4.9Eþ06
M2 FD 2,066,700 25,301,576 2.8Eþ08
M5 FE 5,016,912 168,239,000 2.0Eþ12
M8 FD 7,810,110 97,668,202 �1.0Eþ14
modified to accommodate up to 1000 receiver positions and to
have higher conductivity contrasts, anisotropy factor of up to 10
and air conductivity of 10�10 S/m.

Given the computational complexity requirements for time and
memory of a sparse numerical factorization are superlinear, and
since the computation of the solution of a sparse linear system of n
equations with complex coefficients is equivalent to the compu-
tation of the solution of a sparse linear system of 2n equations
with real coefficients, we typically find direct solvers are applied to
complex systems constrained to less than several millions of un-
knowns. This is especially true for matrices resulting from the FE
method that are much denser than FD ones. Recently, Operto et al.
(2014) reported the case of 6.7 millions of unknowns in 3D
acoustic FD seismic modeling. After analyzing the existing litera-
ture, we believe the size of the two largest complex systems in this
study stands as the largest ever in geophysics to be benchmarked
with direct solvers, for both FE and FD methods.

4.2. Performance in a shared-memory environment

First, we evaluate the performance of direct solvers on med-
ium-scale problems. Tables 3 and 4 compare the wall clock times
and memory demands for solving the M1 and M2 systems, re-
spectively. For comparison, the symmetric iterative solver QMR
(Freund, 1992) with the preconditioner described in Puzyrev et al.
(2013) was used in these tests. The computations were made on a
single Xeon E5-2670 processor with 8 cores and equipped with
128 GB of memory.

As we can see, matrix factorization is the most costly part of the
solution for all solvers. Iterative method, expectedly, has very
small memory requirements and a low cost preprocessing phase,
but a large time-per-RHS ratio. Hence, it can be competitive in
terms of computational time only when the number of sources
does not exceed a few tens. MUMPS and WSMP required more
memory than the other codes which is typical for multifrontal
methods. Differences in the computational time and memory de-
mand can be explained by the implementation details or ordering
of the unknowns. PARDISO is based on memory-efficient super-
nodal techniques, requiring lower amounts of memory. As a result,
for some test matrices, PARDISO was able to perform the factor-
ization using one computational node, while WSMP and MUMPS
required distributing the task among several nodes. However, as
we see from Tables 3 and 4, PARDISO is a bit slower than MUMPS
on the FE matrix and much slower than WSMP on the FD case.

Of our test matrices listed in Table 2, the shared-memory solver
PARDISO was only capable in solving the M1 and M2 due to in-
sufficient memory in other cases. Due to this constraint, we tested
PARDISO on a shared-memory machine with an additional set of
linear systems, which allowed us to gradually increase the pro-
blem size. We use a sequence of matrices derived from three-di-
mensional FD grids for the same model but different frequencies,
which is typical for frequency domain EM problems. The number
of cells in each dimension is usually based on the skin depth cri-
teria (Constable, 2010) and is proportional to f , while the total
right-hand-side.

Solver Wall clock time (s) Memory (GB)

Preprocess Factorization RHS

MUMPS 19 1170 2.5 33
PARDISO 25 1296 3 22
WSMP 22 810 2.5 41
Iterative 33 65 1.4



Table 4
Direct and iterative solution of the M2 system.

Solver Wall clock time (s) Memory (GB)

Preprocess Factorization RHS

MUMPS 35 3725 4.5 51
PARDISO 52 4856 5.5 45
WSMP 21 1405 4 69
Iterative 36 120 1.5

Fig. 3. PARDISO performance on a sequence of FD linear systems. Computational
time (top), memory (middle) and performance (bottom).

Fig. 4. PARDISO factorization performance on FD linear systems (blue line with
markers) and matrix condition number (red line) for a range of decreasing fre-
quencies. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 5. Computational time of forward/backward solves for the M1 system.
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number of unknowns in three dimensional problems grows as n3.
In this example, each subsequent frequency is 25% larger than the
previous one, leading to a �40% increase in the number of system
unknowns. Fig. 3 shows the results of a PARDISO performance
study on a shared-memory machine with 16 cores and 128 GB of
memory. This solver was able to solve linear systems with up to
3.9 million unknowns. The memory demand in the largest case
was 116 GB. Only 10–15% of the machine peak performance was
achieved. The computational time has a nonlinear growth pro-
portional to O(n2.1) of the number of system unknowns, which is
close to the theoretical complexity of a sparse numerical factor-
ization in 3D of O(n2). The growth of the memory demand is close
to O(n1.4) versus the theoretical of O(n4/3).
In some applications, such as magnetotelluric modeling, the
same grid is often used for a set of frequencies. This leads to a
sequence of matrices of the same size and structure, but with
different entries. The matrix condition number is usually increas-
ing with decrease in frequency, leading to very ill-conditioned
systems for low frequencies. Another example of the robustness of
direct solvers in shown in Fig. 4 where we measure factorization
time for a system of fixed size (1 million of unknowns) for a range
of decreasing frequencies (i.e. increasing condition numbers). As it
can be seen, factorization time is independent from the system
matrix condition number in this case.

Finally, we study the many-RHS performance of the solvers
under consideration that is of a great interest for multisource
CSEM problems. As shown in Fig. 5, actual runtimes deviate a bit
from the times extrapolated from a single RHS. This is caused by
the blocking strategy of the solvers when the matrix factors are
accessed only once for each block of RHS. In the case of the M1
system, the computational effort for 1000 forward and backward
substitutions is roughly comparable to the cost of the matrix fac-
torization, however, the exact relation between these values de-
pends on many parameters. Default values for the block size
parameters were used in the solvers’ setup.
5. Scalability

In this section, we present a strong scalability study of the
MUMPS and WSMP solvers. Since the factorization algorithms are
bounded by relatively low computation-to-communication ratio, it
is generally believed in the modeling community that direct



Fig. 6. Scalability of MUMPS and WSMP for the factorizations of the three largest
systems.

Fig. 7. Average memory per node.

Fig. 8. Parallel speedup of both solvers.
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solvers are best suited for a relatively small numbers of distributed
nodes, while iterative methods are preferred for highly scalable
simulations (Sourbier et al., 2011). Conversely, this study has
shown very promising results on direct solvers’ scalability. Even
though distributed-memory solvers encounter communication
and load-imbalance overheads, they use the aggregate memory
bandwidth of all computational nodes. For solvers like PARDISO
that can run only on several shared-memory cores, the scalability
is limited by the total memory bandwidth of a single node.

For each test case, we start the benchmarking with the mini-
mum number of nodes that can fit the matrix factorization. Par-
allel speedup is defined as the ratio of wall clock time on the
minimum number of cores over wall clock time on p cores. To
utilize the floating point units on XE6 nodes, we spawn two MPI
ranks per node each with 8 threads. Fig. 6 compares the scalability
of WSMP and MUMPS solvers for the solution of the M2, M5 and
M8 test systems. LDLT factorization wall clock time on the loga-
rithmic scale is plotted on the vertical axis. With the exception of a
single case (matrix M5 on 64 cores), we see that WSMP is much
faster than MUMPS, especially for the FD system. For a relatively
small 3D problem such as M2, MUMPS reached its scalability limit
at 128 cores, WSMP scaled well until 1024 cores. In this case, EM
inversion on a large supercomputer can benefit substantially from
an additional parallelization over frequencies. The performance of
MUMPS for the FE system M5 on 64 cores is similar to WSMPs’
performance. However, MUMPS parallel performance quickly de-
teriorates as the number of cores increases and consequently more
data is exchanged between the MPI processes. WSMP shows ex-
cellent parallel scalable behavior even when the number of cores
reaches into the thousands. It took approximately 1 min to factor
M5 matrix on 16,384 cores. This opens the possibility for solving
large-scale FE problems very efficiently.

Both M5 and M8 systems are highly ill-conditioned and prac-
tically solvable only with direct methods. An iterative solver with a
specially-tailored powerful preconditioner can also be used,
however all the combinations of solvers, preconditioners, and
their parameters that we considered failed to converge to the
desired tolerance for these systems after many thousands of
iterations. MUMPS also failed to perform the factorization of M8
running to the wall clock limit of 6 h without making any progress
in factorization, while WSMP successfully finished all tasks. On the
largest number of cores, the factorization of this huge complex M8
matrix was performed in 30 s! This confirms the speed and the
robustness of direct methods and their small sensitivity to the
modeling frequency and conductivity distribution in the model.
The scalability gradient of WSMP remains high even on 65,536
cores indicating that its scalability limit has not been reached. We
might also note that the factorization of the M8 system with
WSMP was performed even faster than of the M5 case, which can
be explained by sparsity structure and larger number of nonzeros
in the FE matrix.

While the memory usage per node decreases, the total memory
usage grows when more than one computational node is used. For
example, when two supernodes are factored concurrently, both
frontal matrices should be kept in main memory simultaneously
(Avron and Gupta, 2012). Thus, by exploiting more parallelism, we
also increase the total memory requirements. On some systems
one needs to find a good balance between the benefit of using
more parallelism and the cost of additional data movements in the
memory. Fig. 7 shows the memory usage for the factorization of
the largest systems that can be solved with the distributed-
memory solvers (M8 for WSMP and M5 for MUMPS). When the
number of nodes is small, factorization of these huge complex
matrices barely fit into the system memory. On 4096 nodes
(65,536 cores) the memory usage significantly drops to 3.8 GB/MPI
rank (15.2 GB/node) showing that even systems larger than M8
should be solvable with WSMP on Blue Waters or other similar
modern large HPC systems.

Parallel speedup of the factorization of the three largest test
matrices is shown in Fig. 8. We see that on low number of cores
almost all cases experience an enhanced speedup that is even



Fig. 9. WSMP factorization performance.
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super-linear for the M5 and M8 systems with WSMP. On these
scales, computation is more important than communication and
since more cache is available with more nodes, more data is stored
to cache rather than to memory. Thus, the memory access time is
dramatically reduced, which causes the extra speedup in addition
to that from the actual computations. Scaling wider results in
more communications and synchronization overheads, especially
for the small M2 problem. On the largest model M8, WSMP is able
to keep the speedup close to ideal until it reaches 8192 cores. From
this number, the speedup growth rate slowly begins to saturate.
These results show that a hybrid parallel implementation in
WSMP can well-utilize a petascale HPC system and provide good
factorization time and parallel scalability performance. Last but
not least, this is achieved due to the Gemini interconnect between
XE6 nodes of Blue Waters having lower latency and better
bandwidth.

Regarding the differences in the performance of WSMP and
MUMPS, we suspect that it is due to WSMP’s capability of utilizing
an optimally scalable parallel factorization algorithm (Gupta et al.,
1997). In this multifrontal algorithm all frontal and update ma-
trices are distributed among groups of MPI processing using a
block-cyclic two-dimensional partitioning that seems to be a key
to a highly scalable formulation. MUMPS, on the other hand, uses a
one dimensional partitioning of all frontal matrices with the ex-
ception of the root of the elimination tree (i.e. only this root su-
pernode is partitioned in two dimensions). Numerical examples in
this paper also illustrate scalability advantages of the two-di-
mensional partitioning.

The number of floating point operations (FLOPs) to perform
matrix factorization is constant for a particular solver and parti-
cular test system. Fig. 9 summarizes the observed performance for
all scaling runs showing the hardware FLOPs for MUMPS and
WSMP. The performance FLOPs/sec is greatly increasing as we
scale wider, since the factorization wall clock time is decreasing.
For the M8 matrix, we achieved the highest performance on Blue
Waters of 97.05 TFLOPS using 65,536 cores. To our knowledge, this
is the record performance in a sparse matrix factorization using
direct solvers.
6. Conclusions and future work

The recent rise of terascale and petascale computing, as well as
the developments in multifrontal and supernodal algorithms for
matrix factorization, has greatly increased the efficiency and
practicality of direct solvers. We have evaluated the performance
of modern parallel shared- and distributed-memory direct solvers
for solving large sparse complex linear systems arising from
electromagnetic problems in geophysics on the Blue Waters sus-
tained petascale system. The test systems were extracted via two
practical finite-element and finite-difference codes that are state-
of-the-art solutions for the most challenging problems in ex-
ploration geophysics today. Computational demands, parallel
scalability and robustness of three direct solvers were evaluated
on large complex-valued systems of linear equations. The growth
rate of the computational time and memory depending on the
number of system unknowns was found to be close to the theo-
retical values. Experimental results show that WSMP is sig-
nificantly faster on large systems, more scalable and thus can take
full advantage of a modern high performance computing system.

In our future work, we plan to exceed the limit of 10 millions of
complex unknowns with a direct solver. Since substantial efforts
have been undertaken to adapt linear sparse solvers for evolving
GPU accelerated heterogeneous systems, we plan to test the newly
accelerated WSMP port on the Cray XK7 nodes of Blue Waters.
Direct methods, while being extremely efficient for multisource
problems, have a small sensitivity to various model parameters
such as geometry of the domain, modeling frequency or air con-
ductivity. By using high-quality structured or unstructured grids,
the electromagnetic field behavior can be modeled with extreme
fidelity helping to improve the understanding of the subsurface.
Having multiple transmitter positions is crucial for proper illumi-
nation of reservoirs and for the quality of inversion. In these ex-
periments, WSMP reached a performance of 97 TFLOPS on 65,536
cores of Blue Waters in the solution of the linear system with
8 million unknowns. Our scalability study credibly shows that this
direct solver is prepared for even larger HPC simulations, thus
enabling extremely realistic and robust simulations of the 3D
electromagnetic exploration problem. Future development lines in
geophysical exploration will tackle the joint inversion, and in
particular when electromagnetic soundings are carried out to-
gether with seismic exploration. Joint inversion of both types of
data will lead to a massive leap in terms of understanding the
properties of subsurface and hence having crystal-clear pictures of
the Earth’s interior, which would be a major breakthrough in
geophysics for the foreseeable future.
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