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The traditional approach to coal lithotype analysis is based on a visual characterisation of coal in core, mine
or outcrop exposures. As not all wells are fully cored, the petroleum and coal mining industries increasingly
use geophysical wireline logs for lithology interpretation.This study demonstrates a method for interpreting
coal lithotypes from geophysical wireline logs, and in particular discriminating between bright or banded,
and dull coal at similar densities to a decimetre level. The study explores the optimum combination of
geophysical log suites for training the coal electrofacies interpretation, using neural network conception, and
then propagating the results to wells with fewer wireline data. This approach is objective and has a re-
cordable reproducibility and rule set.In addition to conventional gamma ray and density logs, laterolog re-
sistivity, microresistivity and PEF data were used in the study. Array resistivity data from a compact micro
imager (CMI tool) were processed into a single microresistivity curve and integrated with the conventional
resistivity data in the cluster analysis. Microresistivity data were tested in the analysis to test the hypothesis
that the improved vertical resolution of microresistivity curve can enhance the accuracy of the clustering
analysis. The addition of PEF log allowed discrimination between low density bright to banded coal elec-
trofacies and low density inertinite-rich dull electrofacies.The results of clustering analysis were validated
statistically and the results of the electrofacies results were compared to manually derived coal lithotype logs.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Along with rank and grade, coal organic composition, defined
megascopically by lithotype and microscopically by maceral analysis,
will control the physical and chemical properties of coal that influence
its utilisation and coal seam gas reservoir behaviour. Accordingly,
geologists manually log core and use the distribution of lithotypes
(Fig. 1) to characterise the coal seams for correlation and sampling for
further laboratory analysis. Visual analysis of coal lithotypes can be
subjective, and once the coal is sampled, crushed and analysed, its
megascopic properties are destroyed. Core is also considered ex-
pensive, and as a result, geophysical wireline logs have become an
alternative source of information for coal characterisation (Reeves and
Muir, 1976; Johnston, 1991; Sutton, 2014). The impetus for this study
was that the coal seams in the study areawere not contiguously cored,
so full seam characterisation was not possible unless we developed a
characterisation method based on the wireline logs.

A common approach to coal characterisation using wireline
data applies cut-off values on each wireline log measurement
(Zhou and Esterle, 2007). Density is used for identification of coal,
slin).
and gamma ray or sonic values (among others) for interburden
lithology. Provided good correlation between sampled core prop-
erties and the selected wireline, the approach demonstrates quite
good results. This method might produce significant errors if the
wrong cut-off values were chosen, or if they vary between dif-
ferent coal seams or formations (Fullagar et al., 2004).

This paper describes a methodology that exploits geostatistical
cluster analysis of wireline geophysical data and uses laboratory and
visual core logging analysis data for initial control and subsequent
validation of the results. It does not require any predefined cut-offs and
assumptions about coal quality which potentially makes the method
less prone to an interpreter bias and more robust and reproducible. In
addition to identification of high or low density coal, the method is
interpreted to discriminate inertinite-rich low density dull from mi-
neral-rich dull from higher density or mineral matter rich dull coal and
from banded or bright (high vitrinite) low density coal.
2. Methodology

2.1. Background

The application of cluster analysis, often referred to as elec-
trofacies analysis, to identify different lithologies of facies in clastic
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Fig. 1. An example of a manual coal lithotype profile plotted next to coal core for end member coal lithotypes. Core is 80 cm long (image provided by Natalya Taylor,
University of Queensland).
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sedimentary rocks is common (Ellis and Singer, 2007; Rider and
Kennedy, 2013), so a similar approach could be applicable for coal
lithologies. The term “electrofacies” refers to a cluster or group
with common wireline log signatures or values that distinguishes
it from other clusters. Ye and Rabiller (2005) define electrofacies as
an element of the N-Dimensional (N being the number of wireline
logs considered) data structure created by all petrophysical ma-
terial available, whose ordering reveals the organised relationship
imparted to petrophysical properties of interest by natural geolo-
gic systems ordering (Ye and Rabiller, 2005). Electrofacies, in
contrast to geological facies, is an interval defined on wireline logs,
with consistent or consistently changing wireline log responses
and characteristics – sufficiently distinctive to separate it from
other electrosequences (Rider and Kennedy, 2013). Electrofacies
analysis involves partitioning a set of log data into electrofacies
units and presenting them in a manner that is comparable to that
used by geologists for interpretation purposes – each electrofacies
is assigned a number, or index, which can be plotted against depth
or used to control colour coding on displays (Ye and Rabiller,
2005).

Electrofacies ordering can be performed by different algorithms
such as genetic algorithms (Goldberg, 1989) and neural networks.
Artificial neural networks are computational models inspired by
biological neural networks and are used to approximate functions
that are generally unknown. There are many types of artificial
neural networks and more details can be found in Potvin (1993).
The neural-network scheme, first developed by Angeniol et al.
(1988) is derived from the Kohonen's Self-Organising Map (SOM).
An advantage of the SOM is that the resulting map is automatically
ordered in the data space. A self-organising map (SOM) or self-
organising feature map (SOFM) is a type of artificial neural net-
work (ANN) that is trained using unsupervised learning to produce
a low-dimensional (typically two-dimensional), discretised re-
presentation of the input space of the training samples, called a
map. Self-organising maps are different from other artificial neural
networks in the sense that they use a neighbourhood function to
preserve the topological properties of the input space. An SOM
performs an ordered mapping from a hyper-dimensional data
space onto a lower (one- or two-) dimensional lattice of points
(neurons). It can be considered as a non-linear regression of the
reference vectors (neurons) through the input data (Ye and Ra-
biller, 2005).

The SOM network is made up of a specified number of neurons
interconnected into a one- or two-dimensional array. This inter-
connection among neurons is called the lateral relationship.
Neurons are initialised randomly. The input data are iteratively
presented to the network for a given number of cycles. The con-
vergence is controlled by two learning parameters: the width of
the neighbourhood (Gaussian) function and the learning rate. In
the neuron-splitting technique, all the input data are presented to
the learning mechanism simultaneously instead of successively as
in the SOM. Ye and Rabiller (2005) presented a simple and fully
automated method based on the neuron-splitting technique using
a 1D line-structured SOM. The input data are electrofacies kernels.
These could be derived from any method. Multi-Resolution Graph-
based Clustering (MRGC) method (Ye and Rabiller, 2000) available
within software was used for this coal electrofacies research.

MRGC is a multi-dimensional dot-pattern-recognition method
based on non-parametric K-nearest-neighbour and graph data
representation (Ye and Rabiller, 2000). The underlying structure of
the data is analysed, and natural data groups are formed that may
have very different densities, sizes, shapes, and relative separation.
MRGC automatically determines the optimum number of clusters,
yet allows the geologist to control the level of detail actually
needed to define the electrofacies. Some vector analysis programs
let the user to decide how many clusters based on a “goodness of
fit”. In turn, software used for the research offers a number of
probability tables to estimate and validate the clustering results.
These probability tables were used in this research for validation
of the clustering results.

The electrofacies ordering method which was presented by Ye
and Rabiller (2005) performs a complete training of the SOM be-
tween each splitting process, whereby the newly split neurons are
fully trained before being split again. This process was called a
Coarse-to-Fine Self-Organising Map (CFSOM), because the elec-
trofacies ordering is made from a low-resolution (coarse) map
towards a high-resolution (fine) map. There are no concerns about
how many cycles of input data presentation are necessary to split
neurons and what the optimal parameters for SOM might be when
the data configuration and the size of problem are changed. All
that is needed is for the algorithm to add a reasonable number of
neurons at each step and re-apply the ordinary SOM algorithm.

2.2. Dataset

The research was focused on the northern Bowen Basin (Fig. 2)
and included geophysical wireline logs from wells intersecting
three main Late Permian coal measures – Moranbah, Fort Cooper
and Rangal. In general, the character of the coals changes strati-
graphically up section, with a general increase in inertinite group
macerals in the Rangal Coal Measures (Mutton, 2003). That area is
also characterised by good collection of high-quality wellbore data
and has previous research results that were exploited for valida-
tion of the current study.

The dataset included 26 wells which had been geophysically
logged and cored. Wireline logs included caliper, gamma ray (GR),
laterolog resistivity, density, photo-electric factor (PEF) and ther-
mal neutron porosity; three wells contained sonic data (dt and
dipole data). Borehole electrical images were available for 18 of the
26 wells. Of these 26 wells, not all coal seams were fully cored and
analysed, making the validation against megascopic description a
bit sporadic. The lack of contiguous coring was actually an impetus
for this study, so that complete seams might be characterised
within the measures. Coal proximate analysis data were available
for samples from 23 wells. Visual lithotype logging (using an end
member millimetre scale approach (Esterle et al., 2002)), maceral
and reflectance analysis data were available for 182 sampled
metres of core from 12 wells. The summary of data available for



Fig. 2. Location map of the study area within (a) simplified map of economic coal measures in the Bowen Basin, with inset of location within Australia and (b) close up
showing location of core samples with wireline logs. Note that the Fort Cooper Coal Measures, which occur between the Moranbah and Rangal coal measures, are not shown.
Compiled from IRTM shape files www.irtm.qld.gov.au.
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the research is shown in Table 1. The location of these wells is
presented in Fig. 4 and discussed below.

2.3. Methodology workflow

The automatic algorithm which was implemented for coal li-
thotype profiling is performed in three steps: (1) data preparation;
(2) electrofacies analysis; (3) model propagation. Interpretation of
log data was based on statistical and neural network methods
following Ye and Rabiller (2000). Parameters which were used in
the study are shown in the Appendix.

2.3.1. Data preparation
The first step of the workflow is data preparation and includes

three basic procedures: data collection, data organisation and data
analysis (Fig. 3). The following geophysical data were chosen for
analysis: gamma ray, density, PEF and laterolog resistivity and
microresistivity from borehole electrical images. This particular
choice of wireline measurements is explained by the relationship
between those measurements and coal properties which, in turn,
reflect coal lithotype and grade.

All wells are organised into two datasets: reference and ap-
plication. The former is used to generate the model which would
be further applied on all wells which form the application dataset.
The reference dataset ideally includes the deepest wells which
have a full collection of data (wireline logs, core data, etc.) and
characterise the whole geological profile. For this study, the
reference set contained 16 wells and the application set included
10 wells (see Table 1) which were equally spread over the study
area (Fig. 4).

Finally, all data was analysed and prepared for modelling so
that for all wells all measurements have the same sample rates
and measurement units, each measurement is on an appropriate
scale and erroneous values (such as resistivity values in casing) are
excluded from the data range. Data were prepared in the following
way: gamma ray was plotted on a linear scale between 0 and 200
GAPI; density on linear scale between 1 and 3 g/cc; laterolog re-
sistivity and microresistivity were both on logarithmic scale be-
tween 0.5 and 50 OHHM (for microresistivity) and between 0.02
and 2000 OHHM (for laterolog resistivity); PEF was on a linear
scale between 0 and 4 B/E (Fig. 5). Data were reprocessed to start
just below the casing shoe and have a sample rate 0.025 m.

Some notes should be made about log normalisation. For this
research, authors worked with modern logs and normalisation
was not required. The problem of log normalisation was studied
while working with another data set (not for this research). That
dataset consisted of vintage and modern log curves. Two ap-
proaches were used for that data: (1) all logs were normalised and
then electrofacies analysis was performed; (2) all wells were di-
vided into three groups and analysed separately. After clustering,
the same pattern of electrofacies distribution was observed in all
three groups, so while labelling, corresponding electrofacies were
named similarly and the results of analysis with normalisation and
without normalisation were compared. The comparison

http://www.irtm.qld.gov.au


Table 1
Data available for the study.

Well Wireline geophysical logs Borehole electrical
images

Coal proximate
analysis

Maceral analy-
sis data

Millimetre scale coal
logging data

Reference or applica-
tion set?

GR Density PEF Neutron Resistivity Sonic

W1 Yes Yes Yes Yes Yes No No No Yes Yes Application
W2 Yes Yes Yes Yes Yes No Yes No Yes Yes Reference
W3 Yes Yes Yes Yes Yes No Yes Yes No Yes Reference
W4 Yes Yes Yes Yes Yes No Yes Yes Yes Yes Reference
W5 Yes Yes Yes Yes Yes No Yes Yes No Yes Reference
W6 Yes Yes Yes Yes Yes No No Yes Yes Yes Application
W7 Yes Yes Yes Yes Yes No Yes Yes Yes Yes Reference
W8 Yes Yes Yes Yes Yes No No Yes Yes Yes Application
W9 Yes Yes Yes Yes Yes No Yes Yes No Yes Reference
W10 Yes Yes Yes Yes Yes Yes Yes Yes No Yes Reference
W11 Yes Yes Yes Yes Yes Yes Yes Yes No Yes Reference
W12 Yes Yes Yes Yes Yes No Yes Yes No Yes Reference
W13 Yes Yes Yes Yes Yes No Yes Yes No Yes Application
W14 Yes Yes Yes Yes Yes No Yes Yes No Yes Application
W15 Yes Yes Yes Yes Yes No Yes Yes Yes Yes Reference
W16 Yes Yes Yes Yes Yes No No Yes No Yes Application
W17 Yes Yes Yes Yes Yes No Yes Yes No Yes Reference
W18 Yes Yes Yes Yes Yes No Yes Yes No Yes Reference
W19 Yes Yes Yes Yes Yes No No Yes Yes Yes Application
W20 Yes Yes Yes Yes Yes No No Yes Yes Yes Application
W21 Yes Yes Yes Yes Yes No Yes Yes Yes Yes Reference
W22 Yes Yes Yes Yes Yes No No No No No Application
W23 Yes Yes Yes Yes Yes Yes Yes Yes No No Reference
W24 Yes Yes Yes Yes Yes No Yes Yes Yes Yes Reference
W25 Yes Yes Yes Yes Yes No Yes Yes No Yes Reference
W26 Yes Yes Yes Yes Yes No No Yes Yes Yes Application

Fig. 3. Methodology workflow.
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demonstrated that the discrepancy between two approaches is
negligible. (it has been added in response to the reviewers'
comment).

2.3.2. Electrofacies analysis
The second step of the workflow is the electrofacies analysis.

Electrofacies analysis is performed by two successive procedures:
clustering which assumes partitioning the set of data into clusters
(or electrofacies units) and classification which involves assigning
geological meaning to each electrofacies unit.

2.3.2.1. Clustering. Clustering can be explained as a grouping of all
data into smaller groups based on their similarity or close proxi-
mity in N-dimensional space. A classic approach to facies analysis,
automatic clustering, requires an a priori estimate of the number
of clusters, which can force or skew the results (Ye and Rabiller,
2000). Performing this task manually in high-dimensional space
(when the amount of logs is higher than 3) is still difficult, slow,
somewhat subjective and requires a skill or expertise that is not
always readily available.

The MRGC chosen in this study does not require the user to
determine a number of clusters before starting the analysis. In-
stead, MRGC proposes to the user several optimum numbers of
clusters corresponding to different resolutions. The user is able to
compare several results and choose the most appropriate one. In
addition, the results of MRGC are organised in hierarchical way so
that the clusters of higher resolutions are always sub-clusters of
the lower-resolution clusters (Ye and Rabiller, 2000).

Clustering was performed three times with different input
wireline logs (“methods” 1–3 in Table 3). Different types of re-
sistivities were tried in order to investigate the influence of ver-
tical resolution of resistivity tools on the result of electrofacies
analysis, and PEF was added to the dataset to check the hypothesis
that PEF might help determine a presence of inertinite matter in
dull but low density coal. MRGC input parameters are shown on
Table 2.

MRGC offered three different levels of detail. Thus, for method
#1 software produced: (1) fourteen clusters; (2) twelve clusters;
(3) nine clusters (Table 3). Probability tables were used for vali-
dation of clustering analysis (see Appendix). How the validation
was done for clustering results is explained in the next section.

2.3.2.2. Electrofacies classification
The next step of electrofacies analysis is electrofacies classifi-

cation in order to assign proper geological meaning to each elec-
trofacies unit (or cluster). This procedure is performed manually
by labelling each cluster according to the interpretation of wireline
log characteristics of each electrofacies and the detailed descrip-
tion is given in the next section.

Clustering resulted in a number of clusters (electrofacies), each
with a statistical distribution (range, mean, standard deviation),
for which an example from Method #2 is shown in Table 3.



Fig. 4. Distribution of wells in the study area: (A) reference dataset; (B) application dataset. (distance scale has been added in response to the reviewers' comment).
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In Table 4, these electrofacies were organised according to an
increase of density and gamma ray values. This trend was then
examined against fixed carbon and ash yield to perform the clas-
sification of these electrofacies.

Looking at the trends in distribution of wireline logs values
and the statistics of the distribution, all clusters were classified
according to the understanding of properties of dull mineral
matter rich coal, dull inertinite-rich coal etc. Some clustered
were classified similarly (Fig. 6 and Appendix A) as the authors
did not see significant difference (in terms of statistical dis-
tribution of wireline logs values) between them and these
clusters were merged together. Those clusters which were
classified similarly then, were merged together. The validation
at this stage was performed in software by the analysis of the
contingency tables (see below).

Initially, it was assumed that the increase of density and
gamma ray values correlated to the corresponding decrease of
fixed carbon and increase of ash yield which generally reflects an
increase in coal dullness (provided that rank is held constant). If
coal lithotypes were only based on density, then all bright and
banded coal would be low and all dull coals would be high density.
But density/gamma ray and fixed carbon/ash trends were also
compared to the distribution of resistivity and PEF curve values
and the following observations were made:

� heat affected (heated and coked coal) coal electrofacies was
interpreted based on the distribution of resistivity values and
comparison to core descriptions;

� mineral matter rich dull coal electrofacies was distinguished by
an increase of gamma ray and density and corresponding in-
crease of ash yield;
� bright and banded coal electrofacies was determined by a de-
crease of gamma ray and density which is correlated to a de-
crease of ash yield;

� inertinite-rich dull coal electrofacies was distinguished from
low density bright coals by the distribution of PEF values, as its
gamma ray and density distribution was similar to bright and
banded coal electrofacies.

2.3.3. Model propagation
The final step of electrofacies analysis is model propagation.

Data clustering and electrofacies classification based on the re-
ference set data are procedures which are required to “teach”
neural network, or build a model, how to recognise electrofacies in
a N-dimensional space; in turn, propagation is used to apply the
obtained model on all application set data. Electrofacies propa-
gation is achieved by KNN (K-nearest neighbour) method. It means
that in order to assign value for any application set point, distance-
weighted average of K nearest (in N-dimensional log space) values
of reference data set are used. FNN propagation method assumes
that the first nearest value is taken for propagation. This method
has been chosen because FNN method applies no smoothing to the
results and can capture heterogeneity. FNN propagation was per-
formed for 10 wells from application set.
3. Validation

In order to validate clustering results, software produces a
number of contingency tables to evaluate the amount of samples
dropped to each particular cluster, or electrofacies, and their
probabilities (see Appendix). A probability of 100% means that all



Fig. 5. Input wireline logs statistics. (microresistivity has been added in response to the reviewers' comments).

Table 2
MRGC input parameters.

Normalize Using Plot Range
Minimum Number of Electrofacies 8
Maximum Number of Electrofacies 35
Number of Optimal Models 5
Initial Neurons for CFSOM 4

Table 3
Input data for three different clustering methods.

METHOD INPUT DATA Number of clusters

Cluster
Set #1

Cluster
Set #2

Cluster
Set #3

METHOD #1 GR, DENSITY, DEEP LATER-
OLOG RESISTIVITY,
MICRORESISTIVITY

14 12 9

METHOD #2 GR, DENSITY, DEEP LATER-
OLOG RESISTIVITY, PEF

14 11 8

METHOD #3 GR, DENSITY, MICRO-
RESISTIVITY, PEF

15 12 10

METHOD #4 VALIDATION SET (MILLIMETRE SCALE LOGGING RESULTS)
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samples belong only to that electrofacies; probability other than
100% means that those samples can also belong to another facies.
The probability reflects the degree of uncertainty of clustering
results. The higher the probability, the better is the result of
clustering.

Comparing different contingency tables for the different
methods (refer Table 2), it was observed that the probability is the
highest for 14 (or 15 in case of method #3) clusters (see Appen-
dix). Contingency tables for all three different “methods” were
compared and the highest probabilities were observed for method
#2. This method was regarded as the most reliable one. The input
set for method #2 included gamma ray, density, laterolog re-
sistivity and PEF. As method #2 shows better results than method
#3 (where laterolog resistivity was replaced by microresistivity),
this suggests that microresistivity data (i.e. the image logs) does
not improve clustering results. However, the PEF log does improve
the electrofacies analysis more than method #1 or #3, as it can
discriminate another low density facies that is interpreted as high
inertinite dull rather than bright coal. This conclusion is demon-
strated by contingency tables (see Appendix).
4. Field example

The results of the electrofacies coal lithotype characterisation
were compared to the coal lithotype profiling results obtained by
millimetre scale logging. It was done by comparison of the
weighted average proportion of each electrofacies to the weighted
average proportion of corresponding coal lithotypes obtained by
millimetre scale logging results. The results of the analysis of 26
wells were summarised in tables and presented in a number of
charts for comparison. Two wells (W2 and W21) were selected as
examples. These wells were chosen as they represent almost the
whole geological profile and major coal seams (it has been chan-
ged in response to the reviewers'comment).

4.1. Coal lithotype study

Charts on Fig. 7 shows the overall distribution of dull, banded
and bright coal electrofacies plotted together with correspond-
ing coal lithotypes obtained from millimetre scale logging
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results. The results of four different methods are presented in
the chart:

� method #1 involves electrofacies analysis based on gamma ray,
density, laterolog and microresistivity;

� method #2 includes gamma ray, density, laterolog and PEF;
� method #3 involves gamma ray, density, microresistivity and

PEF;
� method #4 is the millimetre scale coal lithotype profiling which

is based on visual characterisation of coal lithotypes in core
samples.

Some observation can be made based on the charts. First of all, it
can be seen that there is a good correlation between electrofacies
analysis results and millimetre scale logging results, although some
discrepancy exists (Fig. 7). In most cases the quantitative difference
between electrofacies results and manual coal lithotype profiling
does not exceed 20% (Fig. 7). Method #2 which was regarded as the
best method among all three electrofacies analysis methods shows
the results that are close to those used for validation apart from only
one exception which is consistent in all wells. The Vermont
Upper seam (VU1) demonstrates higher percentage of bright coal
electrofacies compared to millimetre scale logging results. The au-
thors do not have a sufficient explanation of that phenomenon but it
can possibly be explained by the constitution of Vermont Upper coal.
The possible explanation is that the mineral constituent of the seam
affect the wireline response which was not taken into account in the
research and a subject for further study.

Fig. 8 demonstrates the comparison of brightness profile ob-
tained from millimetre scale logging which data were used for the
validation and electrofacies analysis results – both with PEF and
without PEF.

One can observe that there is a similarity between the out-
comes of different electrofacies analysis methods. Both methods
seem to recognise dull and brightþbanded coal but when PEF data
are not involved, the analysis mistakenly determines dull in-
ertinite-rich coal as bright coal, because it also has low density.
Especially, it is observed for LU1 (Leichhardt Upper main seam)
coal seam (Fig. 8B).

A very good correlation is observed between millimetre scale
logging data and electrofacies results. Thus, brightness profile of
sample 1 (Fig. 8A) demonstrates (from the top to the bottom) that
bright and bright banded coal is followed by dull coal and then
changes to bright and banded coal again. Electrofacies analysis
(method which involves PEF data) results shows exactly the same
distribution of dull and brightþbanded coal.

4.2. Inertinite-rich coal study results

The weighted average proportion of inertinite-rich electrofacies
was compared to the results of petrographic analysis data.

The results of inertinite-rich coal electrofacies analysis results
were summarised and presented in a number of charts for com-
parison to maceral analysis data and for stratigraphic trends ana-
lysis. Chart demonstrates an increase of the amount of inertinite-
rich dull coal electrofacies from the FCCM towards the top of RCM
(the Leichhardt Upper seam) which corresponds to an increase of
total inertinite observed from maceral analysis data (Fig. 9). On a
global scale, Leichhardt Upper is known as the coal seam which is
rich in inertinite matter (Hunt, 1989), that is also in conjunction to
the observations of this study.

5. Conclusions

The methodology developed in this study was in response to a
need to characterise coal seams in the absence of complete and
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Fig. 6. Interpreted electrofacies units and the distribution of wireline logs values presented as histograms. PEF¼photoelectric effect factor; DLL¼deep laterolog resistivity;
DENL¼bulk density; GR¼gamma ray; FIXED_CARBON¼fixed carbon content; ASH¼ash yield.
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contiguous coring, beyond the assumption that high density coal is
dull and low density coal is bright and banded. The author's initial
view was that image logs were required, but it was not the case.
Three different sets of input data were used during the study:

) Gamma ray, density, laterolog and microresistivity;
) Gamma ray, density, laterolog and PEF;
) Gamma ray, density, microresistivity and PEF.

When clustering is performed on these combinations of wireline
logs, the objective is to group all data points into clusters based on
proximity in N-dimensional data space, which in each of these cases
N¼4. The number of mathematical output clusters is based only on
Fig. 7. Proportion of different coal lithotypes obtained by different methods: horizon
electrofacies for methods #1, #2 and #3, and coal lithotype for method #4; Horizontal sc
Cooper Coal Measures; MCM¼Moranbah Coal Measures (A–C) Well W2: (A) Dull c
(E) Brightþbanded coal; (F) Bright coal.
proximity or similarity of wireline log values, without any regard to
geological meaning. The labelling or geological interpretation of the
clusters usually results in the further grouping, which in this case
was focussed on recognition end member coal lithotypes. The
grouping and interpretation into these lithotypes were validated by
the contingency tables and by comparison to millimetre scale logging
data. The contingency tables were used as a measure of the goodness
of fit, or the probability that all data points belongs to that particular
lithotype or group.

It was observed that the second method provides the best
clustering results and demonstrates the best match between
electrofacies analysis data and millimetre scale logging results.
This method might be suggested for further use to perform coal
tal axis shows coal seam; vertical axis represents the percentage of a given coal
ale: LU¼Leichhardt Upper; VU¼Vermont Upper; VL¼Vermont Lower; FCCM¼Fort
oal; (B) Brightþbanded coal; (C) Bright coal; (D–F) Well W21: (D) Dull coal;
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Fig. 8. The comparison of coal lithotype profiling obtained by different methods: (A, B) the measured depth presented on Track 1; Track 2 shows density and gamma ray;
millimetre scale logging coal lithotype profile is plotted on Track 3 and Facimage results are on Track 4 (PEF, gamma ray, density, laterolog were used as the input data) and
Track 5 (gamma ray, density, laterolog, microresistivity were used as the input data). Some depth shift exists for manual logging data. Picture A shows LU0 (Leichhardt Upper
rider seam) Picture B shows LU1 (Leichhardt Upper main seam) The legend is shown on picture C.
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lithotype profiling of coal. Two hypotheses were tested in the
course of research:

) Microresistivity data can improve the electrofacies analysis re-
sults; and

) PEF data can help to distinguish dull inertinite-rich coal.

The first hypothesis was rejected, while the second one was
proved that is supported by contingency tables (see Appendix).
Based on the analysis and comparison of the results, a number
of conclusions were made:

) The most reliable method of coal lithotype profiling using
electrofacies analysis amongst tested involves gamma ray,
density, laterolog resistivity and PEF;

) PEF can help recognise inertinite-rich coal and this fact is
proved by analysis of contingency tables, millimetre scale log-
ging results and maceral analysis data;



3

4
5

Fig. 9. The comparison of inertinite-rich dull coal electrofacies (from electrofacies
analysis) and inertinite mineral matter free (from maceral analysis) for well W15.
LU¼Leichhardt Upper; VU¼Vermont Upper.
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) Being included into input dataset, microresistivity does not
significantly improve the results of electrofacies analysis;

) Coked coal is very well recognised by all electrofacies methods;
) Vermont Upper coal seam demonstrates a discrepancy between
electrofacies analysis and millimetre scale logging results. The
discrepancy was explained by the mineral matter composition
of the coal seam which was not taken into account in this
research.

The coal rank study is an interesting problem and can poten-
tially be solved by exploitation of sonic data. This problem left out
of focus of this research due to a lack of sonic data.

To sum all, in this paper an automated coal lithotypes profiling
algorithm has been presented. This method is based on wireline
geophysical logs data and does not require any predefined cut-offs
or assumptions, it's based on raw data analysis only and, thus, it's
immune to interpreter bias. The results of automated coal litho-
type profiling were validated by millimetre scale logging data and
analysed. Some recommendations were made about which wire-
line log data are appropriate for coal lithotype profiling. The pro-
blem of inertinite-rich dull coal was also successfully solved dur-
ing the course of the research and the solution is explained in the
paper.
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