
Computers & Geosciences 88 (2016) 9–21
Contents lists available at ScienceDirect
Computers & Geosciences
http://d
0098-30

n Corr
Explora

E-m
mavko@
journal homepage: www.elsevier.com/locate/cageo
Case study
Estimating elastic moduli of rocks from thin sections: Digital rock
study of 3D properties from 2D images

Nishank Saxena a,b,n, Gary Mavko b

a Shell Technology Center Houston, Shell International Exploration & Production, Houston, Texas, USA
b Rock Physics Laboratory, Department of Geophysics, Stanford University, Stanford, California, USA
a r t i c l e i n f o

Article history:
Received 19 August 2015
Received in revised form
6 November 2015
Accepted 12 December 2015
Available online 17 December 2015

Keywords:
Digital rock
Image segmentation
Elastic moduli
Sandstone
Carbonate
Thin sections
x.doi.org/10.1016/j.cageo.2015.12.008
04/& 2015 Elsevier Ltd. All rights reserved.

esponding author at: Shell Technology Center
tion & Production, Houston, Texas, USA
ail addresses: nishank.saxena@gmail.com (N.
stanford.edu (G. Mavko).
a b s t r a c t

Estimation of elastic rock moduli using 2D plane strain computations from thin sections has several
numerical and analytical advantages over using 3D rock images, including faster computation, smaller
memory requirements, and the availability of cheap thin sections. These advantages, however, must be
weighed against the estimation accuracy of 3D rock properties from thin sections. We present a new
method for predicting elastic properties of natural rocks using thin sections. Our method is based on a
simple power-law transform that correlates computed 2D thin section moduli and the corresponding 3D
rock moduli. The validity of this transform is established using a dataset comprised of FEM-computed
elastic moduli of rock samples from various geologic formations, including Fontainebleau sandstone,
Berea sandstone, Bituminous sand, and Grossmont carbonate. We note that using the power-law
transform with a power-law coefficient between 0.4–0.6 contains 2D moduli to 3D moduli transforma-
tions for all rocks that are considered in this study. We also find that reliable estimates of P-wave (Vp)
and S-wave velocity (Vs) trends can be obtained using 2D thin sections.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Digital Rock Physics (DRP) is a fast evolving tool for rock
property characterization that holds potential for reducing turn-
around times for laboratory-based petrophysical analysis, as well
as for geologic scenario testing. This tool is based on the idea that a
representative rock image can yield important information on
structural and volumetric properties (e.g., Fredrich et al., 1993;
Golab et al., 2010; Arns et al., 2005; Andrä et al., 2013a), in-
formation that can be further used to simulate established physics
at complex pore-grain boundaries to estimate elastic moduli (e.g.,
Arns et al., 2002; Dvorkin et al., 2011; Madonna, et al., 2012),
electrical conductivity (e.g., Arns et al., 2001; Andrä et al., 2013b),
and flow properties (e.g., Arns et al., 2004; Knackstedt et al., 2009;
Dvorkin et al., 2011). In general, DRP computations are carried out
using numerical techniques (e.g., finite element methods, Lattice–
Boltzmann) on a three dimensional (3D) mesh generated from a
high resolution image that is captured using modern imaging
techniques (e.g., micro x-ray computer tomography, scanning
electron microscopy).

DRP computations are impacted by challenges in imaging and
Houston, Shell International
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segmentation, loss of resolution due to image reconstruction, and
computer memory requirements. These challenges make DRP an
expensive tool. In contrast, estimation of properties in two di-
mensions (2D) using rock thin sections is relatively easier and
considerably cheaper. This allows for analysis of more grains in 2D
than in 3D, given of course, that both 2D and 3D images have the
same voxel size. Also, interpretation of thin sections is more fa-
miliar to petrologists, and thin sections are much more widely
available than 3D images. These advantages of using 2D thin sec-
tions for analysis must be ultimately weighed against the ability to
estimate accurate 3D properties using thin sections. Therefore, it is
of considerable interest to address whether it is possible to utilize
thin sections to gain some information on the corresponding
property of the 3D media, especially in situations when 3D images
are unavailable or are too expensive to acquire and process. Sev-
eral authors have addressed this problem for estimating flow
properties (e.g., Adler et al. 1990; Yeong and Torquato, 1998; Hilfer
and Manwart, 2001; Øren and Bakke, 2002; Keehm, 2003).

However, no study to date has performed a detailed analysis of
possible 2D–3D correlations between numerically computed
elastic moduli of natural rocks. Therefore, the primary objective of
this paper is to investigate the link between elastic moduli of
natural rocks in 3D and the elastic moduli computed from its 2D
slices (thin sections from the same 3D rock) under the plane strain
boundary condition. We analyze a dataset that includes elastic
moduli computed using the finite element method (FEM) for 12
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digital samples of natural rocks in 3D, along with the moduli of the
corresponding 2D thin sections. For the rocks considered in this
study, we note that a simple power-law relation can provide rea-
sonably accurate estimates of rock moduli (in 3D) if only 2D in-
formation is available of the rock microstructure.
2. Digital rocks

We consider a total of twelve 3D digital rocks: four binary di-
gital samples which were generated from segmented digital ima-
ges of natural rocks–a Fontainebleau sandstone, a Berea sandstone,
a Bituminous sand sample (referred as Bitumen Rock), and a
Grossmont carbonate, and another eight digitally modified sam-
ples from the original four samples. This section describes these
digital rocks:

2.1. Fontainebleau sandstone

The Fontainebleau sandstone sample image was taken from
Andrä et al., (2013a). This image was previously obtained from
ExxonMobil and was acquired using the synchrotron source at
Brookhaven National Laboratory with a voxel scale of 7.5 μm.
Fig. 1a shows the segmented binary digital rock (288�288�300)
Fig. 1. Digital rocks: (a) Fontainebleau sandstone sample of size 288�288�300, (b) Ber
400�400�400, (d) Grossmont carbonate sample of size 800�800�800. Pores are
Bitumen Rock, and Grossmont samples are 7.5 mm, 0.74 mm, 4 mm, and 2.02 mm, respect
with grain and pore voxels. For this sample, the porosity is 14.7%,
and permeability is around 1100 mD (Keehm, 2003). Fig. 2a shows
the distribution of 2D thin section porosity as estimated from
multiple slices of the original cube. Grains of Fontainebleau
sandstone are typically composed of quartz (bulk modulus:
36 GPa; shear modulus: 45 GPa). In this paper, we refer to the
original sample reported in Andrä et al. (2013a) as sample C. We
generated two additional samples (A and B) by digitally expanding
the grains of the original Fontainebleau sandstone sample C
(shown in Fig. 4). Porosity of sample B is 11%, whereas the porosity
of sample A is 5%.

2.2. Berea sandstone

The Berea sandstone dataset was also taken from Andrä et al.,
(2013a). Fig. 1b shows the segmented sample of size 800�800�800
with a voxel edge length of 0.74 mm. Laboratory measured connected
porosity of this sample is around 20%, and permeability was found to
be between 200 and 500 mD. The reported porosity of the seg-
mented digital sample is 18% (Andrä et al., 2013a). Fig. 2b shows the
distribution of 2D thin section porosity. We refer to the original
sample as sample C. Similar to the Fontainebleau samples, we also
generated samples A and B by digitally expanding the grains of the
original Berea sandstone sample C (shown in Fig. 3). Porosity of
ea sandstone sample of size 800�800�800, (c) Bitumen Rock sand sample of size
shown in black and mineral in gray. Voxel edge length for Fontainebleau, Berea,
ively.



Fig. 2. Histograms of porosity estimated from thin sections for rock samples shown in Fig. 1. Average porosity from thin sections is shown with the red pentagon symbol.
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sample B is 13%, whereas the porosity of sample A is 5%.

2.3. Bitumen rock

A digital bituminous sand rock sample was imaged, processed,
and later segmented using commercially available Avizo software.
The segmented digital sample of size 400�400�400 is shown in
Fig. 1c. The spatial resolution of this digital rock is 4 mm. Imaging
revealed that the sample has quartz grains (volume fraction 0.56),
bitumen-filled pores (volume fraction 0.37) and air-filled pores
(volume fraction 0.07). To avoid partial saturation we digitally
replaced all air-filled pores with quartz. This sample is referred to
as Bitumen Rock sample C. Fig. 2c shows the distribution of 2D
thin section porosity. Similar to our analysis of the Fontainebleau
and Berea sandstone samples, we digitally alter the grains of Bi-
tumen Rock sample C to generate samples B and A of porosity 17%
and 5%, respectively (shown in Fig. 3).
2.4. Grossmont carbonate

The carbonate sample was also taken from Andrä et al., (2013a).
The sample was extracted from the Grosmont formation, Alberta,
Canada. Fig. 1d shows the digital rock sample of size
800�800�800. The voxel edge length is 2.02 μm. The sample
porosity is 24%, and laboratory measured permeability ranges
from 150 mD to 470 mD. Fig. 2d shows the distribution of 2D thin
section porosity. Altering grains of this original Grossmont car-
bonate sample C we generate samples B and A of porosity 13% and
5%, respectively (shown in Fig. 3).
3. Elasticity in 2D and 3D

For a 3D composite, Hooke’s law of isotropic linear elasticity
relates applied strains to the induced stresses by



Fig. 3. Subcubes of the Fontainebleau and Berea sandstone samples that are shown in Fig. 1, original images are referred as “sample C”. For each rock type, samples A and B
are derived by expanding the grains in sample C resulting in reduced porosity. Each subcube is of size 200�200�200. Pores are shown in black and mineral in gray. For
these subcubes, the voxeledge length for the Fontainebleau and Berea samples are 7.5 mm and 1.48 mm, respectively.
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In Eq. 1, σij are the volume averaged stresses and εij are the
volume averaged strains. Symbols K3 and G3 denote effective 3D
bulk and shear moduli, respectively, which can be calculated using
the following relations:
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In this paper, we define a 2D composite as a 3D composite
whose microstructural properties are fully described by a function
that depends only on two dimensions (for example, directions
1 and 2) and does not vary in the third direction (direction 3). If
direction 3 is perpendicular to the horizontal plane, the 2D med-
ium will appear as a set of vertical pipes of arbitrary cross section
parallel to direction 3. For such a composite, under the plane strain
approximation ε ε ε ε ε( = = = = = )023 13 32 31 33 , the effective bulk
and shear moduli can be defined as:
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Alternatively, the bulk modulus of a 2D composite, under plane
strain, can also be defined as
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For 2D composites the moduli K2 and ′K 2 are exactly related as
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The relation in Eq. 5 is valid for 2D composites with arbitrary
shape empty holes, since under the plane strain boundary condi-
tion, σ33 is exactly related to σ σ+11 22 as

σ ν σ σ= ( + ) ( ), 6min33 11 22

where, νmin is the 3D Poisson’s ratio of the solid or mineral phase in
the composite frame ( ν− ≤ ≤1 0.5min ). Further proof of relations in



Fig. 4. Subcubes of Bitumen Rock and Grossmont carbonate samples that are shown in Fig. 1, original images are referred as “sample C”. For each rock type, samples A and B
are derived by expanding the grains in sample C resulting in reduced porosity. Each subcube is of size 200�200�200. For these subcubes, the voxel edge length for the
Bitumen rock and Grossmont samples are 4 mm and 4.04 mm, respectively.
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Eqs. 5 and 6 is presented separately in Appendix A. For the re-
mainder of the paper, we calculate the elastic moduli of 2D com-
posites using the definition in Eq. 3, and we compare these moduli
with the 3D moduli defined in Eq. 2. Throughout this paper, all
non-porous phases (solid or liquid) have 3D elastic moduli, unless
otherwise specified.

Hashin and Shtrikman, (1963) and Hashin, (1965) give bounds
on elastic bulk and shear moduli for 3D composites (Torquato,
2002). The expressions for these bounds for an isotropic two-
phase composite are given by
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where the superscripts (1) and (2) refer to the properties of the
two phases. Eqs. 7 and 8 yield the upper bound when ( )K 1 and ( )G 1

are the maximum bulk and shear moduli of the individual phases,
and the lower bounds when ( )K 1 and ( )G 1 are the minimum bulk
and shear moduli of the phases. Superscripts HSþ and HS� des-
ignate upper and lower bounds, respectively.
4. Computed moduli and results

To estimate elastic properties of digital rocks (3D composites) and
thin Section (2D composites under the plane strain approximation) we
use an implementation of the finite element method of Garboczi
(Garboczi, 1998; Meille and Garboczi, 2001; Roberts and Garboczi,
2002). Andrä et al., (2013b) recently compared this FEM implementa-
tion with other numerical schemes. The following sample sizes were
used in the property computations: 3D Fontainebleau sandstone
sample of size 288�288�300 and thin sections of size 288�288�1,
3D Berea sandstone sample of size 800�800�800 and thin sections
of size 800�800�1; 3D Bitumen Rock sand sample of size
400�400�400 and thin section of size 400�400�1; 3D Grossmont
carbonate sample of size 800�800�800 and thin section of size
800�800�1. For 3D calculations the composites are subjected to the
strain boundary conditions: ε ε ε= = = 0.00111 22 33 , ε =2 0.00123 ,

ε =2 0.00213 , and ε =2 0.00312 . Similarly, for 2D calculations the thin



Fig. 5. Dry rock bulk modulus versus porosity for different rock samples. Calculations are shown for the 3D rock samples (large symbols) and the corresponding thin sections
(40 for each rock sample; smaller symbols). Also shown are the Hashin–Shtrikman upper bounds on dry rock moduli versus porosity. The computed 2D moduli versus
porosity trend is shown in dashed gray curve; this curve is modified using the power-law solution with different exponent values: 0.4, 0.5, and 0.6. Laboratory data points are
taken from Han’s, (1986) Fontainebleau and Berea dry measurements at 40 MPa, Carbonate taken from Vanorio et al., (2008).
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sections are subjected to the plane strain boundary conditions with the
non-zero strains: ε ε= = 0.00111 22 and ε =2 0.00112 .

The computed effective bulk and shear moduli for the digital
rocks and the corresponding thin sections (40 for each 3D sample)
are shown in Figs. 5 and 6, respectively. Computed 3D moduli are
as defined in Eq. 2 (large dots in the figures), and 2D moduli
computed from the thin sections are as defined in Eq. 3 (small dots
in the figures). Computations were performed with quartz as the
mineral in the rock frame for Fontainebleau sandstone, Berea
sandstone and Bitumen rock, and calcite as the mineral in the rock
frame for Grossmont carbonate. These calculations were per-
formed for composites with empty or dry pores. A summary of all
parameters and numerical computation results is given in Ta-
bles 1–5. We also list the computed elastic properties when pores
are saturated with water (bulk modulus 2.25 GPa and shear
modulus 0 GPa) and a soft solid (bulk modulus 3 GPa and shear
modulus 0.1 GPa). The computed properties of 3D digital rocks
show trends consistent with those exhibited by laboratory mea-
surements (shown in diamond symbols in Figs. 5 and 6), even
though the laboratory measurements were neither taken on the
same samples nor at the same scale as the digital computations.

Next, using the Voigt–Reuss–Hill averaging technique (i.e.,

( + )−M M1/ /21 , such that M denotes individual moduli and the

operator denotes arithmetic average) we calculate the average
2D bulk and shear moduli of all 40 thin sections drawn from the
same 3D rock sample. To calculate the average 2D moduli we give
equal weightage to each thin section regardless of the thin section
porosity. The average thin section porosity is nearly identical to the
3D rock sample from which the thin sections were drawn. The
calculated average dry-rock moduli–porosity trends are shown in
Figs. 5 and 6. Interestingly, the computed 3D moduli–porosity and
the calculated average 2D moduli–porosity trends can be ap-
proximately related by the simple empirical transforms:



Fig. 6. Dry rock shear modulus versus porosity for different rock samples. Calculations are shown for the 3D rock samples and the corresponding thin sections (40 for each
rock sample). Also shown are the Hashin–Shtrikman upper bounds on dry rock moduli versus porosity. The computed 2D moduli versus porosity trend is shown in dashed
gray curve; this curve is modified using the power-law solution with different exponent values: 0.4, 0.5, and 0.6. Laboratory data points are taken from Han’s, (1986)
Fontainebleau and Berea dry measurements at 40 MPa, Carbonate taken from Vanorio et al., (2008).

Table 1
Properties of different phases used in numerical simulations.

Phase Bulk modulus (GPa) Shear modulus (GPa) Density (g/cc)

Quartz 36 45 2.65
Calcite 77 32 2.7
Water 2.25 10�3 1
Soft solid 3 0.5 0.9
Dry 0 0 0
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In Eqs. 9 and 10, Kmin and Gmin are bulk and shear moduli of the
mineral in the rock frame, respectively. Symbols −K dry3 and −G dry3

denote the effective dry bulk and shear moduli of a 3D digital rock,
respectively, whereas −K dry2 and −G dry2 are the effective dry bulk
and shear moduli of a 2D thin section of the 3D digital rock in
question, respectively. Coefficients mK and mG are power-law
exponents.

In Figs. 5 and 6, we show the power law transformed Voigt–
Reuss–Hill curve for the computed thin section moduli (as per Eqs.
9 and 10) for a range of power law coefficients. We note that
varying the coefficients mK and mG between 0.4 and 0.6 leads to
predictions that contain the corresponding 3D digital rock moduli.
Moreover, using ≈ ≈m m 0.5K G we note a good fit between the
computed and the predicted 3D moduli (from 2D thin section
moduli in Eqs. 9 and 10) for the Fontainebleau and Berea sand-
stone samples. Coefficients ≈ ≈m m 0.4K G fit the Bitumen rock
samples. Similarly, ≈ ≈m m 0.6K G fit the computations for the



Table 2
Results of Fontainebleau sandstone computations.

Property/Rock Font A Font B Font C

Sample size 288�288�300 288�288�300 288�288�300
Pixel size 7.5 lm 7.5 lm 7.5 lm
3D porosity 0.05 0.1 0.15
2D porosity 0.0570.01 0.170.01 0.1570.02
3D bulk modulus (GPa)
(Quartz mineral, dry
pore)

31.8 27.1 23.5

(Water-filled pore) 32.4 28.3 25.1
(Solid-filled pore) 32.7 28.9 26.0
2D bulk modulus (GPa)
(Quartz mineral, dry
pore)

27.971.3 20.372.2 14.9572.4

(Water-filled pore) 29.671.0 23.571.6 19.3671.7
(Solid-filled pore) 30.370.9 25.071.4 21.471.5
3D shear modulus
(GPa)

(Quartz mineral, dry
pore)

38 31.8 26.9

(Water-filled pore) 38.1 31.9 27.0
(Solid-filled pore) 38.4 32.6 28.1
2D shear modulus
(GPa)

(Quartz mineral, dry
pore)

32.473.6 21.974.5 14.074.5

(Water-filled pore) 32.872.8 22.873.6 15.973.5
(Solid-filled pore) 34.172.3 25.273.0 19.272.8

Table 3
Results of Berea sandstone computations.

Property/Rock Berea A Berea B Berea C

Sample size 800�800�800 800�800�800 800�800�800
Pixel size 0.74 lm 0.74 lm 0.74 lm
3D porosity 0.04 0.1 0.18
2D porosity 0.0470.02 0.170.03 0.1970.04
3D bulk modulus
(GPa)

(Quartz mineral, dry
pore)

31.5 26.5 20.1

(Water-filled pore) 32.1 27.8 22.5
(Solid-filled pore) 32.4 28.5 23.8
2D bulk modulus
(GPa)

(Quartz mineral, dry
pore)

29.273.9 20.974.4 10.273.1

(Water-filled pore) 30.773.0 24.373.5 16.372.1
(Solid-filled pore) 31.472.6 25.773.0 18.971.9
3D shear modulus
(GPa)

(Quartz mineral, dry
pore)

38.6 31 22.0

(Water-filled pore) 38.8 31.3 22.5
(Solid-filled pore) 39.1 32.3 24.1
2D shear modulus
(GPa)

(Quartz mineral, dry
pore)

32.977.2 22.676.4 8.974.0

(Water-filled pore) 33.876.3 23.775.9 11.673.2
(Solid-filled pore) 35.275.4 26.275.2 15.872.8

Table 4
Results of Bitumen rock computations.

Property/Rock Bit. Rock A Bit. Rock B Bit. Rock C

Sample size 400�400�400 400�400�400 400�400�400
Pixel size 4.0 lm 4.0 lm 4.0 lm
3D porosity 0.05 0.17 0.37
2D porosity 0.0570.01 0.1770.02 0.3770.03
3D bulk modulus
(GPa)

(Quartz mineral, dry
pore)

31.6 19.6 4.9

(Water-filled pore) 32.3 22.2 9.7
(Solid-filled pore) 32.6 22.5 12.2
2D bulk modulus
(GPa)

(Quartz mineral, dry
pore)

27.072.5 7.072.8 0.470.2

(Water-filled pore) 29.271.7 14.571.9 5.370.5
(Solid-filled pore) 30.171.4 17.671.6 8.270.8
3D shear modulus
(GPa)

(Quartz mineral, dry
pore)

38.2 21.7 4.8

(Water-filled pore) 38.3 22.1 5.3
(Solid-filled pore) 38.6 23.7 8.6
2D shear modulus
(GPa)

(Quartz mineral, dry
pore)

31.673.3 6.774.0 0.370.3

(Water-filled pore) 32.373.0 10.172.8 0.270.2
(Solid-filled pore) 33.872.5 14.772.3 4.070.9

Table 5
Results of Grossmont computations.

Property/Rock Grossmont A Grossmont B Grossmont C

Sample size 800�800�800 800�800�800 800�800�800
Pixel size 2.02 lm 2.02 lm 2.02 lm
3D porosity 0.05 0.13 0.24
2D porosity 0.0570.03 0.1370.04 0.2470.04
3D bulk modulus
(GPa)

(Calcite mineral, dry
pore)

61.7 45.2 28.4

(Water-filled pore) 63.1 47.9 32.1
(Solid-filled pore) 63.9 49.3 34.2
2D bulk modulus
(GPa)

(Calcite mineral, dry
pore)

56.6711.5 31.077.9 13.674.2

(Water-filled pore) 59.7710.1 37.677.4 21.374.5
(Solid-filled pore) 61.279.3 40.977.0 25.274.5
3D shear modulus
(GPa)

(Calcite mineral, dry
pore)

28.0 22.3 15.1

(Water-filled pore) 28.1 22.4 15.4
(Solid-filled pore) 28.3 23.0 16.3
2D shear modulus
(GPa)

(Calcite mineral, dry
pore)

26.174.6 18.675.1 8.673.2

(Water-filled pore) 26.174.5 18.974.8 10.073.0
(Solid-filled pore) 26.973.8 20.574.0 12.572.7
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Grossmont carbonate samples.
In Fig. 7, we compare the calculated P and S-wave velocities

(Vp, Vs) estimated from effective bulk and shear moduli of water-
saturated 3D digital rocks and the corresponding 2D thin sections.
Also compared for sandstones are the empirical Vp–Vs curves
obtained by Castagna et al., (1993), Han, (1986), and Vernik et al.,
2002, for water-saturated sandstones. For Grossmont carbonate
rock we compare the empirical Vp–Vs curves obtained by Cas-
tagna et al., (1993) for wet limestone. We note that all digital
computations (2D and 3D) for the Fontainebleau, Berea and Bitu-
men Rock samples are consistent with the empirical trends for
sandstones. Similarly, computations for the Grossmont carbonate
samples are consistent with the Castagna et al. empirical trend for
wet limestone. In fact no empirical transformation using Eqs. 9
and 10 is needed to reproduce the known empirical Vp–Vs trends.
This suggests that it might be possible to use thin sections to ob-
tain a Vp–Vs trend, for example, to predict missing Vs from Vp.



Fig. 7. Water-saturated (i.e., wet) rock Vp–Vs plots using computed elastic moduli from 3D rock samples and the corresponding 2D thin sections.
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However, our numerical computations do not have sufficient
variety in mineralogy to confirm this claim.
5. A simple empirical model

Many parameters can influence the power law exponents mK
and mG, for example, pore shape, properties of the mineral and
pore-fill material, porosity, Poisson’s ratio of the mineral in the
rock frame, etc. An exhaustive study on the impact of all possible
parameters on power law exponents is beyond the scope of this
paper. Instead we investigate the impact of rock porosity and
Poisson’s ratio of the mineral in the rock frame (νmin) on the power
law coefficients. To achieve this, we re-computed the moduli of all
samples C digital rocks and the corresponding thin sections by
digitally populating the mineral in the rock frame with
=K 50min GPa and Gmin varying between 0 and 75 GPa (That is, we
use the actual imaged rock geometries, but apply a wide range of
mineral moduli). This combination of Kmin and Gmin leads to var-
iation in νmin between 0.5 and 0. Fig. 8a and b show the computed
power law coefficients for the average 2D moduli (i.e., Voigt–Re-
uss–Hill average of 40 thin section moduli for each 3D sample) as a
function of νmin. We note that the power law coefficients for all
rocks generally increase with increase in the Poisson’s ratio of the
mineral in the rock frame. Similarly, in Fig. 9a and b we present
numerical calculations of coefficients mK and mG for all twelve
digital rocks (i.e., samples A, B, and C for each of the four rock
types), such that the mineral in the rock frame for all rocks is
quartz (these coefficients were calculated using the expressions in
Eqs. 9 and 10 with average 2D moduli of 40 thin sections for each
3D sample). We note that the power law coefficients reduce with
increase in porosity ( φ). This finding is consistent with the



Fig. 9. Computed power-law exponent m for various rocks (as shown in the legend) versus porosity. The frame mineral in all rocks is quartz. Solution of the empirical model
is also shown as a function of porosity.

Fig. 8. Computed power-law exponent m for various rocks (as shown in the legend) versus rock mineral Poisson’s ratio. Solutions of the empirical model are also shown for
different porosities.
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observations of Meille and Garboczi, (2001) who showed that the
critical porosity (φC , at which grain-to-grain contacts are lost) for a
2D thin section is generally lower than that of the corresponding
3D digital rock. Thus, as the thin section porosity approaches φC

the power law coefficients should approach a relatively small
value.

The data discussed in Figs. 8 and 9 can be fit by the following
empirical model for the power law coefficients:

( )ν ν

φ φ
=

+ +

+ ( )
m

7
4

0.7 0.2 0.4

1 /
,

11
K

min min

C

2

( )ν ν

φ φ
=

+ +

+ ( )
m

7
4

0.6 0.1 0.4

1 /
.

12
G

min min

C

2

The empirical model coefficients in Eqs. 11 and 12 capture the
observed reduction in power law coefficients with reduction in νmin

and an increase in porosity approaching the critical porosity value.
Figs. 10 and 11 show the predicted 3D digital rock moduli using

the FEM-computed 2D thin section moduli with the empirical
model (equations 9–12), for different rocks. For all rocks we as-
sume φ ≈ 0.4C . For the Fontainebleau sandstone samples, the
average disagreement between the predicted and computed 3D



Fig. 10. Dry rock bulk modulus versus porosity for different rock samples. Calculations are shown for the 3D rock samples and the corresponding thin sections (40 for each
rock sample). Also shown are the Hashin–Shtrikman bounds on dry rock moduli versus porosity. Predictions of 3D rock moduli using 2D moduli and the empirical model are
shown in dashed black curves.
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moduli (using the average 2D moduli trend) is about 1%. This
disagreement for Berea sandstone and Grossmont carbonate
samples is about 2% and 4%, respectively. However, the disagree-
ment between the predicted and computed 3D moduli for Bitu-
men rock is relatively larger, about 10%.
6. Conclusions

We conclude that fairly accurate estimates of the effective
elastic moduli of natural rocks (in 3D) can be obtained from 2D
thin sections. This assertion is based on the numerical dataset
presented in this paper which includes elastic moduli estimates of
12 digital rocks and 480 thin sections. To the best of our knowl-
edge this is the first study on this subject encompassing digital
samples of natural rocks. We find that the computed moduli of the
2D thin sections under plane strain boundary conditions are much
softer than the moduli of the isotropic 3D rock. For the samples
studied, we find that computed bulk (shear) moduli of a thin
section can exhibit standard deviation from the average trend of
up to 2.4 GPa (4.5 GPa) for Fontainebleau sandstone samples,
3.9 GPa (7.2 GPa) for Berea sandstone samples, 2.5 GPa (4 GPa) for
Bitumen Rock samples, and 11.5 GPa (5.1 GPa) for Grossmont car-
bonate samples. The obtained Vp–Vs trends using the thin section
moduli are consistent with the known empirical Vp–Vs trends
which were previously established using laboratory and well log
data. This could imply that moduli estimates using rock thin sec-
tions can yield valuable information on the Vp–Vs trend for a given
rock type, which could also be used to predict Vs. However, this
still requires further investigation.

We find that a power-law relation exists between the moduli com-
puted for 3D digital rock and the corresponding 2D thin sections. For the



Fig. 11. Dry rock shear modulus versus porosity for different rock samples. Calculations are shown for the 3D rock samples and the corresponding thin sections (40 for each
rock sample). Also shown are the Hashin–Shtrikman bounds on dry rock moduli versus porosity. Predictions of 3D rock moduli using 2D moduli and the empirical model are
shown in dashed black curves.

N. Saxena, G. Mavko / Computers & Geosciences 88 (2016) 9–2120
rocks studied, the power-law coefficient was found to vary between
0.4 and 0.6.We find that the power-law coefficient depends on Poisson’s
ratio of the mineral in the rock frame and also on porosity. We propose
an empirical model for predicting moduli of rocks when digital in-
formation on rock microstructure is available in 2D but not in 3D.
Acknowledgments

The authors would like to acknowledge Fabian Krzikalla for his
initial work on the subject. Thanks to Jack Dvorkin and Amos Nur
for discussions. Thanks to Jef Caers and four anonymous reviewers
for their comments and suggestions that improved this paper.
Appendix A

Eqs. 5 and 6 can be obtained as follows. We consider a three-
dimensional elastic object with empty pores. The solid (mineral)
phase is homogeneous and linear elastic. The pore geometry is
constant in the z-direction, so that the porous medium has VTI
symmetry. Under plane strain loading with equal extensional
strains in the x and y directions, Hooke’s law can be expressed
(Voigt notation) as

σ
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In equation A-1, the stresses and strains are the volume
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averages, and the constants Cijare the effective elastic stiffnesses of
the porous solid. From equation A-1 we obtain

( )σ σ σ ε( + + ) = + + ( )C C C 2 , A-211 22 33 11 12 13 0

The two moduli defined in Eqs. 3 and 4 are
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Under plane-strain loading of the z-independent geometry, the
normal stresses at any point within the solid must satisfy

σ ν σ σ( ) = ( ) + ( ) ( )⎡⎣ ⎤⎦x y x y x y, , , , A-6min33 11 22

where νmin is the mineral phase Poisson’s ratio. Taking the (x–y)
area average of equation A-6 over the solid phase at any z yields

σ ν σ σ( ) = ( ) + ( ) ( )x y x y x y, , , . A-7min min min33 11 22

It is also true that σ σ ϕ= ( − )1
min33 33 , and

σ σ σ σ ϕ( + ) = + ( − )1
min11 22 11 22 , so that equation A-7 yields the

relation among the volume-averaged stresses and the mineral
Poisson’s ratio.

σ ν σ σ= ( + ) ( ). A-8min33 11 22

Inserting equation A-8 into equation A-5 gives
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